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Abstract. Marine biogeochemical models are key tools utilized to quantify numerous aspects of 6 
biogeochemistry including primary productivity, cycling of nutrients, redistribution of plankton, and 7 
variability of the carbon cycle in the ocean. These models are typically coupled to physical models with a 8 
horizontal resolution varying from few kilometers to more than 400 kilometers. Many of the existing 9 
biogeochemical models are commonly based on the NPZD model structure however, these models differ 10 
in their complexity determined by the number of state variables and the functional forms. Therefore, this 11 
review illustrates the types of the common biogeochemical models categorized based on the complexity 12 
levels and the governing equations. Then, applications of these models in several ecosystems of the world 13 
ocean are presented through a comprehensive assessment and evaluation of their performance in 14 
reproducing biogeochemical parameters such as chlorophyll-a, nutrients, as well as carbon and oxygen. In 15 
general, models based on functional group approach when coupled to high-resolution physical models show 16 
good estimates of surface nutrients such as nitrogen (N), phosphorous (P), silica (S) in global oceans with 17 
correlation coefficients (r) of ≥ 0.85, ≥ 0.9, and ≥ 0.78 respectively. Similarly, NPZD based models coupled 18 
to suitable physical models are found to accurately reproduce N, P, and oxygen (O) with coefficients of 19 
determination (R2)  around 0.9 (for N & P) and ~ > 0.9 (for O) particularly in the Indian and Pacific waters. 20 
In addition, highest performance for iron prediction in global oceans is found with r values between 0.7 and 21 
0.86 particularly by functional group approach models. However, chlorophyll-a prediction has shown 22 
varying performances by all types of models with r ranging from 0.55 and 0.9. So, applications of 23 
biogeochemical models are dependent on the features of the ecosystem and the purpose of the study. 24 
Therefore, the functional group approach models are mainly applied to investigate biogeochemical cycles 25 
while NPZD models are mainly used for physical-biological investigation. 26 

1 Introduction 27 

Modelling the biogeochemistry of the ocean is essential to improve our understanding of the primary productivity, 28 

eutrophication, and nutrients variability. The formal definition of biogeochemistry is to quantify the chemical species 29 

exchanged between earth system reservoirs along with transformations in these reservoirs. Thus, biogeochemistry 30 

focuses on carbon and nutrients cycling between the living and non-living compartments of the ocean (Dutkiewicz et 31 

al., 2020). This is translated into including the inorganic nutrients, detrital matter and the explicit representation of the 32 

living components such as phytoplankton and zooplankton in the biogeochemical modelling. In addition, the 33 

importance of the ocean circulation manifests in the redistribution of organic and inorganic pools hence representation 34 

of currents, temperature, mixing, salinity and density are also an integral part of the biogeochemical models and have 35 

a great impact on the primary productivity and nutrients distribution in the oceans (Heinze and Gehlen, 2013).  36 
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Therefore, the developed biogeochemical models are mainly based on the classical NPZD approach developed by 37 

Fasham et al. (990) which stands for Nutrients, Phytoplankton, Zooplankton, and Detritus. These main four 38 

compartments,  can be categorized into biotic (e.g. phytoplankton, zooplankton, fishes, whales) and abiotic (e.g. 39 

ammonium, nitrate, dissolved organic/inorganic carbon (DOC/DIC), particulate organic carbon (POC)) (Sarmiento et 40 

al., 1993). As for biota, phytoplankton and zooplankton are the core parts of it where phytoplankton are autotrophic 41 

organisms obtaining their energy from sunlight and can fix the carbon dioxide, and zooplankton are heterotrophic 42 

organisms obtaining their energy source by consuming other organisms. For the abiotic components, in addition to 43 

what was mentioned above, the biogeochemical models also consider the main limiting nutrient in the ocean which is 44 

primarily the Dissolved Inorganic Nitrogen termed as DIN. The other important limiting elements that are also 45 

considered include phosphate, iron and silicate (Lachkar et al., 2020). The representation of these compartments is 46 

governed by one or more state variables which can be used to define the trophic levels of the pelagic ecosystems’ 47 

evolution (Heinze and Gehlen, 2013).  48 

Several substantial biochemical parameters have been studied in various ecosystems of the global oceans using 49 

different types of biogeochemical models, these parameters include chlorophyll-a, macronutrients (nitrate, phosphate, 50 

silicate), micronutrients (Fe), carbon and oxygen cycles. Chlorophyll-a is typically used as a metric of biomass 51 

concentration instead of carbon biomass in the ocean due to its unique optical properties and it is one of the widely 52 

studied parameter in the biogeochemical modelling. The level of this parameter is affected by several basic factors 53 

including: the solar radiation intensity penetrating the water column, dissolved nutrients gradients with depth, 54 

temperature, and the mixed layer depth (Sverdrup, 1953; Wroblewski et al., 1988). Although the chlorophyll-a to 55 

carbon  and nutrient ratio (Chl: C:nutrient) is highly variable due to an acclimatize response to changes in 56 

environmental conditions such as irradiance, temperature, and nutrient availability, this flexibility is neglected by 57 

many large-scale biogeochemical  models for the sake of simplicity and lowering complexity (Anugerahanti et al., 58 

2021). Whereas Macronutrients such as Nitrate (NO3), Silicate (SiO3), and Phosphate (PO4) play a critical role in 59 

phytoplankton growth and ocean dynamics and these nutrients are considered to be key limiting nutrients impacting 60 

oceanic primary productivity; however, iron is recently well established to be also one of the key limiting nutrients 61 

highly impacting phytoplankton dynamics and primary productivity. These limiting nutrients can be supplied to the 62 

ocean through several sources including: dust deposition from atmosphere, riverine inputs, sea ice, sediment 63 

mobilization, as well as hydrothermal vents (Aumont et al., 2015). Unlike other nutrients, iron sources in the ocean 64 
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mainly come from the atmosphere, transported as aerosols and commonly related to soil dust. Different phytoplankton 65 

groups have different sensitivity to iron limitation, for example diatoms exhibited a large sensitivity to iron limitation 66 

(Gregg et al., 2003) compared to other phytoplankton types. Likewise, carbon is the primary element in the 67 

photosynthesis process carried out by autotrophs mainly phytoplankton in the surface of the ocean. It is also the energy 68 

source for many aerobic heterotrophs and autotrophs living in the ocean. The inorganic form of carbon can be oxidized 69 

through remineralization to form inorganic sources to be utilised by photo synthesizers. While the latter convert the 70 

inorganic form back into organics for the heterotrophs. So, the atmospheric carbon dioxide is regulated by biological 71 

carbon pump which is highly impacted by the role of zooplankton in the ocean (Cavan et al., 2017). Oxygen is a by-72 

product of photosynthesis and can be dissolved into the ocean from the atmosphere. This parameter is important for 73 

aerobic heterotrophs living in the ocean and its reduction in the ocean can lead to amplify denitrification creating 74 

oxygen minimum zone (OMZ) which is found in some regions of the global oceans (Lachkar et al., 2016, 2019, 2020). 75 

These parameters have been modelled by several bio-geochemical models to better understand the ocean ecosystems 76 

and therefore the aim of this work is to describe the most common biogeochemical models and carry out a complete 77 

assessment of these biogeochemical models in estimating the aforementioned biochemical properties in different 78 

ecosystems. This includes reporting the performance of the models, strengths, uncertainties and limitations. This 79 

review begins with the models' section describing their components, assumptions and structure as well as examples 80 

of well-known models developed based on these approaches. Then, the major modelled parameters studied in the 81 

several ecosystems of the global oceans are discussed.  82 

2 Biogeochemical Modelling Approaches  83 
 84 

The existing biogeochemical models are categorized here into three types in terms of complexity, the number of state 85 

variables, and the governing equations that is formed based on the functional forms, as follow,  86 

2.1 Classical NPZD approach  87 
 88 

This approach basically considers a single variable for each compartment (nutrients -  phytoplankton - zooplankton – 89 

detritus sometimes includes bacteria) neglecting the differences between the species (Evans et al., 1985; Fasham et 90 

al., 1990, 1993; Franks P, 2002). In this approach, nitrogen is typically considered a limiting nutrient and detritus 91 

component account for the organic matter pool which are derived from fecal materials and / non-assimilated fraction 92 
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of grazing by zooplankton and phytoplankton decay. This detritus is recycled through two ways which are utilization 93 

by bacteria and degradation of dissolved organic nitrogen/zooplankton assimilation (Leles et al., 2016).  94 

The general form of NPZD is presented in equations 1-4.  95 

𝑑𝑁

𝑑𝑡
= −𝑓(𝐼)𝑔(𝑁)𝑃 + 𝑅(𝐷)𝐷                  (1) 96 

𝑑𝑃

𝑑𝑡
= 𝑓(𝐼)𝑔(𝑁)𝑃 − ℎ(𝑃)𝑍 − 𝑖(𝑃)𝑃                  (2) 97 

𝑑𝑍

𝑑𝑡
= 𝛾 𝑍 ℎ(𝑃) − 𝑗(𝑍)𝑍                    (3) 98 

𝑑𝐷

𝑑𝑡
= 𝑖(𝑃)𝑃 + 𝑗(𝑍)𝑍 + (1 − 𝛾)ℎ(𝑃)𝑍 − 𝑅(𝐷)𝐷                 (4) 99 

Five transfer equations are involved in the model including: light limitation (phytoplankton response to 100 

light/irradiance) 𝑓(𝐼); nutrient limitation (uptake of nutrients by phytoplankton) 𝑔(𝑁); grazing by zooplankton ℎ(𝑃); 101 

loss terms due to excretion, death, and predation by other organisms 𝑖(𝑃)𝑃, 𝑗(𝑍)𝑍; degradation of detritus 𝑅(𝐷).  102 

The zooplankton assimilation is termed as 𝛾 which is commonly modelled by a simple linear function of food ingestion 103 

(Franks P, 2002). The functional forms representation of phytoplankton response to incident light ranges from a simple 104 

linear form to nonlinear functions including saturation and photo-inhibition response (see Table 1). The Michaelis-105 

Menten/Monod saturation function is the most applied form of nutrient uptake by phytoplankton which can relate the 106 

growth rates to the concentration of a limiting nutrient (Dugdale, 1967). The dependency of the growth on nutrient 107 

concentration is regulated by two kinetic parameters which represent the population traits: the maximum utilization 108 

rate,  𝑉𝑚𝑎𝑥 ; and the affinity constant, 𝑘, which presents an organism ability to capture nutrient ions at low nutrient 109 

concentration 𝑁. The phytoplankton acclimation determines the ability of the cell to adapt its kinetic parameters in 110 

response to changes in environmental conditions. So, if  𝑉𝑚𝑎𝑥 is constant then the acclimation will be discarded in the 111 

Michaelis-Menten formulation because the maximum uptake rate is associated with the total number of uptake sites 112 

of the cell (Bonachela et al., 2015). However, the Michaelis-Menten assumption was argued by (Droop, 1973, 1983) 113 

which has assumed that the growth rate is more likely dependent on the internal content of the nutrients than the 114 

external concentration showing luxury uptake of nutrients (utilization of non-limiting nutrient exceeding the level 115 

required for growth) (Cherif and Loreau, 2010). Hence, the growth of phytoplankton is described by a function of 116 

internal concentration (Quota model), as shown in Table 2.  In addition, it is argued that the growth rate is determined 117 
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by the most limiting process either photosynthesis or nutrient uptake permitting  for switching between the two limiting 118 

processes based on the conditions (Franks P, 2002). Whereas zooplankton functional response is typically modelled 119 

with a simple functional form represented by (HOLLING CS, 1959): Holling Type I with linear function, Holling 120 

Type II with hyperbolic curve like Monod function accounting for saturation; and Holling Type III accounting for 121 

saturation and switching when the prey is low in density (sigmoidal). The zooplankton is considered as the closure 122 

term in plankton models and the zooplankton grazing functional forms impact model outputs greatly. For example, 123 

high oscillations of the states over time (destabilization effect) are determined using type II while steady state 124 

(stability) is easily obtained with type III and no impact on model stability was determined with type I. Phytoplankton 125 

and zooplankton mortality functions ranges from linear to non-linear forms (Tables 3 and 4).  126 

Modifications have been also made in the NPZD approaches such as by replacing the bacteria compartment with 127 

chlorophyll-a to enhance the estimation of nitrogen flux (Fennel et al., 2006)   and introducing a nitrogen based 128 

nutrient-phytoplankton-heterotroph model which is of intermediate complexity with respect to Fasham & 129 

McGillicuddy models (Fasham et al., 1990; McGillicuddy et al., 1995). The number of compartments has also been 130 

increased including more variables (plankton species as well as nutrients) as seen in Chai and Leonard models which 131 

are based on five and nine compartments NPZD models respectively (Chai et al., 1996; Leonard et al., 1999). 132 

Nevertheless, Galbraith et al. (2009) has developed a model based on NPZD but with Light Iron Nutrients and Gasses  133 

called BLING model, This model can isolate the global impact of iron on maximum light-saturated photosynthesis 134 

rates from photosynthetic efficiency. It considers an implicit representation of phytoplankton which is determined 135 

from the growth rate of phytoplankton. The iron representation doesn’t rely on Liebig law of the minimum that is 136 

typical in the biogeochemical models, however, the nutrient-light co-limitation is incorporated in accordance with 137 

field and laboratory measurements of phytoplankton. There have been other extensions of the classical NPZD which 138 

have been applied regionally in (Doney et al., 1996; Fennel et al., 2001; Hinckley et al., 2009; Hood et al., 2003; 139 

Kearney et al., 2020; McCreary et al., 1996; McCreary et al., 2001).  140 

2.2 Carbon cycle-based approach  141 
 142 

In this approach, the marine biota model is introduced into a full ocean carbon cycle model to study the impact of 143 

biology on the oceanic carbon cycle. The carbon cycle model typically includes dissolved inorganic carbon and total 144 

alkalinity components. An example of this approach is the Hamburg model of the oceanic carbon cycle (HAMOCC) 145 
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developed by (Maier-Reimer and Hasselmann, 1987) which is a pure inorganic carbon cycle model and was utilised 146 

to evaluate both the 12C cycle and the ocean model residence time properties. The model neglects biological sources 147 

and sinks. Therefore, it has been used as a reference for numerical experiments interpretation with extensions 148 

performed by (Bacastow and Maier-Reimer, 1990; Heinze and Maier-Reimer, 1991; Maier-Reimer, 1993) to include 149 

the marine biota and ecosystem processes. Bacastow & Maier-Reimer (1990) has included the first order 150 

representation of the ocean plankton impacts on the ocean global inorganic oceanic carbon cycle model. While the 151 

first ocean carbon cycle model featuring the representation of marine ecosystem explicitly was given by (Six and 152 

Maier-Reimer, 1996). This latter is based on an extended NPZD model which includes five compartments: single 153 

phytoplankton, single zooplankton, detritus, dissolved organic carbon (DOC), and single nutrient (phosphate). 154 

Equations 5-11 represent the rate of change of nutrients as an example of the carbon components including: DOC and 155 

particulate organic carbon (POC) embedded in the plankton model as described by (Six and Maier-Reimer, 1996).  156 

𝑅C:P
d𝑁

d𝑡
= −𝑝ℎ𝑦𝑡𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑔𝑟𝑜𝑤𝑡ℎ 

+𝑟𝑒𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 ℎ𝑒𝑟𝑏𝑖𝑣𝑜𝑟𝑒𝑠 
+remineralisation from carnivores
+𝐷𝑂𝐶 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 + 𝑃𝑂𝐶 𝑟𝑒𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 

               (5) 157 

where 𝑅C:P represents the Redfield ratio of carbon to phosphate. Whereas phytoplankton and zooplankton are 158 

described as follows: 159 

d𝑃

d𝑡
= 𝑝ℎ𝑦𝑡𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑔𝑟𝑜𝑤𝑡ℎ

−𝑙𝑜𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 − 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑑𝑒𝑐𝑎𝑦
−exudation of DOC

                   (6) 160 

d𝑍

d𝑡
= 𝑧𝑜𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑔𝑟𝑜𝑤𝑡ℎ

−𝑙𝑜𝑠𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑔𝑟𝑎𝑧𝑖𝑛𝑔 𝑏𝑦 𝑐𝑎𝑟𝑛𝑖𝑣𝑜𝑟𝑒𝑠 − 𝐷𝑂𝐶 𝑒𝑥𝑐𝑟𝑒𝑡𝑖𝑜𝑛
                (7) 161 

Then, the carbon components (DOC & POC) are modelled as follows:  162 

d𝐷𝑂𝐶

d𝑡
= 𝛾𝑃(𝑃 − 𝑃𝑚𝑖𝑛) + 𝛾𝑍(𝑍 − 𝑍𝑚𝑖𝑛) − 𝑟doc(𝑁)𝐷𝑂𝐶

                  (8) 163 

where the first term represents the DOC exudation from phytoplankton; the second term represents the DOC excretion 164 

from zooplankton; and the last term represents DOC degradation.  165 
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d𝑃𝑂𝐶

d𝑡
= 𝐹(𝑋) − 𝑙(𝑂2)                       (9) 166 

where 𝑙(𝑂2) represents remineralization of POC (for X = (𝑑𝑝, 𝑑𝑧 , 𝜖her , 𝜖can , 𝑃, 𝑍, 𝑧) and F(X) is the flux of dead organic 167 
carbon to the ocean interior  168 

𝐹(𝑋) = 0 ;  for 0 < 𝑧 < 100m 169 

Otherwise   170 

      𝐹(𝑋) = TPP
𝜕

𝜕𝑧
(

𝑧

100𝑚
)

−0.8

                      (10) 171 

Where TPP is the total particle production including the particles from natural decay as well as fecal pellet production 172 
in the euphotic zone:  173 

 174 

TPP = ∫  
100m

0
((1 −  zinges )(1 − 𝜖her) 𝑔𝑟𝑜𝑤𝑡ℎ 𝑜𝑓 𝑧𝑜𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛

+𝑝ℎ𝑦𝑡𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 

+(1 − 𝜖can) 𝑧𝑜𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦)

            (11) 175 

Parameter Symbol 

Mortality rate  

of phytoplankton  

𝑑𝑝 

Mortality rate 

 of zooplankton  

𝑑𝑧 

Ingestion as fecal 

 pellets from herbivores 

𝜖her  

Ingestion as fecal 

 pellets from carnivores  

𝜖can  

Assimilation efficiency  zinges 

Phytoplankton  𝑃 

Zooplankton  𝑍 

Nutrient  𝑁 

Depth  𝑧 

 176 

The Hadley Centre Ocean Carbon Cycle (HadOCC) model is another example of Carbon cycle-based approach that 177 

is initially developed for global ocean carbon cycle modelling studies (Cox et al., 2000).  The model simulates the 178 

important aspects of carbonate chemistry, the export and production of biology. Several tracers are included to model 179 

the carbon cycle including dissolved inorganic carbon, total alkalinity, single nutrient (nitrogen), oxygen, single 180 

phytoplankton, single zooplankton, as well as detritus (Palmer and Totterdell, 2001). 181 

https://doi.org/10.5194/bg-2021-351
Preprint. Discussion started: 24 January 2022
c© Author(s) 2022. CC BY 4.0 License.



8 

 

2.3 Phytoplankton Functional group approach (PFT)  182 
 183 

This approach includes different plankton functional types (PFTs) making it the most intricate model with at least 15 184 

state variables relative to the other model approaches (Gregg, 2000; Gregg et al., 2003; Moore et al., 2004; Le Quéré 185 

et al., 2005). The major plankton functional types include mesozooplankton, protozooplankton, diatoms 186 

(phytoplankton silicifiers), phaeocystis, nitrogen fixers, coccolithophores, picoheterotrophs and each of these groups 187 

function differently in terms of their roles in biogeochemical cycles (Hood et al., 2006). These functional traits that 188 

reflect the functions and biochemical pathways are defined by how the cell uses energy and nutrients. The classical 189 

NPZD doesn't consider these functional types in which the aggregation of taxonomic and functional organisms in 190 

ocean ecosystems is only considered. Therefore, in the PFTs based approach, species are grouped based on their 191 

common ecological and biogeochemical functions (Hood et al., 2006; Le Quéré et al., 2005). Equations 12-14 present 192 

the general form of this approach where several phytoplankton types 𝑃𝑗 are nourished by various nutrients 𝑁𝑖 and 193 

grazed by many zooplankton types 𝑍𝑘𝑖 as follow, 194 

d𝑁𝑖

d𝑡
= − ∑  𝑗 [𝜇𝑗𝑃𝑗𝑀𝑖𝑗] + 𝑆𝑁𝑖

            (12)  195 

d𝑃𝑗

d𝑡
= 𝜇𝑗𝑃𝑗 − 𝑚𝑗

𝑃𝑃𝑗 − ∑  𝑘 [𝑔𝑗𝑘𝑍𝑘,𝑖=1]

−
∂(𝑤𝑗

𝑃𝑃𝑗)

∂𝑧

          (13) 196 

d𝑍𝑘𝑖

d𝑡
= 𝑍𝑘𝑖 ∑  𝑗 [𝜁𝑗𝑘𝑔𝑗𝑘𝑀𝑖𝑗] − 𝑚𝑘

𝑍𝑍𝑘𝑖         (14) 197 

Parameter Symbol 

Growth rate of phytoplankton j 𝜇𝑗 

Matrix of the ratio of element i to currency 

(which can be phosphorous, nitrogen, etc.) 
𝑀𝑖𝑗 

Sources of tracer 𝑵𝒊 𝑆𝑁𝑖
 

Rate of mortality/excretion of phytoplankton j 𝑚𝑗
𝑃 

Grazing of zooplankton k on phytoplankton j 𝑔𝑗𝑘 

Sinking rate for phytoplankton j 𝑤𝑗
𝑃 

Grazing efficiency of zooplankton k on 

phytoplankton j 
𝜁𝑗𝑘  

Rate of mortality/excretion of zooplankton k 𝑚𝑘
𝑍 

  198 
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The common PFTs' models include the European Regional Seas Ecosystem Model versions (1 & 2) : ERSEM I, 199 

ERSEM II (Baretta-Bekker et al., 1997; Baretta et al., 1995; Blackford et al., 2004) which are based on a generic lower 200 

trophic approach developed to study the cycling of carbon as well as nutrients. In ERSEM, the ecosystem is divided 201 

into three functional types in which the biotic groups are classified by their functional role not by species. For instance, 202 

phytoplankton as producers; bacteria as decomposers; zooplankton as consumers which are further subdivided based 203 

on trait-size and uptake of silica to represent a food web. The functional group dynamics are represented by including 204 

population processes such as growth, migration, and mortality as well as physiological processes such as ingestion, 205 

respiration, excretion, and egestion. The phytoplankton groups involve pico-phytoplankton, nano-phytoplankton, 206 

diatoms, and non-siliceous macro-phytoplankton, while zooplankton groups include micro-zooplankton, heterotrophic 207 

nano-flagellates, and meso-zooplankton. The ERSEM model was initially applied to the North Sea to study the 208 

seasonal cycling of nutrients (N, P, S, C). A further modification has been made to the ERSEM to produce another 209 

version called Biogeochemical Flux Model (BFM). This latter accounts for the Chemical Functional Families (CFFs) 210 

in the state variables. The CFFs is split into living, non-living, and inorganic states (Vichi et al., 2007). 211 

The Pelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCES) model is another example of PFTs 212 

based model that is a modified version of HAMOCC considering 24 state variables including NO3, NH4, PO4, SiO2, 213 

Fe; small phytoplankton, large phytoplankton, small zooplankton, large zooplankton, DOM, small detritus, and large 214 

detritus (O. Aumont et al., 2003). PISCES model has been extensively used to study several ecosystems and widely 215 

applied in more than hundred studies that are based on this approach either directly or indirectly (Aumont et al., 2015). 216 

Likewise, the NASA Ocean Biogeochemical Model (NOBM) is another type of PFTs based model originally coupled 217 

to the Ocean-Atmosphere Spectral Irradiance Model (OASIM) (Gregg, 2001; Gregg et al., 2009). NOBM comprises 218 

of four phytoplankton groups, four nutrient groups (nitrate, regenerated ammonium, silica, and iron), a single 219 

zooplankton group, and three detrital pools (organic material storage, sinking, and remineralization) (Gregg, 2000;  220 

Das et al., 2019; Gregg et al., 2003; Gregg and Casey, 2007; Trull et al., 2018) (Gregg, 2001) (Gregg et al., 2003). 221 

Additionally, the PlankTOM biogeochemical model is a dynamic ocean model describing lower trophic level of 222 

marine ecosystems. This model has several extensions through varying in the number of PFTs resolved. For example, 223 

six PFTs: diatoms, coccolithophores, mixed phytoplankton, bacteria, protozooplankton and meso-zooplankton are 224 

included in PlankTOM6 (Le Quéré et al., 2005). However, additional PFTs such as nitrogen fixers, Phaeocystis, 225 

picophytoplankton and macro-zooplankton are added into PlankTOM10 (Buitenhuis et al., 2013) to evaluate the 226 
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interactions between climate and ocean biogeochemistry with the wide use of data synthesis for parametrizations of 227 

the PFTs growth rates (Kwiatkowski et al., 2014) .PlankTOM resolves the cycle of carbon (C), nitrogen (N), oxygen 228 

(O), phosphorous (P), Silicon (Si), iron (Fe) cycle, three types of organic detritus, air sea fluxes of CO2, O2, Dimethyl 229 

sulphide (DMS) and N2O.  230 

Moreover, the Model of Ecosystem Dynamics, nutrient Utilization, Sequestration and Acidification (MEDUSA) is 231 

developed by (Yool et al., 2011, 2013) is a model of intermediate complexity, constructed beyond the standard NPZD 232 

formulations. The biogeochemical cycles of iron, silicon, and nitrogen as well as small and large plankton size classes 233 

are included in this model. In this specific model, an explicit representation of internal chlorophyll quotas is included 234 

to allow for light acclimation. The key focus of MEDUSA is the biological sequestration of carbon in the deep ocean. 235 

The model is developed to study the biogeochemical response particularly of the so-called biological pump to human-236 

induced driven change in the global ocean. Nevertheless, the tracers of phytoplankton with allometric zooplankton 237 

(TOPAZ) model is based on the interactions between the biogeochemical and the carbon cycles including two 238 

dissolved organic matter forms, dissolved inorganic species for coupled carbon (C), nitorgen (N), Phosphorous (P), 239 

Silica (S), Iron (Fe), calcium carbonate (CaCO3), dissolved oxygen (O2) heterotroph, lithogenic cycling. Additionally, 240 

processes such as gas exchange, scavenging, atmospheric deposition, denitrification and nitrogen fixation, sediment 241 

processes, and river inputs were included (Dunne et al., 2010). This model has been implemented in several studies 242 

such as (Bronselaer et al., 2020; Jung, et al., 2019; Sharada et al., 2020). The extended version of TOPAZ is the 243 

Carbon, Ocean Biogeochemistry and Lower Trophics (COBALT) which was developed to improve the planktonic 244 

food web dynamics resolution to examine the influence of climate on the flow of energy from phytoplankton to fish 245 

(Stock et al., 2014). The planktonic food web representation in TOPAZ is highly idealized including an implicit 246 

representation of zooplankton and bacteria hence, an implicit modelling of the impacts of these groups on 247 

phytoplankton and biogeochemical processes were applied. Therefore, these limitations were addressed in COBALT 248 

by including three explicit zooplankton groups, bacteria with a mechanistic parametrizations of the impacts of these 249 

groups on biogeochemistry (Stock et al., 2014b). COBALT has resolved the global scale cycles of nitrogen, carbon, 250 

phosphate, silicate, iron, calcium carbonate, oxygen and lithogenic material where small and large phytoplankton are 251 

involved. Nevertheless, DARWIN biogeochemical model is a more complex PFTs based model consisting of 78 252 

phytoplankton types, heterotrophs, organic and inorganic forms of nitrogen, phosphorous, iron, and silica. This model 253 

was developed first to study the phytoplankton distribution especially for the cyanobacterium Prochlorococcus species 254 
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by (Follows et al., 2007). The model was coupled with the  general circulation model in (Wunsch and Heimbach, 255 

2007) and was initially applied for the global distributions of phytoplankton and physiological traits. It has been 256 

applied in a followed study which has considered more biogeochemical components and enhancement of optical 257 

properties (Dutkiewicz et al., 2015; Lo et al., 2019). Nonetheless, Regulated ecosystem model (REcoM) based on 258 

functional group approach (two phytoplankton group: diatoms and nanophytoplankton; one class of zooplankton) is 259 

based on the Quota model in which the internal phytoplankton cells stoichiometry is affected by the conditions of 260 

temperature, light, and nutrients (Schourup-Kristensen et al., 2014). REcoM has also been commonly used in the 261 

Southern Ocean studies (Hauck and Völker, 2015; Losch et al., 2014; Taylor et al., 2013).  262 

The complexity of the aforementioned PFTs models depends on number of the independent elements along with the 263 

number of PFTs considered. As regards the PFTs, simple models include one PFT which is of single phytoplankton 264 

and single zooplankton such as in HadOCC (Palmer and Totterdell, 2001). Simple models can also include two to 265 

three PFTs such as MEDUSA (Yool et al., 2013) and PISCES (Aumont et al., 2015). However, as the number of PFTs 266 

increases, the complexity of the model increases as well. As for the average elemental composition of particulate 267 

matter, it is constrained in the sea despite of the variations in the carbon to chlorophyll (C/Chl) ratios (Anugerahanti 268 

et al., 2021). The commonly used average proportion of the main elements in phytoplankton is: 106 C (carbon): 16 N 269 

(nitrogen): 1 P (phosphorous) (by atoms) and these proportionalities are termed as Redfield ratios (Redfield, 1933). 270 

Generally, adding complexity to the model doesn’t necessarily improve the model skill, as has been proven in several 271 

studies which compare models with different complexities (Friedrichs et al., 2007; Kriest et al., 2010; Kwiatkowski 272 

et al., 2014; Ward et al., 2013; Xiao and Friedrichs, 2014).  273 

3 Determination of the biochemical parameters 274 
 275 

The aforementioned models have been applied to resolve the biochemical properties including Chlorophyll-a, 276 

Macronutrients (N,P,S), Micronutrients (Fe), Carbon and Oxygen in different ecosystems. Detailed assessments of 277 

the capabilities of these models are provided here and summarized in Table 5,  278 

3.1 Chlorophyll-a 279 

  280 
Chlorophyll-a concentrations have been determined using the models described above, however, the PFTs based 281 

models are found to offer more accurate estimates of Chlorophyll-a concentrations by distinguishing the 282 
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phytoplankton types. The PFT based model PlankTOM, for instance, was used to evaluate the role of grazing versus 283 

iron limitation in the low chlorophyll content (HNLC) areas of the Southern Ocean (Le Quéré et al., 2016). The 284 

PlankTOM was able to produce reasonable surface chlorophyll-a estimates with correlation coefficient (r) around 0.8 285 

especially in the summer season when the macro-zooplankton grazing was explicitly involved. PlankTOM5.3 has 286 

shown large improvements of the interannual variation of surface chlorophyll-a relative to PlankTOM5.2 in the global 287 

oceans (with residual sum of squares RSS = -13%) (Buitenhuis et al., 2013) by including a new photosynthesis 288 

formulation with a representation of iron-light colimitation (Geider et al., 1998) in their fixed stoichiometry model. 289 

PlankTOM10 was also compared to PlankTOM6 and applied in the Southern Ocean (Le Quéré et al., 2016). This new 290 

version has similar formulations to the previous versions of the model except that it included more phytoplankton 291 

groups. Both models exhibit similar results for the surface chlorophyll-a concentrations (r ~ 0.8), primary and export 292 

production except that PlankTOM6 was unable to reproduce the observed low chlorophyll-a contents in summer 293 

season in the Southern Ocean due to slightly deeper mixed-layer depth in the summertime. Overall, PlankTOM10 has 294 

shown slightly better performance than PlankTOM6 in terms of surface chlorophyll-a distribution (bias% = 1.2%), 295 

whereas the distribution of surface nutrients has been slightly lower by 5% and 2.5% for nitrogen and silica (except 296 

for phosphate which shows similar performance r ~0.9). Other PFTs based models including ERSEM, DARWIN, 297 

TOPAZ, PISCES, BLING and NOBM have been applied to study chlorophyll-a distribution in the surface and deep 298 

oceans. ERSEM has been applied to study chlorophyll-a  dynamics in the Mediterranean and has shown good r value 299 

of 0.64 for the spatial distribution of the simulated and observed chlorophyll-a. However, a relatively larger bias with 300 

root mean square difference (RMSD) of 0.78 was obtained for the annual mean spatial variability due to the absence 301 

of cyclonic gyres of the Rhodes and South Adriatic causing intermittent blooms. In addition, the PFTs based model 302 

DARWIN coupled with MITgcm in (Dutkiewicz et al., 2015) apprehended large spatial variability in chlorophyll-a 303 

for the global oceans with low r  around  0.55 and have shown overestimation in particularly the Southern Ocean and 304 

higher latitudes. DARWIN was customized to study phytoplankton distribution  in the Southern Ocean (Lo et al., 305 

2019) which has included the abundance of coccolithophores which was improved through increasing the affinity for 306 

nutrients as well as coccolithophores grazing control. Two distinct size classes of diatoms (small & large) were added, 307 

and two different life stages were considered for Phaeocystis (single cell vs colonial). The improvements have 308 

increased the agreement between the simulated coccolithophores and diatoms with the in-situ data. However, the 309 

model inaccurately has simulated diatoms and haptophytes in the Ross Sea and has overestimated the small non-310 
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silicified phytoplankton with general mean absolute error for diatoms and haptophytes are 0.74 mg m−3 and 0.22 mg 311 

m−3 respectively. This inconsistency can be attributed to inaccuracy in representing PFT phenology and distribution. 312 

Representation of co-existence within coccolithophores and Phaeocystis remains a challenge and any small changes 313 

in DARWIN physiological parameters led to either Phaeocystis or coccolithophores loss. In addition, the sea-ice algae 314 

representation has not been explicitly represented which may not work well in region where ice exists.  315 

Concentrated Chlorophyll-a condition (i.e., Phytoplankton blooms) was also captured in the middle latitudes of the 316 

Northern and Southern Hemispheres as well as in the tropical Pacific by both models (NEMO-TOPAZ and NEMO-317 

PISCES) indicating El Niño-Southern Oscillation (ENSO) condition. Both models showed an overall r between 0.6-318 

0.9 across all oceans. While the zonal averaged Chlorophyll-a was overpredicted (by ~67%) from 30°N to 45°N in 319 

both models especially in the Pacific Ocean east of Japan which is due to mainly an error in the Kuroshio Current path 320 

seen in low resolution models (Jung et al., 2019a). The physical model NEMO has simulated a relatively thicker mixed 321 

layer which in turn simulated bigger spring blooms in this area creating a positive bias in Chlorophyll-a values in the 322 

mid-latitudes of the Northern Hemispheres in biogeochemical models.  323 

In contrast, underestimation of surface Chlorophyll-a in the equatorial Atlantic Ocean (bias ~-0.2 μg kg−1) and the 324 

Arabian Sea (bias ~-0.4 μg kg−1) was also found in both models and these two areas encountering mesoscale and sub-325 

mesoscale processes impacting the biogeochemistry. NEMO-PISCES with the use of higher resolution grid than the 326 

one used in (Jung et al., 2019a) presented better Chlorophyll-a distribution in the Arabian Sea  with an average value 327 

of ~1.3 mg Chl m–3 d (Koné et al., 2009). Although both models overpredicted the surface chlorophyll-a in the 328 

Southern and topical Pacific (STD ~0.26 μg kg−1), the NEMO-TOPAZ showed a larger bias over the equator (STD ~ 329 

0.22 μg kg−1) for the surface Chlorophyll-a than PISCES-NEMO which is proved to be caused by the high atmospheric 330 

iron deposition in TOPAZ, which is then replaced with PISCES data resulting in lowering the bias for surface 331 

Chlorophyll-a. Hence, sensitivity experiments on atmospheric iron deposition can be a good task to improve the 332 

surface chlorophyll-a distributions in simulations.  333 

Similarly, the PFTs based model NOBM was able to predict surface Chlorophyll-a level (r > 0.7) in global oceans 334 

(Gregg et al., 2003). However, the correct species abundance was not well identified by the model due to disparities 335 

between the model and observations in particular the Indian Ocean where the observations were mainly concentrated 336 

in the Arabian Sea (the model is modestly dominated by diatoms whereas observations are dominated by 337 
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cyanobacteria). This might have caused by the strong upwelling in the model thus increasing nutrients concentrations 338 

which trigger faster growing organisms such as diatoms.  339 

Nevertheless, BLING-NEMO coupled model was used to study the high Chlorophyll-a levels (i.e. blooms) 340 

(Castro de la Guardia et al., 2019) in which the spring bloom in the Barents Sea (BS) was underestimated by 1.7 mg 341 

chl m-3 while the autumn bloom underpredicted by 0.7 mg chl m-3. This deviation might be attributed to the lack of 342 

nutrients from riverine input by the BLING-NEMO coupled model. Whereas the concentration representing the spring 343 

and autumn bloom in the Labrador Sea (LS) has shown an agreement with the observed seasonality, which is 344 

comparable to that of the satellite data. However, the Chlorophyll-a content is slightly overestimated by 0.2 mg chl 345 

m-3 during February-April due to an earlier start of the spring bloom in the simulation. Furthermore, the BLING-346 

NEMO model has mistakenly predicted the spring blooms in March instead of April in the Hudson Bay (HB) and 347 

Baffin Bay (BB). In these two bays, the spring bloom was slightly overpredicted by 0.5 mg chl m-3 and ~ 0.3 mg chl 348 

m-3 in the BB and HB respectively. This discrepancy might be attributed to the underprediction of sea ice 349 

concentration.  350 

Chlorophyll-a has been also derived by the carbon cycle and simple NPZD models. For example, the carbon cycle 351 

based model: HAMOCC5 was able to reproduce Chlorophyll-a with a value of 0.05 mg Ch m-3 in the oligotrophic 352 

subtropical gyres (Aumont et al., 2003) with a  bias of 0.24 mg chl m-3. Unlike the earlier version of the model 353 

(HAMOCC3.1) which has shown a higher concentrations of Chlorophyll-a compared to observation in these regions 354 

(Six and Maier-Reimer, 1996). This version of HAMOCC5 is an extension of HAMOCC3.1 (Six and Maier-Reimer, 355 

1996) with the inclusion of iron and silicate limitation along with the phosphate. HAMOCC5 with its coarse resolution 356 

cannot resolve the coastal upwellings in productive regions such as Peru upwelling. The improvement of the 357 

HAMOCC was mainly in making the Chl: C ratio variable which is decreasing in the centre of the subtropical gyres 358 

to values about 1:150 while in HAMOCC3.1 this ratio remained constant at 1:60. Therefore, this model with this 359 

improvement as well as iron and silicate limiting nutrients inclusion improved the representation of chlorophyll-a 360 

content in subtropical gyres (around 0.2-0.25 mg m-3).  361 

As for the simple NPZD models, they have shown a better representation of chlorophyll-a when coupled to a high-362 

resolution physical model as well as including correct physics representations. For example, the involvement of tides 363 

in ROMS in (Fennel et al., 2008) has improved the chlorophyll-a representations over Georges Bank which was not 364 
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presented in the previous model (Fennel et al., 2006). The same model of (Fennel et al., 2008) was improved by adding 365 

dissolved organic matter (DOM) module along with the other model components (Druon et al., 2010) to study the 366 

DOM dynamics in the Northeastern U.S. continental shelves which showed a well agreement of high chlorophyll-a 367 

concentrations with the satellite data particularly in the inner shelf and on Georges Bank as a result of the tidal mixing 368 

and continuous nutrient supply (Bias: chlorophyll-a (with DOM) = 4 mg chl m-3, chlorophyll-a (without DOM) = 6 369 

mg chl m-3).  370 

3.2 Macronutrients (N, P, S) 371 
 372 

Nutrients such as nitrate, phosphorous, and silica have been well represented by several biogeochemical models 373 

(Aumont et al., 2015; Das et al., 2019; Dutkiewicz et al., 2015; Jung et al., 2019b; Lachkar et al., 2019; Pant et al., 374 

2018; Le Quéré et al., 2016; Sankar et al., 2018). The PFTs based models such as PISCES-NEMO, DARWIN-375 

MITgcm, and TOPAZ-NEMO have shown well representation of surface nutrients distribution in the global oceans 376 

with r (> 0.9 for P and N; ~0.85 for S), > 0.9 for all nutrients, and > 0.95 for all nutrients respectively. Both TOPAZ 377 

and PISCES have represented: (i)  similar distribution of nutrients over global oceans, (ii) an overestimation in the 378 

Southern Pacific Ocean bias of ≥ 4.5 μmol kg−1, ~0.32 μmol kg−1, and ≥ 16 μmol kg−1 for nitrate, phosphate, and 379 

silicate respectively , (iii) higher positive bias of nitrate (≥ 0.16 μmol kg−1) and silicate (≥ 8 μmol kg−1) in the central 380 

and southern Pacific, and the Southern Ocean and (iv) underprediction of phosphate (bias ~-0.8 μmol kg−1) at the 381 

middle and higher latitudes in the Northern Hemisphere (Jung et al., 2019). The discrepancies in both models can be 382 

attributed to the low resolution, weak North Atlantic deep waters, and strong ventilation in the Antarctica waters. 383 

However, the improvement of the optical constituents by increasing the absorption of the optical constituents resulting 384 

in a reduction in the size of oligotrophic regions in the subtropical gyres could be a solution as proposed by 385 

(Dutkiewicz et al., 2015) using DARWIN-MITgcm. This has led to an enhancement of lateral nutrients supplies caused 386 

by a decrease of productivity in high latitude. Furthermore, skill assessment of 21 regional and global coupled 387 

biogeochemical models based on functional group approach including (PISCES, PlankTOM, COBALT, TOPAZ, 388 

HAMOCC, BIOMASS, MEDUSA, ERSEM, PELAGOS, PISCES, NOBM) were conducted for the Arctic region 389 

studies in order to investigate the capability of these models in representing the observed nitrate, mixed layer depth, 390 

as well as euphotic layer depth. Most of the models have shown positive bias for the depth averaged nitrate explaining 391 

the overestimation of nitrate in the upper layer (r ≤ 0.68) and none of these models were able to well represent the 392 
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variability in the field measurements. However, REcoM is applied and has shown to have a good performance for 393 

DIN and silicate (r = 0.75) when coupled to a high resolution setup in the Arctic regions (Schourup-Kristensen et al., 394 

2018).  395 

3.3 Micronutrients (Fe) 396 
 397 

Low iron concentrations were simulated in the North and North Central Pacific, North Atlantic, and Antarctic whereas 398 

in the North and Equatorial Indian and North Central Atlantic high levels were predicted using NOBM. The 399 

overestimation has resulted in r ~ 0.86 and the reason of the iron overprediction is attributed to the lack of scavenging, 400 

excessive remineralization, and slow detritus sinking rate. However, PISCES-NEMO  has shown a significant 401 

underestimation for the spatial variability of iron in the global ocean with r = 0.75 suggesting a need to increase or 402 

make the sediment source of iron highly variable since it is too small in the model (Aumont et al., 2015). It is also 403 

suggested that iron supply to the surface layer is highly driven by eddies using a simplified version of DARWIN 404 

biogeochemical model of two species as described in (Dutkiewicz et al., 2009) coupled to a flat bottom zonally re-405 

entrant  MITgcm model (Uchida et al., 2019). So, a better representation of the iron fluxes in the Southern Ocean 406 

requires correct energetics of the mesoscale field which can be done by resolving and parametrizing the inverse energy 407 

cascade caused by baroclinic instabilities of meso and sub-mesoscale (Person et al., 2019). Hence, (Jiang et al., 2019) 408 

applied a modified version of Chai model coupled to ROMS which involved two phytoplankton groups (small 409 

phytoplankton and diatoms), two zooplankton groups (micro and meso zooplankton), nutrients (nitrogen, silicate, 410 

iron) indicating that dominant iron sources in the Scotia Sea are derived from sediments in the Antarctic Peninsula 411 

shelf along with the South Orkney Plateau. In addition to these sources, the Antarctic Circumpolar Current, the 412 

northern side of the Weddle Gyre, upwelling, atmospheric dust deposition, and icebergs are the common sources of 413 

iron in the Southern Ocean (Jiang et al., 2019). The iron levels estimated by the modified Chai model have shown an 414 

average overestimation by 0.26 nM deviated from the observed average value of 0.35 nM resulting in r = 0.76.   415 

3.4 Carbon 416 
 417 

Ocean carbon has been derived in different forms including the particulate organic and inorganic carbon (POC, 418 

PIC),  partial pressure of CO2 (pCO2) and dissolved inorganic carbon (DIC). A representation of the variable POC 419 

reactivity evolved from reactive continuum model suggested by (Boudreau and Ruddick, 1991) and was introduced 420 
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in PISCES with a coarse resolution NEMO for the global oceans (Aumont et al., 2017). With the POC introduction 421 

into the model, the POC levels in the ocean’s interior increased by 1 to 2 orders of magnitude which has resulted from 422 

the slow sinking of small particles from the surface. In addition, an increase of higher than a factor of 2 of the carbon 423 

reaching the sediments has been attained showing better agreement with observations with Root Mean Squared Error 424 

(RMSE) of 0.14 (without continuum reactivity), and 0.08 (with continuum reactivity). In addition, PISCES-MITgcm 425 

has been used to qualitatively study the carbon cycle in the Arctic Ocean showing the capability in capturing the 426 

observed seasonal and regional trends of the dissolved pCO2 (Manizza et al., 2011). However, the spring surface 427 

pCO2 in the Canadian Archipelago is underestimated (~300 µatm) relative to observations (400-450 µatm) but able 428 

to capture the summer levels (200-250 µatm). The riverine POC and the impact of terrestrial carbon resulted from 429 

coastal erosion were neglected in the model hence caused the underprediction of carbon balance. Additionally, the 430 

sedimentation and resuspension processes were neglected by the model which may be important in the enrichment of 431 

the water column with carbon hence impacting air-sea gas exchange. In addition, the modelled surface DIC by 432 

PISCES-NEMO was  comparable to observations with r of 0.91 (Aumont et al., 2015). With regard to the comparison 433 

conducted between PISCES-NEMO and TOPAZ-NEMO (Jung et al., 2019) for the surface DIC, TOPAZ-NEMO has 434 

represented similar agreement with observation (r > 0.95), and the zonal averaged surface content is better represented 435 

by TOPAZ-NEMO in the Northern Hemisphere (bias < 10 μmol kg−1). Similarly, compared to observations lower 436 

bias is shown for surface alkalinity by TOPAZ-NEMO than that of PISCES-NEMO in all oceans (e.g. Southern 437 

Hemisphere: negative bias ~ 80 μgmol kg−1, Equator: positive bias, mainly ≤ 16 μmol kg−1, Indian Ocean: negative 438 

bias, mainly < 32 μmol kg−1, Pacific: positive bias, mainly ≤ 16 μmol kg−1, Atlantic: negative bias, mainly < 64 μmol 439 

kg−1) 440 

3.5 Oxygen  441 
 442 

Surface oxygen level was estimated in the global oceans by PISCES-NEMO which has resolved the oxygen 443 

distribution with r ~ 0.97 because oxygen reach closely to its solubility level and hence is constrained by sea surface 444 

temperature (Aumont et al., 2015). Moreover, TOPAZ and PISCES coupled to NEMO (Jung et al., 2019) have shown 445 

comparable spatial distributions (r ~0.98) and zonal averages of  surface dissolved oxygen (DO) to the observed data 446 

for DO in the global oceans but the overall was underestimated by TOPAZ (bias ~ -10 μmol kg−1) and a slight 447 
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overprediction of DO (bias ~10 μmol kg−1) was observed by PSICES except in polar regions. Because in polar regions 448 

(areas at 60°N or higher) the availability and quality of satellite data is limited.  449 

 Both models have shown negative bias (~ 25 μmol kg−1) in deep waters which was caused by the weak North Atlantic 450 

deep waters represented by the physical model. TOPAZ-NEMO has also shown a better representation of the oxygen 451 

minimum zone in the Pacific Ocean.  ERSEM coupled to a 1D Princeton/Mellor–Yamada and GOTM physical models 452 

respectively were also implemented to study the global oxygen minimum zone. ERSEM-Princeton/Mellor–Yamada 453 

lacks horizontal advective processes which could be enhanced through considering the diurnal physical processes 454 

while ERSEM-GOTM ignores the episodic intrusion of oxygen within the oxygen minimum zone (Sankar et al., 2018) 455 

(Sankar et al., 2018) (Blackford and Burkill, 2002). Thus, the models have shown contradictions between the estimates 456 

and climatological seasonal cycles of oxygen at depths which might be attributed to the lack of lateral circulation in 457 

the model. Further studies on the oxygen minimum zone in the Arabian Sea were conducted by (Lachkar et al., 2017, 458 

2019, 2020) using Fasham model coupled to ROMS indicating that the primary productivity and oxygen minimum 459 

zone are highly impacted by monsoon wind intensification with an overall high  r ~ 0.93 for oxygen (both seasons) in 460 

the upper layer. Nevertheless, the model was incapable of resolving the full eddy spectrum because the resolution was 461 

overly coarse. The model has considered the nitrogen as a limiting nutrient neglecting iron, phosphate, and silicate 462 

which are the major nutrients limiting phytoplankton growth which may have led to amplify the impact of 463 

denitrification on the nitrogen budgets in the Arabian Sea (Lachkar et al., 2017) thus overpredicting the oxygen 464 

minimum zone.  465 

 466 

5 Conclusions  467 
 468 

This review presents the common biogeochemical models applied on various ecosystems of the world’s ocean. These 469 

models are evaluated through reviewing the studies that have been conducted to estimate biochemical parameters such 470 

as chlorophyll-a, nutrients as well as carbon and oxygen components. Therefore, applications of biogeochemical 471 

models on different ecosystems have shown different performances depending on the complexity of these ecosystems 472 

and the governing equations. PFT's model approach has proven to be a good estimate of surface nutrients such as 473 

nitrogen (N), phosphorous (P), and silica (S) in global oceans with r  ≥  0.85, ≥ 0.9, and  ≥  0.78 with some 474 
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inconsistencies apparent if coupled with the low-resolution physical component. NPZD models, for example Fasham, 475 

are capable of accurately estimating N, P, and oxygen (O) with R2 > 0.9 (for N, P), and > 0.9 (for O) in the Indian and 476 

Pacific ecosystems. In contrast, the most effective prediction of iron with r is obtained between 0.7 and 0.86, 477 

particularly for models using the functional group approach. In comparison, the reported performance for chlorophyll-478 

a varies between models and r can range from 0.55 to 0.9. These varying reported performances for these 479 

biogeochemical parameters are dependent on the features of the ecosystems and reliability of the physical model. 480 

Therefore, when developing the biogeochemical model, it is necessary to take into consideration the most appropriate 481 

physical models. 482 
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Table 1. Typical functional forms of phytoplankton response to irradiance I. These functional forms can be multiplied 777 

by the maximum photosynthesis rate termed as Pmax in some processes. Adapted from (Franks P, 2002). 778 

Functional Form Definition 

𝑰

𝑰𝒐

 Linear response to incident light 

𝑰

𝑰𝒐 + 𝑰
 Saturating response 

𝟏 − 𝐞𝐱𝐩 (−
𝑰

𝑰𝒐

) Saturating response 

𝐭𝐚𝐧𝐡 (−
𝑰

𝑰𝒐

) Saturating response 

𝑰

𝑰𝒐

𝐞𝐱𝐩 (𝟏 −
𝑰

𝑰𝒐

) 

Saturating and photo-inhibiting response. 

𝐼𝑜 represent the maximum photosynthesis 

rate. 

 779 

Table 2. Some of the commonly used functional forms of phytoplankton nutrient uptake. Adapted from (Leles et al., 780 

2016) 781 

Functional Form* Description 

𝑽𝒎𝒂𝒙 ⋅ 𝑵

𝒌 + 𝑵
 Michaelis-Menten/Monod; hyperbolic 

𝝁𝒎𝒂𝒙

𝟏 −
𝑸𝒎𝒊𝒏

𝑸

𝟏 −
𝑸𝒎𝒊𝒏

𝑸𝒎𝒂𝒙

 
Quota Curve; hyperbolic 

𝝁𝒎𝒂𝒙

𝑸 − 𝑸𝒎𝒊𝒏

(𝑸 − 𝑸𝒎𝒊𝒏) + 𝑲
 Quota Curve; rectangular- hyperbolic 

𝝁𝒎𝒂𝒙

(𝟏 + 𝑲𝑸) ⋅ (𝑸 − 𝑸𝒎𝒊𝒏)

(𝑸 − 𝑸𝒎𝒊𝒏) + 𝑲𝑸 ⋅ (𝑸𝒎𝒂𝒙 − 𝑸𝒎𝒊𝒏)
 

Normalized Quota equation; rectangular-hyperbolic 

* 𝑽𝒎𝒂𝒙: maximum utilization rate of nutrient; 𝒌: affinity constant for nutrient uptake; 𝑸𝒎𝒊𝒏: minimum nutrient quota; 782 
𝑸𝒎𝒂𝒙: maximum nutrient quota; 𝑸: nutrient quota; 𝑲: half saturation constant for quota curve.  783 

 784 

 785 

 786 

 787 
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Table 3. some of the commonly used functional forms of phytoplankton zooplankton grazing. Adapted from: (Leles 788 
et al., 2016) 789 

Functional Form* Description 

𝒂 ⋅ 𝑷 Holling Type I: linear 

𝒂 ⋅ 𝑷

𝟏 + 𝒂 ⋅ 𝒉 ⋅ 𝑷
 

Holling Type II: Hyperbolic 

𝑰𝒎𝒂𝒙 ⋅ 𝑷

𝒌𝟏 + 𝑷
 

Michaelis-Menten/Monod 

Hyperbolic 

𝒂 ⋅ 𝑷𝟐

𝟏 + 𝒂 ⋅ 𝒉 ⋅ 𝑷𝟐
 

Type III: sigmoidal 

𝑰𝒎𝒂𝒙 ⋅ 𝑷𝟐

𝒌𝟏
𝟐 ⋅ 𝑷𝟐

 
Michaelis-Menten/Monod 

Sigmoidal 

𝒂𝒊 ⋅ 𝑷𝒊

𝟏 + ∑  𝒏
𝟏 𝒂𝒓 ⋅ 𝒉𝒓 ⋅ 𝑷𝒓

 

where n is the number of preys 

Type II; hyperbolic. 

multiple preys 

𝑰𝒎𝒂𝒙 ⋅ ∑𝑪𝒑𝒊

𝒌𝟏 + ∑𝑪𝒑𝒊

 where 𝑪𝒑𝒊 = 𝑪𝒓𝒊 ⋅ 𝑷𝒊

 

Monod; hyperbolic; prey selectivity 

*𝒂: attack rate; P = phytoplankton availability; h = handling time; 𝑰𝒎𝒂𝒙: maximum ingestion rate; 𝒌𝟏: half saturation 790 
constant for ingestion; i: subscript for prey type; r = subscript relative to prey type weight; 𝑪𝒑𝒊: potential capture rate; 791 
𝑪𝒓𝒊: capture rate. 792 

 793 

Table 4. Some of the functional forms for mortality rate of both phytoplankton and zooplankton. Adapted from: 794 
(Franks P, 2002; Leles et al., 2016) 795 

Functional form of i(P) Description 

𝒎 Linear 

𝒎𝑷 Quadratic non-

linear 

Functional form of j(Z) Description 

𝒎 ⋅ 𝒁 Linear 

𝒎 ⋅ 𝒁

𝒌𝟐 + 𝒁
 Hyperbolic 

𝒎 ⋅ 𝒁𝟐

𝒌𝟐
𝟐 + 𝒁𝟐

 Sigmoidal 

𝒎 ⋅ 𝒁 ⋅ 𝒄

𝒌𝟐 + 𝒁 ⋅ 𝒄
 Hyperbolic- 

intraguild 

predation 

𝒎: mortality rate of zooplankton; 𝒌𝟐: half satutration constant for zooplankton closure term; 𝒄: zooplankton fraction 796 
foe which closure terms acts.  797 
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Table 5. Biochemical models applied in the global ocean ecosystems including performance, physical 798 
model and model resolution. 799 

O
ce

a
n

 

Model approach Resolution (grid size) 

 

 

Key biochemical 

variables a 

 

Physical model 

 

 

Performanceb 

 

 

Ref. 

G
lo

b
al

 

Moore 

2-D global grid (100 X 

116 grid-points); 

Longitudinal resolution of 

3.6o and variable 

latitudinal resolution from 

1–2o with higher 

resolution near the equator 

Fe 

 

NCAR 

 

Bias:  

Fe = 265 pM (July-

North Pacific) 

Fe = 14 pM (June-

Equatorial Pacific) 

Fe = 121 pM (May-

North Atlantic) 

Fe = 4514 pM 

(September/August-

Arabian Sea) 

Fe = 2362 pM 

(November-Southern 

Ocean) 

 

 

 

(Moore et 

al., 2001) 

G
lo

b
al

 

NOBM 

3-D; 2/3° latitude and 

1.25° longitude with 14 

layers 

Fe, Chl-a GCM  
Fe: r = 0.86 & R2= 0.74 

chl-a: r > 0.7 

(Gregg et 

al., 2003) 

G
lo

b
al

 

 

HAMOCC5 

 

3-D; horizontal resolution 

is uniformly 3.5 by 3.5 

degrees with 22 vertical 

layers 

Fe, Chl-a LSG  

Bias: 

Fe = 0.15 nM (at depth 

of 3000 m) 

chl-a = 0.24mg/m3 

(Aumont et 

al., 2003) 

G
lo

b
al

 

ERSEM 

 
1-D water column Chl-a GOTM  - 

(Blackford 

et al., 2004) 

G
lo

b
al

 

Moore 

3-D 100 X 116 horizontal 

grid points with a 

resolution of 3.6o 

longitude and 0.9o-2o 

latitude 

Fe CCSM  
Refer to Moore et al., 

2001 

(Moore et 

al., 2004) 

G
lo

b
al

 

Moore 
3-D; 3.6o in longitude; 

0.9o– 2o degree in latitude 
IC, Fe NCAR CCSM3 

Refer to Moore et al., 

2001 

 

(Moore et 

al., 2006) 

G
lo

b
al

 

Moore 

3-D; 3.6° in longitude and 

0.8° to 1.8° latitude and 25 

levels in the vertical 

Fe CCSM 
Refer to Moore et al., 

2001 

(Moore & 

Doney, 

2007) 
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G
lo

b
al

 

PlankTOM 

3-D; 2° in longitude, 1.1° 

average in latitude with 31 

vertical levels 

Chl-a NEMO RSS = -13% 
(Buitenhuis 

et al., 2013) 

G
lo

b
al

 

PISCES 

3-D; 2◦ by 2◦cosΦ (where 

Φ is the latitude) with a 

focusing of the meridional 

resolution to 0.5◦ in the 

equatorial domain. 30 

vertical layers 

IC, P, N, Fe, Alk, 

O, S 
NEMO 

r: 

C = 0.91 

P = ~0.91 

N = 0.95 

Fe = 0.75 

Alk = ~0.8 

O = 0.97 

S = ~0.85 

 

 

(Aumont et 

al., 2015) 

G
lo

b
al

 

DARWIN 
3-D; horizontal resolution 

of 1o x 1o with 23 levels 

 P, N, S, 

Chl-a 
MITgcm  

r: 

P,N,S > 0.9 

Chl-a ~ 0.55 

(Dutkiewicz 

et al., 2015) 

G
lo

b
al

 

PlankTOM 

3-D; zonal resolution of 2° 

and a meridional 

resolution of 

2°×cos(latitude) with 30 z 

levels 

O NEMO - 
(Andrews et 

al., 2017) 

G
lo

b
al

 

PISCES 

3D; 2◦ by 2◦cos(φ) (where 

φ is the latitude) with an 

increased meridional 

resolution to 0.5◦ in the 

equatorial domain. 30 

vertical layers 

POC NEMO 

RMSE: 

No Reactivity 

Continuum (RC) = 0.14 

With RC = 0.08 

 

(Aumont et 

al., 2017) 

G
lo

b
al

 

Moore 
2-D; horizontal resolution 

of 0.27°–0.53° 

S, N, P, O, DIC 

flux, Chl-a 
NCAR-CSM1 

r: 

S = 0.8 

N = 0.95 

P = 0.92 

O = 0.85 

DIC = 0.75 

Chl-a = 0.6 

(Doney et al., 2009) 

(Pant et al., 

2018) 

G
lo

b
al

 

Moore 

3D; 60 vertical levels, was 

run at the nominal one-

degree resolution 

IC & 

coccolithophores 

CESM 

 

Refer to Moore et al., 

2001 

(Krumhardt 

et al., 2019) 

G
lo

b
al

 

TOPAZ 

&  

PISCES 

3-D; horizontal resolution 

of 2° × 2° (182 × 149 grid 

points) and meridional 

resolution of 0.5° with 31 

levels 

 

Chl-a, N, P, S, O, 

IC, Alk 

NEMO 

 

r: 

chl-a :0.6-0.9 (both 

models) 

N, P, O, & S, DIC & 

Alk  

 > 0.95 

(Both models) 
 

(Jung et al., 

2019a) 
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A
tl

an
ti

c 

Fasham 

3-D; 2° horizontal 

resolution and 25 vertical 

levels 

Chl-a, nutrients MOM 

RMSD = 0.97 (for 

detrital sinking rate of 

10 m d-1) & 0.77 

(detrital sinking rate of 

1 m d-1) 

Based on Fasham et al, 

1990 metrics  

(Oschlies & 

Garçon, 

1999) 

A
tl

an
ti

c 

Fasham 

3-D; horizontal resolution 

is 10 km, and 30 sigma 

levels 

Chl-a ROMS 

Chl-a 

Winter: r = 0.75 

Spring: r = 0.72 

Summer: r = 0.85 

Fall: r = 0.83 

 

(Fennel et 

al., 2008) 

A
tl

an
ti

c 

Fasham 

3-D; 10-km horizontal 

resolution and 30 terrain- 

following vertical levels 

Chl-a ROMS 

Bias: 

Chl-a (with DOM) = 4 

mgchl/m3 

Chl-a (without DOM) = 

6 mgchl/m3 

(Druon et 

al., 2010) 

A
tl

an
ti

c 

Fasham 

3-D; horizontal resolution 

of 5 km, and 36 vertical 

terrain-following layers 

Chl-a ROMS 

r: 

chl-a = 

Spring: 0.6 

Summer: 0.65 

Fall: 0.53 

Winter: 0.45 

 

(Xue et al., 

2013) 

A
tl

an
ti

c 

ERSEM 

3-D; 1/8o horizontal 

resolution with 43 vertical 

levels 

P, N OGCM-MED16 
 

r > 0.6 

(Lazzari et 

al., 2016) 

A
tl

an
ti

c 

ERSEM 

3-D; resolution of 1/10o X 

1/10o (~10 X10 Km) in the 

horizontal axis and 24 

sigma-levels in the vertical 

axis 

Chl-a, P,N POM 

r: 

chl-a = 0.64 

P = 0.02 mmolP/m3 

N = 0.55 mmolN/m3 

(Kalaroni et 

al., 2019) 

A
tl

an
ti

c 

 ERSEM 

3-D; resolution of 1/10o x 

1/10o (~10 X10 Km) in the 

horizontal axis and 24 

sigma-levels in the vertical 

axis 

Chl-a, P POM 

 

Refer to Kalaroni et al., 

2019 

(Kalaroni et 

al., 2020) 

 

In
d

ia
n

 

Fasham 

3-D; 1o resolution in 

latitude and longitude with 

10 vertical levels 

Chl-a, N OGCM 

Bias: 

Chl-a = 0.1 N = -11 

mmolN/m3 

(Ryabchenk

o et al., 

1998) 

In
d

ia
n
 

ERSEM 

1-D; grid size of 

approximately 20 km with 

40 vertical layers 

N 
Princeton/Mellor

–Yamada  

Bias: 

N = 9 mmol/m3 

(Blackford 

& Burkill, 

2002) 
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In
d

ia
n
 

McCreary 1-D; with 4 vertical layers Chl-a, N Four-layer model 

Bias: 

Chl-a = 2 mg chl-a/m3 

N = 5 molN/kg 

(Hood et al., 

2003) 

In
d

ia
n
 

Fasham 

3-D; horizontal resolution 

of 1/3o both meridionally 

and zonally with 35 levels 

Chl-a, N MOM 

Bias: 

Chl-a = 0.40 (scale: 0-2 

mg/m3) 

N = 15 (depth of 75 m) 

(0-30 mmolN/m3) 

 

(Kawamiya 

& Oschlies, 

2003) 

In
d

ia
n
 

PISCES 

3-D; mean horizontal 

resolution of 0.5° by 0.5° 

cos ɸ (where ɸ is the 

latitude) with 30 vertical 

layers 

Chl-a NEMO - 
(Koné et al., 

2009) 

In
d

ia
n
 

PISCES 

3-D; resolution 1/12° (∼9 

km) horizontal grid with 

46 vertical layers 

Chl-a, Fe NEMO 

Bias: 

Fe = 0.15 nM (at depth 

of 3000 m) 

chl-a = 0.24mg/m3 

(Resplandy 

et al., 2011) 

In
d

ia
n
 

McCreary 1-D; 6 vertical layers Chl-a Six-layer model 
Bias: 

Chl-a = 2 mgchl-a/m3 

(McCreary 

et al., 2013) 

In
d

ia
n
 

Fasham 

 

3-D; 1/12o horizontal 

resolution with 32 vertical 

sigma layers 

Chl-a, N, O ROMS 

Chl-a: r between 0.69 

(summer);0.74(winter) 

N: r = 0.88  

O: r = 0.93  

(Lachkar et 

al., 2017) 

In
d

ia
n
 

ERSEM 1-D; 100 vertical levels S, P, N, O GOTM r > 0.9 for S,P,N,O  
(Sankar et 

al., 2018) 

In
d

ia
n
 

Fasham 

 

3-D; horizontal resolution 

of 1/24o and a vertical grid 

made of 32 levels 

Chl-a, N, O ROMS 

Chl-a: r between 0.69-

0.74 

N: r = 0.88 

O: r = 0.93 

 

(Lachkar et 

al., 2019) 

In
d

ia
n
 

PISCES 

3-D; grid resolution of 

1/10° with 32 vertical 

layers 

Fe ROMS 
Refer to Aumont et al., 

2015 

(Guieu et al., 

2019) 

In
d

ia
n

 

NOBM 

 

3-D; 1.25° longitude by 

2/3° latitude with 14 

vertical layers 

N, S, Chl-a 
 

OGCM 

r: 

N = 0.9-0.96 

S ~ 0.95 

Chl-a = 0.78 (in situ) & 

0.618 (SeaWiFS) 

 

(Das et al., 

2019) 
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In
d

ia
n
 

TOPAZ 

3D; 1° horizontal 

resolution with 1/3° 

resolution near the 

equator; 50 vertical layers 

Fe MOM 

Bias: 

 Fe = 1.5 nMol/m3 

 

(Sharada et 

al., 2020) 

In
d

ia
n

  

Fasham 

3-D; 1/10◦ horizontal 

resolution with 32 sigma-

coordinate vertical layers  

Chl-a, N, O ROMS 

r: 

N & O = 0.9; Chl-a = 

0.42 (winter) ,0.67 (fall) 

(Lachkar et 

al., 2020) 

S
o

u
th

er
n

  

PlankTOM 

3-D; 2◦ of longitude and a 

mean resolution of 1.5◦ of 

latitude with 30 vertical 

levels 

Chl-a, N, S, P NEMO 

r: 

Chl-a ~ 

0.8(PlankTOM6) 

Chl-a ~ 

0.81(PlankTOM10) 

P ~ 0.9 (PlankTOM6) 

P ~ 0.92(PlankTOM10) 

N ~ 0.9 (PlankTOM6) 

N ~ 0.85(PlankTOM10) 

S ~ 0.8(PlankTOM6) 

S ~ 0.78(PlankTOM10) 

 

(Le Quéré et 

al., 2016) 

S
o

u
th

er
n
 

NOBM 

3-D; 2/3o latitude and 1 ¼ 
o longitude with 14 vertical 

layers 

PIC,N, S OGCM - 
(Trull et al., 

2018) 

S
o

u
th

er
n

 

DARWIN 

3D; three horizontal grid 

spacings are used: 20, 5, 

and 1 km with 76 vertical 

layers 

 

Fe MITgcm  

No detailed skill 

analysis of the 

biological state 

variables against 

observations 

(Uchida et 

al., 2019) 

S
o

u
th

er
n
 

PISCES 

3-D; 1◦ horizontal 

resolution on an isotropic 

mercator grid with a local 

meridional refinement up 

to 1/3◦ at the Equator with 

75 levels 

Fe NEMO 

Refer to Aumont et al., 

2015 

 

(Person et 

al., 2019) 

S
o

th
er

n
 

DARWIN 

3-D; with mean horizontal 

spacing of 18 km and 50 

vertical levels 

Chl-a MITgcm 

MAE: 

0.74 mg chl-a m-

3(diatoms) 
0.22 mg chl-a m-

3(haptophytes) 

(Lo et al., 

2019) 

S
o

u
th

er
n

 

 Chai 

3-D; horizontal scale of 2-

3 km with 40 vertical 

layers 

Fe ROMS r = 0.76 
(Jiang et al., 

2019) 

S
o

u
th

er
n
 

TOPAZ 

3-D; 1° × 1° horizontal 

resolution with increased 

resolution near the 

Equator and 50 unevenly 

spaced vertical levels in 

depth coordinates 

DIC, N ESM2M - 
(Bronselaer 

et al., 2020) 
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A
rc

ti
c 

PISCES 

3-D; horizontal resolution 

with an average spacing of 

~ 18 km and 50 levels  

DIC MITgcm 
No detailed skill 

analysis available 

(Manizza et 

al., 2011) 

A
rc

ti
c 

21 coupled 

biogeochemical 

models with 

different physical 

systems c) 

 

- 
Majority includes 

N, P, S, Fe 
             - 

r: 

see below the table d) 

(Babin et al., 

2016) 

A
rc

ti
c 

REcoM2 

3-D; resolution north of 

60°N equals 4.5 km, 

between 40 and 60°N it is 

approximately 25 km, 

while a resolution of 

nominal 1° is used south of 

40°N; 32 vertical levels 

DIN, S, Chl-a FESOM 

r:  

DIN: 0.75 

Si:0.75 

Chl-a: 0.56 

(Schourup-

Kristensen et 

al., 2018) 

A
rc

ti
c 

 BLING 

3-D; horizontal resolution 

of 0.25o with 50 vertical 

levels 

Chl-a, DIM NEMO 

Bias: chl-a ≤ 0.1 

mg/m3; (Schourup-

Kristensen et al., 2014) 

 

R2: IC ≥ 0.93; Chl-a ≥ 

0.76 except in BB & 

HB regions where R2 = 

0.1 & 0.4 respectively; 

DIM: 0.84, 0.82, 0.93 

for BS, LS, BG 

respectively. Yet R2 = -

0.21 in BB 

(Castro de la

 Guardia et 

al., 2019) 

A
rc

ti
c 

DARWIN 

3-D; 18 km of horizontal 

resolution with 50 vertical 

levels 

 DIC MITgcm 
No detailed skill 

analysis available   

(Manizza, 

2019) 

P
ac

if
ic

 

 Leonard 

1-D vertical ecosystem 

model; latitudinal 

resolution of (1/3) o near 

the equator 

Chl-a OGCM 

r: 

chl-a = 0.55 & 0.93 if 

data from June-August 

1998 are excluded 

 

(Christian et 

al., 2001) 

P
ac

if
ic

 

Chai 

3-D; horizontal resolution 

of 1/8 degree with 30 

levels in the vertical 

direction 

Chl-a ROMS 

Bias: 

Chl-a = 0.18 mg/m3 

(Scale: 0.05-0.4) 

(Xiu & Chai, 

2011) 
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P
ac

if
ic

 

Fasham 
3-D; 3 km horizontal grid 

size with 30 vertical levels  
N, P ROMS 

RMSD = 0.97 (for 

detrital sinking rate of 

10 m d-1) & 0.77 

(detrital sinking rate of 

1 m d-1) based on 

(Fasham et al., 1990) 

(Gan et al., 

2014) 

P
ac

if
ic

 

Fasham  

3-D; (1/12) o × (1/12) o of 

horizontal resolution, 5 d 

of temporal resolution and 

22 sigma levels 

O, N ROMS 

R2: 

O = 0.88 

N = 0.95 

(Ji et al., 

2017) 

P
ac

if
ic

 

 PISCES 
3D; resolution of 7.5 km 

and 32 sigma levels 
Chl-a, Fe ROMS 

Bias: 

Chl-a = 12 mg/m3 

Fe = 2.5 nM 

(Vergara et 

al., 2017) 

P
ac

if
ic

 

 TOPAZ  1-D; single water column 
Chl-a, O, N, P, S, 

CO2 
GOTM 

r: 

chl-a = 0.53 

O = 0.47 

N = 0.31 

P = 0.16 

S = 0.19 

CO2 = 0.94 

(Jung et al., 

2019b) 

P
ac

if
ic

 

 Chai 
1D; 100 layers in the 

vertical direction 
Chl-a ROMS r > 0.6 

(Ma et al., 

2019) 

P
ac

if
ic

 

 Fasham 

3-D; horizontal resolution 

ranged from ~7 km in the 

north to ~10 km in the 

south with respect to a 

cylindrical map projection 

with 30 vertical levels 

P & N ROMS R2 > 0.9 
(Lu et al., 

2020) 

P
ac

if
ic

 

Kearney 

3-D; 10km horizontal 

resolution with 30 depth 

levels 

Chl-a 
Bering 10K 

ROMS 

No detailed skill 

analysis of the 

biological state 

variables against 

observations 

(Kearney et 

al., 2020) 

a) N: nitrogen (NO3, NH4); P: phosphorus; S: silicon; C: carbon; O: oxygen; Chl: chlorophyll; DIC: 800 
dissolved inorganic carbon; PIC: particulate inorganic carbon; DIN: dissolved inorganic nitrogen; DIC: 801 
dissolved inorganic carbon; POC: particulate organic carbon; Alk: Alkalinity; TP: total phosphorous; 802 
TN: total nitrogen; NOx: nitrate+nitrite; DO: dissolved oxygen. 803 

b) r: Pearson correlation coefficient; R2: coefficient of determination; SCC = Spearman correlation 804 
coefficients; RSS: residual sum of squares; RMSD/E: root mean square difference/error; MAE: mean 805 
absolute error. 806 

c) 1. NEMO-PISCES; 2.NEMO-PlankTOM5.3; 3.NEMO-PlankTOM10; 4.MOM-COBALT; 5.MOM-807 
TOPAZ; 6.MICOM-HAMOCC; 7.POP-BIOMASS; 8.NEMO-MEDUSA; 9.NEMO-ERSEM; 10.NEMO-808 
updated configuration of ERSEM; 11.PELAGOS(NEMO-BFM); 12.POP-Moore; 13.NEMO-PISCES; 809 
14.NEMO-PISCES; 15.NEMO-PISCES; 16.NorESM(HAMOCC); 17. GISS-E2-R-CC(NOBM); 18.MPI-810 
OM HAMOCC. 811 

d) 0.46; -0.01; 0.28; 0.68; 0.66; -0.02; 0.05; 0.49; 0.27; 0.28; 0.57; 0.30;  0.46; 0.06; 0.56;  812 
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 813 

 814 

 815 

 816 

 817 

 818 

Figure 1. Schematic representation of the Hadley Centre Ocean Carbon model (HadOCC) which is an NPZD model 819 
coupled with carbon cycle (Palmer & Totterdell, 2001). The labelled boxes nutrient, phytoplankton, zooplankton, and 820 
detritus are representing the 821 

 822 
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