
Thanks for the comments. We are carrying out a thorough revision addressing these comments.  

RC 1: Global climate models are of questionable utility in many regions due to poor spatial resolution 
and a poor reproduction of riverine inputs and other critical determinants of biogeochemical processes. 
Downscaling approaches are therefore critical in many regions. Zhang and Zhu present a new 
“downscaling” of CMIP6 model output for the region surrounding the Gulf of Mexico, and they draw 
conclusions about recent changes in the region’s carbon dynamics. The model used by Zhang and Zhu 
appears equally or more robust than prior models of the regional carbon budget. This is therefore 
potentially interesting and relevant work. However, in its present form the manuscript is  needlessly 
confusing and misleading and features some potentially major methodological issues. I therefore 
recommend that the authors carry out a thorough revision of the manuscript text and to clarify 
methodological issues. The core contribution of this study is to provide updated (and potentially more 
robust) estimates of carbon fluxes in this region and to estimate temporal trends in variables such as 
pCO2 and pH. This is a valuable contribution to the literature as these values continue to have high 
uncertainties, and I hope the authors can address the concerns below.It is highly misleading to call this a 
“downscaling” of a CMIP6 model. At present, the title, abstract and introduction misrepresent the work 
in the paper. The title of the manuscript claims this study downscales the global CESM2-WACCM-FV2 
model. Conventionally, this should mean that all possible driving data is derived from the global model. 
Critically, any climate forcings should come from the global model. However, as stated on page 7 of the 
manuscript, the only things taken from the CESM2-WACCM-FV2 model are the initial conditions and 
boundary conditions on the geographic boundary. Atmospheric forcings etc. are not taken from the 
CESM2-WACCM-FV2 model. I therefore view this as a hindcast, where the authors were forced to use 
the CESM2-WACCM-FV2 model for geographic boundary conditions as a compromise. In no real sense 
is it a downscaling of a CMIP6 model. This is a major problem for the paper as there are, at present, 
many inaccurate statements. For example, the abstract claims this: “The model’s biogeochemical cycle is 
driven by the Coupled Model Intercomparison Project 6-Community Earth System Model 2 products 
(CMIP6-CESM2)…” This is clearly not true, as surface temperature, air PCO2, riverine inputs and most 
of the variables driving the carbon dynamics do not come from the CMIP6 product.The title, and aims of 
the paper should therefore be revised.The paper really appears to be a new estimate of carbon fluxes in 
the region. It should therefore be rewritten accordingly. Critically, the authors should make it clearer 
how, as claimed, the estimates in this study are more reliable than previous methods. The evidence 
provided for this are not extensive. 

Response: We acknowledge that the term “downscaling” might not be appropriate, as suggested by 
reviewers #1 and #2. In this revision, we feature this paper as a hindcast that provided a new estimate of 
carbon fluxes of the Gulf of Mexico (GoM) and filled the current knowledge gap of the available carbon 
monitoring data in the GoM. The accuracy of carbon flux estimation in a regional ocean like the GoM is 
still limited by surface pCO2 data availability. Our model study, to our knowledge, is the first one in this 
region to use global products as the boundary condition for biogeochemical fields. Via extensive model-
data comparison against three data sources: high-frequency in situ buoy measurement, machine learning 
product based on remote-sensing and underway pCO2 observations, and CTD transects, our study 
demonstrates that it is feasible to utilize historical run of the global products to drive a regional coupled 
physical-biogeochemical model. We will revise all relevant statements. We intend to change the title into 
“A Re-assessment of the Gulf of Mexico (GoM) Carbon System: Connecting the Gulf of Mexico with the 
Mississippi River and the Global Ocean”. 

RC 1: Output of the CESM2-WACCM-FV2 model are used for both initial and boundary conditions.The 
authors do not state why they used the CESM2-WACCM-FV2 model for the boundary conditions. Was 



this model more accurate in the region than other CMIP6 models or reanalysis products that are 
available? This is a critical question, as it is possible the choice has reduced the reliability of the carbon 
budget estimates. There are also specific issues surrounding the use of this dataset. First, this model can 
have negative values for nitrate, and presumably other variables. I viewed one of the historical files 
(http://esgf-data.ucar.edu/thredds/fileServer/esg_dataroot/CMIP6/CMIP/NCAR/CESM2-WACCM-
FV2/historical/r1i1p1f1/Omon/no3os/gn/v20191120/no3os_Omon_CESM2-WACCM-
FV2_historical_r1i1p1f1_gn_200001-201412.nc) for this model and negative values for nitrate appear 
very frequently across the boundary. Translating these values into boundary conditions is not a trivial 
issue as mass conservation etc. is ambiguous. The authors need to explain this thoroughly. Negatives at 
the boundary also result in average conditions that are far lower than those you would get from the 
NOAA World Ocean Atlas. Potentially this has been corrected for in some way by the authors, but if it 
has not it is not clear if the treatment of the boundary conditions is sensible. Likewise, there are negative 
values in the first time step in 2000, which the authors presumably used in some way to generate their 
initial conditions.The authors state on p. 19 that this study’s estimates of air-sea CO2 fluxes are “more 
reliable than previous GoM model studies”. However, without showing whether the boundary conditions 
are reliable it is difficult to assess this claim. This is especially true, given the authors state that Xue et al. 
2016 used over-simplified boundary conditions. There is therefore real potential that the boundary 
conditions used here are no more reliable than those in Xue et al. 

Response:  We did a thorough examination of available global ocean carbon-related climatology/ 
reanalysis products for the potential to be used as the regional model boundaries. And we argue that the 
current model boundaries setting is a better choice. It should be noted that the GoM region has very 
limited observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) available, and 
observational data along different depths are even fewer and has limited spatial and temporal coverage. 
This is the primary reason many global climatology products have no coverage in the GoM region, e.g., 
Mapped Observation-Based Oceanic DIC monthly climatology from the Max-Planck-Institute for 
Meteorology (MOBO-DIC_MPIM) (NCEI Accession 0221526) (Keppler et al. 2020); or only contain 
surface carbon variables, e.g., global gridded data set of the surface ocean carbonate system OceanSODA-
ETHZ (v2021,NCEI Accession 0220059) (Gregor and Gruber, 2020), Climatological Distributions of pH, 
pCO2, Total CO2, Alkalinity, and CaCO3 Saturation in the Global Surface Ocean (NCEI Accession 
0164568) (Takahashi et al. 2017), the partial pressure of carbon dioxide collected from Surface underway 
observations in the world-wide oceans (NCEI Accession 0161129) (Bakker et al. 2017), an observation-
based global monthly gridded sea surface pCO2 product (NCEI Accession 0160558) (Landschützer et al., 
2017), and a global ocean pCO2 climatology combining open ocean and coastal areas (NCEI Accession 
0209633) (Landschützer et al. 2020).  

Thus global ocean climatology products are not suitable to be used as the boundary for a regional model 
since data along the vertical direction are needed for the model boundary. The most updated global 
monthly climatology of TA (NCEI Accession 0222470) (Broullón et al. 2020b) and DIC (NCEI 
Accession 0222469) (Broullón et al. 2020a) offer 12-month climatology with a 1ºx1º spatial resolution 
and 102 depth levels, this product can potentially be used as a static DIC, TA boundary for the regional 
model. However, these products utilized a neural network approach to achieving full data coverage for the 
3-dimensional global ocean. They used pCO2 from LDEOv2016 (Takahashi, Sutherland, Kozyr, 2017) 
and TA from Broullón et al. (2019) to compute DIC surface values to increase the surface coverage in the 
training data for the machine learning model (Broullón et al. 2020a,b). Therefore, we should be aware that 
the generated global monthly climatology products are not purely observation interpolations but rather a 
machine learning model product with many untested assumptions. And the calculated DIC values do not 
necessarily match the field observations even if the temperature, salinity, TA, and pCO2  source data used 
for the calculations are accurate. Although the global climatology products include grided estimates in the 
GoM region over 12 months, the products are ultimately derived from limited observations that cannot 



support such variation in space and time without data augmentation. We argue that the GCMs based on 
biogeochemical processes, earth system circulations, and conservation schemes are more reliable than the 
neural network machine learning model used to generate the climatology product.  

CMIP6 participating GCMs consume enormous research resources and generate unprecedented 
knowledge on global carbon system evolution with a whole-ecosystem conservation perspective. Utilizing 
GCMs results in a refined regional model extends their research value, especially in regards to bridging 
GCMs product with in situ field observations. With the interannual variation estimated by GCMs, the 
regional model should take advantage of global models by using dynamic boundaries that reflect climate 
oscillations and carbon accumulation in oceanic waters. The choice of CESM2-WACCM-FV2 model 
among other global climate models is primarily based on the global model’s horizontal resolution in the 
GoM region and the availability of nutrients and carbon variables. By comparing a number of global 
models (Table A1), we conclude that the CESM2-WACCM-FV2 by NCAR is among the best modeling 
resolution in the Gulf of Mexico region- it contains all essential nutrients and carbon variables available 
and has a natural focus on the US waters. 

We can use a static climatology product boundary or like Xue et al. (2016) use an empirical salinity–
temperature–DIC–alkalinity relationships to prescribe the model DIC and TA boundaries. However, using 
a static boundary or an over-simplified boundary like Xue et al. (2016) would reduce the value of the 
current study. As shown in Fig. A1 the World Ocean Atlas nitrate product (Boyer et al. 2018) not only 
does not provide a dynamic boundary with interannual variability but also contains very limited 
supporting observational data at the domain boundaries, both horizontal and vertically. Therefore we 
would refrain from using WOA or other climatology as the regional model boundaries. 

 

Figure A1. World Ocean Atlas 2018 NO3 product mean fields (a) surface, (c) bottom and all available 
observation counts (b) surface, (d) bottom incorporated in the product. (note: for observation counts 

below 10, a single-digit number is shown; for observation counts > 100 same color grade is shown as that 
of 100) 

 

 



Table A1. Summary of CMIP6 GCMs considered for regional boundaries 

Model Name Institution Resolution (m) NH4 NO3 

CESM2 NCAR 124214.044 available not available 

CESM2-FV2 NCAR 124214.044 available available 

CESM2-WACCM NCAR 124214.044 available not available 

CESM2-WACCM-
FV2 NCAR 124214.044 available available 

MPI-ESM1-2-LR MPI 176531.166 available available 

MPI-ESM1-2-HR MPI 53841.4877 not 
available available 

MPI-ESM-1-2-
HAM 

HAMMOZ-
Consortium 176531.166 available available 

ACCESS-ESM1-5 CSIRO 147378.349 available available 

CMCC-ESM2 CMCC 140351.946 available available 

CanESM5 CCCma 140351.946 available available 

IPSL-CM6A-LR IPSL 140352.354 available available 

IPSL-CM6A-LR-
INCA IPSL 140352.354 available available 

 

Translating negative tracer values into boundary conditions from the global model product is indeed a 
question to be considered when implementing the regional model. Out-of-bound tracer value is a common 
occurrence to all numerical modeling and is related to the tracer advection scheme used. Numerical 
schemes for tracer transport and mixing ideally satisfy high-order accuracy, conservation, and 
boundedness. However, boundedness is generally not strictly imposed as most numerical schemes give 
priority to the former two desirable properties. Commonly-used approaches to enforce tracer boundedness 
either compromise accuracy or conservation. Minor occurrences of out-of-bound tracer value per se 
should not debase the credibility and reliability of GCMs, which have to meet stringent modeling 
requirements (finer grid resolution and smaller time step can reduce the occurrence of negative tracer 
values, but balancing the computational cost and model complexity dissuades such implementation). The 
negative concentration of tracers can be corrected with a mass conservative and non-diffusive scheme by 
balancing the value from the nearest grid points in a way that conserves the tracer mass. Most negative 
tracer data for NO3 happens in the middle of loop current where there is a sudden change in bathymetry 
and loop current takes a sharp turn as a result of the combined stresses. Along the southern boundary of 
our model (around latitude 16.7387 N), we notice negative tracer values rarely happen (Table A2).  

                        

 



Table A2. GCMs Tracer NO3 value range along GoM boundary 

Model Name Institution 
NO3 range in GoM 
southern boundary 

[min, max], unit: mol m-3 

NO3 range in GoM eastern 
boundary 

[min, max], unit: mol m-3 

CESM2-FV2 NCAR [0, 0.026418] 
[-0.00033723, 0.026207] 
(1.34 % negative tracer 

values) 

CESM2-WACCM-FV2 NCAR [0, 0.025887] 
[-0.00025584, 

0.025676]( 0.98 % negative 
tracer values ) 

MPI-ESM1-2-LR MPI [0, 0.023258] 

MPI-ESM1-2-HR MPI [0, 0.020868] 

MPI-ESM-1-2-HAM HAMMOZ-
Consortium [0, 0.022392] 

ACCESS-ESM1-5 CSIRO [0, 0.073462] 

CMCC-ESM2 CMCC [0, 0.048223] 

CanESM5 CCCma [0, 0.06836] 

IPSL-CM6A-LR IPSL [0, 0.041679] 

IPSL-CM6A-LR-INCA IPSL [0, 0.041748] 

 

RC1: Only a single year is used for model spin up. It is not clear if the model will really have settled 
down by that point. Many regional models require 5 years to spin up, so one year is possibly questionable, 
especially given model output is used for temporal trend analysis.Starting conditions are used from the 
CESM2-WACCM-FV2 model, and quasi-equilibrium conditions for this model will differ (perhaps quite 
dramatically) from the regional model. The authors justify using a one-year spin up by saying “the global 
model has been well stabilized up to the year 2000 from its ‘pre-industry’ experiment”. This does not say 
much about the stability of the regional model used. Given the issues mentioned above about negative 
nitrate values in the global model, it seems questionable whether the starting conditions are close to a 
stable state in the regional model. Furthermore, it is plausible that riverine inputs are drastically better 
resolved in the regional model than the global model. This is particularly important given the conclusion 
of the importance of the carbon inputs from the Mississippi River. 

The spin-up timing issue is also particularly relevant for the “no rivers” experiment. This experiment 
essentially removes rivers at the start of 2000, but assumes that the model is effectively spun-up to “river-
free” conditions by the end of 2000. The authors need to show that this is credible. Otherwise, some of 
the results in the experiments section may not be robust. 

Response: The regional model has the benefit of swift spin-up compared with the global model due to 
higher spatial resolution, smaller time-step, and relatively high momentum in the GoM region. The 
biogeochemical model typically completes its spin-up in one year (e.g. Große, Fennel, Laurent, 2019; 



Laurent and Fennel, 2019; Laurent et al., 2021). To address the reviewer’s comment about the spin-up 
time, especially for the “no rivers” experiment, we added the spin-up comparison results of the “no 
rivers” experiment to assure that a one-year spin-up is necessary and further spin-up beyond one year do 
not gain additional benefits. We used the 9-year spin-up result as the control and assumed spinning up for 
nine years was adequate for the regional model. Then we check the difference between the model results 
of different spin-up times to that of the 9-year spin-up result (as Diff). For the interest of the carbon model, 
ocean surface DIC and TA concentration differences are plotted in detail in Figs. A2 and A3.  

 

 

Figure A2. Ocean surface DIC difference between nine-year spin-up NoR experiment and NoR 
experiment spinning up for (a) 2 months (b) 3 months (c) 4 months (d) 5 months (e) 6 months (f) 7 
months (g) 8 months (h) 10 months (i) 1 year (j) 2 years (k) 3 years (l) 4 years (m) 5 years (n) 6 years (o) 
7 years (p) 8 years. 



 

 

Figure A3. Ocean surface TA difference between nine-year spinup NoR experiment and NoR experiment 
spinning up for (a) 2 months (b) 3 months (c) 4 months (d) 5 months (e) 6 months (f) 7 months (g) 8 
months (h) 10 months (i) 1 year (j) 2 years (k) 3 years (l) 4 years (m) 5 years (n) 6 years (o) 7 years (p) 8 
years. 

 

RC1: Overall, the model seems to do a reasonable job compared with observations. However, at present 
the model validation lacks rigorous statistics and is purely visual. There are 3 figures comparing model 
results and observations. However, there is a failure to show how close the model is to observations. I 
recommend the authors add correlation coefficients, RMSE and bias values for model-observation 
comparisons where relevant. These should give reasonable results based on the figures. This is 
particularly important for figure 5 comparing surface pCO2 between model and observation/ML model. 
The authors should also consider carrying out a similar analysis of pCO2 for the global climate model 
used to help assess the reliability of the boundary and initial conditions. 



Response: Two types of observations are used as the standard for model evaluations, namely the high-
frequency buoy measurements of surface pCO2 and CTD measurements of DIC and TA in the GoM. We 
plan to introduce the following statistics to the revision.  

 

                                           (A1) 

(Zhang et al., 2012) 

The model skill is a metric that evaluates the improvement gain in the high-resolution regional model 
compared with that of the climatology/ global model. A skill value of 1 indicates significant model 
improvement, and a value of 0 indicates no improvement. We will also employ commonly used statistical 
metrics such as correlation coefficient (R), Root Mean Square Error (RMSE), and the standard deviation 
(STD) to evaluate the model performance. 

Taylor diagram can assess the model’s ability to capture spatial patterns with regard to a given set of 
reference data. The Taylor Skil Score (TSS) will be used to rank models in capturing the spatial pattern of 
sea surface pCO2, according to both STD and R value defined by equation (A2). 

                                                                          (A2) 

(Babaousmail et al., 2021) 

where σo and σm are the STD of observation and model, respectively. The value of TSS range from 0 to 1, 
with values close to 1 corresponding to better performance.  

The equations of Bias, RMSE and R are given as follows: 

                                                                              (A3) 

                                                                    (A4) 

                                                                                                 (A5) 

where M stands for model output, and O stands for observation; Cov refers to the coverance, and σ 
indicates the standard deviation.  

We provide the model-data comparison at the two coastal buoy locations to demonstrate our model is 
outperforming the other products in the coastal and shelf waters (Fig. A4). Comparison of monthly 
climatology among various global models, the remote sensing-based machine learning products by Chen 
et al. (2019), and the model by Gomez et al. (2020) indicated that our model could better capture the 
seasonal variability in surface pCO2 at these two locations. We thank Dr. Chuanmn Hu from USF and Dr. 
Fabian Gomez from NOAA for providing us with their model data. 

 



 

Figure A4. Comparison of sea surface pCO2 from Global Climate Models (GCMs) (A though L), global 
ocean climatology products (O,P,Q), regional ocean model products (M,N) at two buoy sites. 
Climatology at the two buoy locations of CMIP6 models and Gomez et al. (2020) are calculated by 
multiyear averaging from 2000-2014 model surface results. Climatology at the two buoy locations of 
Chen et al. (2019) is calculated from their ML surface pCO2 product (from 2002-07 to 2017-12). 
Climatology from NCEI Accession 0164568, NCEI Accession 0160558 contains 12-month estimates of 
surface pCO2 and were used directly. Monthly climatology of OceanSODA-ETHZ and this work are 
calculated from 2017-07 to 2019-12 for CoastalLA buoy, and from 2011-03 to 2017-05 for CoastalMS 
buoy. Buoy raw observations have a frequency of ~ 3 hours, monthly averages are used in Fig. A4 to be 
compared with monthly model estimates. 

 

 

RC1:I recommend the authors ensure that all figures are colour-blind friendly. At least 7 of the figures 
are not. Figure 11 is very difficult to understand. Double y-axes should generally be avoided, and in this 
case they just serve to confuse. The axis units are also not stated. 



Response: We will avoid using pure red and pure green in the color scheme and adopt colour-blind 
friendly color schemes. Thanks for the recommendation and reminder. We will remove double y-axes in 
Fig. 11 and re-organize the data in a more readable visualization format. 

 

RC1:At present, the results section includes discussion and the discussion includes results. Comparisons 
of the results with other studies (p. 19) should be moved to the discussion. Furthermore, the sensitivity 
analysis should be in the results section, not the results. 

Response: We will re-organize and place the comparison with other studies in the discussion section and 
the presentation of sensitivity analysis from the perturbed runs in the result section. Our second reviewer 
also gave this suggestion. 

 

RC1:The forcing data used is of varying temporal resolution, and some of it (such as oxygen) is only 
available as a climatology. The authors should clarify which driving data is actually changing during the 
2001-2019 time period, and which are essentially unchanging. At present it is not fully clear what can 
and cannot be driving the temporal trends in carbon fluxes etc. 

To what extent are the riverine inputs climatological? P. 7 states “Missing river alkalinity values are 
interpolated from climatological values, and missing river DIC values are calculated from pH and 
alkalinity…” An indication of how well varying riverine inputs are represented would clarify this. 

The driving data sets mostly seems to be the best available, so minor clarifications are only needed. 

 

Response: In Table A3 we listed the frequency of the forcing data prepared for the regional model. 

Table A3. Model Forcing Frequency 

Forcing Name Data Source Frequency used 

Wind CFSR;CFSv2 6-hourly 

Precipitation CFSR;CFSv2 6-hourly 

Longwave Radiation CFSR;CFSv2 6-hourly 

Shortwave Radiation CFSR;CFSv2 6-hourly 

Humidity CFSR;CFSv2 6-hourly 

Air Temperature CFSR;CFSv2 6-hourly 

Air Pressure CFSR;CFSv2 6-hourly 

 

In Table A4 we listed the frequency of the boundary data prepared for the regional model. 

Table A4. Model Boundary Frequency 



Boundary Variable Data Source Frequency used 

u, v, ubar, vbar, zeta, 
temp,salt HYCOM daily 

NO3, NH4, PO4, 
Si(OH)4, DIC, TA, 

diatom, small 
phytoplankton, 

microzooplankton, 
mesozooplankton, 

Pzooplankton, CalC, 
DOC 

CESM2-
WACCM-FV2 monthly 

Oxygen WOA static climatology 

DON, PON, opal small positive 
value constant 

 

 

A total of 47 rivers (Brazos; Colorado; Guadalupe; Neches; Nueces; Rio Grande; Sabine; W San Jacinto; 
E San Jacinto; Trinity; Atchafalaya; Calcasieu; Mermetau; Mississippi; Pearl; Vermilion; Pascagoula; 
Fish river; Mobile; Perdido; Escambia; Yellow; Choctawhatchee; Apalachicola; Ochlockonee; 
Steinhatchee; Suwannee; Withlacoochee; Crystal river; Chassahowitzka; Pithlachascotee; Anclote river; 
Hillsborough; Alafia; Manatee; Myakka; Peace; Caloosahatchee; Harney; San Fernando; Sotola Marina; 
Panuco; Tecolutla; Jamapa; Papaloapan; Coatzacoalcos; Usumacinta) are included in the model. USGS 
station 7381495, 7381600, 7373420, 7374000, 7374525 are used for alkalinity, DIC data for MARS. For 
all other rivers in the domain, mean climatological DIC and TA values are used due to limited data 
availability. 



 

Figure A5. River DIC, TA concentration prescribed in the model. Grey lines are the interpolated daily 
concentration values; colored data points are raw data collected from multiple sources.  
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