
Response to Reviewer #2:

Dear reviewer #2,

We are very grateful to your very helpful and insightful suggestions which have significantly
improved the manuscript.
The modifications made during this revision can be seen in the appended ‘track change’
version of the revised manuscript. Our responses (in black) to the comments/suggestions
(in blue) please find below. We also included the major changes in the manuscript to
address the comments (in the form of tables).

Sincerely,

Johannes Gensheimer on behalf of all co-authors

_________________________________________________________________________

Reviewer #2 comments:

This manuscript presents a downscaled SIF product 'SIFnet' (x10 improvement to 500m)
based on combining TROPOMI native low resolution gridded SIF, climate products, and
remotely sensed gridded products using a convolutional neural network approach. The
method development and product verification are well laid out and justified, with a
comparison to a recent downscaled SIF product nicely incorporated. I am not a ML expert,
so cannot comment on the specifics of the algorithm chosen, apart from that a substantial
and commendable effort was made by the authors to: check model sensitivity to the input
parameters (including developing a feature importance metric), overfitting, multicollinearity,
validation, and intercomparison to other products.

We appreciate the reviewer’s comments and feedback.

My main suggestions are to: i) incorporate more information on data filtering and quality
assurance, including data coverage and missing values and their impact on final product
values, ii) incorporating a more physiological perspective on what SIF is, and outline the
implications of how choices in the methodology affect the interpretation of SIFnet SIF, iii)
include a more detailed explanation for the apparent low correlation of TROPOMI SIF with
OCO SIF and the implications for those using SIF products for GPP proxies, and iv) detailing
why solar radiation at surface level was not included as an input as one of the main drivers
of SIF and APAR (i.e. taking into account clouds). These general comments and more
specific minor comments are found below.

General comments



Data filtering: the information provided is severely lacking. First, be specific about what data
filtering methods and thresholds were applied for each dataset, and then specify the amount
of data that was filtered (or available) after filtering. This is important on many fronts,
especially as filtering will be non-uniformly distributed across space and time (e.g.
cloudiness in the tropics, snow affected regions in winter etc.). Also, there will be a strong
bias towards clear sky conditions as the reflectance indices won’t produce valid data with
clouds, yet SIF may still be retrievable through some clouds.

We have added the following part to the manuscript (L.163-171):

During training, all missing values in the data are set to zero. That mainly affects water
regions, as the share of missing values in the used SIF data is caused by 91.2% by water.
In case there is a missing value in the SIF training sample, all feature values of this pixel
are also set to zero to ensure the network does not learn false relationships between the
predictors and the target variable. For the MODIS bands we applied the quality index
value 0 (best quality only). This filtering also removes pixels that include clouds. To ensure
a high coverage we interpolated in time for MODIS. Further, training and test folds are
selected based on coverage, i.e. the regions near the equation (between ±22.5°) are not
included in the data cubes as MODIS reflectance is sensitive to clouds which appear
frequently in these regions (compare Supplemental Figure S2 and S4). All static variables
have full coverage on land. ERA5 data has full spatial and temporal coverage. We did not
apply any further quality filtering on SMAP soil moisture data. The data is provided as a
Level 3 product on Google Earth Engine.

Physiology perspective: Missing a more detailed explanation of what SIF is. Also, a
physiology perspective (on the implications of method choices) beyond the intro is lacking
seeing the emphasis of the downscaled SIF product is to monitor veg dynamics (e.g. GPP).

We have added the following part to the manuscript (L.35-39):

The electromagnetic signal SIF is emitted by chlorophylls during photosynthesis. SIF is
emitted in the red-far-red wavelengths of 650-850 nm (Magney et al. 2020). It is a way,
beside photochemistry and nonphotochemical quenshing, for de-excitement of the
chlorophylls (Köhler et al. 2018, Turner et al. 2020). Even though the link between
chlorophyll fluorescence and photosynthesis is nonlinear at leave and canopy scale
(Magney et al. 2020), it does not hold for satellite scales, where a linear relationship of SIF
to GPP is frequently reported (e.g., Turner et al. 2021, Magney et al. 2020, Frankenberg et
al. 2011, Joiner et al. 2011).

TROPOMO vs OCO SIF: Can you explain why the r2 values are reasonably low (0.56-0.61)
for TROPOMI vs OCO SIF? (Fig. S19 in S7)? This is important because they are both a
measurement of the same metric and has implications for interpreting SIF. Is this purely time
of day mismatch and spatial heterogeneity? This is especially important for putting into
context the r2 values achieved in this study. Is the difference due to anything physiologically
related, i.e. is OCO SIF more sensitive to GPP than TROPOMI (I cannot see why, but maybe
the retrieval algorithms play a role)? A detailed comparison will be beyond the scope of this



paper, but a figure and some stats and more explanation are warranted seeing OCO SIF is
used as verification.

We have added a figure to compare the daily corrected SIF of TROPOMI and OCO-2/3
(Supplemental Figure S19). Here, the r2 correlation coefficient increased from 0.56 to 0.61
and 0.61 to 0.62 between TROPOMI SIF and OCO-2 and OCO-3 SIF, respectively. Indeed,
one might expect better correlations here as both present SIF at ~740 nm. However, as
pointed out in Koehler et al. 2018, the uncertainty of both TROPOMI and OCO-2 SIF are
expected to lead to a certain spread between the data sets. In addition, we do not account
for differences in acquisition times and viewing-illumination geometry, which can lead to
additional uncertainties in this comparison. For reference, when comparing single footprints
of TROPOMI SIF to aggregated OCO-2 SIF for June 2018 globally, Koehler et al. 2018
found a r2 of 0.67, only additional aggregation lead to a r2 of 0.88. The mean deviation of
TROPOMI SIF to OCO-2 SIF is close to the average standard deviation of TROPOMI SIF
(~0.4 mW⋅m−2⋅sr−1⋅nm−1). In our analysis, from the 16 day product from TROPOMI SIF
for April 2018 until March 2021 at 0.05 degree, we observe an average error in the
TROPOMI SIF of 0.43 mW⋅m−2⋅sr−1⋅nm−1 for the CONUS. That error is close to the
RMSE between instantaneous TROPOMI SIF and instantaneous OCO-2 SIF (0.37
mW⋅m−2⋅sr−1⋅nm−1). To compare TROPOMI and OCO-2/3 SIF we aggregate the
OCO-2/3 footprints to the same grid as our TROPOMI data (0.05 degree). As we aggregate
multiple OCO-2 or OCO-3 footprints to match one TROPOMI grid cell at 0.05 degree the
certainty of the OCO measurements increases, and therefore the RMSE between TROPOMI
and OCO measurements decreases.

The explanation above is also included as a paragraph in the supplemental material (section
S7)

Inputs: why not use incoming solar radiation at surface level from a gridded climate product
rather than a clear sky flux equivalent? This would factor in cloudiness and is closer to the
first driver of SIF magnitude in veg (PAR or APAR).

Thank you for this great suggestion! Indeed, PAR does strongly influence SIF and therefore
we did a test to include the two variables “surface_net_solar_radiation” and
“surface_solar_radiation_downwards” from ERA5 land
(https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOU
RLY) as features into our model. The model does not rely on it as shown in following feature
importance figure (feature cluster SWin, marked by red circle):

https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY
https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_LAND_HOURLY


A value of 1 means that the error of the model output with shuffled features is the same as
with unshuffled features. That means that the model does not rely on the features, as the
value does not influence the model output.

We think that this is due to the following reasons. The spatial resolution of available
shortwave incoming radiation products is coarser than our prediction resolution during the
training process (solar radiation variables of ERA5 land are at 11132 meters and our model
output during training at 0.05 degree). Therefore several pixels at the resolution of 0.05
degree have the same value in shortwave radiation, but different values in the target variable
SIF. Further, shortwave incoming radiation has (compared to other variables) a weak spatial
gradient. Low resolution SIF that is ten times coarser than the model output is part of the
feature space. As PAR strongly influences SIF and due to the weak spatial gradients of PAR
the information of it is included in the SIF features.

Due to the weak influence of the two variables “surface_net_solar_radiation” and
“surface_solar_radiation_downwards” from ERA5 land in on the model output which might
be due to reasons listed in the previous paragraph, we propose to not include SWin in the
feature space of our analysis.

Minor

Thank you for all the comments! We have worked on all of them and marked them with the
symbol ✓  after resolving. In some cases we have added further explanations or mention
the changes in the manuscript.



✓ Figure 1: what function was fit for each subplot to get the goodness of fit? Add info to
figure caption.

We have added the following sentence to the caption of Figure 1.

To quantify the goodness of fit we compute the Pearson correlation coefficient (r) for each
subplot (Benesty et al., 2009).

✓ L 120 remove ‘In’ before Figure 2.

✓ L 123: any explanations offered as to why TROPIMI SIF and GOME-2 SIF show different
behaviors of correlation with NIRv to Camps-Valls et a. (2021)?

Several aspects may contribute to the differences:.1) GOME-2 has a substantially lower
spatial resolution, 2) the number of soundings of TROPOMI is much higher (factor of ~100),
3) differences in overpass time (morning vs midday), 4) differences in viewing-illumination
geometry, 5) higher potential of cloud contamination of GOME-2 soundings due to the
increased footprint size.

✓ L130: expand ‘NN’ (first usage)

✓ L136: check grammar of sentence beginning ‘As such’

✓ L161: remove ‘are’ after ‘we’

✓ L 166: perhaps explain the implication of setting missing values and to zero, especially
over vegetated regions.

(same answer as to your comment on data filtering)

We have added the following part to the manuscript (L.163-171):

During training, all missing values in the data are set to zero. That mainly affects water
regions, as the share of missing values in the used SIF data is caused by 91.2% by water.
In case there is a missing value in the SIF training sample, all feature values of this pixel
are also set to zero to ensure the network does not learn false relationships between the
predictors and the target variable (that also applies to vegetated regions). For the MODIS
bands we applied the quality index value 0 (best quality only). To ensure a high coverage
we interpolated in time for MODIS. Further, training and test folds are selected based on
coverage, i.e. the regions near the equation (between ±22.5°) are not included in the data
cubes as MODIS reflectance is sensitive to clouds which appear frequently in these
regions (compare Supplemental Figure S2 and S4). All static variables have full coverage
on land. ERA5 data has full spatial and temporal coverage. We did not apply any further
quality filtering on SMAP soil moisture data. The data is provided as a Level 3 product on
Google Earth Engine.



✓ Fig. 4: add SIF units to subplots

✓ L 199: remove ‘did’ before ‘yielded’. Also a double full stop evident.

✓ L225: add space after ‘notably,’

✓ L223: remove ‘do’ after ‘approach’

✓ L276: both high res SIF products performing poorly in urban areas suggest they should
be treated separately in a model and/or point to the requirement for even higher spatial res
products (e.g. 5 or 10m).

Thank you for pointing this out! Yes, indeed there might be a need to treat urban areas
differently. Potentially, we need to scale to higher resolutions (like you suggested) or focus
the model training on urban areas. Optimizing the model on urban areas is an active
research going on right now at our institute and out of scope of the current study.

✓ L317: check grammar ‘us to spatial’

Thank you for pointing this out, we modified the sentence.

The interpretable machine learning
approach also allowed us to spatial regions
of importance for the different parameters.

The interpretable machine learning
approach also allowed us to identify spatial
regions of importance for the different
parameters.

✓ L322: repeated point of less training data – suggest removing or consolidating with the
previous mention in the conclusion.

Supplementary Minor

✓ L29: remove ‘is’ after ‘Australia’

✓ L51: see question mark

✓ Fig 6S: can remove one upper or lower diagonal as the plot is mirrored. Should subplots
c & d have 1SD error bars seeing they represent a feature group?

We would like to keep the mirrored axis in the suplots a and b. In supplemental Figure S6 c
and d, we show the explained variance of each principal component (PC). They do not
represent feature groups but there is the same number of PCs as features. For the time
variant case there are 19 features and therefore 19 PCs that each represents orthogonal
axes and explain a certain share of the variance.



✓ L80: ‘similar’ to ‘similarly’ and be quantitative (provide a range).

✓ Fig S11c: can you comments on the mean value of rho_NIR compared to the equivalent
plot in the main body for mean NIRv? Is the second feature (rho_NIR) more important than
the second feature NIRv for the different input parameterisations? This point is worthy of
another sentence or two in the main text.

We have added the following part to the manuscript (L.224-225):

This may result from the collinearity
between input features.

This may result from the collinearity
between input features or suggests that
another combination of rho_NIR and RED is
better correlated to SIF than e.g. NIRv or
kNDVI.
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Abstract. Gross primary productivity (GPP) is the sum of leaf photosynthesis and represents a crucial component of the global

carbon cycle. Space-borne estimates of GPP typically rely on observable quantities that co-vary with GPP such as vegetation

indices using reflectance measurements (e.g., NDVI, NIRv , and kNDVI). Recent work has also utilized measurements of solar-

induced chlorophyll fluorescence (SIF) as a proxy for GPP. However, these SIF measurements are typically coarse resolution

while many processes influencing GPP occur at fine spatial scales. Here, we develop a Convolutional Neural Network (CNN),5

named SIFnet, that increases the resolution of SIF from the TROPOspheric Monitoring Instrument (TROPOMI) on board of

the satellite Sentinel-5P by a factor of 10 to a spatial resolution of 500 m. SIFnet utilizes coarse SIF observations together

with high resolution auxiliary data. The auxiliary data used here may carry information related to GPP and SIF. We use

training data from non-US regions between April 2018 until March 2021 and evaluate our CNN over the conterminous United

States (CONUS). We show that SIFnet is able to increase the resolution of TROPOMI SIF by a factor of 10 with a r2 and10

RMSE metrics of 0.92 and 0.17 mW m-2 sr-1 nm-1, respectively. We further compare SIFnet against a recently developed

downscaling approach and evaluate both methods against independent SIF measurements from Orbiting Carbon Observatory

2 and 3 (OCO-2/3). SIFnet performs systematically better than the downscaling approach (r = 0.78 for SIFnet, r = 0.72 for

downscaling), indicating that it is picking up on key features related to SIF and GPP. Examination of the feature importance

in the neural network indicates a few key parameters and the spatial regions these parameters matter. Namely, the CNN finds15

low resolution SIF data to be the most significant parameter with the NIRv vegetation index as the second most important

parameter. NIRv consistently outperforms the recently proposed kNDV I vegetation index. Advantages and limitations of

SIFnet are investigated and presented through a series of case studies across the United States. SIFnet represents a robust

method to infer continuous, high spatial resolution SIF data.

Copyright statement. TEXT20
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1 Introduction

Photosynthesis represents the single largest CO2 flux between the atmosphere and the biosphere. At the canopy level, the

sum of all leaf photosynthesis is termed Gross Primary Productivity (GPP) and accurate characterization of GPP represents a

major uncertainty in the carbon cycle (Friedlingstein et al., 2019). Directly measuring GPP from remote sensing systems (e.g.,

satellites) is not presently possible. Instead, previous work has utilized stationary measurements of net ecosystem exchange25

(NEE) from flux towers that can be decomposed into GPP and respiration (e.g., Reichstein et al., 2005). Observable quantities

from satellites (e.g., vegetation indices computed from reflectance data) are then related to GPP inferred from flux towers (e.g.,

Huete et al., 2006; Jung et al., 2019; Sims et al., 2006; Zeng et al., 2020) in light use efficiency (Mahadevan et al., 2008) or

machine learning models Jung et al. (2019) to derive global estimates of GPP.

Vegetation indices such as NDVI and NIRv combine two (or more) spectral bands with different absorption characteristics30

(Hanes, 2013) to infer quantities related to plant physiology and canopy structure. The MODIS instrument was launched on

the Terra and Aqua satellites in 1999 and 2002.
:::::
2002,

:::::::::::
respectively. This instrument has proved particularly useful due, in

part, to the long operational lifetime. More recently launched satellites, like Sentinel-5P, carry instruments with the necessary

signal to noise ratio and spectral resolution to retrieve solar-induced chlorophyll fluorescence (SIF), which is a measure of

re-emitted photons by the chlorophyll during photosynthesis (Köhler et al., 2018).
:
.
:::
The

::::::::::::::
electromagnetic

:::::
signal

:::
SIF

::
is
:::::::
emitted35

::
by

::::::::::
chlorophylls

::::::
during

:::::::::::::
photosynthesis.

:::
SIF

::
is

:::::::
emitted

::
in

::
the

:::::::::
red-far-red

:::::::::::
wavelengths

::
of

:::::::
650-850

:::
nm

::::::::::::::::::
(Magney et al., 2020).

::
It

::
is

:
a
::::
way,

:::::
beside

:::::::::::::
photochemistry

::::
and

:::::::::::::::
nonphotochemical

:::::::::
quenching,

:::
for

:::::::::::
de-excitement

::
of

:::
the

:::::::::::
chlorophylls

::::::::::::::::::::::::::::::::
(Turner et al., 2020; Köhler et al., 2018)

:
.
::::
Even

::::::
though

:::
the

:::
link

:::::::
between

::::::::::
chlorophyll

:::::::::::
fluorescence

:::
and

::::::::::::
photosynthesis

::
is

::::::::
nonlinear

::
at

::::
leave

::::
and

::::::
canopy

::::
scale

::::
that

::::
does

:::
not

::::
hold

::
for

:::::::
satellite

::::::
scales,

:::::
where

:
a
:::::
linear

::::::::::
relationship

::
of

:::
SIF

::
to

::::
GPP

::
is

::::::::
frequently

:::::::
reported

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Turner et al., 2021; Magney et al., 2020; Frankenberg et al., 2011; Joiner et al., 2011)

:
.40

Vegetation indices (also termed greenness) can be regarded as a measure of photosynthetic capacity
::::::::::::
(Sellers, 1985) whereas

SIF indicates photosynthetic activity(Sellers, 1985). SIF has been shown to be a powerful proxy for estimating GPP (Magney

et al., 2019; Turner et al., 2021), to capture the impact of drought on photosynthetic activities across different vegetation types

(Shekhar et al., 2020a; Castro et al., 2020), and to assess the regional source of carbon emissions (Shekhar et al., 2020b).

Köhler et al. (2018) described the first retrievals of SIF from TROPOMI, the sole instrument on the Sentinel-5P satellite.45

The TROPOMI instrument has an equatorial crossing time of 13:30 local solar time (LST) and a 16 day orbit cycle. TROPOMI

has a wide swath (2600 km across track) that allows for near-daily temporal resolution and a spatial resolution of 5.5x3.5 km.

This was a substantial improvent
:::::::::
improvment

:
to previous satellite instruments measuring SIF that were limited to 40⇥40 km2

spatial resolution (Joiner et al., 2013). Despite the improves
::::::
higher spatial resolution of TROPOMI, there have been efforts to

estimate SIF at finer spatial scales (e.g., Turner et al., 2020). This is motivated by the importance of fine-scale phenomena in50

the carbon cycle such as ecosystem fragmentation (e.g., Haddad et al., 2015).

Globally, 20% and 70% of the remaining forests are within a distance of 100 m and 1 km, respectively, from the forest edges,

meaning that most of the forests are fragmented (Haddad et al., 2015). Reinmann and Hutyra (2017) show that the carbon

uptake and storage of trees near the forest edge increase up to 13±3% and 10±1%, respectively. On the other hand most of
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our understanding about forest carbon fluxes comes from intact ecosystems, resulting in a mismatch between the ecosystems55

we are trying to quantify and the data we are using to do so (Smith et al., 2018). Higher resolution estimates of photosynthetic

activity might enable to include fragmentation effects of ecosystems to global carbon cycle estimates or biosphere models like,

Jung et al. (2019); Wu et al. (2021); Turner et al. (2021). Additionally, recent work has shown the importance of fine-scale

variations in the urban biosphere on the overall carbon flux for a city (e.g., Miller et al., 2020).

There has been some recent work with the goal of increasing the resolution of existing global SIF estimates through down-60

scaling methods (i.e., physics based methods). For example, Turner et al. (2020, 2021) used NIRv to partition SIF within a

particlar TROPOMI scene and oversampled it using a 16 day window afterwards, resulting in a daily 500m SIF estimate over

CONUS. Duveiller et al. (2020) downscaled GOME-2 satellite SIF from 0.5� to 0.05� using a parameterization with a term

for the fraction of absorbed photosynthetically active radiation (fAPAR), one for water stress, and one for heat stress based on

MODIS data. Siegmann et al. (2021) used airborne data to downscale far-red SIF from canopy to leaf level.65

Machine learning has also been used to create global, high resolution SIF data sets. Li and Xiao (2019), Yu et al. (2019), and

Zhang et al. (2018) used spectral bands from MODIS as input to neural networks that were trained with OCO-2 SIF data to

build global continuous SIF products at 0.05� resolution. OCO-2 has a narrow swath and, therefore, the networks are trained

only in the regions where OCO-2 SIF is available by using MODIS data as input. After training, the global MODIS data is

used as input to estimate SIF on a global scale. Gentine and Alemohammad (2018) uses MODIS reflectance data as input and70

predicts GOME-2 normalized by clear-sky irradiance. Multiplying that with a MODIS derived photosynthetic active radiation

product results in a MODIS only estimated SIF, termed RSIF. Zhang et al. (2021) trains a CNN
::::::
trained

:
a
::::::::::::
Convolutional

::::::
Neural

:::::::
Network

::::::
(CNN)

:
with MODIS data on the artificial GOSIF data set (Li and Xiao, 2019) at a resolution of 0.05° and uses

::::
used the trained network and MODIS data at a resolution of 0.008° to estimate SIF at 0.008°. The physics based downscaling

approach from Turner et al. (2020) can only consider one variable for weighting the SIF signal while the machine learning75

based approaches in the literature can consider more than one variable – but many do not use SIF data as an input to their

model, meaning that they estimate SIF based on reflectance data.

Here we build a convolutional neural network to obtain high-resolution SIF, named SIFnet. SIFnet increases the spatial

resolution of TROPOMI SIF by considering coarse resolution SIF together with high resolution auxiliary data as input. This

auxiliary data consists of either proxies of SIF or photosynthetic drivers. SIFnet is trained using data with near-global cover-80

age. Different model parameters (structure, input features, and scaling factors) are compared and evaluated. After training the

model, the resolution of TROPOMI SIF is refined by a factor of ten to a spatial resolution of 0.005�. This product is then com-

pared against a recent downscaling method from literature (Turner et al., 2020). Both high resolution estimates are validated

over CONUS against the independent SIF measurements of the OCO-2 and 3 instruments (OCO-2 and OCO-3, respectively).

(OCO-2 Science Team/Michael Gunson, 2020; OCO-3 Science Team/Michael Gunson, 2020).85
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2 Datasets

2.1 Data sources

The input data to the neural network is listed in Table 1. These diverse global data products are expected to capture a broad

range of photosynthetic drivers. The table divides the data into time-varying or time-invariant and training or validation. The90

native spatial resolution is shown in the last column of Table 1. In a first step, all data sets are aggregated to 0.05� spatial

resolution and 16 day time steps. In case of a higher native spatial resolution, the data is regridded by computing the mean

value that falls into the coarse resolution grid cell. In case of coarser resolutions than 0.05� it is resampled to the common grid.

Quality control flags and cloud filtering are applied when necessary.

MODIS measures the reflected radiance from the earth surface in seven different spectral bands covering the visible and95

infrared spectral region. Vegetation indices are computed by combining the near-infrared (where chlorophyll is non-absorbing)

and the red band (where chlorophyll is highly absorbing) (Hanes, 2013). Specifically, the normalized difference vegetation

index (NDVI) (Tucker, 1979), near-infrared vegetation index (NIRv) (Badgley et al., 2017), the kernel NDVI (kNDVI) (Camps-

Valls et al., 2021), and the enhanced vegetation index (EVI) (Huete et al., 2002) are computed as:

NDV I =
⇢NIR � ⇢RED

⇢NIR + ⇢RED
(1)100

NIRv = ⇢NIR ·NDV I (2)

kNDV I = tanh(NDV I2) (3)

105 EV I = G · ⇢NIR � ⇢RED

⇢NIR +C1 · ⇢RED �C2 · ⇢BLUE +L
(4)

EVI coefficients for MODIS are: L=1, C1=5, C2=7.5, G=2.5 (Huete et al., 2002). ⇢NIR is the near infrared band, ⇢RED is the

red band, ⇢BLUE is the blue band from the MODIS satellites.

Temperature and precipitation is taken from ERA5-Land data at the time step of interest and with a delay of one time

step. Soil moisture has been shown to be a strong driver of global photosynthesis due, in part, to its impact on vapor-pressure110

deficit (Humphrey et al., 2021). Here we use the coarse resolution NASA USDA SMAP soil moisture (Entekhabi et al.,

2010) as a model input and explore its correlation with TROPOMI SIF. The cosine of the SZA is a proxy for photosynthetic

:::::::::::::::
photosynthetically active radiation (PAR) under cloud-free conditions (Chen et al., 2020; Turner et al., 2021).

Time invariant data sets consist of elevation data, fractional land cover classification, and forest fragmentation data. The land

cover classification (Buchhorn et al., 2020) is resampled to 11 fractional classes. The forest fragmentation data consists of two115

channels
::::
bands

:
and has a native resolution of 30 m. One channel

::::
band

:
describes the share of forest within the grid cell (forest

share) and the other how much of that forest is edge forest (defined as a maximum distance to an edge or other land cover type

of 30 m). OCO-2 and OCO-3 have high spatial resolution (2.25 km x 1.29 km) but small swaths (10 km) and a 16-day revisit

time.
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Table 1. Data sets used in this work.

Data
time

invariant

training validation
spatial

resolution

Sentinel-5P TROPOMI1 SIF@ 740 nm X 0.05°

MODIS

MCD43A4.v006

(v06)2

MODIS bands

NIR, RED, BLUE,

GREEN, SWIR1,

SWIR2, SWIR3

X 500m

Vegetation Indices
NIRv, kNDVI,

NDVI, EVI
X 500m

ERA5-Land

Hourly - ECMWF

Climate Reanalysis3

temperature

mean air temperature,

mean air temperature

with 16 days delay

X 0.1°

precipitation

total precipitation,

total precipitation

with 16 days delay

X 0.1°

NASA USDA Enhanced SMAP

Soil Moisture4
surface soil moisture,

sub-surface soil moisture
X 10 km

Solar zenith angle5
cosine of the

solar zenith angle
X computed

USDA GMTED2010:

Global Multi-resolution

Terrain Elevation Data 20106
elevation X X 7.5 arc seconds

Copernicus Corine

global land cover

classification

(CLC2018)7

Non-vegetated, ENF,

EBF, DNF, DBF, MF,

UF, shrubs, grassl.,

crops,wetland

X X 100m

Forest

fragmentation8
forest share X X 30m

edge share X X 30m

OCO-29 SIF @ 740 nm X 2.25 x 1.29 km

OCO-310 SIF @ 740 nm X 2.25 x 1.29 km

References: 1 Köhler et al. (2018); 2 Schaaf, C., Wang, Z. (2015); 3 ERA (2017); 4 Entekhabi et al. (2010); 5 PySolar (2021);
6 Danielson and Gesch (2011); 7 Buchhorn et al. (2020); 8 Morreale et al. (2021); 9 OCO-2 Science Team/Michael Gunson

(2020); 10 OCO-3 Science Team/Michael Gunson (2020)
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2.2 Covariation of input datasets with SIF120

Figure 1. Scatter comparison of SIF to timely changing auxiliary data. The time span of measurements is from April 2018 to March

2021 in 16-day resolution. Longitude and latitude borders are from -180° to 180° and -60° to 70°, respectively. The comparison resolution

corresponds to the lowest resolution of the two corresponding products. For all MODIS data the resolution is 0.05° and for precipitation, air

temperature, surface soil moisture (ssm), and subsurface soil moisture (susm) 0.1°.
::
To

:::::::
quantify

::
the

::::::::
goodness

::
of

::
fit

::
we

:::::::
compute

:::
the

::::::
Pearson

::::::::
correlation

::::::::
coefficient

::
(r)

:::
for

::::
each

:::::
subplot

::::::::::::::::
(Benesty et al., 2009)

:
.

We are interested in understanding what these different data sets are telling us about SIF and also how they co-vary with each

other. We compare all collected time variant data against TROPOMI SIF in the spatial and temporal domain. As a quantitative
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measure, we compute the Pearson correlation coefficient (r) (Benesty et al., 2009). Figure 1 shows a scatter comparison of

SIF against the auxiliary data at the lowest resolution of the two corresponding sets. Negative SIF values (on the x-axis in

Figure 1) are due to relatively high retrieval errors which scale with radiance levels (Köhler et al., 2018).125

In Figure 2 shows spatial patterns of the Pearson correlation coefficients between both NIRv and kNDV I to SIF . In

both our spatial (Fig. 2
:
) and temporal (Fig. 1) analyses, we find NIRv is a better predictor for SIF than kNDV I , which

contradicts the recent findings from Camps-Valls et al. (2021). However, Camps-Valls et al. (2021) used GOME-2 SIF instead

of TROPOMI SIF.

The vegetation index NIRv outperforms kNDV I in nearly all vegetated regions. Only central Asia, Sahara, and very high130

latitudes show a better correlation of kNDV I with SIF. At the same time, these regions generally show a weaker correlation

of vegetation indices with SIF.

(a) MODIS NIRv vs. TROPOMI SIF (b) MODIS kNDVI vs. TROPOMI SIF

(c) Difference in pearson correlation coefficient: rNIRv – rkNDVI

Figure 2. Pearson correlation coefficient of NIRv and kNDVI to TROPOMI SIF. Data is compared at 0.05° spatial resolution and in

16-day time steps starting in April 2018 until March 2021. The value per grid cell in a) and b) represents the Pearson correlation coefficient

of the vegetation index to SIF in time. Panel c) represents the difference in correlation of the vegetation indices to SIF .

Figure 1 shows several features that are highly correlated to SIF (e.g., NIRv and kNDV I), suggesting a collinearity

between features. Using principal component analysis (PCA), we find that the first 9 PCs (of in total 19) represent 99%of the

variance in the time-varying datasets and that 13 (of in total 15) of the PCs represent 99%of the variance in the time-invariant135
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datasets. There are many instances where PCs are clearly interpretable and NNs can handle collinearity, in contrast to e.g.

linear regression methods (De Veaux and Ungar, 1994). We therefore keep all input features in our investigation and expect a

longer convergence time during training of the CNN.

3 Development and Optimization of SIFnet

+

SIF@0.05°SIF@0.5°

SIF@0.005°

Training Process

Estimation of High-Resolution SIF

aux. data @0.05°

SIF@0.05°
aux. data @0.005°

k(
1,
1)
,ch

16

k(
3,
3)
,ch

32

k(
3,
3)
,ch

16

k(
3,
3)
,ch

8

k(
1,
1)
,ch

4

k(
1,
1)
,ch

1

Figure 3. CNN model structure and training/estimation method. Yellow and red blocks are convolutional and ReLU layers, respectively.

Notation of convolutional layers: k(X1,X2): kernel sizes are X1,X2, chY: number of channels is Y. For training, the data is upscaled. We

input auxiliary data at the target resolution and SIF data with a factor of 10 coarser.
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3.1 Training and Optimization of the Neural Network140

Convolutional neural networks (CNNs) are supervised machine learning methods that need matching feature and ground truth

data pairs to compute the loss that is back propagated
::::::::::::
(Bishop, 2014). As such, we being

:::::
begin by coarsening SIF data to 0.5�

and used
:
it with auxiliary data at 0.05� as input to SIFnet, allowing us to estimate SIF at 0.05�. The model output is compared

against the measured TROPOMI SIF at 0.05�. After optimizing the model it can resolve a scaling factor of ten between coarse

resolution input SIF and model output SIF. Figure 3 visualizes this method. In the following step of estimating high resolution145

SIF, the feature SIF data has a resolution of 0.05� and auxiliary data of 0.005�, resulting in a model output of SIF at 0.005�.

Figure 3 shows our chosen CNN model structure for SIFnet. The model consists of convolutional and Rectified Linear Units

(ReLU) layers that are arranged in a sequence. After the first convolutional block there is a residual connection that skips 2

convolutional and one ReLU layer. Convolutional kernel sizes are either (3,3) or (1,1). This structure is adapted from literature

findings from e.g. Lim et al. (2017). Further, several model structures (Supplemental Section S4.3) with a different amount of150

layers, channels or residual blocks are compared. The chosen model structure represents the best trade-off between complexity

and performance. The input feature collinearity and PCA
:::::::
Principal

::::::::::
Component

::::::::
Analysis

:::::
(PCA)

:
presented in Supplemental

Section S3 show that some input features have high correlations with each other. Nine out of the 19 PCs in the time variant

and 13 out of the 15 PCs in the time invariant data carry above 99% of the variance. This suggests to use fewer channels in

the CNN layers than the feature dimension (because some variables are similar). Therefore the number of channels in the first155

layer of SIFnet reduces the complexity from 34 to 16 channels (Figure 3). More complex model structures did not result in a

notably improved loss metrics (Supplemental Section S4.3).

For training SIFnet we use three years of data (April 2018 - March 2021) in 16 day time steps. The study regions are shown

in Supplemental Section S2. There are five folds used as training data: two folds over Asia, one over Europe, one over southern

part of Africa, one over South America. Our validation region is North America (Figure S4). The hyperparameter tuning is160

done by training the model on the five folds and computing the loss of the validation data. The parameters are optimized to

minimize the loss of the validation data set. Due to computational reasons and the size of the data set we do not apply a cross

validation in the optimization process. The final product consists of high resolution SIF at 0.005� and is validated against

independent SIF measurements of the instruments OCO-2 and OCO-3.

We center and scale each feature individually by subtracting the mean and normalizing by the standard deviation. For data165

augmentation of the training data, we use random crops and random flips. Each day of one fold has a matrix size of 1200x900

pixels. We are analyze 69 days in 16 day steps over 3 years. For each input during the training process we randomly crop a

matrix with a size of 100x100 pixels. As some areas have a large fraction of missing values (e.g., due to water or clouds),

we only use cropped matrices that consist of >80% valid pixels in the SIF product. Further, we randomly flip vertically and

horizontally, both with a probability of 0.5. These data augmentation methods provide us a huge database that should avoid170

overfitting the network parameters. During trainingwater bodies and ,
:
all missing values

::
in

:::
the

::::
data are set to zero.

::::
That

::::::
mainly

:::::
affects

:::::
water

:::::::
regions,

::
as

:::
the

:::::
share

::
of

::::::
missing

::::::
values

::
in

:::
the

::::
used

:::
SIF

::::
data

::
is

::::::
caused

::
by

::::::
91.2%

::
by

:::::
water.

:::
In

:::
case

:::::
there

::
is

:
a
:::::::
missing

::::
value

::
in
:::
the

::::
SIF

:::::::
training

::::::
sample,

:::
all

::::::
feature

::::::
values

::
of

:::
this

:::::
pixel

:::
are

::::
also

::
set

:::
to

::::
zero

::
to

:::::
ensure

:::
the

::::::::
network

::::
does

:::
not

::::
learn

:::::
false
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::::::::::
relationships

:::::::
between

:::
the

:::::::::
predictors

:::
and

:::
the

:::::
target

:::::::
variable

:::::
(that

:::
also

:::::::
applies

::
to

::::::::
vegetated

:::::::
regions).

::::
For

:::
the

:::::::
MODIS

:::::
bands

:::
we

::::::
applied

:::
the

::::::
quality

:::::
index

:::::
value

::
0

::::
(best

::::::
quality

::::::
only).

::::
This

:::::::
filtering

:::
also

::::::::
removes

:::::
pixels

::::
that

::::::
include

:::::::
clouds.

::
To

::::::
ensure

::
a

::::
high175

:::::::
coverage

:::
we

::::::::::
interpolated

::
in
:::::
time

::
for

::::::::
MODIS.

:::::::
Further,

:::::::
training

:::
and

::::
test

::::
folds

:::
are

:::::::
selected

:::::
based

:::
on

::::::::
coverage,

:::
i.e.

:::
the

:::::::
regions

:::
near

::::
the

:::::::
equation

::::::::
(between

::::::::
±22.5�)

:::
are

:::
not

::::::::
included

::
in

:::
the

::::
data

:::::
cubes

:::
as

:::::::
MODIS

:::::::::
reflectance

::
is
::::::::

sensitive
::
to

::::::
clouds

::::::
which

:::::
appear

:::::::::
frequently

::
in

:::::
these

::::::
regions

::::::::
(compare

::::::::::::
Supplemental

::::::
Figure

::
S2

::::
and

::::
S4).

:::
All

:::::
static

:::::::
variables

:::::
have

:::
full

::::::::
coverage

::
on

:::::
land.

:::::
ERA5

::::
data

:::
has

:::
full

::::::
spatial

::::
and

:::::::
temporal

::::::::
coverage.

:::
We

::::
did

:::
not

:::::
apply

:::
any

::::::
further

::::::
quality

:::::::
filtering

::
on

::::::
SMAP

::::
soil

:::::::
moisture

:::::
data.

:::
The

::::
data

::
is

:::::::
provided

:::
as

:
a
:::::
Level

:
3
:::::::
product

::
on

:::::::
Google

:::::
Earth

::::::
Engine.

:
180

Our individual loss function is comprised of two loss terms. We use the Mean Squared Error (MSE) loss in combination

with the Structual Dissimilarity Index (DSSIM). The DSSIM is the counter-measure of the Structural Similarity Index (SSIM):

DSSIM = 1-SSIM (Brunet et al., 2011). Therefore, we are not only optimizing the overall deviation of the estimated SIF to the

measured SIF but also on structural patterns. Supplemental Section S4.4 shows the benefit of including both MSE and SSIM

terms in the loss function. Equation 5 shows our loss function:185

L = a ·MSE+b ·DSSIM = a · 1
n
·

nX

i=1

(yi� eyi)2+b ·(1�
(2 ·µY ·µeY · (2 ·�Y eY + c2)

(µ2
Y +µ2

eY
+ c1) · (�2

Y ·�2
eY

+ c2)

2 ·µY ·µeY · (2 ·�Y eY + c2)

(µ2
Y +µ2

eY
+ c1) · (�2

Y ·�2
eY

+ c2)
::::::::::::::::::::::::::

)

(5)

where n is the number of datapoints; yi is the datapoint i in measured (ground truth
::::
target

:::::::
variable) SIF; eyi: is the datapoint

i in estimated SIF; Y are all datapoints of measured (ground truth
:::::
target

:::::::
variable) SIF; eY are all datapoints of estimated SIF;

µY is the mean of Y ; µeY is the mean of eY ; �Y is the variance of Y ; �eY is the variance of eY ; �Y eY is the covariance of Y

and eY ; c1 = (k1L)2 and c2 = (k2L)2 being variables for stabilisation with L = 2bitsperpixel � 1, k1 = 0.01 and k2 = 0.03.190

The parameters a and b define the weights on the overall loss of the two individual losses. The overall model performance

did not show a notable sensitivity to different a and b values. To approximately keep the individual losses in the same order

of magnitude we set a = 1 and b = 0.3. DSSIM is in the range of 0 to 1, with 0 meaning structural similar and 1 structural

dissimilar.

We use the optuna library for for hyperparameter tuning of the learning rate, weight decay, and epoch of the CNN (Akiba195

et al., 2019). Here, a Tree-structured Parzen Estimator Sampler suggest the parameters of the next trial which is based on a

Gaussian Mixture Model. Supplemental Section S4.1 provides more details on this hyperparameter tuning.

3.2 Results of Model Optimization

Figure 4 summarizes the results of the optimized model. We observe an overall r2 of 0.92, SSIM of 0.87, and RMSE of

0.17 mWm�2sr�1nm�1 between the estimated SIF from SIFnet and retrieved SIF from TROPOMI at 0.05� (Fig 4e). SSIM200

is calculated by comparing the average SIF signal of the three years under investigation. Figure 4e shows the three metrics for

each month of the year. We observe the lowest r2 values in January, February, and March. These are associated with low SIF

values and, consequently, lower signal to noise ratios which drive the decreased performance. SSIM also indicates reduced
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performance during this time period. RMSE values are correlated with overall productivity with the lowest RMSE in winter;

this is expected as this metric depends on the magnitude of the signal.205

(a) Model Input: Upscaled TROPOMI SIF at 0.5° (b) Model Estimate: SIFnet SIF at 0.05°

(c) Validation data: TROPOMI SIF at 0.05° (d) Scatter comparison of TROPOMI and CNN SIF

(e) Metrics dependent on time

Figure 4. Test set results of CNN training at 0.05°. (a) shows low resolution SIF that is used as model input. (b) shows the estimated SIF

at 0.05� by SIFnet. (c) shows the measured TROPOMI SIF at 0.05� from Köhler et al. (2018). (d) shows the scatter comparison between

TROPOMI SIF and the SIFnet estimate at 0.05�. (e) shows for each investigated month the metrics r2, SSIM , and RMSE. Metrics is

calculated in 16 day resolution and averaged to monthly values afterwards.
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3.3 Which features drive SIFnet?

We are particularly interested in understanding which features drive our neural net. Here we evaluate the feature importance

using the Permutation Feature importance method (Breiman, 2001; Fisher et al., 2019; Gregorutti et al., 2015, 2017) with

our North American validation data at a target resolution of 0.05°. The method first computes the RMSE including all input

features (RMSEorig.). We then apply the following three steps:210

1. Shuffle all pixels of one input feature randomly in time and space.

2. Compute the new RMSE of the estimation (RMSEF,shuf.).

3. Compare the shuffled RMSE to the original: dF,shuf. = RMSEF,shuf./RMSEorig.

Figure 5 shows the feature importance of clustered input classes and individual features to the overall estimation. Multiple

applications of the feature permutation did yielded negligible differences in feature importance. . Figure 5a shows the RMSE215

share of shuffled data to the RMSE of unshuffled data. SIFnet finds low resolution SIF (SIFLR) to be the most important

input variable, followed by the vegetation index NIRv and the cosine of the solar zenith angle (cos(SZA)). All other variables

do not contribute notably to the model output. This result strengthens our findings from Figure 1 and Figure 2 that NIRv is

better correlated with SIF than kNDV I . Further, our feature importance is in line with Dechant et al. (2022) where they find

a high correlation of SIF with NIRv multiplied with Photosynthetic Active Radiation (PAR), of which the cos(SZA) can be220

used as a proxy. Figure 5b shows the spatial feature importance over the validation set in North America for the four most

important features. We observe that SIFLR has the biggest impact in the Eastern US, which corresponds strongly to the high

vs low productivity regions in the US. NIRv is a strong predictor in Southeastern US and in shrub regions in the Western US.

The contribution of cos(SZA) is highest at high latitudes and weakens at lower latitudes. NIRv is found to be less predictive of

SIF at high latitudes. The land mask is the fourth most important input feature and contributes most in shrub regions. These four225

features consistently stand out as the strongest predictors. Other inputs such as fragmentation and soil moisture were not found

to be strong predictors here. In supplemental Section S4.6 we test higher scaling factors between low and high resolution SIF.

Even with scaling factors of 20 and 50 low resolution SIF stays the most and second most important input feature, respectively.

We also examined different combinations of inputs such as directly including the MODIS bands, as opposed to vegetation

indices derived from MODIS bands (see Supplemental Figure S11). Low resolution SIF remains the most important feature,230

followed by the NIR band ⇢NIR. The land cover products increase in relevance. Interestingly, when low resolution SIF is

omitted as input for the model, we observe contrasting results to Figure 5 where NIRv is no longer a leading predictor. We find

that cos(SZA), ⇢NIR, kNDV I , and NDV I are the four most important features in this case (see Supplemental Figure S12).

This may result from the collinearity between input features
::
or

:::::::
suggests

::::
that

::::::
another

:::::::::::
combination

::
of

:::::
⇢NIR:::

and
::::::
⇢RED::

is
:::::
better

::::::::
correlated

::
to

:::
SIF

::::
than

::::
e.g.

::::::
NIRv ::

or
::::::::
kNDV I . This finding was robust to multiple optimizations and permutations.235
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(a) Feature Importance (b) Spatial Feature Importance of top 4 features

Figure 5. Feature Importance. (a) shows the total RMSE of the permuted feature divided by the RMSE without feature permutation (b)

shows the RMSE of each pixel with permuted features divided by the RMSE without feature permutation. Some input variables are clustered

and all variables of that class are permuted at the same time. ⇢MODIS : all 7 MODIS bands; LULC: all 11 land cover classes; other VIs:

kNDVI, NDVI, EVI; Mereor.: temperature, precipitation, temperature with 16 day delay, precipitation with 16 days delay; SM: surface soil

moisture and sub-surface soil moisture.

3.4 Comparison of SIFnet to Downscaled SIF

Figure 6 shows the 0.005� SIF estimated by SIFnet and SIF downscaled SIF from Turner et al. (2020). The difference between

the two SIF estimates can be seen in Fig. 6c. SIFnet predicts lower SIF in the western US drylands and higher SIF over forested

regions in the eastern US. This prediction of lower SIF in drylands is interesting because Turner et al. (2020) resorted to an

ad hoc bias correction in these regions due to a low signal-to-noise ratio. Recent work from Wang et al. (2022) found SIF to240

perform poorly in the
::::::::
concluded

::::
SIF

:::
and

:::::
NIRv::

to
:::::::
capture

:::::::::::::
complementary

:::::
events

::
in

:
western US drylands

::
as

:
a
::::::
proxy

::
for

:::::
GPP

:::
and

:::
that

:::
the

::::::
linear

:::::::::
correlation

::
of

:::
SIF

:::
to

::::
GPP

:::
was

:::::::::::
substantially

:::::
lower

::
in

:::::
these

::::::
regions

:::::::::
compared

::
to

::::
other

:::::::::
vegetation

:::::
types. We

also observe systematic differences in the predicted SIF in urban areas. These regions are further evaluated in Supplemental

Figure S17. Notably, the SIFnet estimate is systematically lower than the downscaling estimate in most urban regions examined

here, Seattle being a notable exception. Both SIFnet and the downscaling approach do allocate SIF to large urban parks and245

greenspaces, but SIFnet predicts little-to-no SIF over the rest of the urban area. In particular, SIFnet estimates nearly zero SIF

in the urban core of Los Angeles and San Francisco. SIFnet and the downscaling method predict comparable SIF as we move

away from the urban core. Fine-scale features in the urban region are visible in both SIF estimates such as the Schiller Woods

in Chicago (87.8�W, 42.0�N).
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Figure 6. SIFnet estimated SIF at 0.005
�

for CONUS and its comparison to downscaled SIF. (a) shows the SIFnet estimated SIF at

0.005�. (b) shows the downscaled SIF from Turner et al. (2020). (c) shows the difference between SIFnet and downscaled SIF. Negative

values imply a higher SIFnet SIF, positive values a higher downscaled SIF value.
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4 Validation against OCO-2/3 SIF250

The differences in SIF predicted from SIFnet and the downscaled SIF beg the question, “which is correct?” Here we evaluate

both SIF products against independent SIF observations from OCO-2 and OCO-3(OCO-2 Science Team/Michael Gunson,

2020; OCO-3 Science Team/Michael Gunson, 2020). These instruments have higher spatial resolution than TROPOMI and, as

such, can be used to evaluate the high-resolution patterns predicted by both SIFnet and the downscaling approach. Specifically,

OCO-2 and OCO-3 have nadir footprint sizes of 2.25 km x 1.29 km. However, OCO-2 and OCO-3 do not provide full spatial255

coverage. They observe narrow swaths that are ⇠10 km across-track. OCO-3 also provides also a scanning mode to observe

urban areas. Here, we use quality-checked OCO-2 data from April 2018 until March 2021 and OCO-3 data from July 2019

until March 2021. To compare the ungridded OCO-2 and OCO-3 data against the SIF estimated from TROPOMI, we compute

the weighted average of all 0.005� grid cells that fall within the bounds of an OCO footprint. Here, the TROPOMI estimates

are subssampled to 0.0005� (appr. 50 m at equator) and the mean value is computed for all values which fall into the OCO260

footprint. For a quantitative comparison between OCO-2/3 and the SIFnet and downscaled estimate the metrics r, r2, and

RMSE are computed.

The high resolution SIF estimates from SIFnet, the downscaling, and OCO are instantaneous SIF measurements taken at a

specific time of the day, while the time of TROPOMI observations can differ substantially. Here, we compute the daily average

SIF by scaling with the cosine of the SZA (Frankenberg et al., 2011):265

Daily SIF (x,y) = SIF (⌧s,x,y) ·
R ⌧f
⌧o

cos[SZA(⌧s,x,y)]d⌧

cos[SZA(⌧s,x,y)]

R ⌧f
⌧o

cos[SZA(⌧,x,y)]d⌧

cos[SZA(⌧s,x,y)]
::::::::::::::::::::

(6)

where Daily SIF (x,y) is the daily integrated SIF estimate, SIF (⌧s,x,y) is the instantaneous SIF at the individual mea-

surement time, SZA is the solar zenith angle, ⌧s is the time of the satellite measurement, ⌧o is the time of sunrise, ⌧f is

the time of sunset. This implicitly assumes that both PAR and SIF scale with cos(SZA) under cloud-free conditions and we

neglect Rayleigh scattering as well as gas absorption. Although this approach neglects several water or light conditions, it pro-270

vides our best estimate of daily SIF and enables comparison between multiple SIF products with different measurement times

(Turner et al., 2021; Köhler et al., 2018; Frankenberg et al., 2011). The method is equivalent to the daily correction scheme

for OCO-2, OCO-3, and TROPOMI(OCO-2 Science Team/Michael Gunson, 2020; OCO-3 Science Team/Michael Gunson,

2020; Frankenberg et al., 2011). Additionally, we performed a sensitivity study where we trained SIFnet using daily-corrected

SIF and found the results to be generally insensitive to the use of instantaneous vs daily-corrected SIF (see Supplemental275

Figure S18). Following this, we chose to apply the daily correction after deriving the high-resolution SIF .

Figure 7 shows a comparison of both SIFnet and the downscaled SIF to OCO-2 and OCO-3. Specifically, Fig 7a shows

the correlation of SIFnet and the downscaled estimate with OCO-2/3 for every 1� pixel over CONUS. Both SIFnet and the

downscaled SIF generally show good agreement with r in excess of 0.7 for most of the high-productivity regions. We observe

weaker correlations in the Western drylands due, in part, to a lower signal-to-noise ratio. Overall, we find SIFnet to perform280

systematically better than the downscaled SIF, as shown in the difference plot. Fig. 7b summarizes these spatial patterns in a

scatterplot comparison. SIFnet again shows better performance than the downscaled SIF against OCO-2, OCO-3, and OCO-2/3.
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The Pearson correlation coefficient r is 0.78 and 0.72 for the SIFnet and downscaled estimate, respectively, when comparing

to all OCO data (right column in Figure 7b). The generally high RMSE indicates different scales and variability in the data

sets. These also appear in the comparison of TROPOMI SIF at 0.05� resolution against OCO-2/3 (Supplemental Figure S19).285

However, the errors generally increase at 0.005 � compared to the 0.05� resolution.
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(b) Validation of SIFnet and downscaled SIF to OCO-2 and OCO-3 over CONUS

(a) Spatial comparison of the correlation of SIFnet and downscaled SIF to OCO-2 and OCO-3

Figure 7. Validation of SIFnet and Downscaled SIF to OCO-2 and OCO-3 SIF over CONUS. Comparison from April 2018 until March

2021 in 16 day time steps. Daily OCO-2 and OCO-3 data is assigned to the closest 16 day time step. (a) shows the gridded correlation of the

two products against the combined data of OCO-2 and OCO-3. We first use compute the SIF data from SIFnet and downscaling estimate that

falls into the OCO footprint. Then we assign every OCO footprint to the closest grid point on the 1° grid dependent on the center location of

that footprint and compute the Pearson correlation coefficient. (b) shows the scatter comparison of the weighted average of all grid cells on

the 0.005� estimated SIFnet SIF (ours) and downscaled SIF (Turner et al., 2020) that fall into the OCO-2 or OCO-3 footprint.
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Figure 8 presents a detailed comparison of SIFnet and the downscaled SIF in four US cities. The first column shows the

SIFnet estimate, the second the downscaled SIF from Turner et al. (2020), the third the difference between SIFnet and down-

scaled SIF, and the last column the difference in correlation of the high resolution SIF estimates to combined OCO-2 and

OCO-3 data on a 0.02° grid multiplied with the L1:::
L1-norm between the SIFnet and the downscaled SIF. The column on the290

right highlights regions where both the differences in predicted SIF are large and which product is performing better. As such,

the right column will show white in areas where the difference in predicted SIF is small or the correlation with OCO is similar.

While we observe large differences in predicted SIF for the urban areas (column 3), we don’t find one product to perform sys-

tematically better in urban areas. This likely indicates the complexity in the SIF signal arising from urban areas. Additionally,

urban areas make up a small fraction of the overall land mass and, as such, do not represent a large share of the training data in295

SIFnet. These factors likely contribute to the heterogenous
::::::::::::
heterogeneous performance observed in the right column of Fig 8.
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(a) Seattle

(b) Los Angeles

(d) Chicago

(d) Boston

(c) San Francisco – Bay Area

Figure 8. SIFnet and Downscaled SIF, the Difference between these, and the Difference in Correlation to OCO-2 and OCO-3 for

Four Urban Regions. First column shows the SIFnet estimate, second the downscaled SIF from Turner et al. (2020), third the difference

between SIFnet and downscaled SIF and the last the difference in correlation of the high resolution SIF estimates to combined OCO-2 and

OCO-3 data on a 0.02° grid multiplied with the `1
::
L1-norm between the SIFnet and downscaled estimate.
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However, there are some notbale
::::::
notable

:
successes of SIFnet in urban areas that can be mapped directly to features in the

urban area. Figure 9 shows both SIFnet and the downscaled SIF along with NIRv from MODIS and a true color image of

Chicago. A feature clearly stands out in both the downscaled SIF and NIRv image. This is a region with missing NIRv and

effectively no downscaled SIF. However, SIFnet does not show a strong gradient here. This region corresponds to the Chicago300

airport. In the MODIS NIRv image it is visible that there is no valid data available for that region for the three investigated

years. The downscaling method from Turner et al. (2020) relies only on NIRv in the weighting function. If there is no data

available the region it is interpolated in space and time. Here, it shows that the method seem to fail in urban regions where

no MODIS NIRv signal is available. SIFnet handles this region better and seems to rely on other auxiliary data if there is no

MODIS NIRv available. In Figure 8 it is also visible that the SIFnet estimate correlates better with the OCO-X data than the305

downscaled SIF for the region of the Chicago airport.

@ Google Earth

Figure 9. SIFnet SIF, Downscaled SIF, MODIS NIRv, and a Google Earth Cut-Out for a part of Chicago Left panel shows the SIFnet

estimate, second panel shows the downscaled estimate from Turner et al. (2020), third panel shows MODIS NIRv for Chicago, and last

column shows the Google Earth cut-out (Google LLC, 2021). For panel 1-3 the average data for April 2018 until March 2021 is shown.

5 Conclusions

Here, we develop a convolutional neural network (CNN) model named SIFnet to increase the resolution of TROPOMI SIF by

a factor of 10. The novelty of our method consists of using coarse resolution SIF measurements together with high resolution

auxiliary data as model input to estimate high resolution SIF. After optimization and hyperparameter tuning of SIFnet, the310

estimated SIF at 500 m resolution yields an r2 and RMSE of 0.92 and 0.17, respectively, when comared against validation

data (Figure 4). We further compare the output of SIFnet against a recently developed downscaling method to estimate high-

resolution SIF (Turner et al., 2020) and evaluate both methods against independent observations from the Orbiting Carbon

Observatory 2 and 3 (OCO-2/3). SIFnet is found to perform systematically better than the downscaling approach when comared

against indepdent measurements. Through interpretable machine learning methods, we identify the key features that SIFnet315
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utilizes to accurately predict high-resolution spatial patterns of SIF. We find that SIFnet relies heavily on the low resolution

SIF feature (SIFLR) and the vegetation index NIRv (Figure 5).

SIFnet is a multi-layer CNN that increases the spatial resolution of the TROPOMI SIF by a factor of 10. Our model uses

auxiliary datasets related to gross primary productivity and SIF as inputs and yields a high-resolution SIF estimate. The model

is trained using three years of data from Asia, Europe, Africa, and South America. North America is used as the validation data320

set. Our loss function is comprised of two terms: the mean squared error and the structural dissimilarity index. The combination

of these two terms improved the performance of our model.

SIFnet was further compared to the recent downscaled SIF product developed by Turner et al. (2020). The two high-

resolution estimates showed pronouced differences across the western US drylands. This difference is particularly interesting

because these drylands tend to be low-productivity regions and traditionally have been difficult for SIF to accurately capture325

due to the low signal-to-noise ratio. Both high-resolution SIF estimates were compared to independent observations from

OCO-2/3. SIFnet performed systematically better than the downscaled SIF (r = 0.78 for SIFnet, r = 0.72 for downscaling).

SIFnet and the downscaling method also yielded differences in urban regions. However, there was substantial hetereogeneity

in the performance of SIFnet and downscaling in urban areas. One product did not perform systematically better than the other

within urban areas. The mixed results in urban areas likely relates to both the complexity of the photosynthetic activity in urban330

areas as well as the lack of training data, as urban areas represent a small fraction of the total landmass.

We adapted techniques from the area of interpretable machine learning to assess the key features driving SIFnet. Specifically,

we conducted random permutations to input datasets and assessed the impact on the resulting RMSE. From this, we found

that SIFnet relies most heavily on the low-resolution SIF feature (SIFLR). The second most important factor is the MODIS

vegetation index NIRv . NIRv is also found to outperform the recently proposed kNDV I vegetation index, in contrast to335

Camps-Valls et al. (2021). The interpretable machine learning approach also allowed us to
::::::
identify

:
spatial regions of importance

for the different parameters. Interestingly, SIFnet relies more heavily on NIRv in the western drylands where the SIF signal-

to-noise ratio is low. This implies that SIFnet is picking up on key physics that leads to the improved performance relative to the

downscaling method. Urban areas represent a region where SIFnet and the downscaling method performed comparatively well.

Urban areas, while important in carbon cycle, represent a small percent of the total land mass. This means there is relatively340

less training data for SIFnet in urban areas. Further investigation into the processes controlling high-resolution GPP and SIF

in urban areas is warranted. Overall, SIFnet represents a robust method to infer continous
:::::::::
continuous

:
high spatial resolution

information about processes related to gross primary productivity.

Data availability. The high resolution SIF data is temporally available here: https://syncandshare.lrz.de/getlink/fiXHgheNbMsbMBDeWVV3DpzR/.

It will be moved to a permanent data storage after acceptance.345
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S1 Data Correlations of Used Datasets

In Figure S1 the Pearson correlation coefficient on a global map for each grid cell is shown. It stands out that for all products

there is only a weak correlation in northern Africa. The ERA-5 air temperature data is in parts very well positive but also neg-

ative correlated to SIF . Positive correlations are especially in the northern hemisphere, whereas strong negative correlations

appear in southern parts of the world. Soil moisture (Figure S1c and d) is well correlated with SIF in the southern hemisphere5

(except for central Australia and southern part of South America). In the northern hemisphere, however, the correlation is no-

tably weaker. All MODIS bands show diverse correlation patterns. Combining some of the bands to compute vegetation indices

leads to a much stronger correlation to SIF . All vegetation indices have fundamental difficulties to capture the SIF signal in

northern Africa or northern North America. In contrast to NIRv the other vegetation indices show also weak correlations in

the amazon region. Correlations show a dependency on latitude and satellite coverage in Figure S2. Especially in regions near10

the equator the coverage of the MODIS instrument is only around 20-30%. TROPOMI shows also a weaker coverage but is

still over 90%. Interestingly, at latitudes around +-22.5� the correlations of SIF to the vegetation indices is weaker but this

does not correlate to the reduced satellite coverage. At even higher latitudes the correlations and satellite coverage get weaker.
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(a) ERA-5 2m mean air temperature (b) ERA-5 total precipitation (c) NASA USDA Surface Soil Moisture

(d) NASA USDA Sub-Surface Soil Moisture (e) MODIS ⇢NIR band (f) MODIS ⇢RED band

(g) MODIS ⇢BLUE band (h) MODIS ⇢GREEN band (i) MODIS ⇢SWIR1 band

(j) MODIS ⇢SWIR2 band (k) MODIS ⇢SWIR3 band (l) MODIS NDVI

(m) MODIS NIRv (n) MODIS kNDVI (o) MODIS EVI

(p)

Figure S1. Pearson correlation coefficient of auxilary data to TROPOMI SIF. Data is compared in 16-day resolution starting in April

2018 until March 2021. Comparison in lowest resolution of the two products: For ERA-5 at 0.25°, for USDA at 0.1° and for all MODIS data

at 0.05°.
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(a) Latitude dependent rpearson of MODIS Veg-

etation Indices and TROPOMI SIF at 0.05° res-

olution

(b) Latitude dependent rpearson of MODIS bands

and TROPOMI SIF at 0.05° resolution

(c) Latitude dependent rpearson of ERA-5 to-

tal precipitation and temperature and NASA

USDA Soil Moisture data and TROPOMI SIF

at 0.1° resolution

Figure S2. Latitudinal pearson correlation coefficient of auxiliary data to TROPOMI SIF. Data is compared in 16-day resolution starting

in April 2018 until March 2020 and March 2021 for ERA-5 data and all others, respectively. Comparison in lowest resolution of the two

products: For ERA-5 and USDA soil moisture at 0.1° and for all MODIS data at 0.05°.

Figure S3 shows the time series of the time variant data sets. Differences between the years are visible for several data sets.

Outstanding is the reduction in soil moisture in 2021 (Fig. S3c and d). The MODIS bands show some variance between the15

years that also influence the vegetation indices. In the three vegetation indices NDV I , NIRv , and kNDV I (Fig. S3l,m,n) the

period from September 2020 until March 2021 show the lowest measured values of the three year period. In contrast to that the

TROPOMI SIF measurements are highest for this period, indicating a fundamental different measured event. The reduction in

soil moisture for this period might also reduce the photosynthetic activity, which is not confirmed by the SIF measurements.

The vegetation indices therefore show a very contrary behavior than the SIF measurements.20
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(a) ERA-5 2m mean air temperature (b) ERA-5 total precipitation (c) NASA USDA Surface Soil Moisture

(d) NASA USDA Sub-Surface Soil

Moisture

(e) MODIS ⇢NIR band (f) MODIS ⇢RED band

(g) MODIS ⇢BLUE band (h) MODIS ⇢GREEN band (i) MODIS ⇢SWIR1 band

(j) MODIS ⇢SWIR2 band (k) MODIS ⇢SWIR3 band (l) MODIS NDVI

(m) MODIS NIRv (n) MODIS kNDVI (o) MODIS EVI

(p) TROPOMI SIF

Figure S3. Time Series of the used data sets. Data is shown for three years in monthly resolution and global means.
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S2 Study Regions

Figure S4 shows the six study regions on a global land cover map from Buchhorn et al. (2020). There are five folds (Europe

and northern Africa, central Asia, east Asia, southern Africa, and South America) that are used for training the CNN. The set

over North America is used as the validation set.

Table S1 summarizes the exact longitude and latitude borders of the six regions. In Figure S5 the land cover shares are shown.25

East Asia and the two folds in the southern hemisphere show significantly higher shares of the land cover type "others"

which refers to all non-vegetated lands. This also includes water bodies which take up a big share in these regions (compare

Figure S4). Using the same region sizes was a necessary step for efficiently training the model. Regions were selected due to

linear correlations (Figure S1) and satellite coverage (Figure S2). Australia is due to its big share of shrubs and very noisy

signals not considered in this work. Further, the amazon rainforest and the region between fold 1 and fold 4 show very weak30

satellite coverage of MODIS (Figure S2). Except for these regions the data set covers nearly the whole land share of the earth.

Johannes Gensheimer | 21. May 2021

Proposed Method: Study Regions

9

Test Set
Fold 1

Fold 2
Fold 3

Fold 4

Fold 5

Figure S4. Regions of 5-fold cross validation and test set over dominant land cover type. The land cover type is at a resolution of 0.05°

from Corine LULC.
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Table S1. Longitude and Latitude borders of cross validation folds

Fold Longitude borders Latitude borders Approximate covered area

1 -10° to 50° 25° to 70° Europe and North Africa

2 50° to 110° 15° to 60° Central Asia

3 110° to 170° 25° to 70° East Asia

4 10° to 70° -45° to 0° South Africa

5 -90° to -30° -60° to -15° South America

Test set -126° to -66° 15° to 60° North America

Figure S5. Land cover share in cross validation folds and test fold. Will probably be moved to supplemental.

S3 Input Feature Investigations

In Figure 1 (main text) high correlations of all vegetation indices to SIF are observed. Vegetation indices are all computed

by the same MODIS bands (⇢NIR, ⇢RED, and for EVI also ⇢BLUE). High common linear correlations of the features to SIF

might also indicate a high collinearity between the features, which is investigated in the following section.35

Figure S6a and b show the Pearson correlation coefficient of all input features with each other. Notably, is first upscaled to

0.5� and then resampled to 0.05� (same as in training process, compare section 3 of main text). The analysis is divided by time

variant and invariant data. Here, the correlations are computed for North America from April 2018 until March 2021 in 16 day
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resolutions.

In the time variant features (Figure S6a) a high collinearity between MODIS features (MODIS vegetation indices and indi-40

vidual bands) stands out. Further, moderate correlations between meteorology to MODIS and soil moisture data is detected.

Similarly, the cosine of Solar Zenith Angle (cos(SZA)) shows moderate correlations to most other features. The time invariant

maps (Figure S6b) show a notably weaker collinearity to each other. Forest shares of the fragmentation data show moderate

correlations to forest land cover data. The Land Mask is moderate correlated to the fragmentation data and highly correlated to

the LC class Others (non-vegetated). Land Mask and the LC class Others are computed from the same data with the difference45

that Land Mask distinguishes land and water and Others gives the share of non-vegetated in the pixel. Therefore, only in urban

areas, which contribute with a rather small area to our global study, these two measure strongly deviate from each other.

To further investigate the collinearity and co-variance of the feature data a PCA is conducted in Figure S6c and d for the North

America Abdi and Williams (2010). PCA is a dimension reduction method which can be applied to investigate how much vari-

ance there is in the data set. The PCA applies a singular vector decomposition and computes principle components (PC). Each50

PC explains a share of variance in the data set Bishop (2014)
::::::::::::
(Bishop, 2014). In Figure S6c and d the explained variance of each

PC is shown for the time variant and time invariant data, respectively. In the time variant data the first nine PCs carry 99% of

the variance in the data (of a total of 19 PCs). Therefore more than half of the data does not carry additional information than

the others. In the time invariant data a different pattern is observed. The 99% variance is carried by 13 of the 15 PCs. Therefore

the time invariant data is more diverse. Unfortunately, PCA is not interpretable and NNs can handle collinearity, in contrast to55

e.g. linear regression methods De Veaux and Ungar (1994). Therefore the PCA is not applied as a data pre-processing step.
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(a) CNN input feature correlation of time variant features (b) CNN input feature correlation of time invariant features

(c) Explained Variance of PCs for time variant features (d) Explained Variance of PCs for time invariant features

Figure S6. Input feature Pearson correlation and explained variance by the principal components for North America. (a) shows the

feature correlation of time variant variables. (b) shows the feature correlation of time invariant variables (c) shows the explained variance of

the PCs of timely changing variables. (d) shows the explained variance of the PCs of static variables. All data is in 0.05� resolution. SIF was

first upscaled to 0.5� and then resampled to 0.05� (same as input). Data is investigated from April 2018 until March 2021 in 16 day time

steps.

S4 Model Development

S4.1 Hyperparameter Tuning

For hyperparameter tuning the Python library Optuna is used to optimize the parameters learning rate, weight decay, and epoch

of SIFnet Akiba et al. (2019). Here, a TPE-Sampler suggest the parameters of the next trial which is based on a Gaussian60

Mixture Model. Table S2 summarizes the optimized model parameters.
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Figure S7 shows the losses for all investigated hyperparameters that were suggested by Optuna. For visualization a 10-value

rolling mean is applied and a threshold of 0.4 is set for the losses as some trials exceeded 2500.

Figure S7. Loss dependent on hyperparameters. y axis shows the losses, x axis the investigated values for the hyperparameters. For

visualization a 10-value rolling mean is applied to the data.

Table S2. Model parameters

Parameter Optimized value

Batchsize 8

Optimizer Adam

Learning rate 0.0018

Weight decay 0.000057

Epoch 42

S4.2 Cross Validation and Losses of Training Process

In Figure S8a to Figure S8e the results from a cross validation on the five training areas (shown in Figure S4) are presented. All65

the training runs were conducted with the model parameters shown in Table S2). The region in the title refers to the validation

fold. In Figure S8f the losses of the training data (all five folds) and the test data (North America) for all epochs are shown.

In contrast to the actual model training the data augmentation technique is also applied to the validation and test set. This

was a necessary step as the regions have different shares of ocean in their footprint (compare Figure S5) which results in not

comparable losses. Water bodies and missing values are set to zero in the training process, as CNNs can not compute NaNs.70

Without applying the data augmentation technique (which samples random crops with a maximum share of missing values of

20%) the losses can not be compared between regions. Water bodies are estimated with a high accuracy, as the network only

needs to set them to zero.

According to Figure S8a to Figure S8e no sign of overfitting is detected. While the training loss in both Asian regions is lower

than the validation loss, for South America and Europe/Northern America the validation loss is lower. In Southern Africa both75

9



losses are in the same order of magnitude. After the cross validation the network is trained with all training folds and validated

on the test set over North America (Figure S8f). Also here, the test loss follows the training loss.

Figure S8. Loss of cross validation. (a) to (e) shows the losses of the 5-fold cross validation. The region in the title of the subfigure refers to

the validation fold. All other four folds are used for training. (f) shows the losses of training on all five training folds and testing on the test

set.

S4.3 Comparison of Model Structures

Figure S9 visualizes eight investigated CNN model structures. Model complexity is decreasing from a to h. All models perform

similar
:::::::
similarly

:
well (Table S3). Model structure 5 (e) is chosen as the best trade off between complexity and performance.80

Further, the input feature collinearity and PCA shown in Section S3 shows that some input features show high correlations with

each other which suggests a feature reduction model structure with decreasing the number of channels in the first convolutional

layers (in model 5, from 34 to 16 in the first layer).
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(f) Model Structure 6
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(g) Model Structure 7
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(h) Model Structure 8

Figure S9. Investigated Model Structures. (a) to (h) show compared model structures with decreasing complexity. Results after optimiza-

tion are shown in Table S3.
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Table S3. Results of Model Structures after Optimization for the test set over North America.

Structure RMSE SSIM r2
::
r2

1 0.16 0.88 0.93

2 0.16 0.89 0.93

3 0.17 0.87 0.93

4 0.16 0.89 0.93

5 (chosen for SIFnet) 0.17 0.87 0.92

6 0.18 0.88 0.92

7 0.17 0.86 0.92

8 0.21 0.77 0.89

S4.4 Individual loss function

In Figure S10 the mean high resolution estimate of SIF for the San Francisco Bay Area is shown. Further, two modified versions85

of that image are appended. One with random noise and the other with a constant value added. The RMSE and SSIM metrics

are computed for the modified images to the original image. Both modified images show the same RMSE but they deviate

strongly in their SSIM. The SSIM metrics is notably lower for the random noise image than for the one with the constant

added. This shows that there are multiple versions of the same RMSE deviation. In the loss function used in this work, both

metrics are considered and the model is therefore optimized on the overall deviation and on structural similarity from the model90

output to the ground truth.

Figure S10. Advantage of own loss function
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S4.5 Varying Input Data Combinations

Three further input feature combinations are evaluated in Figures S11, S12, and S14. In the results from Figure S11 the

MODIS vegetation indices (NIRv , NDV I , EV I , and kNDV I) are not used as features. Therefore, the network needs to get

the vegetation information directly from the MODIS bands. Only a minor reduction in performance is observed in the RMSE95

metrics from 0.17 (with vegetation indices) to 0.18 (without vegetation indices). The metrics SSIM and r2 are unchanged for

North America. Feature importance still suggests the low resolution SIF feature as the most important one, followed by the

MODIS NIR band and the land cover information from Buchhorn et al. (2020).
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(a) Scatter result and metrics for the test set over North Amer-

ica.

(b) Metrics depend on time.

(c) Feature Importance

Figure S11. Results of Data Option without any MODIS vegetation indices. (a) shows the scatter comparison between TROPOMI SIF

and the SIFnet estimate at 0.05�. (b) shows the metrics r2, SSIM , and RMSE of each investigated month. Metrics is calculated in 16 day

resolution and averaged to monthly values afterwards. (c) shows the feature importance of the optimized SIFnet. Some input variables are

clustered and all variables of that class are permuted at the same time. LULC: all eleven land cover classes; SM: surface soil moisture and

sub-surface soil moisture; Mereor.: temperature, precipitation, temperature with 16 day delay, precipitation with 16 days delay.

Figure S12 shows the results for North America, if the low resolution SIF feature is not considered as a input variable.

Interestingly, in contrast to the findings from Figure 5 (main text) the vegetation index NIRv is not considered by the model100

anymore. Rather it relies strongly on the cosine of the solar zenith angle, the MODIS NIR band and the two vegetation indices

kNDV I and NDV I . NIRv is strongly linear correlated to the other vegetation indices (Figure S6).
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These findings suggests that there are several solutions to the optimization problem that depend on the input feature combi-

nation. Reasons for this can be the high collinearity between the features (Section S3). Further, CNNs can process non-linear

relationships and can therefore compute the vegetation indices or similar indices by themselves. But also optimizing another105

CNN model structure (structure 2 in Figure S9) results in a similar feature importance (shown in Figure S13). The vegetation

index kNDV I stays more important than NIRv . But the model relies most on cos(SZA).
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(a) Scatter result and metrics for the test set over North Amer-

ica.

(b) Metrics depend on time.

(c) Feature Importance

Figure S12. Results of Data Option without low resolution SIF as feature. (a) shows the scatter comparison between TROPOMI SIF and

the SIFnet estimate at 0.05�. (b) shows the metrics r2, SSIM , and RMSE of each investigated month. Metrics is calculated in 16 day

resolution and averaged to monthly values afterwards. (c) shows the feature importance of the optimized SIFnet. Some input variables are

clustered and all variables of that class are permuted at the same time. LULC: all eleven land cover classes; SM: surface soil moisture and

sub-surface soil moisture; Mereor.: temperature, precipitation, temperature with 16 day delay, precipitation with 16 days delay.
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(a) Scatter result and metrics for the test set over North Amer-

ica.

(b) Metrics depend on time.

(c) Feature Importance

Figure S13. Results of Data Option without low resolution SIF as feature with model structure 2 from Figure S9 (a) shows the scatter

comparison between TROPOMI SIF and the SIFnet estimate at 0.05�. (b) shows the metrics r2, SSIM , and RMSE of each investigated

month. Metrics is calculated in 16 day resolution and averaged to monthly values afterwards. (c) shows the feature importance of the

optimized SIFnet. Some input variables are clustered and all variables of that class are permuted at the same time. LULC: all eleven land

cover classes; SM: surface soil moisture and sub-surface soil moisture; Mereor.: temperature, precipitation, temperature with 16 day delay,

precipitation with 16 days delay.

Figure S14 shows the results for North America, if only the low resolution SIF (SIFLR) and the vegetation index NIRv

are considered as input to the model. These have been shown to be the two most important predictors (Figure 5 main text).

Interestingly, the metrics r2 and RMSE only worsen by 0.01 each. In contrast to that the SSIM reduces from 0.87 to 0.68110
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in average (here the average SIF signal of the three investigated years are compared). The importance of SSIM is explained

in Figure S10. The overall deviation of the model output to the validation data is similar to the model output with all input

features, but the structural patterns deviate strongly. This finding suggests that the auxiliary data beyond NIRv especially

contribute to estimating structural similarity (e.g., cos(SZA) for very high latitudes).

(a) Scatter result and metrics for the test set over North Amer-

ica.

(b) Metrics depend on time.

Figure S14. Results of Data Option with only SIFLR and NIRv as features. (a) shows the scatter comparison between TROPOMI SIF

and the SIFnet estimate at 0.05�. (b) shows the shows of each investigated month the metrics r2, SSIM, and RMSE. Metrics is calculated in

16 day resolution and averaged to monthly values afterwards.

S4.6 Investigating Different Scaling Factors during Training the CNN115

Higher scaling factors between low and high resolution SIF mean that in the optimization process a model is trained to resolve

to a higher spatial resolution from the initial situation of 0.05�. Using a scaling factor of 20 or 50 estimation resolution of

0.0025� and 0.001� can be achieved, respectively.

Using a upscaled 1� SIF product as input, which trains the model to resolve with a scaling factor of 20, the r2 reduces to 0.9

(Figure S15). Increasing the scaling factor further to 50, where the input SIF is at a resolution of 2.5� the r2 metrics decreases120

to 0.87. A potential estimated high resolution SIF product would be at 0.001� (appr. 100 m) resolution. Interestingly, leaving

the coarse SIF feature out of the model results in an r2 of 0.84 (Figure S16) which is lower than using this very coarse 2.5�

SIF product. The 2.5� SIF still contributes to the result as the second most important feature following NIRv . The SIF product

might contribute by providing information about radiation, seasonal cycle or the order of magnitude of SIF in the area.
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(a) Model Input: Upscaled TROPOMI SIF at 1° (b) Model Estimate: SIFnet SIF at 0.05°

(c) Validation data: TROPOMI SIF at 0.05° (d) Scatter comparison of TROPOMI and CNN SIF

(e) Metrics dependent on time

(f) Feature Importance (g) Spatial Feature Importance of top 4 features

Figure S15. Test set results of SIFnet training at 0.05� with a scaling factor of 20. (a) shows low resolution SIF that is used as model input.

(b) shows the estimated SIF at 0.05� by SIFnet. (c) shows the measured TROPOMI SIF at 0.05� from Köhler et al. (2018). (d) shows the

scatter comparison between TROPOMI SIF and the SIFnet estimate at 0.05�. (e) shows the shows of each investigated month the metrics r2,

SSIM , and RMSE. Metrics is calculated in 16 day resolution and averaged to monthly values afterwards. (f) shows the feature importance.
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(a) Model Input: Upscaled TROPOMI SIF at 2.5° (b) Model Estimate: SIFnet SIF at 0.05°

(c) Validation data: TROPOMI SIF at 0.05° (d) Scatter comparison of TROPOMI and CNN SIF

(e) Metrics dependent on time

(f) Feature Importance (g) Spatial Feature Importance of top 4 features

Figure S16. Test set results of CNN training at 0.05� with a scaling factor of 50. (a) shows low resolution SIF that is used as model input.

(b) shows the estimated SIF at 0.05� by SIFnet. (c) shows the measured TROPOMI SIF at 0.05� from Köhler et al. (2018). (d) shows the

scatter comparison between TROPOMI SIF and the SIFnet estimate at 0.05�. (e) shows the shows of each investigated month the metrics r2,

SSIM , and RMSE. Metrics is calculated in 16 day resolution and averaged to monthly values afterwards. (f) shows the feature importance.

20



S5 Estimation of SIF at 0.005� Resolution and its Comparison to Downscaled SIF125

(a) Seattle

(b) Los Angeles

(e) Chicago

(d) Boston

(c) San Francisco – Bay Area

Figure S17. SIFnet and downscaled SIF, the difference between these, and the dominant land cover type for five urban regions across

CONUS. First column shows the SIFnet estimate, second the downscaled SIF from Turner et al. (2020), third the difference between SIFnet

and downscaled SIF and the last shows the dominant land cover type from Buchhorn et al. (2020).
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S6 Training SIFnet on daily integrated SIF estimates

(a) Model Input: Upscaled TROPOMI SIF at 0.5° (b) Model Estimate: SIFnet SIF at 0.05°

(c) Validation data: TROPOMI SIF at 0.05° (d) Scatter comparison of TROPOMI and CNN SIF

(e) Metrics dependent on time

(f) Feature Importance (g) Spatial Feature Importance of top 4 features

Figure S18. Test set results of SIFnet training at 0.05� using daily SIF estimates (a) shows low resolution Daily SIF that is used as model

input. (b) shows the estimated Daily SIF at 0.05� by SIFnet. (c) shows the measured TROPOMI Daily SIF at 0.05� from Köhler et al. (2018).

(d) shows the scatter comparison between TROPOMI Daily SIF and the SIFnet estimate at 0.05�.
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Figure S18 shows the result of training on daily SIF estimates. For estimating daily corrected SIF the instantaneous measure-

ment is scaled by the cosine of the solar zenith angle (Equation 7 main text). r2 is similar to the approach of instantaneous SIF

and the SSIM shows a better result. RMSE is lower as the value range of the daily SIF is lower than that of instantaneous SIF.

S7 Validation against OCO-2 and OCO-3 data130

Figure S19a
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(a) OCO-2 SIF vs. TROPOMI SIF (b) OCO-3 SIF vs. TROPOMI SIF

(c) Daily OCO-2 SIF vs. daily TROPOMI SIF (d) Daily OCO-3 SIF vs. daily TROPOMI SIF

Figure S19.
:::::
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::::
and

::::::
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:::
SIF

:::
vs.

::::::::::
TROPOMI

:::
SIF

::
at

:::::
0.05°

:::::
spatial

:::::::::
resolution

::::
over

:::::
North

::::::::
America.

::::
OCO

:::
SIF

::
is
::::::
gridded

::
to
::

a

::::
0.05°

:::
grid

:::
by

::
the

:::::
center

:::::
point

::
of

::
the

:::::
pixel.

::::::::
Latitudinal

::::::
borders

:::
are

::::
from

:::
25°

::
to

:::
50°

:::
and

:::::::::
longitudinal

::::::
border

::
are

::::
from

:::::
-126°

::
to

::::
-66°.

::::::
OCO-2

::::::::
comparison

::
of
::
a
::::
three

:::
year

::::
time

:::::
period

::::
from

::::
April

::::
2018

::::
until

:::::
March

::::
2021

::
in
:::
16

:::
days

::::::::
averages.

:::::
OCO-3

:::::::::
comparison

::::
from

::::::
August

::::
2019

::::
until

:::::
March

::::
2021.

:::::
Daily

:::::::
correction

::::::::
according

::
to

:::::::
Equation

:
6
::::
from

:::
the

::::
main

:::
text

:::::::::::::::::::
(Frankenberg et al., 2011)

:::::
Figure

::::
S19 shows the scatter comparison of TROPOMI SIF and OCO-2 and OCO-3 SIF on a 0.05� grid over North America.

::::
Figs.

::::
S19a

::::
and

::::
S19b

::::::::
compare

:::::::::::
instantaneous

:::
SIF

::::
and

::::
Figs.

::::
S19c

::::
and

::::
S19d

:::::
daily

::::::::
corrected

:::
SIF

::::::::
according

::
to
::::::::
Equation

:
6
:::::
from

:::
the

::::
main

::::
text

:::::::::::::::::::::
(Frankenberg et al., 2011).

:
OCO SIF is gridded to a 0.05� grid by the center point of the pixel. Latitudinal borders

are from 25� to 50� and longitudinal border are from -126� to -66. shows a better agreement with135
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::::::::
Applying

:::
the

:::::
daily

::::::::
correction

:::
to

:::
the

::::
SIF

::::
data,

:::
the

:::
r2

:::::::::
correlation

:::::::::
coefficient

:::::::::
increased

::::
from

:::::
0.56

::
to

::::
0.61

::::
and

::::
0.61

::
to
:::::

0.62

:::::::
between

:::::::::
TROPOMI

::::
SIF

::::
and

::::::
OCO-2

::::
and

:
OCO-3 than with

:::
SIF,

:::::::::::
respectively.

::::::
Indeed,

::::
one

:::::
might

::::::
expect

::::::
better

::::::::::
correlations

:::
here

:::
as

::::
both

::::::
present

::::
SIF

::
at

::::
740

::::
nm.

::::::::
However,

::
as

:::::::
pointed

:::
out

::
in

::::::::::::::::
Köhler et al. (2018)

:
,
:::
the

:::::::::
uncertainty

:::
of

::::
both

:::::::::
TROPOMI

::::
and

OCO-2 in the metrics
:::
SIF

:::
are

::::::::
expected

::
to

::::
lead

::
to
::

a
::::::
certain

::::::
spread

::::::::
between

:::
the

::::
data

::::
sets.

:::
In

::::::::
addition,

:::
we

::
do

::::
not

:::::::
account

::
for

::::::::::
differences

::
in

::::::::::
acquisition

:::::
times

::::
and

:::::::::::::::::
viewing-illumination

:::::::::
geometry,

::::::
which

:::
can

::::
lead

:::
to

:::::::::
additional

:::::::::::
uncertainties

::
in

::::
this140

::::::::::
comparison.

:::
For

:::::::::
reference,

:::::
when

:::::::::
comparing

::::::
single

:::::::::
footprints

::
of

::::::::::
TROPOMI

:::
SIF

:::
to

:::::::::
aggregated

:::::::
OCO-2

:::
SIF

::::
for

::::
June

:::::
2018

:::::::
globally,

:::::::::::::::::
Köhler et al. (2018)

::::
found

::
a r2 but a weaker correlation in the person correlation coefficient . Generally, the data sets

deviate with a high RMSE relative to the value range. RMSE is 0.37 and
::
of

::::
0.67,

::::
only

:::::::::
additional

::::::::::
aggregation

::::
lead

::
to

:
a
:::
r2

::
of

::::
0.88.

::::
The

:::::
mean

::::::::
deviation

::
of

::::::::::
TROPOMI

::::
SIF

::
to

::::::
OCO-2

::::
SIF

::
is

:::::
close

::
to

:::
the

:::::::
average

:::::::
standard

::::::::
deviation

:::
of

:::::::::
TROPOMI

::::
SIF

:
(
:::
0.4

:::::::::::::::::::
mWm�2sr�1nm�1).

::
In

:::
our

::::::::
analysis,

::::
from

:::
the

:::
16

:::
day

:::::::
product

:::::
from

:::::::::
TROPOMI

::::
SIF

:::
for

::::
April

:::::
2018

::::
until

::::::
March

:::::
2021145

:
at
::::::

0.05�,
:::
we

:::::::
observe

::
an

:::::::
average

:::::
error

::
in

:::
the

:::::::::
TROPOMI

::::
SIF

::
of

:
0.43 for

:::::::::::::::::
mWm�2sr�1nm�1

:::
for

:::
the

::::::::
CONUS.

::::
That

:::::
error

::
is

::::
close

::
to

:::
the

::::::
RMSE

:::::::
between

::::::::::::
instantaneous

:::::::::
TROPOMI

::::
SIF

:::
and

:::::::::::
instantaneous

:
OCO-2 and

:::
SIF

::::
(0.37

:::::::::::::::::::
mWm�2sr�1nm�1).

:::
To

:::::::
compare

:::::::::
TROPOMI

::::
and

::::::::
OCO-2/3

:::
SIF

:::
we

::::::::
aggregate

:::
the

::::::::
OCO-2/3

:::::::::
footprints

::
to

:::
the

::::
same

::::
grid

::
as

::::
our

:::::::::
TROPOMI

::::
data

:::::::
(0.05�).

::
As

:::
we

::::::::
aggregate

::::::::
multiple

::::::
OCO-2

::
or

:
OCO-3 , respectively.

::::::::
footprints

::
to

:::::
match

::::
one

:::::::::
TROPOMI

::::
grid

:::
cell

::
at

:::::
0.05�

:::
the

::::::::
certainty

::
of

:::
the

::::
OCO

::::::::::::
measurements

:::::::::
increases,

:::
and

::::::::
therefore

:::
the

::::::
RMSE

:::::::
between

:::::::::
TROPOMI

::::
and

::::
OCO

::::::::::::
measurements

:::::::::
decreases.150

OCO-2 and OCO-3 SIF vs. TROPOMI SIF at 0.05° spatial resolution over North America. OCO SIF is gridded to a

0.05° grid by the center point of the pixel. Latitudinal borders are from 25° to 50° and longitudinal border are from -126° to

-66°. OCO-2 comparison of a three year time period from April 2018 until March 2021 in 16 days averages. OCO-3 comparison

from August 2019 until March 2021.
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(a) Seattle (b) Los Angeles

(e) Chicago(c) San Francisco – Bay Area

Figure S20. SIFnet and downscaled SIF, the difference between these, and the difference in correlation to OCO-2 and OCO-3 for

four urban regions. First column shows the correlation of SIFnet SIF to OCO-X, second the correlation of downscaled SIF from Turner

et al. (2020) to OCO-X, third the difference in correlation of the high resolution SIF estimates to OCO-X data on a 0.02� grid and fourth the

difference between SIFnet and downscaled SIF.

Table S4. Pearson Correlation Coefficient of SIFnet and Downscaled SIF vs. OCO-2 and OCO-3 SIF dependent on Land Cover Type

After Daylength Correction. At least 60% of the grid cell need to be covered with the specific land cover type. There is no data on evergreen

broadleaf (EBF) and decidious needle leaf (DNF) available.

SIFnet Downscaled #observations
OCO-2 OCO-3 combined OCO-2 OCO-3 combined OCO-2 OCO-3 combined

Non-vegetated 0,77 0,81 0,79 0,71 0,72 0,72 130,309 70,852 201,161

ENF 0,79 0,82 0,80 0,73 0,75 0,74 291,620 162,491 454,111

DBF 0,79 0,83 0,8 0,73 0,76 0,74 233,032 109,318 342,350

MF 0,55 0,60 0,56 0,50 0,52 0,51 11,436 5,520 16,956

UF 0,82 0,84 0,82 0,73 0,76 0,74 292,723 141,232 433,955

Shrubs 0,57 0,63 0,59 0,50 0,56 0,52 943,924 525,789 1,469,713

Grassl. 0,59 0,65 0,61 0,53 0,60 0,55 1,077,786 505,942 1,583,728

Crops 0,75 0,75 0,75 0,70 0,69 0,70 788,982 409,494 1,198,476

Wetl. 0,82 0,86 0,84 0,76 0,71 0,73 7,541 9,800 17,341
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Table S5. Pearson Correlation Coefficient of SIFnet and Downscaled SIF vs. OCO-2 and OCO-3 for Different Cities.

SIFnet Downscaled #observations
OCO-2 OCO-3 combined OCO-2 OCO-3 combined OCO-2 OCO-3 combined

San Francisco 0,55 0,47 0,49 0,51 0,46 0,47 7669 19906 27575

Los Angeles 0,33 0,35 0,34 0,3 0,33 0,32 15026 24277 39303

New York City 0,72 0,73 0,69 0,67 0,69 0,65 2500 2568 5068

Seattle 0,47 0,43 0,44 0,34 0,44 0,37 10842 15485 26327

Chicago 0,75 0,73 0,73 0,69 0,71 0,69 15519 12913 28432

Boston 0,8 0,77 0,79 0,69 0,73 0,69 1367 1505 2872
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