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Abstract. Coupled physical-biogeochemical models can fill the spatial and temporal gap in ocean carbon observations. 

Challenges of applying a coupled physical-biogeochemical model in the regional ocean include the reasonable prescription of 

carbon model boundary conditions, lack of in situ observations, and the oversimplification of certain biogeochemical 10 

processes. In this study, we applied a coupled physical-biogeochemical model (Regional Ocean Modelling System, ROMS) 

to the Gulf of Mexico (GoM) and achieved an unprecedented 20-year high-resolution (5 km, 1/22°) hindcast covering the 

period of 2000 to 2019. The biogeochemical model incorporated the dynamics of dissolved organic carbon (DOC) pools and 

the formation and dissolution of carbonate minerals. The biogeochemical boundaries were interpolated from NCAR’s CESM2-

WACCM-FV2 solution after evaluating 17 GCMs’ performance in the GoM waters. Model outputs included generally 15 

interested carbon system variables, such as pCO2, pH, aragonite saturation state (ΩArag), calcite saturation state (ΩCalc), CO2 

air-sea flux, carbon burial rate, etc. The model’s robustness is evaluated via extensive model-data comparison against buoy, 

remote sensing-based Machine Learning (ML) products, and ship-based measurements. A reassessment of air-sea CO2 flux 

with previous modelling and observational studies give us confidence that our model provides a robust and updated CO2 flux 

estimation, and NGoM is a stronger carbon sink than previously reported. Model results reveal that the GoM water has been 20 

experiencing an ~ 0.0016 yr-1 decrease in surface pH over the past two decades, accompanied by a ~ 1.66 µatm yr-1 increase 

in sea surface pCO2. The air-sea CO2 exchange estimation confirms with several previous models and ocean surface pCO2 

observations that the river-dominated northern GoM (NGoM) is a substantial carbon sink, and the open GoM is a carbon source 

during summer and a carbon sink for the rest of the year. Sensitivity experiments are conducted to evaluate the impacts of river 

inputs and the global ocean via model boundaries. The NGoM carbon system is directly modified by the enormous carbon 25 

inputs (~15.5 Tg C /yr DIC and ~2.3 Tg C/yr DOC) from the Mississippi-Atchafalaya River System (MARS). Additionally, 

nutrient-stimulated biological activities create a ~105 times higher particulate organic matter burial rate in NGoM sediment 

than in the case without river-delivered nutrients. The carbon system condition of the open ocean is driven by inputs from the 

Caribbean Sea via Yucatan Channel and is affected more by thermal effects than biological factors. 
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1 Introduction 

Carbon dioxide (CO2) concentration in the atmosphere has increased approximately 150% from 1750 to 2019 (Le Quéré et al., 

2018), and the storage and transport of carbon in Earth’s ecosystem under the context of climate change has been receiving 

incremental attention over the past decades (Anav et al., 2013; Lindsay et al., 2014; Jones et al., 2016). The direction and 

magnitude of ocean-atmosphere CO2 fluxes are subject to change with increasing atmospheric CO2 concentrations (Smith & 35 

Hollibaugh 1993, Wollast & Mackenzie 1989), incremental ocean dissolved inorganic carbon (DIC) level (Torres et al., 2011), 

modification of the coastal alkalinity generation process (Renforth & Henderson, 2017), changes in organic matter (OM) 

remineralization patterns (Buesseler et al., 2020), river inputs (Yao & Hu, 2017), etc. As an enormous reservoir, the ocean has 

uptake some 170 ± 20 PgC (Le Quéré et al., 2018) since the industrial revolution. This alleviates the CO2 accumulation rate in 

the atmosphere while inducing a consequent increase in ocean carbon level and a decrease in ocean pH and calcium mineral 40 

saturation state (Ω, Doney et al., 2009). Given the stake it holds in shaping climate feedback in the long term and the risk for 

coastal ecosystems under acidification stress, carbon sink quantities and their trends have been studied and monitored by 

multiple studies (Maher & Eyre, 2012; Czerny et al., 2013; Najjar et al., 2018; Bushinsky et al. 2019).  

 

Nevertheless, mismatches in carbon flux estimates among different studies and difficulties in describing the spatial and 45 

temporal pattern of pCO2 data collected from ship-based measurements left many vital questions unanswered. Global Earth 

System Models (ESMs) are essential tools for studying the linkage between the ocean carbon cycle and climate change. 

Extensive utilization of ESMs in hindcasting and coupled biogeochemistry provide pivotal information for understanding the 

carbon cycle on a global scale (Anav et al., 2013; Laurent, Fennel, & Kuhn, 2021; Lindsay et al., 2014; Jones et al., 2016; 

Todd-Brown et al., 2014). However, their relatively coarse spatial resolution is likely not appropriate to be directly compared 50 

with field measurements. It is imperative to apply high-resolution regional ocean models to understand carbon exchange and 

carbon budget at a regional scale. While high-resolution regional models have been developed to represent the complex 

patterns of ocean circulation and elemental fluxes on the continental shelves, the regional ocean carbon system is challenging 

to model and predict due to its high sensitivity to the boundary and initial conditions, uncertainties in the carbon pathway, and 

complex interactions between the atmosphere, ocean, and land (Hofmann et al., 2011).  55 

 

The Gulf of Mexico (GoM) is a semi-closed marginal sea. The presence of the Mississippi-Atchafalaya River System (MARS) 

and the obstructions from Florida Strait and Yucatan Channel mitigate the impact of the global ocean on the GoM regarding 

water acidity and carbon levels. Allochthonous nutrients from river input, upwelling, and boundary shape the general pattern 

of the carbon cycling in the GoM (Cai et al., 2011; Chen et al., 2000; Delgado et al.,2019; Dzwonkowski et al., 2018; Laurent 60 

et al., 2017; Jiang et al., 2019; Sunda & Cai, 2012; Wang et al., 2016), and need to be properly included in the carbon system 

modeling in the GoM. Fennel et al. (2011) performed a coupled physical-biological modelling of the northern GoM (NGoM) 

shelf with the nitrogen cycle to describe the phytoplankton variability under the influence of the MARS covering the period 
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of 1990 to 2004. They found that biomass accumulation in the light-limited plume region near the Mississippi River delta was 

not primarily controlled bottom-up by nutrient stimulation because of the lack of nutrient limitation in the eutrophic zone. Xue 65 

et al. (2016) achieved a first GoM carbon budget and concluded that the export of carbon out of the Gulf via Loop Current is 

largely balanced by river inputs and influx from the air. Their regional carbon model used three sets of initial and open 

boundary conditions derived from empirical salinity-temperature-DIC-alkalinity relationships. Although this method of carbon 

system prescription leveraged the convenience of widely available physical variables and was feasible for regions with scarce 

DIC and alkalinity data, its reliability was questionable as temperature and salinity alone cannot fully describe the spatial and 70 

temporal pattern of these carbon variables. Laurent et al. (2017) presented a regional model study of the eutrophication-driven 

acidification and simulated the recurring development of an extended acidified bottom waters in summer on the NGoM shelf. 

They proved that the acidified waters were confined to a thin bottom boundary layer where the production of CO2 was 

dominated by benthic metabolic processes. Despite reduced Ω values being produced at the bottom due to acidification, these 

regions remain supersaturated with aragonite. Chen et al. (2019) presented a unified model to estimate surface pCO2 by 75 

applying Machine Learning (ML) methods to remote sensing data and cruise pCO2 measurements. Their ML model confirmed 

that the GoM was a carbon sink. Recently Gomez et al. (2020) performed another GoM carbon model study covering the 

period of 1981 to 2014. Their model initial and boundary conditions were derived from a downscaled Coupled Model 

Intercomparison Project 5 (CMIP5) Modular Ocean Model (25km resolution, Liu et al., 2015). Their model results showed 

that GoM was a sink for atmospheric CO2 during winter-spring, and a source during summer-fall, producing a basin-wide 80 

mean CO2 uptake of 0.35 mol m−2 yr−1. Nevertheless, their model does not include the DOC pool or the calcification process, 

which are imperative to describe the dynamic of DIC and alkalinity in the ocean.  

 

Despite the above carbon system regional modelling efforts, we notice that several processes that could contribute significantly 

to the carbon cycle in the GoM have not been investigated yet. The carbon cycle in the ocean is linked with the nutrient cycle 85 

through photosynthetic activities, calcification, and OM remineralization (Anav et al., 2013; Farmer et al., 2021; King et al., 

2015). OM remineralization could be the most critical mechanism regulating the ocean carbon system, followed by the CaCO3 

cycle (Lauvset et al., 2020), with the remineralization of small detritus accounting for over 40% of the DIC production on the 

shelf (Laurent et al., 2017). Autochthonous nutrients from direct remineralization of OM determine the gradient of DIC in the 

euphotic layer (Boscolo-Galazzo et al., 2021; Boyd et al., 2019). During this process, the fast-sinking of OM and higher 90 

particulate to dissolved ratio foster a larger sedimentation rate and more significant DIC removal of the euphotic layers; on the 

contrary, slower sinking and faster decomposition rate of OM favors nutrient and DIC retention in the euphotic layers (Davis 

et al., 2019; Mari et al., 2017; Turner, 2015). The remineralization of land-derived OM and CaCO3 precipitation are significant 

factors controlling air-sea CO2 flux (Mackenzie et al. 2004). Studies have revealed the formation of marine CaCO3 (Burton 

and Walter,1987; Inskeep and Bloom, 1985; Zhong and Mucci, 1989; Zuddas and Mucci, 1998) and the dissolution of marine 95 

CaCO3 mineral is Ω-dependent as well (Adkins et al. 2021). The Ω will be depressed with more CO2 dissolves in seawater and 

can be used as an indicator for the buffering capacity of the ocean carbonate system. Given that Ω influences the calcification 
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rate of marine organisms and regulates the acidity of bottom waters, it should be considered in the CaCO3 cycle for a 

comprehensive carbon cycle assessment.  

 100 

By using the biogeochemical boundaries from one of the latest CMIP6 products, our model inherited the climate perturbation 

signals (Liao et al., 2020) and the accumulative effect of carbon variables from the global solutions. Our regional model 

includes critical carbon cycle processes lacking in previous efforts, including the most up-to-date carbonate chemistry 

thermodynamic parameterization, phosphate cycling, formation & dissolution of CaCO3, and the inclusion of the DOC as a 

semi-labile carbon pool. The objective of this study is 1) to assess the feasibility and robustness of utilizing global model 105 

products to drive a regional coupled physical-biogeochemical model, and 2) to examine the temporal trend of key variables of 

the carbon system (pCO2, pH, air-sea CO2 exchange, and Ω) of the surface ocean in the GoM. In addition, to evaluate the 

impact of MARS and the global ocean on GoM’s carbon cycling, two perturbed experiments are designed. The following 

sections are organized: model setup is given in Sect. 2; in Sect. 3, we validate the model’s performance against buoy, remote 

sensing-based ML solution, and ship-based measurements; the trend of key carbon system variables over the past two decades 110 

and an assessment of the contribution of riverine inputs and the global ocean are presented in Sect. 4; An evaluation of our 

regional model’s performance against GCMs, climatology products, and existing regional models is given in Sect. 5, together 

with an outlook on future model development. 

2 Method 

2.2 Model setup 115 

Our model is built on the platform of Coupled Ocean-Atmosphere-Wave-Sediment Transport modeling system (COAWST; 

Warner et al., 2010). COAWST is an open-source community model which includes the Model Coupling Toolkit to allow data 

exchange among three state-of-the-art numerical models: Regional Ocean Modelling System [ROMS, svn 820, Haidvogel et 

al., 2008; Shchepetkin and McWilliams, 2005], the Weather Research and Forecasting model [WRF, Skamarock, et al., 2005], 

and the Simulating Waves Nearshore model [SWAN, Booij et al., 1999]. The carbon model presented in this study is based on 120 

a well-validated coupled physical-biogeochemical model by Zang et al. (2019 and 2020), which covers the entire GoM waters 

(Gulf-COAWST, Fig. 1). The Gulf-COAWST has a horizontal grid resolution of ∼5 km and 36 sigma-coordinate (terrain-

following) vertical levels. A third-order upstream horizontal advection and fourth-order centered vertical advection are used 

for momentum and tracer advection. The biogeochemical model is developed based mainly on the pelagic N-based 

biogeochemical model Pacific Ecosystem Model for Understanding Regional Oceanography (NEMURO, Kishi, et al., 2007; 125 

Kishi et al., 2011). In this study, we extend from the original 11 state variables of the NEMURO, including nutrients (Si(OH)4, 

NO3, NH4), plankton groups (ZP: predator zooplankton, ZL: large zooplankton, ZS: small zooplankton, PL: large 

phytoplankton, PS: small phytoplankton), dissolved organic nitrogen (DON), particulate organic nitrogen (PON), and opal 

(OPL) to 17, with added variables of phosphate (PO4), particulate inorganic carbon (CalC), dissolved organic carbon (DOC), 
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oxygen (O2), dissolved inorganic carbon (DIC) and total alkalinity (TA). The stoichiometry between carbon and nitrogen in 130 

the OM production and remineralization is set to 6.625 following Fennel (2008). 

 

 
Figure 1: Gulf-COAWST model domain with water depth in color (unit: m). Subregional definitions followed Xue et al. (2016), 
which are Mexico Shelf (MX), Western Gulf of Mexico Shelf (WGoM), Northern Gulf of Mexico Shelf (NGoM), West Florida 135 

Shelf (WF), and Open GoM.  

 

The revised biogeochemical model incorporates key processes regulating the carbon model, including primary production, 

river DIC, PON and DOC delivery, sediment carbon burial, CO2 air-sea flux, CaCO3 cycling, and OM remineralization (Fig. 

2). Widely used carbon system variables, such as pCO2, pH, Ω, etc., are used as carbon system state indicators. The carbon 140 

module that takes in DIC, TA, PO4, Si (dissolved inorganic silicon), salt, temp, for calculating pCO2, pH, ΩArag, and ΩCalc, 

largely followed the recommended best practices (Dickson, Sabine, & Christian, 2007; Eyring et al., 2016; Orr et al., 2017; 

Zeebe and wolf-Gladrow, 2001), with an updated parameter prescription for dissociation constants for carbonic acid (K1) and 

bicarbonate ion (K2) (Millero, 2010), and solubility products for aragonite KA and calcite KC (Mucci, 1983) with pressure 

effect (Millero, 1982; Millero, 2007).  145 

 

Inorganic carbonate mineral (mainly CaCO3) forms during the photosynthetic activities of some phytoplankton species and 

fosters aggregation of detritus and their sinking. The rate of CaCO3 production followed a dynamic ratio regarding the primary 

production of small phytoplankton with low-temperature inhibition and enhancement during bloom conditions (Moore et al., 

2004). The production and dissolution of CaCO3 are important processes for ocean acidity regulation, as its production (by 1 150 
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unit) nominally takes away a unit of [CO3 2-] from water, which reduces the alkalinity and DIC by 2 and 1 unit, respectively. 

This process routinely happens during photosynthetic activities of some phytoplankton species (such as coccolithophores, 

parameterized implicitly as a portion of small phytoplankton in this model) and other marine calcifiers. Carbonate minerals 

produced in the euphotic zone could be treated as equivalent storage of alkalinity and are usually transported towards the ocean 

sediment through sinking. Aragonite and calcite are two common mineral phases of CaCO3 secured by marine organisms and 155 

are included in the model. ΩCalc and ΩArag are calculated as the equilibrium product of Ca2+ and CO3 2-. When Ω > 1, calcification 

is thermodynamically favored, and when Ω < 1, dissolution is thermodynamically favored. In Eq. (1), [Ca2+] and [CO32- ] are 

the concentrations of calcium and carbonate ions, respectively. [Ca2+] is determined through salinity (Millero, 1982; Millero, 

1995), and [CO32-] is calculated through the carbon module. Ksp is the stoichiometric solubility product dependent on pressure, 

temperature, and salinity. Ksp is defined for aragonite and calcite as KA and calcite KC, respectively. 160 

𝛺 = !"#!"$!"%#!$$
&%&

   (1) 

 

In our model, the sediment pool of sinking particles is a simplified representation of burial and benthic remineralization 

processes, where the flux of sinking materials out of the bottommost grid point is added to the sediment pool and enters the 

burial pool (remains inactive) with a dynamic ratio, the active sediment pools undergo enzyme-aided decomposition at rates 165 

regulated by temperature and oxygen, and release corresponding influx of ammonium, DIC, and alkalinity at the 

sediment/water interface. Our model uses a CO2 production ratio of 0.138 between sediment aerobic respiration and 

denitrification (Fennel et al., 2006) and an alkalinity production ratio of 1.93 between pyrite burial and denitrification (Hu & 

Cai, 2011). Upon being sunk to acidified regions, the dissolution of CaCO3, regulated by Ω, can consume dissolved CO2 and 

neutralize the acid. 170 

 

The bulk formula for air-sea gas exchange for CO2 is used following Wanninkhof (1992). Air-sea CO2 flux is calculated with 

a timestep of 240 s and output in the form of a daily average. The gas transfer velocity coefficient of 0.31 cm h-1 is used in Eq. 

(2).  

𝐹"%' = 𝑘(() &
*+
(()
'
,-/'

𝑠	∆𝑝𝐶𝑂'     (2) 175 

 

Where FCO2 is the air-sea CO2 flux in the unit of mmol CO2 m-2 d-1. Sc is the Schmidt number (non-dimensional) (calculated 

following Wanninkhof, 2014), s is the solubility of CO2 in seawater in mol CO2 m-3 µatm-1 (calculated following Weiss, 1974), 

and ∆ pCO2 is the air-sea pCO2 difference in µatm. The term k660 is the quadratic gas transfer coefficient in cm h-1 (converted 

to m d-1). We calculated the air-sea CO2 flux using the relationships of gas exchange with wind speed at 10 m over the sea 180 

surface (U10), following Wanninkhof (1992). We used the ocean convention for the CO2 flux, i.e., a positive flux is defined as 

the ocean being a sink of atmospheric CO2. Air pCO2 level is prescribed using a fitted curve from column-averaged dry-air 
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mole fraction of atmospheric carbon dioxide from 2002 to the present derived from satellite product (merged dataset from 

SCIAMACHY/ENVISAT, TANSO-FTS/GOSAT, and OCO-2 [https://cds.climate.copernicus.eu/; Dils et al., 2014]).  

 185 
Figure 2: Schematic plot showing major processes incorporated in the carbon cycle. 

We performed a 20-yr model hindcast covering the period of 1 January 2000 to 31 December 2019. The physical model setup 

was similar to that of Zang et al. (2020), with ocean physical initial and boundary conditions interpolated from the 1/12° data 

assimilated Hybrid Coordinate Ocean Model (HYCOM/NCODA, GLBu0.08/expt_19.1, expt_90.9, expt_91.0, expt_91.1, 

expt_91.2, and expt_93.0 [https://www.hycom.org; Chassignet et al. 2003]). Physical boundary conditions are of daily 190 

frequency and include u, v, ubar, vbar, zeta, temp, and salt. Atmospheric forcings with 6-hourly frequency include ground 

level or sea surface downwelling shortwave/longwave radiation, ground-level or sea surface upwelling shortwave/longwave 

radiation, surface air pressure, surface air temperature, relative humidity, precipitation, wind at 10 m were extracted from the 

NCEP Climate Forecast System Reanalysis (CFSR) (Saha et al. 2010) and Climate Forecast System Version 2 (CFSv2) (Saha 

et al. 2011). See Table A2 for a list of model forcing frequencies. 195 

 

The Coupled Model Intercomparison Project 6 (CMIP6) participating GCMs consume enormous research resources and 

generate unprecedented knowledge on global carbon system evolution with a whole-ecosystem conservation perspective. 

Utilizing GCMs results in a refined regional model extends their research value, especially in bridging coarse GCMs product 

with in situ field observations. With the interannual variation estimated by GCMs, the regional model could take advantage of 200 

global models by using dynamic boundaries that reflect climate oscillations and carbon accumulation in oceanic waters.  In 

this study, we carefully evaluate various GCM products as candidates for initial and boundary conditions for the 

biogeochemical model. The two prognostic variables dissolve inorganic carbon (DIC) and total alkalinity (TA) are the essential 
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data needed to drive a regional oceanic carbon model. There are no time-varying observational products or reanalysis of DIC 

and TA that has an ideal 3-dimensional coverage of the GoM. NCAR’s CESM2-WACCM-FV2 solution was chosen to serve 205 

as the model boundary due to its relatively small bias in the carbonate variables in the GoM, relative high horizontal resolution 

in the GoM compared with other GCMs, and its availability of nutrients and carbon variables (see Table A1 for more details). 

Monthly boundary conditions of the biogeochemical variables (DIC, DOC, TA, NO3, PO4, Si, NH3 are extracted from CESM2-

WACCM-FV2 solutions (historical, r1i1p1f1, nominal resolution 100 km, [Danabasoglu, 2019b]). As the global model 

simulation ended in December 2014, the biogeochemical boundary condition of 2014 was used repeatedly for the period from 210 

2015 to 2019. The oxygen boundary condition is static without temporal changes since O2 is not available from the CESM2-

WACCM-FV2 and is interpolated from the World Ocean Atlas 2018 (WOA18) product (Boyer et al.,  2018; García et al., 

2019). Freshwater and terrestrial nutrient inputs from 47 major rivers discharged to the GoM are applied as point sources with 

daily frequency. River discharge and water quality data of rivers in the U.S. are collected from US Geological Survey (USGS) 

stations (https://maps.waterdata.usgs.gov). River DOC is prescribed following the values reported by Shen et al. (2012), with 215 

additional references from several other studies (Reiman & Xu, 2019; Stackpoole et al., 2017; Wang et al., 2013; Xu & 

DelDuco, 2017). Mexican river discharge data are collected from BANDAS (https://www.gob.mx/conagua). Water quality 

data of Mexican rivers is prescribed as the average of that of the Mississippi and Atchafalaya rivers. River nutrient and carbon 

load are reconstructed from available USGS observations (see Fig. 3 for time series of river DIC, TA input). Missing river 

alkalinity values are interpolated from climatological values, and missing river DIC values are calculated from pH and 220 

alkalinity using the MATLAB program CO2SYS (Lewis & Wallace, 1998). Validations of the model’s performance in physics, 

nutrient cycle, and primary production can be found in Zang et al., 2019 and 2020. In this study, we focus on the model’s 

performance in the carbon cycle, which is presented in the next section. 
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Figure 3: River DIC, TA concentration prescribed in the model. Grey lines are the interpolated daily concentration values; colored 225 

data points are raw data collected from multiple sources.  

 

Since the model simulated DIC concentration in the water column is sensitive to initial conditions (Hofmann et al., 2011; Xue 

et al., 2016), using the initial condition from a snapshot (January 2000) of the global model result would be appropriate as the 

global model has been well stabilized up to the year 2000 from its “pre-industry” experiment. The regional model has the 230 

benefit of swift spin-up, with the biogeochemical model typically completing its spin-up in one year (e.g., Große, Fennel, 

Laurent, 2019; Laurent and Fennel, 2019; Laurent et al., 2021). We conducted a series of sensitivity tests and confirmed that 

a one-year spin-up period (the year 2000) is sufficient for our current model setup. All results presented below are based on 

model outputs from 2001 to 2019 unless otherwise specified. To quantify the impact of river discharge and the global ocean 

on the carbon system in the GoM, in addition to the control experiment where the historical product of the CESM2-WACCM-235 

FV2 experiment is applied as the boundary conditions (from here, experiment “His”), two perturbed experiments, “Bry” and 

“NoR” are added. The Bry experiment has clamped DIC and TA conditions as that of the year 2000 for all following years 

while keeping all other experiment setups the same as that of the His. The NoR experiment eliminates the presence of all rivers 

in the model while keeping the rest of the experiment set up the same as that of the His. As most available observations are 

confined to the surface ocean, except for the GOMECC transects, for this study we focus on the surface ocean carbon condition 240 

in the NGoM and Open GoM waters. 
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3 Validation 

This section focus on the validation of the model results via comparison against autonomous mooring systems with surface 

pCO2 measurements, ship-based measurements from the Gulf of Mexico Ecosystems and Carbon Cruise transects (GOMECC, 

Barbero et al., 2019; Wanninkhof et al., 2013; Wanninkhof et al., 2016), and pCO2 underway measurements (data downloaded 245 

from https://www.ncei.noaa.gov/access/oads/). Direct observations of the GoM carbon system have been recognized as 

unbalanced among seasons due to fewer data points available in winter compared to other seasons. To overcome the sporadic 

direct measurement dataset, we also performed a model-data comparison against the remote sensing-based ML product of sea 

surface pCO2 by Chen et al. (2019). 

3.1 Model–buoy comparisons 250 

Temporal variability of sea surface pCO2 was recorded by the autonomous mooring system at two sites (CoastalMS and coastal 

LA) operated by the Atlantic Oceanographic and Meteorological Laboratory (AOML) of the National Oceanic and 

Atmospheric Administration (NOAA). The CoastalMS buoy site (location see Fig. 1, data coverage: 2009-01-14 to 2009-12-

09; 2011-03-17 to 2012-08-04; 2013-07-10 to 2014-02-10; 2014-02-10 to 2014-05-03; 2014-12-12 to 2015-03-22; 2015-03-

30 to 2016-09-22 2016-09-23 to 2017-05-29) is predominately impacted by the Mississippi River followed by the coastal 255 

ocean, whereas the CoastalLA buoy site (data coverage: 2017-07-14 to 2017-11-07; 2017-12-14 to 2019-04-26; 2019-06-04 

to 2020-08-12; 2020-08-12 to 2021-08-25; 2021-08-25 to 2021-11-29) is mutually influenced by the Mississippi River and the 

coastal ocean. The high-frequency measurements provide a time-resolved picture of year-round changing pCO2 values. 

Temperature and salinity can influence the chemical equilibrium in the carbonate system, therefore shifting the pCO2 values. 

Validating the temperature and salinity at these two mooring sites is a prerequisite before looking into the surface pCO2 levels. 260 

In Fig. 4, the top four panels compare the sea surface temperature (SST) and salinity (SSS) between model and buoy 

measurements and show satisfying model-data agreements, with correlation coefficients larger than 0.75. At CoastalMS, the 

range for sea surface pCO2 is 150~600 µatm. Sea surface pCO2 records are more volatile at CoastalLA with a maximum value 

> 800 µatm and a minimum value around 150 µatm. Following the salinity drop, pCO2 at the CoastalMS site is simultaneously 

reduced, demonstrating the river’s influence on both salinity and pCO2. At CoastalLA, however, the pCO2 level does not 265 

necessarily follow the trend of salinity, implying complex controlling factors in addition to the river inputs. The bottom two 

panels of Fig. 4 show an acceptable agreement between measured and simulated sea surface pCO2, with a correlation 

coefficient of 0.27 between modelled and observed surface pCO2 at the CoastalMS buoy location and a correlation coefficient 

of 0.55 between modelled and observed surface pCO2 at the CoastalLA buoy location. We notice model-data discrepancies in 

April 2018-04 at CoastalLA and July 2011 at CoastalMS and ascribe such bias to the uncertainty in the riverine DIC inputs 270 

prescription and the limited model horizontal resolution (~5 km).  
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Figure 4: Timeseries of SST, SSS, and pCO2_sea at site CoastalLA and CoastalMS. 

 

3.2 Model–cruise comparisons  275 

Cruise carbon measurements include underway water pCO2 data and conductivity–temperature–depth (CTD) bottle results. 

We compare the model result at the LA transect with the observations of GOMECC cruises conducted at the same location 

during GOMECC1 in 2007, GOMECC2 in 2012, and GOMECC3 in 2017, respectively. Measurements of TA during 

GOMECC cruises followed Dickson’s definition (1981), where the TA is expressed as Eq. (3) 

𝑇𝐴 = [𝐻𝐶𝑂/,] + 25𝐶𝑂/',6 + [𝐵(𝑂𝐻)0
,] + [𝑂𝐻,] + 5𝐻𝑃𝑂0',6 + 25𝑃𝑂0/,6 + 280 

                               [𝐻/𝑆𝑖𝑂0,] + [𝑁𝐻/] + [𝐻𝑆,] − [𝐻1] − [𝐻𝑆𝑂0,] − [𝐻𝐹] − [𝐻/𝑃𝑂0] − [𝐻𝑁𝑂']       (3) 

Equation (3) contains fourteen variables, among which 5𝑃𝑂0/,6  are explicitly modelled as active tracers, 

[𝐻𝐶𝑂/,], 5𝐶𝑂/',6, [𝐵(𝑂𝐻)0
,], [𝑂𝐻,], 5𝐻𝑃𝑂0',6, [𝐻/𝑆𝑖𝑂0,], [𝐻1] , [𝐻𝐹], [𝐻/𝑃𝑂0], [𝐻𝑆𝑂0,]	  are calculated by the carbon 

module, and [𝐻𝑆,], [𝐻𝑁𝑂'], [𝑁𝐻/]  are unaccounted. Figure 5 shows the vertical profiles of observed DIC, TA, and their ratio 

collected at the LA transects (-90°W, 27.5°N - 29.1°N, shown in Fig.1) overlaid with the model solution, the top 200-meter 285 

depth is stretched three times to have a better view on the more densely sampled observational data, and a black dot is placed 

in the location of each observational data with the oversized colored dot representing the value of the measurement. All three 

transects were taken during July when nutrient supply from the MARS was high. Model simulated profiles at the transects are 

taken from the closest date of the daily-averaged output. The general trends in Fig. 5 for DIC, TA, and their ratio, demonstrate 

a good match between the model result and the in situ CTD data. Relative low surface DIC concentration (< 2150 mmol m-3) 290 

above 200 m isobath demonstrates the river’s influence at the NGoM. The general increasing trend of DIC with depth confirms 

the presence of a biological pump, where inorganic carbon is utilized during photosynthesis in the euphotic layer. 
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Subsequently, the generated OM sinks into deeper waters while being remineralized along the way. The TA profiles show 

more variation compared with DIC, where generally, a lower TA concentration (< 2380 milliequivalents m-3) could be found 

at the surface as the direct dilution from river discharge, followed by a quick increase to ~2380 milliequivalents m-3 in the 295 

euphotic layer due to the active photosynthetic activities, which generate alkalinity. Further deep, the TA profiles show a 

decreasing trend between 200 and 700 m, which could be explained by the water column respiration and nitrification. The TA 

profiles show a slow increase from 800 m and deeper, which coincides with the alkalinity generation processes in sediment 

and possibly dissolution of carbonate minerals, both adding to the bottom water TA. The TA/DIC ratio has a maximum at the 

surface due to low DIC concentration and decreases with depth as DIC concentration increases. The last column in Fig. 5, 300 

namely (d) (h) (l), quantifies the difference between the model solutions and the observations and the distribution of the 

difference. Fig. 5 (d) shows that 51.2% of Model-Obs difference for DIC is within [-10 10] µmol kg-1. Similarly, Fig. 5(h) 

shows that 49.8 % of Model-Obs difference for TA is within [-10 10] µmol kg-1, and Fig. 5(l) shows that 91.6% of Model-Obs 

difference for TA/DIC ratio is within [-0.02 0.02] unit. The model’s RMSE for DIC, TA, and TA/DIC ratio over 

GOMECC(2007~2017)  LA transects dataset is 30.97, 26.86, and 0.014, respectively. 305 
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Figure 5: Discrete measurement of DIC and TA along the LA transect during GOMECC1, GOMECC2, and GOMECC3 cruises 
shown as oversized scattered dots (with the little black dots indicating their locations), compared with model results in color 310 

contour, with the water depth shown on the left side of each figure in meter. The distributions of model bias and RMSE for DIC, 
TA and TA/DIC ratio combining three GOMECC cruises at LA transect are shown in (d)(h)(l), respectively. 

3.3 Model–ML pCO2 product comparisons 

Direct comparison between cruise measurement of ocean surface pCO2 and daily averaged model result might suffer from 

systematic bias due to the sparsity of curies data, both temporally and spatially. The ML model generates surface pCO2 from 315 

Chen et al. (2019) integrated >220 cruise surveys between 2002-2019 and MODIS ocean color product covering 2002-2017. 

The comparison between the two surface pCO2 products is shown in Fig. 6, where surface pCO2 results from Chen et al. (2019) 

are denoted as “ML” and results from this work are denoted as “Model” for the monthly climatology from July 2002 to 

December 2017. The two results exhibit a similar spatial distribution of surface pCO2, with our model result revealing more 

dominant features from the Loop Current in the open ocean. Compared with the ML model, our model produces lower pCO2 320 

estimates over NGoM during winter and fall, higher pCO2 estimates over WF during summer, and stronger influence from the 

Caribbean Sea. Chen et al. (2019) reported that no satellite data was found for pCO2 <145 μatm or >550 μatm during their 

model development. This can also be a factor when considering the differences between the two products. Further comparison 

between our model and other products can be found in Section 5.1. 



 

14 
 

 325 
Figure 6: Comparison of surface pCO2 between ML model (Chen et al, 2019) and this work. 

Besides buoy records, transects, and the ML products, we also perform an extensive model-data comparison using available 

ship-based underway pCO2 measurements from the Ocean Carbon and Acidification Dataset 

(https://www.ncei.noaa.gov/access/oads/). These extensive model-data comparisons give us the confidence that our model, 

driven by carbon boundary conditions from the global model, can reproduce temporal, spatial, and vertical variability of the 330 

CO2 dynamics in the GoM.  
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4 Result 

In this section, we present the spatial and temporal pattern of key carbon system variables, namely pCO2, pH, Ω, and air-sea 

CO2 flux simulated over the past 20 years in the GoM. In this study, we emphasize the surface carbon condition in two regions: 

NGoM and Open GoM, where most existing in situ data are distributed. We perform a linear fit of the time series of the key 335 

carbon system variables in each region and show the fitted relationships in Fig. 7. The slopes of the fitted linear plot give 

estimations of the change rate of each carbon variable over the past two decades.  

 
Figure 7: Time series and trend analysis of sea surface (a) pCO2, (b) pH, (c) ΩArag for the NGoM (blue), Open GoM (red). Solid 

lines depict the daily spatial mean value; shaded areas stand for one standard deviation, and dash lines trace the linear fit of the 340 
time series.  

4.1 pCO2  

We simulate a generally increasing trend in surface pCO2 level for both NGoM and Open GoM, with an increasing rate of 1.61 

µatm yr-1 and 1.66 µatm yr-1, respectively (Fig. 7). Seasonal ocean surface pCO2 variation is primarily affected by temperature 

variations. To evaluate the pCO2 trend without temperature effects, we decouple the thermal and nonthermal components of 345 
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pCO2 at the ocean surface using Eq. (4) and (5) and further extract the pCO2 variation due to gross primary production and air-

sea CO2 flux. The temperature sensitivity of CO2, γT = 4.23% per degree Celsius, proposed by Takahashi et al. (1993), is used 

to perform the thermal decoupling in Eq. (4) and Eq. (5). The thermal effect on pCO2 (pCO2th) is defined as the deviation 

between apparent pCO2 and the estimated pCO2 at the mean SST (denoted as <SST>). The nonthermal counterpart (pCO2nt) is 

obtained by removing the thermal effect from the pCO2 time series using Eq. (5). Note that this definition of  pCO2th is different 350 

from the original definition given by Takajashi et al. (2002). The new definition allows the thermal and nonthermal CO2 

components to sum up to the apparent pCO2. pCO2 variations due to gross primary production are estimated from the carbon 

module based on the DIC consumed by gross primary production and denoted as pCO2GPP. pCO2 variations due to air-sea CO2 

flux are calculated from the carbon module based on the DIC change from the air-sea exchange and denoted as pCO2flux.  

The contribution from gross primary production (GPP) is the process that directly affects the CO2 uptake, and GPP can be 355 

calculated by tracking the photosynthesis activity of diatom and small phytoplankton (which is a function of solar radiation, 

temperature, nutrients, and phytoplankton concentrations). Respiration, on the other hand, is more complicated to quantify 

since it concerns both living biota (phytoplanktons, zooplanktons) and nonliving detritus (PON, DOC). Both respiration at the 

surface and respiration that happens in deeper water as detritus sink modify DIC concentration and create concentration 

gradients. We leave the respiration in the end-member of the pCO2nt components, which incorporated various mixing processes 360 

(e.g. river water and oceanic water mixing, vertical mixing of upwelled waters, horizontal advection induced lateral transport 

of tracers with concentration gradients, and entrainment of waters with different chemical nature (i.e. temp/ salt/ DIC/ TA/ 

detritus concentration)). Remineralization and respiration are included in the term pCO2mixing due to the result of the two 

processes altering water chemical nature (DIC, TA, detritus concentration) and the impacts of water chemical nature on pCO2 

are constantly being modified by (and as a result of) the mixing process.  365 

 

𝑝𝐶𝑂'23 =	𝑝𝐶𝑂' ∙ [1 − 	𝑒𝑥𝑝D𝛾4 ∙ (< 𝑆𝑆𝑇 > −𝑆𝑆𝑇)H]   (4) 

𝑝𝐶𝑂'52 =	𝑝𝐶𝑂' ∙ 	𝑒𝑥𝑝(𝛾4 ∙ (< 𝑆𝑆𝑇 > −𝑆𝑆𝑇))   (5) 

𝑝𝐶𝑂'52 =	𝑝𝐶𝑂'677 +	𝑝𝐶𝑂'89:; +	𝑝𝐶𝑂'<=;=>?	      (6) 

 370 

Figure 8 shows the seasonal and spatial patterns of four decoupled pCO2 components, namely the pCO2 th, pCO2nt, pCO2GPP, 

and pCO2flux. The pCO2th patterns in the second row (e,f,g,h) of Fig. 8 reflect the fluctuation of pCO2 due to thermal effects. 

Over the four seasons, a general pattern of rising pCO2 th from spring to summer and a gradual reduction from summer 

onwards can be observed. The NGoM shelf exhibits the lowest pCO2th values during winter, while WF shows elevated 

pCO2th values during summer. The higher pCO2th values dwelling in the southern part of the Yucatan shelf reveal the warm 375 

water flowing into the GoM from the Caribbean Sea. The top row (a,b,c,d) of Fig. 8 shows the nonthermal component of 

pCO2. The relatively high pCO2nt during winter on the NGoM shelf, compared to that of the Open GoM, shows the strong 

solvation effect of CO2 with low SST, contributing to a high DIC/TA ratio and strong carbon uptake. The lower two rows of 
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Fig. 8 show pCO2 changes 

 380 
Figure 8: Spatial distribution of sea surface pCO2 over four seasons. From the top to the bottom row: pCO2

th (a through d),  pCO2
nt 

(e through h),  pCO2
GPP (i through l),  pCO2

flux (m through p; positive indicates the air-sea CO2 flux works in the direction of 
increasing sea surface pCO2). 

due to the gross primary production and CO2 air-sea exchange, respectively. The pCO2GPP reflects the intensity of primary 

production in terms of pCO2 reduction. pCO2GPP has larger magnitudes in NGoM during spring and summer and is gradually 385 

attenuated during and after fall. The large magnitudes of pCO2GPP during summer in NGoM waters and the Open GoM region 

following the extension of the MARS plume suggest strong biological CO2 removal in those regions. These results show that 

gross primary production has a stronger regulation on surface pCO2 during spring and summer in river-dominated waters and 
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upwelling regions. At the same time, a minor contribution from gross primary production can be seen during winter, on the 

flat and shallow WF, and in the Open GoM regions southern of Loop Current. The pCO2flux reflects the intensity of air-sea  390 

Figure 9: Seasonal averaged sea surface pH over 2001-2019 

CO2 exchange attempting to mitigate the disequilibrium caused by local physical and biological processes. The relatively high 

value of pCO2nt and low magnitude of pCO2GPP, as well as low river discharge (minimal river water mixing) in the WF during 

winter, indicate a strong CO2 uptake from the atmosphere due to low SST. This analysis agrees with the low pCO2th and the 

high pCO2flux values in the WF during winter, shown in Fig. 8(d,p). Situations during seasons other than winter are more 395 

complicated due to active biological activities and mixing. The Mississippi Delta region has a high pCO2th value during 

summer, however, combined with the effects of mixing and strong primary production (large magnitude of pCO2GPP), this 

region acts as a strong carbon sink that exhibits a high value of pCO2flux compensated from the atmosphere. Figure 8 

demonstrates that most of the time around the year, the surface pCO2 pattern is not dominated by a single factor but a 

combination of multiple controlling processes. The result of pCO2 decomposition agrees with the current view of the pCO2 400 

dynamic and carbon uptake patterns in the GoM, which is strong carbon uptake during winter due to thermal effect and high 

biological CO2 drawdown during spring and summer under the riverine influence.  
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4.2 pH  

Ocean surface pH in the GoM shows a clear decreasing trend, with a 0.0020 yr-1 decrease over the NGoM region and a 0.0015 

yr-1 decrease over the Open GoM region. Figure 9 shows the seasonal pattern of ocean surface pH over the GoM. Spatial and 405 

seasonal pH patterns show larger variation over the NGoM, especially on the inner shelf (depth<50m). The pH level in the 

surface water is closely associated with temperature, photosynthetic activities, and water mixing. The high pH value on the 

NGoM shelf reveals the strong influence of riverine alkalinity export and nutrient-stimulated primary production. The lower 

pH values on the WF shelf during summer and the generalized greater pH values over NGoM during winter demonstrate the 

high pH sensitivity on SST. The upwelling region along the west Yucatan shelf shows reduced pH values all year round 410 

compared with its surrounding waters. The upwelling along the WGoM slope has a similar effect of reducing and maintaining 

a relatively low pH, effectively forming a pH boundary between the shelf water and the Open GoM. The Open GoM is largely 

dominated by the warmer and lower pH water from the Caribbean Sea throughout the year.  

4.3 Aragonite and Calcite Saturation State  

Aragonite undersaturation occurs ([CO32- ] < 66 μmol kg⁻¹) before calcite undersaturation ([CO32-] < 42 μmol kg⁻¹) (Feely, 415 

Doney, & Cooley, 2009; Feely et al., 2002). As a result, ΩCalc is approximately 50% higher than ΩArag, and their spatial and 

seasonal variations are very similar, as shown in Fig. 10. Variations in temperature, alkalinity, and pCO2 impose important 

controls on ΩArag. The multiyear variability of ΩArag at the ocean surface is shown in Fig. 7(c). The NGoM region shows a 

smaller decreasing trend in ΩArag (0.0045 yr-1) compared to that of Open GoM (0.0068 yr-1). Noted the data contained in Fig. 

7 does not include water from the shallow shelf waters (water depth < 10 m), therefore, the trend in NGoM does not incorporate 420 

the condition in coastal estuaries. The spatial distribution of ΩArag across the GoM depicts a healthy level of Ω and a low risk 

of ocean acidification (Fig. 10). While the coastal ocean generally has a relatively high Ω level, some coastal locations warrant 

special attention when evaluating their tendency towards calcium mineral dissolution. These locations include coastal regions 

that experience a large load of riverine OM inputs (e.g., the Mississippi River delta in summer) and the upwelling regions that 

receive relatively higher acidity water from the bottom ocean (e.g., west of Yucatan). These regions show significant Ω 425 

reductions compared to the surrounding waters and are potential victims of ocean acidification. The influence of the river on 

Ω is complex. On one hand, a high nutrient level of river discharge could stimulate a high photosynthetic rate which consumes 

DIC and increases Ω. On the other hand, photosynthesis favors calcification which consumes carbonate ions and reduces Ω. 

Therefore, Ω is subject to increase with stronger photosynthesis and decrease with stronger calcification. Hence the magnitude 

of the overall effect will depend upon photosynthetic rates and the calcification rate. In this work, two phytoplankton groups 430 

are modelled, diatom (silicifying) and small phytoplankton (implicitly including the calcifying coccolithophores, foraminifera, 

and dinoflagellates), of which only the small phytoplankton group has the potential to conduct calcification (Raven & 

Giordano, 2009). Besides being regulated by temperature and small phytoplankton concentration, the calcification rate also 

depends on the composition of the phytoplankton population. The small phytoplankton group has a survival advantage at 
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relatively low nitrogen concentrations and could be grazed by two zooplankton groups (meso-zooplankton and micro-435 

zooplankton), whereas diatom is more nutrient-demanding and can be grazed by three zooplankton groups (predator 

zooplankton, meso-zooplankton, and micro-zooplankton). The competitive phytoplankton evolution shaped the relative rates 

between photosynthesis and calcification on the NGoM shelf during summer. The reduced Ω to the east of the Mississippi 

River delta is a combined result of high DIC water entrained by Loop Current eddies west of the delta and an increased ratio 

of small phytoplankton in offshore waters. 440 

 

 
Figure 10: Seasonal mean sea surface ΩArag and ΩCalc over 2001-2019 

4.4 Air-sea CO2 Flux  

Air-sea CO2 flux is calculated from daily averaged model data from 2001 to 2019 (Table 3). The GoM overall is a CO2 sink 445 

with a mean flux rate of 0.62 mol C m-2 yr-1 (11.77 Tg C yr-1), which is commensurate with the reported value of 11.8 Tg C 

yr-1 by Coble et al. (2010). The greatest carbon uptake rate occurs in winter (1.97 mol C m-2 yr-1), while the weakest carbon 

uptake is present in fall (0.16 mol C m-2 yr-1). The strongest carbon efflux is simulated in summer (-0.57 C m-2 yr-1). On 

average, water in the NGoM acts as a sink throughout the years, and the water in the Open GoM acts as a weak source during 

summer (and fall for 2002, 2004, 2006, and 2009) and a sink during the rest of the year. The direction and magnitude of the 450 

air-sea exchange can be seen in Fig. 11, where a positive number indicates the ocean is a carbon sink. The NGoM is a very 

strong CO2 sink year-round, and Open GoM is a source of CO2 during summer but a sink in the rest of the year (except during 

fall in a few years), as shown in Fig. 11(b). There are clear trends and patterns in multiyear CO2 air-sea flux, as shown in Fig. 

11(a), where a greater air-sea CO2 flux average could be seen at the end of 2019 than that of 2001, resulting in a stronger 
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carbon influx in both regions. A significant anomaly in the middle part of the record (2009-2011) can be observed, which 455 

could result from the influence of a large negative North Atlantic Oscillation (NAO) index and El Niño in 2010 (Buchan et al., 

2014). Similar observations in the Caribbean Sea are attributed to the single-year anomalies in the climate indices and the 

climate mode teleconnection (Wanninkhof et al., 2019). 

 
Figure 11: Air-sea CO2 exchange over GoM: a) multiyear CO2 flux regression over the weekly mean levels in NGoM and Open 460 

GoM; b) seasonal CO2 air-sea exchange budget over two decades in NGoM and Open GoM. 

 

4.5 Contribution from River and Global Ocean 

In this session, we further diagnose river discharge and the global ocean’s impacts on the GoM carbon system via a comparison 

between the control experiment (His) and the two perturbed experiments (Bry and NoR). In the Bry expreiment the clamped 465 

boundary conditions that repeat the DIC and TA level as that of the year 2000, and in the NoR experiment the river forcing 

was removed to examine the impact of fluvial input on the coastal carbon system.  
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Figure 12 shows the multiyear mean levels of the four carbon variables (pCO2, pH, ΩArag, and CO2 flux) simulated by the three 

experiments. Table 1 summarizes the mean levels of pCO2 over the NGoM and Open GoM. The definition of the pCO2th, the 470 

pCO2nt, the pCO2GPP, the pCO2flux, and the pCO2mixing can be found in Sect. 4.1. The pCO2mixing is defined in Eq. (6), which 

reflects the pCO2 level due to the water mixing. It can also be considered as the pCO2 level determined by the water with a 

multiyear mean temperature and without the influence of gross primary production or air-sea CO2 flux.  

 
Figure 12: Multiyear synoptic of sea surface pCO2, pH, CO2 air-sea flux, ΩArag with His, Bry, and NoR experiment. Color bars 475 
show the corresponding mean level from 2001 to 2019. Color legend: blue – NGoM, red – Open GoM, yellow – GoM wide. The 

unit for pCO2, pH, CO2 flux, and ΩArag are µatm, 1 (full scale), mmol·m-2·d-1, 1, respectively. (Noted that the CO2 air-sea flux used 
ocean convention, where a positive value indicates transport from air to sea, i.e., the ocean is a sink) 

The most salient difference among the three experiments is the significant elevation of the annual mean pCO2 level (in Fig. 

12) in the NGoM by the NoR experiment, combined with a significantly reduced carbon sink during summer (in Fig. 13, from 480 

0.287 to -0.093 Tg season-1 using His as a benchmark). The difference can be better resolved by the pCO2 decomposition 

results shown in Table 1, where a drastic change in the water carbon system emerges in the NGoM during the NoR experiment 

(as compared to the other experiments with river input), evidenced by the large pCO2mixing value deviated from that of His and 

Bry experiment in the NGoM region during spring, summer, and winter. The low values of pCO2nt in NGoM during summer 

can be explained by a strong biological drawdown of CO2 associated with the high productivity fuelled by the riverine nutrient 485 

supply. A pCO2GPP component of -35.35 and -35.46 µatm corresponding to the strong biological drawdown of CO2 in Bry and 

His experiments are in sharp contrast to that of the NoR experiment, which is only -3.10 µatm. Consequently, distinct patterns 

of CO2 air-sea flux are shown in Fig. 13, and highly contrasting CO2 air-sea flux-induced surface pCO2 changes are shown in 

Table 1 (pCO2flux). The summer pCO2flux component for NGoM of the two experiments with river inputs exhibits a relatively 

large value (~ 43 µatm) compared with that of the NoR experiment (0.2 µatm), demonstrating a much smaller disequilibrium 490 



 

23 
 

between oceanic and atmospheric pCO2 when rivers are absent. The changes introduced by removing the river showcase the 

dominating impact of river input on the NGoM carbon system in terms of gross primary production, surface pCO2 level, and 

air-sea CO2 exchange. Due to the different intensities of gross primary production, in His experiment sediment PON 

concentration is six times that of the NoR experiment, and riverine nutrients in His fostered a ~105 times higher PON burial 

rate in NGoM sediments than that of NoR.  495 

 

Table 1 show a close resemblance in the magnitude and seasonal pattern between Bry and His experiment in the Open GoM 

region, with a small yet steady reduction in pCO2 mixing by the Bry experiment among all seasons. The small reductions in 

pCO2mixing of the Bry experiment compared to that of His reflect the contribution from extraneous carbon accumulation from 

the global ocean that is included in the His experiment. As expected, slightly greater CO2 sink values are reported in Fig. 13 500 

for Bry than His. Since the Bry experiment has a smaller carbon accumulation in the Open GoM region compared to that of 

the His experiment, the ocean surface requires a slightly greater carbon uptake to reach equilibrium with the atmosphere. Since 

oceanic water is a natural buffer system and the ocean surface is under constant interaction with the atmosphere, it is reasonable 

that the His and Bry experiments do not show significant differences in surface carbon variables. However, this does not mean 

the accumulative signal of DIC from the global ocean is neglectable. As shown in Fig. 14, the ocean water equilibrium 505 

witnessed migration over the 20-year simulation. Compared with the Bry experiment, His experiment received accumulated 

carbon input from the global ocean and underwent a [CO32-] reduction as large as 15% in some inflicted regions at the 100 m 

depth. Combining the results from the three experiments, we conclude that, in addition to elevated atmospheric CO2 levels,  

both inputs from MARS and global oceans contribute to the overall acidification trend in GoM, with the impacts from MARS 

mainly limited to the NGoM shelf region and the global ocean’s impacts spanning in the Open GoM. 510 

Table 1. Sea surface pCO2 decomposition among experiments  

  
unit: 

µatm 
NGoM Open GoM 

  
His Bry NoR His Bry NoR 

Spring 

pCO2 356.73 356.20 351.04 371.55 371.13 371.12 

pCO2nt 432.75 432.11 423.55 399.59 399.14 399.09 

pCO2th -76.03 -75.92 -72.51 -28.04 -28.01 -27.98 

pCO2GPP -26.83 -26.79 -3.34 -2.95 -2.96 -2.64 

pCO2flux 56.83 57.41 49.24 3.41 3.46 3.46 

  pCO2mixing 401.72 400.43 376.06 399.12 398.64 398.27 

Summer 

pCO2 369.53 368.98 413.42 417.45 417.00 415.42 

pCO2nt 327.13 326.63 364.24 382.49 382.09 380.7 

pCO2th 42.41 42.35 49.18 34.95 34.91 34.72 
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pCO2GPP -35.46 -35.35 -3.10 -3.44 -3.36 -2.09 

pCO2flux 43.41 43.57 0.20 -2.38 -2.34 -2.19 

  pCO2mixing 318.90 318.13 367.24 388.31 387.79 384.97 

Fall 

pCO2 345.82 345.56 352.78 393.38 393.12 392.80 

pCO2nt 353.69 353.43 358.06 370.78 370.54 370.28 

pCO2th -7.8786 -7.88 -5.28 22.60 22.58 22.52 

pCO2GPP -13.64 -13.61 -1.72 -1.69 -1.62 -1.27 

pCO2flux 63.87 64.08 58.23 0.19 0.23 0.25 

  pCO2mixing 301.73 301.22 299.60 372.28 371.94 371.29 

Winter 

pCO2 322.56 322.32 305.96 348.71 348.20 348.80 

pCO2nt 458.11 457.77 432.23 393.36 392.80 393.45 

pCO2th -135.55 -135.45 -126.27 -44.65 -44.59 -44.65 

pCO2GPP -8.01 -8.06 -1.88 -1.77 -1.82 -1.67 

pCO2flux 89.62 90.03 121.45 6.85 6.92 6.83 

  pCO2mixing 373.68 372.96 308.51 388.27 387.69 388.29 
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Figure 13: Seasonal air-sea CO2 exchange at NGoM and Open GoM region among the His (historical), Bry (fixed boundary), and 515 
NoR (non-river) experiments. 

 

 

 
Figure 14: Comparison of monthly averaged carbonate ion concentration ( [CO3

2-] ) between His and Bry at 100 m depth in 2019.  520 
(a) December mean [CO3

2-] of the His experiment, (b) December mean [CO3
2-] of the Bry experiment, and (c) difference between 

(a) and (b). 

5 Discussion 

In this study, we demonstrate that the regional high-resolution carbon model can reproduce the spatial and seasonal patterns 

of ocean surface pCO2 in the GoM and generate reliable TA/DIC profiles in the NGoM shelf. We detect a consistent 525 

acidification trend in the GoM over the past two decades. In this section, we present a side-by-side evaluation of the regional 

model with GCMs, global climatology products, and other regional models, followed by an envisioning of the future outlook 

and model development. 

 

5.1 Model Performance  530 

In this section, we further evaluate the performance of our model via comparison against different global and regional models, 

and climatological products. The GoM region has limited observations of dissolved inorganic carbon (DIC) and total alkalinity 

(TA), and observational data covering different depths are even fewer. Due to lack of observation, global climatology products 

either have no coverage in the GoM region, e.g., Mapped Observation-Based Oceanic DIC monthly climatology from the Max-

Planck-Institute for Meteorology (MOBO-DIC_MPIM) (NCEI Accession 0221526) (Keppler et al. 2020) or only contain 535 

surface carbon variables, e.g., global gridded data set of the surface ocean carbonate system OceanSODA-ETHZ (v2021,NCEI 

Accession 0220059) (Gregor and Gruber, 2020), Climatological Distributions of pH, pCO2, Total CO2, Alkalinity, and CaCO3 
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Saturation in the Global Surface Ocean (NCEI Accession 0164568) (Takahashi et al. 2017), the partial pressure of carbon 

dioxide collected from Surface underway observations in the world-wide oceans (NCEI Accession 0161129) (Bakker et al. 

2017), an observation-based global monthly gridded sea surface pCO2 product (NCEI Accession 0160558) (Landschützer et 540 

al., 2017), and a global ocean pCO2 climatology combining open ocean and coastal areas (NCEI Accession 0209633) 

(Landschützer et al. 2020). The most updated global monthly TA (NCEI Accession 0222470) (Broullón et al. 2020b) and DIC 

(NCEI Accession 0222469) (Broullón et al. 2020a) products offer a 12-month climatology with a 1ºx1º spatial resolution and 

102 vertical levels. Nevertheless, these products utilized a neural network approach to achieve the 3-dimensional coverage. 

Thus, one should be cautious that the generated monthly climatology products are not built solely from the interpolation of 545 

observation. Rather, they are machine learning products with many untested assumptions. For instance, they used pCO2 from 

LDEOv2016 (Takahashi, Sutherland, Kozyr, 2017) and TA from Broullón et al. (2019) to compute surface DIC values to 

increase the spatial coverage in the training data used by the machine learning model (Broullón et al. 2020a,b). In contrast, 

GCMs are based on large-scale circulations that are coupled with biogeochemical processes. They utilize rigorous reasoning 

numerical methods with conservation schemes and, therefore, should have higher inherent consistency. In the following, we 550 

check the bias of these climatology products and GCMs products (see Fig. 15) using Mean Bias, RMSE and R defined as 

follows: 

𝑀𝑒𝑎𝑛	𝐵𝑖𝑎𝑠 = 	∑ (𝑀@ − 𝑂@)/𝑁A
@B-                                                                        (7) 

𝑅𝑀𝑆𝐸 = P-
A
∑ (𝑀@ − 𝑂@)A
@B-

'                                                                             (8) 

R	= 	 "CD(F,%)
I'I(

                                                                                                 (9) 555 

where M stands for model output, and O stands for observation; Cov refers to the coverance, and σ indicates the standard 

deviation. Further, we utilized the Taylor diagram to assess the model’s ability to capture spatial patterns with regard to a given 

set of reference data (Babaousmail et al., 2021). The Taylor Skil Score (TSS) is defined by Eq. (10).  

 

𝑇𝑆𝑆 = 0(-1J)!

K)*)+
1)+)*

L
!
(-1J,)!

                                                                          (10) 560 

where σo and σm are the standard deviation of observation and model, respectively. The value of TSS range from 0 to 1, with 

values close to 1 corresponding to better performance. R is the correlation coefficient between the observation and model, and 

Ro is the maximum correlation coefficient attainable (we use 0.999). 

The non-dimensional model skill, defined in Eq. (11)., can be used to quantify the improvement of the model to reproduce 

observed data with regard to the climatological value. 565 

𝑠𝑘𝑖𝑙𝑙 = 1 − ∑ (N-,ℑ[Q-])!
.
-/0
∑ (N-,+-)!.
-/0

                                                                 (11) 

where di are the available measurements, and (di -ℑ[mi]) is the observation-model difference, (di -ci) is the observation-

climatology difference (Zhang et al., 2012). Usually, a skill of 0.25 means the model can reproduce 25% more variance than 
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those already described in climatology. By using the observation-model difference from this work and the observation-

climatology difference from other models/climatology, we can evaluate the relative performance between this work and other 570 

model/climatology – a positive skill value ideally indicate improvement of the model in the numerator over the 

model/climatology in the denominator while a negative skill value indicates the opposite. We use the other products as the 

reference to calculate the observation-product difference in the denominator, use our model to calculate the observation-model 

difference in the numerator, and list the corresponding skill value in Table 2, indicating the percentage 

improvement/deterioration gained by this work over the referenced product.  575 

 

In Fig. 15, we interpolated model results (both global and regional) to the nearest location of the underway surface pCO2 

measurements. We limited the observational data from 2001-01-01 to 2014-12-31 to assure the ideal coverage of most 

products. Model result by Xue et al. (2016) only had a temporal coverage from 2005 to 2010, underway pCO2 observation 

data are compared with model results of the nearest year in Fig. 15. The statistics of model-data comparison are listed in Table 580 

2.  

 

For regional models, the 12-month ML-based climatology product by Chen et al. (2019), has the best performance in terms of 

RMSE (35.67) and skill (-0.11) (Table 2.). However, the 12-monthly climatology product suffers from a temporal disadvantage 

when compared with model products with smaller time frequency. For example, Model Chen 2019 had an R value of 0.54, 585 

while the daily-averaged model (this work) had an R value of 0.59. The multi-year monthly product by Xue et al. (2016), has 

the largest RMSE (84.92) among the tested products and overestimates shelf regions while underestimating pCO2 in the open 

ocean region (especially the loop current). Overall, model Xue 2016 performs poorly in regard to surface pCO2 with a low R 

value of 0.20 and a low TSS of 0.24, and the model in this study can reproduce 80% more variance than that already described 

in model Xue 2016 (skill of this work over model Xue 2016 is 0.80). In addition, the TSS of this work is 0.63, which is higher 590 

than that of the model Xue 2016 (0.24), supporting one of the major findings of this work that the NGoM is a carbon sink 

instead of a source during summer. Likewise, the open ocean should not be as strong a carbon sink as Xue et al. (2016) 

suggested since their estimated pCO2 on the open ocean is significantly lower than the observations. Model result by Gomez 

et al. (2020) had a relatively low RMSE of 42.65, a relatively high TSS of 0.57 among all models, and when using model 

Gomez 2020 as the reference, this work generated a skill score of 0.22. Fig. 15 revealed that model Gomez 2020 tends to 595 

overestimate pCO2 on the northwest shelf of GoM and underestimate the open ocean, especially the southern GoM connected 

with the Caribbean seas.  

In Fig. 16, we extracted the monthly surface pCO2 trend at two buoy locations from the regional models and climatology 

products to be compared with the monthly averaged buoy pCO2 measurements. Taylor diagrams are shown for integrated 

evaluation of the standard deviation and correlation coefficient of each model/climatology product concerning observation at 600 

the two buoy locations. At the two buoy locations, most products tend to overestimate the summer pCO2, with model Xue 

2016 yielding the largest overestimation. The coastal buoys recorded a typical low during the May, Jun, and July period, but 
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most products failed to capture such a trend. Global models with coarse resolution and simplified, if any, river flux 

prescriptions generally perform poorly in the coastal region. Even for the relatively well-performed regional model S and ML-

based model Chen 2019, an overestimation as large as 100 µatm during May or June is found. Such an overestimation likely 605 

results in a reduced air-sea CO2 flux when the ocean is a carbon sink (flux estimates see Table 3). As shown in Figs. 16, this 

work can capture the monthly climatology of surface pCO2 at two buoy locations relatively well. Such agreements result in 

relatively better Correlation Coefficients (with smaller p-values), and Standard Deviation within the range of [25 50] for 

CoastalMS and [50 75] for CoastalLA in Fig16.  Both the monthly time series and the Taylor diagrams in Fig. 16 reveal the 

benefits of this regional model as a good description of the coastal carbon system under the influence of the MARS.  610 

Table 2. Statistics of surface pCO2 comparison  

 Xue 2016 Gomez 2020 Chen 2019 This work 

Mean Bias 0.15 -5.81 -1.04 0.53 

RMSE 84.92 42.65 35.67 37.62 

R 
(p-value < 1e-5) 0.20 0.51 0.54 0.59 

TSS 0.24 0.57 0.42 0.63 

Skill 0.80 0.22 -0.11 0 

 

 

 
Figure 15: Comparison of sea surface pCO2 between regional ocean model products (Xue 2016, Gomez 2020, Chen 2019, This 615 

work), and underway sea surface pCO2 measurements. A Positive ∆pCO2 indicates the product data overestimate sea surface pCO2. 
A negative ∆pCO2 suggests the product data underestimate sea surface pCO2. A neutral ∆pCO2 indicates the product data agree 

well with the observed sea surface pCO2. The white spaces between the cruise lines indicate these regions do not have observational 
pCO2 data, and do not indicate neutral bias. 
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 620 
Figure 16. Comparison of sea surface pCO2 among regional ocean model products (Xue 2016, Gomez 2020, Chen 2019, This work) 

at two buoy sites. Climatology at the two buoy locations of Gomez et al. (2020) is calculated by multiyear averaging from 2000-
2014 model surface results. Climatology at the two buoy locations of Xue et al. (2016) is calculated by multiyear averaging from 
2005 to 2010. Climatology at the two buoy locations of Chen et al. (2019) is calculated from their 12-monthly ML surface pCO2 
product (from 2002-07 to 2017-12). Buoy raw observations have a frequency of ~ 3 hours, and monthly averages are used to be 625 

compared with monthly model estimates. The p-value for each correlation coefficient is listed in the p-value table. 

  

5.2 Air-Sea Flux 

In Table 3, we compare the annual air-sea CO2 flux generated by this work with that reported by Xue et al. (2016) for 2005–

2010, Gomez et al. (2020) for 2005–2014, Robbins et al. (2014) for 1996‐2012, Huang et al. (2015) for 2004-2008, and Lohrenz 630 

et al. (2018) for 2006-2010. Using the same gas transfer velocity parameterization as this study, Xue et al. (2016) simulated a 

smaller carbon sink in the NGoM and a larger carbon sink estimation in the Open GoM due to their overestimation of shelf 

pCO2 and underestimation of the Open GoM pCO2, as shown in Fig. 15. The large bias of the Open GoM carbon sink by Xue 

et al. (2016) likely results from the over-simplified prescription of the initial and boundary condition of DIC and TA (based 

on the empirical relationship with temperature and salinity), which led to an overestimation of carbon sink in the Open GoM 635 

(1.6 times of the value reported by this work and up to three times of that reported by Gomez et al., 2020). To compare with 

the flux estimates of Gomez et al. (2020), we rescale our estimates to the gas transfer velocity parameterization used in their 

work (based on Wanninkhof, 2014) and produced mean estimations of 1.59 ± 2.13, 0.52 ± 0.34, 0.50 ± 0.86 mol m-2 yr-1 for 

the NGoM, Open GoM, and Gulf-wide, respectively. It is expected that this work estimated a larger carbon sink in the NGoM 
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region compared with that of Xue et al., 2016 and Gomez et al., 2020, as revealed in Fig. 15(a,b) and Fig. 16(a,b).  Surface 640 

pCO2 in the coastal region simulated by Xue et al. (2016) is significantly overestimated, as shown in Fig. 15 and Fig. 16 (a,b). 

This model bias corresponds to the smallest NGoM carbon sink estimation in Table 3. Similarly, surface pCO2 in the coastal 

NGoM region and at the two buoys locations was overestimated by Gomez et al. (2020) (Fig. 15(b), Fig.16 (a,b)). This pCO2 

overestimation can be a reason for its smaller carbon sink estimation for the NGoM compared with that of Lohrenz et al. 

(2018), Huang et al. (2015), and this work. Additionally, the NGoM is a carbon source from June to October according to 645 

Gomez et al. (2020), which is different from what we simulated in this study (NGoM is a carbon sink all year round). 

Combining information from Fig. 16, where model S overestimates pCO2 by  ~ 50 µatm on average during June at the two 

coastal locations, we conclude that the NGoM air-sea CO2 sink by Gomez et al. (2020) is likely underestimated. The 

observation-based studies by Huang et al. (2015) yielded an annual sink of 0.96 ± 3.7 mol C m-2 yr-1 for NGoM, based on the 

monthly satellite products QuikSCAT wind data (12.5 km resolution). Lohrenz et al. (2018) estimated an annual sink of 1.1 ± 650 

0.3 mol C m-2 yr-1 for NGoM, using gas transfer velocities estimated for each 8-day period. To sum up, we conclude that the 

air-sea CO2 flux generated by this work is more robust in the NGoM region than that in previous model/climatology products. 

Nevertheless, a direct carbon flux comparison between model and observation-based studies needs to account for the 

differences in wind data and the gas transfer velocities.  

Table 3. Air-sea CO2 flux comparison among this work and previous studies for the GoM. The mean estimate is followed by 655 
the Standard Deviation with the ± symbol. Positive flux indicates the ocean is a carbon sink with regard to the atmosphere. 

Study Type     NGoM Open GoM   Gulf wide 
    mmol m-2 d -1 

 
 
 
 

Model based This work 

Spring 4.93 ± 10.55 2.91 ± 1.35  2.48 ± 3.75 
Summer 1.71 ± 6.19 -1.83 ± 0.42  -1.55 ± 2.25 

Fall 4.79 ± 4.93 0.17 ± 1.04  0.45 ± 2.47 
Winter 10.00 ± 9.50 5.80 ± 2.24  5.40 ± 4.30 

 mol m-2 yr -1 
Annual 1.96 ± 2.63 0.64 ± 0.42   0.62 ± 1.06 

Xue et al., 2016 Annual 0.32±0.74 1.04±0.46   0.71±0.54 
Gomez et al., 2020 Annual 0.93±1.65 0.33±0.87   0.35±1.01 

 
Observation 

based 

Robbins et al., 2014 Annual 0.44±0.37 0.48±0.07   0.19±0.08 
Huang et al., 2015 Annual 0.95±3.7    

Lohrenz et al., 2018 Annual 1.1±0.3    
 

5.3 Outlook and Future Model Development 

A likely warmer climate combined with heavier precipitation and greater river discharge is predicted in the following years 

for the MARS (Dai et al., 2020; Fischer & Knutti, 2015; Frei et al., 1998; Tao et al., 2014), although climate change might 660 
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reduce precipitation for some low and middle latitudes regions (Arora & Boer, 2001; Na, Fu, & Kodama, 2020). A warmer 

climate will reduce the momentum of the Loop Current, and less tropic water (reduced by about 20–25%) will be introduced 

into the GoM from the Caribbean (Liu et al., 2012). As a consequence, Loop Current might penetrate less into the NGoM and 

reduce the upwelling along the NGoM and WF slope. Stronger river discharge with nutrient loads will exacerbate the NGoM 

acidification in bottom water (Laurent et al., 2018) while increasing the surface water biological CO2 utilization and removal, 665 

creating larger river plume regions that exhibit a distinct carbon footprint compared to its surrounding waters. Such predictions 

resemble the perturbation prescribed in the Bry and NoR experiments, where reduced global ocean impact can be assessed by 

the difference between Bry and His experiments, and impacts from increased river discharge can be assessed by the difference 

between His and NoR experiments. We anticipate the Open GoM to be a stronger carbon sink in the future under the projection 

of Loop Current weakening. And the NGoM will continue to be a strong carbon sink with the sink region expanded in response 670 

to predicted greater river discharge and smaller momentum in Loop Current.  

 

Field samples of the carbon system give us synoptic knowledge of the carbon cycle in the ocean. However, carbon system 

attributes are subject to large fluctuation due to temperature, salinity, mixing, and biological activities, current observations of 

the carbon system at the sea surface or vertically along transects are far from enough to reveal the carbon system evolution in 675 

the GoM. As ship-based observations are limited by spatial coverage and temporal coverage, mooring observations have a 

high-frequency (~3 h) in time but only cover limited geological locations. ML model derived from remote sensing and cruise 

data inherit the bias from satellite ocean color products and ship-based measurements, and more importantly, it assumes the 

training data contains all information that defines the system it is trying to predict, which is not necessarily the truth. One 

benefit of the numerical models is to offer information to bridge fragmentary knowledge and fill in the gaps between 680 

observation and reality. However, the marine carbon cycle is admittedly a complex process. Several simplifications and 

parameterizations are needed to perform a numerical simulation. Nevertheless, specifications for some key processes may 

warrant further investigation and better parameterization: 1) The multiple alkalinity generation processes in the sediment pool 

in current experiments are linked linearly with the aerobic decomposition of PON with a fixed ratio, which can potentially 

induce large bias during high PON concentration. The anoxic zone chemistry component can be added to properly simulate 685 

the carbonate system in oxygen-deficient conditions (Raven, Keil, & Webb, 2021), which can prevail in bottom boundary 

layer waters in coastal regions in NGoM, especially during summer. Adding in anoxic zone chemistry will also allow a more 

diversified prescription for TA generation, which plays a key role in the understanding of sediment pH dynamics (Gustafsson 

et al., 2019; Middelburg, Soetaert & Hagens, 2020). 2) In our model, the density-related fragmentation/flocculation of detritus 

OM is simplified with one particulate and one dissolved pool, each with a fixed sinking rate. Coagulation and flocculation can 690 

transform DOC into particulate OM, or subsequently form large aggregates, whose remineralization rate can be much faster 

(Ploug et al., 1999). The remineralization-sinking dynamic determined the fate of OM decomposition (and water column DIC 

profile) and should be allowed to have more degree of freedom in future model development. 3) Calcification in this work can 

reflect the primary factors regulating marine calcification. However, important feedback from water acidity on the calcification 
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is omitted due to the overall supersaturation with aragonite in GoM shelf waters. Therefore, the modelled CaCO3/PON ratio 695 

could not reflect the decreasing trends of the CaCO3/PON ratio under acidification (Zondervan et al., 2001). 4) Phytoplankton 

groups can play different roles in carbon cycling given their different sizes, sinking rates, calcification rates, etc., and their 

relative ratio would be critical to the carbon dynamic (Le Moigne et al., 2015; Poulton et al., 2007). The interplay between 

zooplankton grazing and phytoplankton bloom in this work captured the seasonal dynamic but only had fixed modes toward 

nutrient levels. High nutrient concentration favors the success of diatom, and lower nutrient level gives small phytoplankton a 700 

competitive advantage in NGoM (Aké-Castillo & Vázquez, 2008; Chakraborty & Lohrenz, 2015; Qian et al., 2003; Strom & 

Strom, 1996). More phytoplankton groups and possible predation avoidance mechanisms could be added to the model to give 

the bloom pattern (and subsequently the carbon export) more variance (Liszka, 2018; Rost & Riebesell, 2004). 5) Adding the 

higher trophic level biology could be the next step to improving the model. Marine fishes are reported to produce precipitated 

carbonates within their intestines at high rates and contribute to TA increase in the top 1000 meters of ocean waters (Wilson 705 

et al., 2009). 6) This model did not include sediment silicate weathering and carbon flux through atmospheric deposition, 

which can potentially be important sources/sinks of carbon to the ocean waters as well (Jurado et al., 2008; Wallmann et al., 

2008).  

6 Conclusions  

This study presents a high-resolution regional carbon model for the GoM, with fully coupled carbonate-chemistry calculations 710 

and air-sea interaction. The model can reliably simulate the spatial and temporal pattern of the surface ocean carbon system. 

We show, for the first time, a solid validation of a regional carbon model via direct comparison against high-frequency CO2 

buoys, TA/DIC vertical profiles along the coastal transects, remote sensing-based ML model product, and underway pCO2 

measurements (surface). We calculated the decadal trends of important carbon system variables such as pCO2, pH, air-sea CO2 

exchange, and Ω over the NGoM and Open GoM regions.  715 

 

The GoM surface pCO2 values experience a steady increase from 2001 to 2019, with an increasing rate of 1.61 µatm yr-1 in 

NGoM and 1.66 µatm yr-1 in Open GoM, respectively. Correspondingly, the ocean surface pH is declining at a rate of 0.0020 

yr-1 and 0.0015 yr-1 for NGoM and Open GoM, respectively. The surface Ω over the NGoM and Open GoM region remains 

supersaturated with aragonite during the time span of the model but with a slightly decreasing trend. The carbon sink of both 720 

NGoM and Open GoM regions exhibits increasing trends and will continue to increase at a faster pace in the coming years 

under the prospect of climate change and the rising atmospheric pCO2.  

 

We decouple the influence on surface pCO2 into thermal and nonthermal components and further analyze the surface pCO2 

changes due to gross primary production and air-sea CO2 flux. We find that the low temperature during winter and the 725 

biological uptake during spring and summer are the primary drivers making GoM an overall CO2 sink. During the modelled 
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period of 2001-2009, the GoM overall is a CO2 sink with a mean flux rate of 0.62 mol C m-2 yr-1 (11.77 Tg C yr-1). The NGoM 

region is a CO2 sink year-round and is very susceptible to changes in river forcing. The Open GoM region is dominated by 

thermal effects and converts from carbon sink to a source during summer. 

 730 

Historical simulation (His) and perturbed tests (Bry, NoR) are performed to determine whether observed changes in the GoM 

carbon system are driven by secondary effects of carbon accumulation from the global ocean or local forcing, such as river 

inputs. The results show that, in addition to the increasing atmospheric pCO2 over the GoM, the spatial distribution and trend 

in carbon system variables could only be explained when the effects of carbon accumulation via boundary conditions and the 

impact from river discharge are included. Although eliminating carbon accumulation via boundary in the Bry experiment did 735 

not bring a significant difference in surface carbon variables compared with that of His, a clear chemical equilibrium shift 

between [CO32-] and [HCO3-] can be observed at subsurface depths under the perturbation of the accumulative boundary carbon 

concentrations. With a projected warming climate, we anticipate the GoM to be a stronger carbon sink due to an elevated river 

discharge and reduced impact from the global ocean.  

 740 
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Appendix A 
 

Table A1. Summary of CMIP6 GCMs considered for boundaries conditions of the regional model 

Model Name Institution* Resolution (m) 
latitudinal × 
longitudinal 

DIC TA NH4 NO3 

CESM2 NCAR 54137×111951 available available available not available 
CESM2-FV2 NCAR 54137× 111951 available available available available 

CESM2-WACCM NCAR 54137×111951 available available available not available 
CESM2-

WACCM-FV2 
NCAR 54137×111951 available available available available 

MPI-ESM1-2-LR MPI 124664×124667 available available available available 
MPI-ESM1-2-HR MPI 33395×42614 available available not 

available 
available 

MPI-ESM-1-2-
HAM 

HAMMOZ-
Consortium 

124664×124667 available available available available 

ACCESS-ESM1-
5 

CSIRO 109095× 99669 available available available available 

CMCC-ESM2 CMCC 97659×100093 available available available available 
CanESM5 CCCma 97659×100093 available available available available 

IPSL-CM6A-LR IPSL 97659×100093 available available available available 
IPSL-CM6A-LR-

INCA 
IPSL 97659×100093 available available available available 

GFDL-CM4 GFDL 110769×99690 available available not 
available 

not available 

GFDL-ESM4 GFDL 110804×99690 available available available available 
NorESM2-MM NCC 93221×99757 not 

available 
not 

available 
not 

available 
not available 

NorESM2-LM NCC 93221×99757 not 
available 

not 
available 

not 
available 

not available 

NorCPM1 NCC 54137×111951 not 
available 

not 
available 

not 
available 

not available 

* Full name of Institutions: 
CCCma: Canadian Centre for Climate Modelling and Analysis (Canada) 755 
CSIRO: Commonwealth Scientific and Industrial Research Organization and Bureau of Meteorology (Australia) 
CMCC: Centro Euro-Mediterraneo per I Cambiamenti Climatici(Italy) 
IPSL: L’Institut Pierre-Simon Laplace(France) 
MPI: Max Planck Institute for Meteorology (Germany) 
NCC: Norwegian Climate Centre (Norway) 760 
NCAR: National Center for Atmospheric Research (US) 
GFDL: Geophysical Fluid Dynamics Laboratory (US) 
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Table A2. Model Boundary Frequency 

Boundary Variable Data Source Frequency used 

u, v, ubar, vbar, zeta, 

temp,salt 
HYCOM daily 

NO3, NH4, PO4, 

Si(OH)4, DIC, TA, 

diatom, small 

phytoplankton, 

microzooplankton, 

mesozooplankton, 

Pzooplankton, CalC, 

DOC 

CESM2-WACCM-

FV2 
monthly 

Oxygen WOA static climatology 

DON, PON, opal small positive value constant 
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