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Acronym Description 

 

FNN Feed-forward Neural Network 

GBM Gradient Boosting Machines 

SAZ Sub-Antarctic Zone 

PFZ Polar Frontal Zone 

NEMO Nucleus for European Modelling Ocean 

PISCES Pelagic Interactions Scheme for Carbon and Ecosystem Studies 

CSIR Council of Scientific and Industrial Research 

SOCCO Southern Ocean Carbon and Climate Observatory 

SOCCOM Southern Ocean Carbon and Climate Observation Modelling 
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SOCAT Surface Ocean CO2 Atlas 

SOSCEx Southern Ocean Seasonal Cycle Experiment 

WG Waveglider 

nUSV new unmanned surface vehicle 

ML Machine Learning 

 

 

This supporting information document provides ancillary methodological details and results pertaining to (1) descriptions of 

the study domain and mode data variables including the motive of the selection of the experimental domain, the characteristics 

of the NEMO-PISCES model (BIOPERIANT12) data variables of interest and processing, the experimental setting and steps 20 

used in the 𝑝CO! reconstruction; (2) descriptions of the ML regression methods; and (3) additional components on the results 

and discussion including the model training errors or in-sample uncertainties and biases, and the overall results of the SHIP 

experiment. Accompanying this supporting information text are four supplementary figures and four supplementary tables. 

 

S1 Descriptions of the study domain and mode data variables 25 

S1.1 Selection of the study domain 

Many studies, the seasonal cycle is known as the strongest mode of natural variability of carbon dioxide (CO2) and also the 

one that most strongly links climate and ocean ecosystems. The seasonal cycle characteristics are largely shaped by higher 

frequency intra-seasonal modes defining the response modes in physics and biogeochemistry components (Mongwe et al., 

2016, 2018). Therefore, the SOSCEx - an initiative of the SOCCO, a research programme led by the CSIR- was launched in 30 

2013. The SOSCEx aimed to explore the nature and links in dynamics and scale sensitivities of atmospheric forcing, CO2 

fluxes, and primary production, with a particular focus on the seasonal cycle mode as a test for the climate sensitivity of earth 

systems models in respect of the evolution of both atmospheric CO2 and ocean ecosystems in the 21st century (Swart et al., 

2012; Monteiro et al., 2010, 2015). The novel aspect of the third phase (SOSCEx III, 2015-2018) of the project was the 

integration of a multi-platform approach that consisted of combining gliders, ships, floats, satellites and prognostic models in 35 

order to explore new questions about climate sensitivity of CO2 and ocean ecosystem dynamics and how these processes are 

parameterized in forced ocean models such as the high-resolution (±10km) forced NEMO-PISCES ocean model 

BIOPERIANT12. 
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 40 
Figure S1: Schematic view of the observing strategy for the beginning of the third phase of SOSCEx project illustrating the use of 
multiple SO observing platforms, ships, gliders, floats, and numerical models. The hexagonal patterns (blue-yellow) depict the 
twined glider deployments; the orange curve shows the Lagrangian float sampling trajectories, while the high-resolution modelling 
domain is represented with the white dashed line. In magenta lines are the average locations of the oceanic fronts shown as derived 
from satellite altimetry data, whereas the underlying shading depicts the mean summer chlorophyll-a concentration in the region 45 
with lighter shading=high Chl-a areas. (Source: https://socco.org.za/news/plans-underway-for-soscex-iii/). 

 

S1.2 Data variable characteristics and processing 

Here we summarize in Table 1 the data variables of the forced high-resolution (±10km) NEMO-PISCES coupled ocean model 

BIOPERIANT12, and the processing techniques these variables have to undergo. 50 

 
Table S1: Summary of the BIOPERIANT12 model variables of interest, and data processing steps applied on feature and target 
variables. 

Variables Abbreviations Processing 
Date 

range 

Resolutions 

Space Time 

Air-sea 𝑝CO! gradient Δ𝑝CO! Model simulations 

1 year 1/12º daily 
Atmospheric (atm) 𝑝CO! 𝑝CO!"#$ In-situ 

Surface ocean 𝑝CO! 𝑝CO! or 𝑝CO!%&'"( 𝑝CO!"#$ − Δ𝑝CO! 

Sea surface temperature SST Model simulations 
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Sea surface salinity SSS Model simulations 

Mixed layer depth MLD 
Model simulations 

log)* transformation 

Nano chlorophyll concentration NChl Model simulations 

Diatom chlorophyl concentration DChl Model simulations 

Chlorophyll-a Chl-a NChl + DChl 

Day of the year J )cos )𝑗 ×
2𝜋
3653 , sin )𝑗 ×

2𝜋
36533 - 

 

 55 

S1.3 Summary of the experiment 

 
Table S2: Summary of all the 8 semi-idealized ocean system simulations experiments (OSSE-8) that we conducted in this study. The 
simulated ocean observing platforms (SHIP, FLOAT, WG, and nUSV Saildrone) correspond to their real-world counterparts (ship, 
carbon-float, Waveglider, and Saildrone) used in the SOCAT project, SOCCOM initiative, SOCCO programme and by Saildrone 60 
Inc., respectively. The sampling regimes represent the periods in which the data sampling phase of different experiments occurred 
according to the temporal scales of the underlying platforms. Note that the observing platforms Wave glider and float have two 
scenarios each based on the fact that they are deployed either in the north (SAZ) or south (PFZ) of the 10º x 20º experimental domain. 
Experiment abbreviations together with their subsequent scenarios (defined by the sampling regimes/strategies) are used in figures 
and throughout the text. 65 

 

Ocean Observing 

Platforms 
Sets Sampling Regimes Experiments 

Ships 

(SOCAT-like) 
SHIP 

Summer 

(smr) 
SHIP(smr) 

Summer + Winter 

(smr+wtr) 
SHIP(smr+wtr) 

Autumn + Spring 

(aut+spr) 
SHIP(aut+spr) 

Floats 

(SOCCOM-like) 
SHIP + FLOAT 

Summer (smr) 

+ 

One year round 

SHIP(smr) + FLOAT(SAZ) 

SHIP(smr) + FLOAT(PFZ) 

SHIP(smr) + FLOAT(SAZ+PFZ) 

Wavegliders 

(SOCCO-like) 
SHIP + WG 

SHIP(smr) + WG(SAZ) 

SHIP(smr) + WG(PFZ) 

Saildrones SHIP + nUSV SHIP(smr) + nUSV 
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S2 Descriptions of the supervised ML regression methods 

S2.1 Feed-forward Neural Network 

The Feed-forward Neural Network (FNN) is a class of the neuronal network algorithms that is most commonly used as non-70 

linear approach in the surface ocean 𝑝CO! community (Rödenbeck et al., 2015; Landschützer et al., 2016; Denvil-Sommer et 

al., 2019; Gregor et al., 2019; Gloege et al., 2021; Bushinsky et al., 2019; Gregor and Gruber, 2021). Solving pCO2 problem 

is within the capability of a single hidden layer of the neural network (Landschützer et al., 2013; Gregor and Gruber, 2021). 

Thus, we use the Multi-layer Perceptron regressor whose implementation is in the Scikit-learn Python package. The principle 

is summarized in Fig. 2 where a network with random weights is generated similarly to coefficients in the linear regression. 75 

Data are passed forward through the network in order to estimate the target values (𝑝CO!). The difference between estimates 

and true values is backpropagated through the weights until the targets are met with sufficient accuracy. In our study, we tuned 

the following primary hyper-parameters: the number of hidden layer and weights per layer (these the architecture of the 

network, e.g., Fig. 2), and the learning rate (𝛼). We tuned these hyper-parameters with a Bayes-search cross-validation 

(BayesSearchCV) approach by making use of the Scitkit-optimize Python package. 80 

 

 
Figure S2: Depiction of a typical example of the architecture or graph of a single hidden layer Multi-layer Perceptron network. X is 
the array of features data [SST, SSS, MLD, Chl-a, J] whereas Y is the array of the target variable [𝒑𝐂𝐎𝟐𝐨𝐜𝐞𝐚𝐧] as described in Table 
1. 85 
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S2.2 Gradient Boosting Machines 

Gradient Boosting Machines (GBM) is a widely used machine learning (ML) algorithm due its efficiency, accuracy, and 

interpretability (Chen and Guestrin, 2016; Ke et al., 2017; Gregor et al., 2019; Gregor and Gruber, 2021). It is a variant of the 

Gradient Boosting Decision Tree (GBDT) learning frameworks. GBM produce a prediction model in the form of an ensemble 90 

of weak prediction models typically called decision tree learners that increase the efficiency of the model and reduce memory 

usage during the training. It builds these multiple weak learners in a stage-wise or sequential fashion and generalize them by 

allowing optimization of an arbitrary differentiable loss function (Friedman, 2001; Ke et al., 2017). This can be known as 

aggregative learning, where in each stage algorithm improves what it is learnt. Although GBM have been proven to deal well 

with imbalanced or sparse datasets (Ke et al., 2017)), it is more likely to overfit the training data because of the model potential 95 

for high complexity (Frery et al., 2017). Thus, tuning GBM hyper-parameters to prevent overfitting is very important. In our 

study, the following hyper-parameters were tuned: number of trees or leaves, depth of the trees, learning rate, number of 

estimators, and boosting type. We use the LightGBM and Scikit-optimize Python packages for our implementation of GBM 

and optimization/tuning of hyper-parameters through BayesSearchCV module, respectively. 

 100 

S2.3 Surface ocean 𝒑𝐂𝐎𝟐 reconstruction steps 

 



7 
 

 
Figure S3: Schematic flow diagram showing the key steps required to reconstruct the surface ocean 𝒑𝐂𝐎𝟐 in the full experimental 
domain. 105 

 

S2 Results and Discussion 

S2.1 ML regression in-sample scores for individual methods 

In-sample scores correspond to ML regression score calculated from all the training data points. This allowed to control the 

overfitting of the methods during the training. For instance, by focusing on the root mean square errors (RMSEs) and the mean 110 

bias errors (MBEs) or simply biases reported in Table 3, the nuanced differences between the two ML regression methods 

FNN and GBM show that GBM method was likely to overfit on training data compared to FNN method.  

 
Table S3: Various in-sample errors (i.e., errors calculated from all the training points) for empirical estimates of the surface ocean 
pCO2 for different experiments we run. The configuration of these experiments is presented in Table 1 and clearly described in 115 
Section 2.3.2. The machine learning regression metrics we used to report this in-sample error are abbreviated as follows: RMSE is 
the root mean square error; MAE is the mean absolute error; MBE or Bias is the mean average error. 

Sets Sampling 
Regimes Experiments Algorithms 

RMSE 

(µatm) 

MAE 

(µatm) 

MBE 

(µatm) 
SHIP SHIP(smr) FNN 4.07 3.39 0.14 
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Summer 

(smr) 

GBM 0.84 0.65 0.01 

Summer + Winter 

(smr+wtr) 
SHIP(smr+wtr) 

FNN 5.19 4.09 -0.51 
GBM 1.41 1.07 0.02 

Autumn + Spring 

(aut+spr) 
SHIP(aut+spr) 

FNN 3.78 3.05 0.19 
GBM 2.25 1.75 0.08 

SHIP + FLOAT 

Summer (smr) 

+ 

One year round 

SHIP(smr) + FLOAT(SAZ) 
FNN 6.21 5.06 0.21 
GBM 1.49 1.12 0.06 

SHIP(smr) + FLOAT(PFZ) 
FNN 5.11 4.17 0.08 
GBM 0.85 0.64 0.02 

SHIP(smr) + FLOAT(SAZ+PFZ) 
FNN 8.76 7.52 -2.01 
GBM 1.49 1.12 0.06 

SHIP + WG 
SHIP(smr) + WG(SAZ) 

FNN 4.12 2.92 0.38 
GBM 0.54 0.35 0.01 

SHIP(smr) + WG(PFZ) 
FNN 2.27 1.65 -0.12 
GBM 0.08 0.05 0.02 

SHIP + nUSV SHIP(smr) + nUSV 
FNN 5.39 4.29 -0.11 
GBM 2.55 1.98 -0.03 

 

 

S2.2 Overall results from the SHIP experiment 120 

S2.2.1 The spatial and seasonal cycle anomalies 
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Figure S4: Reconstruction anomalies for the idealized SHIP experiment where the idealized ship sampled the domain according to 
the three sampling regimes/scenarios, summer (smr), summer + winter (smr+wtr), and autumn + spring (aut+spr). Panels (a), (b) 125 
and (c) show the maps of the reconstruction anomalies based these three sampling regimes, hence the three experiments SHIP(smr), 
SHIP(smr+wtr), and SHIP(aut+spr) respectively; panel (d) shows the anomalies of the mean seasonal cycle (SC) reconstruction 
based on these three sampling regimes; that is, SHIP(smr), SHIP(smr+wtr) , and SHIP(aut+spr). 

 

 130 

S2.2.2 Reconstruction skills for the SHIP experiment 

 
Table S4: ML regression modelling scores of the ensemble average (ML2) for the SHIP set of experiments: SHIP(smr) for summer 
sampling, SHIP(smr+wtr) for summer and winter sampling, and SHIP(aut+spr) for autumn and spring sampling. The configuration 
of this set of experiments is presented in Table S2. The first column of the table is the experimental set and the second one corresponds 135 
to the considered experiments. The statistical metrics used to assess ML2 for this set of experiments are abbreviated as follows: 
RMSE is the root mean square error; MAE is the mean absolute error; MBE or Bias is the mean average error; and 𝒓 is the 
Pearson’s correlation coefficient between the reconstructed and BP12 model truth 𝒑𝐂𝐎𝟐 . Values in the table are significantly 
different from the mean for the corresponding column (with 95% confidence level or p-value < 0.05 for the two-tailed Z-test). 

Sets Experiments RMSE MAE MBE 𝑟 
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(µatm) (µatm) (µatm) 

SHIP 

SHIP(smr) 13.79 11.51 10.52 0.36 

SHIP(smr+wtr) 6.8 5.29 3.18 0.73 

SHIP(aut+spr) 7.07 5.5 3.57 0.72 

 140 
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