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Abstract. Microbial communities of methane (CH4) producing methanogens and consuming methanotrophs play 21 

an important role for Earth's atmospheric CH4 budget. Despite their global significance, knowledge on how much 22 

they control the spatial variation in CH4 fluxes from peatlands is poorly understood. We studied variation in CH4 23 

producing and consuming communities in a natural peatland dominated by Eriophorum vaginatum, via a 24 

metagenomics approach using custom designed hybridization-based oligonucleotide probes to focus on taxa and 25 

functions associated with methane cycling. We hypothesized that sites with different magnitudes of methane flux 26 

are occupied by structurally and functionally different microbial communities, despite the dominance of a single 27 

vascular plant species. To investigate this, nine plant-peat mesocosms dominated by the sedge Eriophorum 28 

vaginatum, with varying vegetation coverage, were collected from a temperate natural wetland and subjected to a 29 

simulated growing season. During the simulated growing season, measurements of CH4 emission, carbon dioxide 30 

(CO2) exchange and δ13C signature of emitted CH4 were made. Mesocosms 1 through 9 were classified into three 31 

categories according to the magnitude of CH4 flux. Gross primary production and ecosystem respiration followed 32 

the same pattern as CH4 fluxes, but this trend was not observed in net ecosystem exchange. We observed that 33 

genetic functional potential was of minor importance in explaining spatial variability of CH4 fluxes with only 34 

small shifts in taxonomic community and functional genes. In addition, a higher β-diversity was observed in 35 

samples with high CH4 emission. Among methanogens, Methanoregula, made up over 50% of the community 36 

composition. This, in combination with the remaining hydrogenotrophic methanogens matched the δ13C isotopic 37 

signature of emitted CH4. However, the presence of acetoclastic and methylotrophic taxa and type I, II and 38 

Verrucomicrobia methanotrophs indicates that the microbial community holds the ability to produce and consume 39 

CH4 in multiple ways. This is important in terms of future climate scenarios, where peatlands are expected to alter 40 

in nutrient status, hydrology, and peat biochemistry. Due to the high functional potential, we expect the 41 

community to be highly adaptive to future climate scenarios. 42 

  43 
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1.0 Introduction 44 

Methane (CH4) is second most important long-lived greenhouse has in the atmosphere (Dean et al., 2018; 45 

Dlugokencky et al., 2009; Saunois et al., 2020). Atmospheric CH4 concentrations have increased twofold during 46 

the industrial period (Dlugokencky et al., 2003). Following a decade of near-zero increase by the turn of the 47 

millennium, globally averaged atmospheric CH4 is on the rise again at a rate of 5 ppb yr -1 (Dlugokencky et al., 48 

2009; Dlugokencky et al., 2003; Saunois et al., 2016b; Saunois et al., 2020). CH4 is emitted from both natural and 49 

anthropogenic sources (Dean et al., 2018; Saunois et al., 2016a). Within all natural sources, the largest contributor 50 

to CH4 emissions are wetlands producing 149Tg (range 102–182) CH4 yr-1, i.e. 40 % of the total natural CH4 51 

emission (Dean et al., 2018; Saunois et al., 2020). 52 

Microbial CH4 emission is a byproduct of microbial metabolism and is produced by methanogenic Archaea 53 

following hydrolysis and fermentation (Ferry, 1999). CH4 production occurs under anoxic conditions, where 54 

organic carbon bound to dead organic matter is converted into CH4 via methanogenesis (Ferry, 1999). 55 

Methanogenesis is the final reaction in anaerobic degradation of organic matter and occurs stepwise in cooperation 56 

between different microbial functional groups. 57 

Methanotrophs, of the phyla, Proteobacteria, Verrucomicrobia, and candidate phylum NC10 act as a natural bio-58 

filter by oxidizing CH4 and thereby reducing emissions. Inhabiting the oxic-anoxic interfaces, methanotrophs 59 

oxidize between 10 to 90% of the CH4 produced by methanogenic archaea before it is emitted to the atmosphere 60 

(Hakobyan and Liesack, 2020; Wendlandt et al., 2010). Methanotrophs can be found in a number of environments 61 

including wetlands, marine or freshwater sediments, rice paddies and sewage, and grow on one-carbon compounds 62 

such as methanol and methylated amines (Wendlandt et al., 2010; Chen et al., 2008; Dedysh, 2002, 2009). A 63 

common characteristic of all aerobic methanotrophs is their ability to oxidize CH4 to carbon dioxide (CO2) and 64 

water. 65 

CH4 emissions from natural wetlands are known to exhibit both spatial and temporal variability (Crill et al., 1988; 66 

Sun et al., 2013). The spatial variability makes wetland CH4 emissions difficult to model and predict (Wania et 67 

al., 2009, 2010), as CH4 emission within similar environmental conditions (i.e. ecotype) can vary by several orders 68 

of magnitude without an apparent explanation (Bridgham et al., 2013). According to current knowledge, both 69 

production and consumption of CH4 within peatland ecotypes is driven by (i) water table depth (WTD), which 70 

determines the thickness of oxic and anoxic zones; (ii) plant species composition, which provides substrates and 71 

plant mediated transport of CH4 to the atmosphere; (iii) soil temperature, which affects the rate of microbiological 72 
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processes; and (iv) substrate availability for biogeochemical processes such as methanogenesis and 73 

methanotrophy (Joabsson et al., 1999; Korrensalo et al., 2018; Mastepanov et al., 2013; Strack et al., 2004; Ström 74 

et al., 2015).  75 

Recent advancements in molecular techniques have allowed researchers to explore further drivers affecting the 76 

magnitude of CH4 fluxes (Fierer et al., 2014; Galand et al., 2003; Galand et al., 2002; Juottonen et al., 2008). 77 

Shifts within microbial community composition and function, where metabolic processes occur, are expected to 78 

contribute to the observed variability of CH4 fluxes within ecotypes (Bridgham et al., 2013; Dean et al., 2018). 79 

Therefore, the ability to include the functional potential of microbial communities as a potential driver of CH4 80 

fluxes has gained more attention. 81 

The field of environmental genomics has developed rapidly, utilizing the genetic material taken from un-cultured 82 

environmental samples to identify accurately the functional gene composition (Ungerer et al., 2008; Ward et al., 83 

2008). Techniques include the establishment of polymerase chain reaction (PCR) based studies, where marker 84 

genes are used to evaluate microbial community composition via amplification of regions conserved across 85 

species (Brumfield et al., 2020; Lane et al., 1986). The targeting of the marker gene 16S in ribosomal ribonucleic 86 

acid (rRNA) that occur in Bacterial and Archaea genomes has often been recognized as the gold standard in 87 

prokaryotic identification (Brumfield et al., 2020; Lane et al., 1986). In CH4 research, key genes such as methyl 88 

coenzyme M reductase (mcrA) and methane monooxygenase component A alpha chain (mmoX) are often targeted 89 

to determine community composition and functional potential (Chroňáková et al., 2019; Freitag et al., 2010; 90 

Galand et al., 2005; Liebner et al., 2012). However, recent research has suggested that studying the entire 91 

metagenome increases the possibility to predict soil functional potential as opposed to enriching for singular genes 92 

(Gravel et al., 2012; Kushwaha et al., 2015; Manoharan et al., 2015). 93 

In order to attain the necessary depth of sequencing coverage required to analyze the functional potential of soil 94 

microbial communities, whole metagenomic sequencing is required (Dinsdale et al., 2008; Fierer et al., 2014). 95 

Though, even with the constant advancements in sequencing technology, metagenomics studies require large 96 

financial and computational resources to obtain the necessary depth of coverage to ensure small microbial 97 

communities, including Archaea, are detected (Escobar-Zepeda et al., 2015; Pereira-Marques et al., 2019). In 98 

response to these limitations, we applied the molecular technique “captured metagenomics”, which targets key 99 

genes related to the metabolism of both methanogenic Archaea and methanotrophic Bacteria (Kushwaha et al., 100 

2015; Manoharan et al., 2015). 101 
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Captured metagenomics provides an alternative to studying the entire deoxyribonucleic acid (DNA) pool of 102 

metagenomic communities (Gasc et al., 2016; Kushwaha et al., 2015; Manoharan et al., 2015). The sequence 103 

capture technique hybridizes DNA fragment targets from a metagenomic DNA fragmented pool through the 104 

custom set of probes designed via the MetCap pipeline (Kushwaha et al., 2015). This method makes it possible to 105 

target thousands of key genes related to methanogen and methanotroph metabolism, while avoiding lengthy lab 106 

hours and massive sequencing efforts required of large-scale metagenomic study. In addition, this allows for 107 

multiple biological replicates at a reasonable cost per sample (Gasc et al., 2016; Kushwaha et al., 2015; Manoharan 108 

et al., 2015). 109 

Here, we address the functional potential impact of CH4 producing and consuming microbes on the magnitude of 110 

CH4 flux. To determine the functional genetic diversity, we apply captured metagenomics on genes encoding for 111 

enzymes related to CH4 metabolism on nine peat-plant mesocosms dominated by the sedge Eriophorum 112 

vaginatum. We aim to (1) identify whether the composition of both CH4 producing and consuming taxa shift in 113 

dissimilarity in response to variations in CH4 flux, (2) determine whether the 𝛽-diversity increases with increasing 114 

CH4 emission; and finally, (3) identify whether the δ13C of emitted CH4 matches the dominant taxa in samples. 115 

2.0 Methodology 116 

2.1 Site description 117 

To study the functional diversity of a microbial community producing and consuming CH4, we collected peat-118 

plant mesocosms from Fäjemyr, an ombrotrophic bog located in Skåne, southern Sweden (56°15'53.3"N 119 

13°33'14.1"E). The peatland is classified as an eccentric bog, and is dominated by semi-forested areas alternating 120 

between raised hummocks, hollows and moss lawns (Lonnstad and Löfroth, 1994; Lund et al., 2007). Long-term 121 

(1961-1990) mean annual temperature and precipitation are 6.2°C and 700mm respectively (Smhi, 2006). The 122 

peat depth ranges between 4-5m, while the peat water pH is generally below 4 throughout the entirety of the 123 

growing season (Lund et al., 2007). 124 

Vegetation composition at Fäjemyr is diverse including hummocks dominated by dwarf shrubs such as Calluna 125 

vulgaris and Erica tetralix. The moss lawns are carpeted with Sphagnum-mosses including S. magellanicum and 126 

S. rubellum, while the raised drier hummocks are dominated by dwarf Scots pine (Pinus sylvestris). The dominant 127 

sedge species within the site is Eriophorum vaginatum (Lonnstad and Löfroth, 1994; Lund et al., 2007). 128 
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2.2 Experimental design 129 

A total of 9 cylindrical mesocosms (height: 26 cm, diameter: 27 cm) were collected on the 30 th of March, 2017. 130 

The mesocosms, numbered M1-M9, were carefully cut from the peatland, transferred directly into plastic 131 

containers for transportation to Lund University (82km away) where they were incubated under temperature and 132 

light controlled conditions in a growth room. Over the first month we started at 10 oC and no light, temperature 133 

and light levels were gradually increased to allow the mesocosms to adjust and to simulate the onset of the growing 134 

season. For the final 4 weeks of the experiment, the conditions in the growth room were kept at 20 °C, 500 µmol 135 

PAR m-2 s-1 and 17 daylight hours (based on sunrise and sunset at Fäjemyr). Due to the effect of heat radiation 136 

from the lamps, the temperature varied over the day from 18±0.3 °C when the lamps were off to 23±1 °C when 137 

they were on. Additionally, the light level varied (512±42 µmol PAR m-2 s-1) somewhat over the surface due to 138 

variations in individual lamp efficiency. The mesocosms were rotated bi-weekly to minimize the effect of spatial 139 

variations in growth conditions. 140 

All mesocosms were watered daily with deionized water to maintain a constant water table depth at 5 cm below 141 

the surface. During the experiment, weekly to bi-weekly (final 3 weeks, n = 6) measurements of CO2 and CH4 142 

fluxes were conducted. The δ13C of emitted CH4 was measured on three occasions in the final weeks. Upon 143 

completion of the experiment, peat samples were removed from the top oxic-anoxic interface (5 cm), bottom (15 144 

cm) and from the peat sticking to the root surface (rhizosphere) for DNA extraction. Resulting in a total of 27 145 

samples peat samples for genomic analysis (each mesocosm n = 3) 146 

2.3 Flux measurements 147 

Flux measurements of CO2 and CH4 were made using the static chamber technique (Crill et al., 1988; Livingston 148 

and Hutchinson, 1995). For each mesocosm, 6-minute-long measurements in both light and dark conditions were 149 

conducted to establish Net Ecosystem Exchange (NEE) and Ecosystem Respiration (Reco). We used a negative 150 

sign convention where negative values indicate an uptake of CO2 from the atmosphere and positive a release. 151 

Gross Primary Production (GPP) was calculated according to the relationship GPP = NEE - Reco. Measurements 152 

were performed using a transparent 5-liter cylindrical polycarbonate chamber that was covered with a dark hood 153 

for Reco measurements. The chamber was equipped with a rubber list to ensure an airtight seal and a fan to circulate 154 

air. Both CO2 and CH4 concentrations were measured with a LGR Fast Greenhouse Gas analyser (model 911-155 

0010, Los Gatos Research, CA USA). The CO2 and CH4 fluxes were calculated via changes in gas concentration 156 
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as a function of time using linear fitting over 6-minute measurement periods. Data was corrected for both air 157 

pressure, volume of the chamber and ambient air temperature. 158 

2.4 Stable isotope analysis 159 

The CH4 emission and its δ13C signature were determined using a cavity ring-down laser absorption spectrometer 160 

with the closed chamber technique described above (G2201i, Picarro, Santa Clara, USA). The surface of each 161 

peat mesocosm was covered with a transparent cylindrical chamber for 25-30 minutes while the CH4 mixing ratio 162 

and δ13C-CH4 was recorded with 1 second intervals. Data was averaged into one minute averages. CH4 emission 163 

were calculated using linear fitting, and the δ13C signature of emitted CH4 was determined with a Keeling plot 164 

intercept approach (Keeling, 1958; Thom et al., 1993). The resulting δ13C-CH4 values were corrected by adding a 165 

constant value of 3.4 ‰, based of comparison with isotopic mass spectrometer. 166 

2.5 Captured metagenomics 167 

2.5.1 Peat samples and DNA extraction 168 

Peat material was collected from three sampling locations within each mesocosm. Samples were taken from the 169 

top oxic-anoxic interface (5 cm), bottom (15 cm) and from the root adjacent peat directly attached to the root 170 

surface (10 cm). The peat material was stored at 20°C and then thawed at 4°C prior to DNA extraction. DNA was 171 

extracted following the DNeasy® PowerSoil® Kit (Qiagen, Hilden, Germany) and carried out according to the 172 

manufacturer's protocol, following the recommended 0.25 g of input material. After DNA extraction, samples 173 

were tested for quality (absorbance ratio 260/280) and concentration on a NanoDrop lite (NanoDrop Technologies, 174 

Willington NC, USA) and Invitrogen Qubit 4 fluorometer (Thermo Fisher Scientific, Waltham MA, USA) 175 

respectively. 176 

2.5.2 SeqCap EZ probe generation 177 

Genes encoding enzymes closely related to the CH4 production and oxidation in pathway map00680 were 178 

identified from the Kyoto Encyclopedia of Genes and Genomes (KEGG). The nucleotide sequences were 179 

downloaded via a custom R script (https://github.com/dagahren/metagenomic-project). In total, 548,104 genes 180 

were downloaded and compiled into a local database, subsequently referred to here as the CH4 database. The 181 

nucleotide coding sequences of the CH4 database were used to design hybridisation-based probes for sequence 182 

capture. The probe sequences were generated using the MetCap pipeline, where sequences were clustered with 183 

https://doi.org/10.5194/bg-2021-353
Preprint. Discussion started: 12 January 2022
c© Author(s) 2022. CC BY 4.0 License.



8 
 

90% sequence similarity with an average of 4 probes per cluster (Kushwaha et al., 2015; Manoharan et al., 2015). 184 

In total, 193,386 individual probes were generated after clustering. They were generated with a melting 185 

temperature of 55°C and probe length 40mer which is suitable for use with our protocol that is based on 186 

NimbleGen SeqCap EZ (Roche NimbleGen Inc., Madison, USA). 187 

2.5.3 Probe hybridisation, library generation and sequencing 188 

Depending on the extracted DNA concentration, 150 ng or 1 μg of genomic DNA in a total volume of 100 μl low 189 

TE, was sheared for 13 cycles of 30s on, 30 s off, using a Bioruptor Pico and 0.65 ml Bioruptor tubes (Diagenode 190 

SA, Seraing, Belgium). 1 μl of the sheared samples was run on a DNA HS chip prior to contamination clean up. 191 

The fragmented DNA was then purified using 1.8× AMPure XP beads (Beckman Coulter, Indianapolis, USA) 192 

and used as input material for preparation of pre-capture libraries and constructed according to the Nimblegen 193 

SeqCap EZ HyperCap Workflow User’s Guide (Version 1.0, June 2016). We used two modifications to this 194 

method to allow for improved hybridization: (i) for the adapter ligation step, 5 μl of 15 μM KAPA unique dual 195 

index mixed adapters  were used instead of single index adapters, (ii) for the pre-capture PCR, 7 cycles was used 196 

for libraries with a genomic DNA input of 150 ng, and 5 cycles where the input was 1 μg. 197 

Pre-capture libraries were purified with 1.8x Ampure beads and quantified by Quant-iT double-stranded DNA 198 

high sensitivity assay and the average fragment size determined by analysis on a Fragment Analyser (Agilent, 199 

Santa Clara, USA) using a high sensitivity NGS Kit. Libraries were multiplexed in pools of 15 in equimolar 200 

amounts based on the aforementioned concentrations and sizes. 1 μg of each pool was transferred to a test tube 201 

and hybridised to custom probes according to the NimbleGen SeqCap EZ SR User’s Guide (Version 4.3, October 202 

2014). When setting up the hybridisations, SeqCap EZ Developer Reagent and HyperCap Universal Blocking 203 

Oligos were added to each pool, according to manufacturer’s instructions. The capture tubes were incubated in a 204 

thermal cycler set at 47 oC, with the heated lid set to 57 oC for 69 hours. 205 

The final captured library pool was reagent-treated and further purified using 1.8× AMPure XP beads to remove 206 

unligated adapters. The quantity and quality of the final pool was assessed by Qubit and Bioanalyzer and 207 

subsequently by qPCR using the Illumina Library Quantification Kit from Kapa on a Roche Light Cycler 208 

(LC480II, Basel, Switzerland). Briefly, a 20 µl PCR reaction (performed in triplicate for each pooled library) was 209 

prepared on ice with 12 µl SYBR Green I Master Mix and 4 µl diluted pooled DNA (1:1000 to 1:100,000 210 

depending on the initial concentration determined by the Qubit). PCR thermal cycling conditions consisted of 211 
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initial denaturation at 95°C for 5 minutes, 35 cycles of 95°C for 30 seconds (denaturation) and 60°C for 45 s for 212 

annealing and extension, a melt curve analysis at 95°C and cooling at 37°C. 213 

The captured libraries were sequenced on an Illumina HiSeq4000 platform using sequencing by synthesis 214 

technology to generate 2 x 150 base pair (bp) paired-end reads, the analysis was carried out by the Centre for 215 

Genomic Research, University of Liverpool, United Kingdom. 216 

2.6 Data Analysis 217 

Raw fastq files were trimmed for the presence of Illumina adapter sequences using Cutadapt version1.2.1 (Martin, 218 

2011). The option -O 3 was used, which means that the 3' end of any reads that matched the adapter sequence 219 

were removed by 3bp. The reads were further trimmed using Sickle version 1.200 with a minimum window quality 220 

score of 20 (Joshi, 2011). This meant that reads shorter than 20bp were removed. 221 

Following sequence trimming, reads from each of the captured data sets were submitted to Metagenomic Rapid 222 

Annotations using Subsystems Technology (MG-RAST) for sequence annotation (Meyer et al., 2008). Default 223 

parameters were used for quality filtering of bad reads and removal of sequence duplicates. Once annotated, 224 

sequences were filtered for both taxonomic and functional annotations via the KEGG CH4 metabolism filter 225 

(ko:00680). The taxonomic and functional annotations from MG-RAST were annotated using refseq and KEGG 226 

(KO) databases (Kanehisa et al., 2015; O'leary et al., 2016). and exported to R for downstream analysis. 227 

2.7 Statistical analysis 228 

All statistics were completed in R and visualized using ‘ggplot2’ (Hadley, 2016). Given the small sample size (n 229 

= 9), as well as the non-normal distribution of the values, a permutation test was used based around the 6 temporal 230 

replicates (M1-9 n = 6, total n = 54) of CH4 and CO2 flux from each mesocosm and we used an ‘independence 231 

test’ in R from the ‘coin’ package (Hothorn et al., 2021). We tested pairwise for differences in means and 232 

performed a subsequent correction for multiple testing as described by Holm (1979). To evaluate the statistical 233 

relationship between CH4 and CO2 flux, a Pearson’s correlation test was used from the package ‘corrplot’ (Wei 234 

and Simko, 2017).  235 

Further statistical tests for use on genomic data, including the Permutational multivariate analysis of variance 236 

(PERMANOVA), α-diversity and β-diversity, and Nonmetric Multidimensional Scaling (NMDS), were 237 

completed using the ‘vegan’ package (Oksanen et al., 2019). Due to the low number of replicates and non-normal 238 
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distribution we performed a PERMANOVA to determine the most influential taxa and functional genes 239 

(Anderson, 2001). Input data for the PERMANOVA was double root transformed to reduce the influence of highly 240 

abundant taxa and genes. When computing the PERMANOVA and NMDS Bray-Curtis distances were used to 241 

quantify the compositional dissimilarity between groups with 999 permutations (Anderson, 2001). To test for 242 

significance between flux categories, we performed a pairwise comparisons between group levels with False 243 

Discovery Rate (FDR) corrections for multiple testing via the ‘RVAideMemoire’ package (Herv, 2021). Finally, 244 

the similarity percentage test (SIMPER) was used to evaluate the contribution of individual taxa and genes to the 245 

overall Bray-Curtis dissimilarity, a cut off of 70% was applied (Warton et al., 2012). 246 

3.0 Results 247 

3.1 Mesocosm characteristics 248 

3.1.1 Carbon fluxes 249 

Carbon fluxes of CH4 and CO2 vary among the mesocosms and are shown in fig 1. The mean flux of CH4 250 

mesocosms ranged between 152 (SD ±54) in M9 to 371 (SD ±23) µmol m-2 h-1 in M4. After observing such large 251 

variability within CH4 fluxes, we performed a pairwise randomization and established that M4 had a significantly 252 

higher flux than M1-3 and M5-9 (p ≤ 0.0001) while M9 had a significantly lower flux (p ≤ 0.0005) than the 253 

remaining mesocosms. For further analysis, we separated the measurements from M4 and M9 from the remaining 254 

mesocosms, enabling us to test for a plausible explanation to the observed differences between fluxes when 255 

compared to the structure and function of the microbial community. Hereafter, M4 will be referred to as HFM 256 

(high flux mesocosm), M9 as LMF (low flux mesocosm) and the remaining mesocosms as MFM (medium flux 257 

mesocosm).  258 

GPP and Reco generally followed the same observed pattern as CH4. With HFM being significantly higher than 259 

MFM (p ≤ 0.008) and LFM (p ≤ 0.004) in GPP. While Reco was also significantly different between HFM - MFM 260 

(p ≤ 0.001) and HFM - LFM (p ≤ 0.002). However, the same trend was not observed in NEE, where the highest 261 

recorded mean flux was observed in M8 (i.e. MFM category), not in the HFM category as observed in GPP and 262 

Reco.  263 
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 264 

Figure 1: Boxplots of carbon fluxes measured during the last 6 weeks of the lab experiment. The boxes 265 

show quartiles and the median, the whiskers denote data within 1.5 times of the interquartile range and 266 

the closed circles denote outliers. Methane flux (CH4), Gross Primary Productivity (GPP), Ecosystem 267 

Respiration (Reco), and Net Ecosystem Exchange (NEE). Note the units on the y-axis (mesocosms 1 – 268 

9: n = 6) 269 

In an attempt to investigate the relationships between carbon fluxes we conducted a correlation test and found that 270 

the flux of CH4 held a positive relationship to Reco (R2 = 0.60, p ≤ 0.04), but not to GPP or NEE (fig 2). When 271 

analysing CO2 fluxes, GPP held a strong negative relationship to Reco (R2 = 0.70, p ≤ 0.002), while NEE held a 272 

strong positive relationship to GPP (R2 = 0.82, p ≤ 0.001) (fig 2). 273 

3.1.2 Vegetation 274 

The peatland mesocosms were dominated by the sedge E. vaginatum, but also included small amounts of the 275 

Sphagnum-mosses S. magellanicum and S. rubellum. The number of sedge tillers ranged between 384 in HFM, 276 

276 (mean) in MFM and 134 in LFM (fig 2). The number of E. vaginatum tillers held a strong correlation 277 

coefficient and significant relationship to GPP (R2 = 0.95, p ≤ 0.01) and Reco (R2 = 0.94, p ≤ 0.01) (fig 2). While 278 
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the remaining carbon fluxes CH4 (R2 = 0.44, p > 0.05) and NEE (R2 = 0.64, p > 0.05) had a high correlation 279 

coefficient, this relationship was not significant to the number of E. vaginatum tillers. 280 

 281 

Figure 2: The relationship between mesocosm carbon fluxes and the number of tillers of E. vaginatum. 282 

Data points represent the mean flux of each individual mesocosm while the shaded area indicates the 283 

95% confidence level interval for predictions of the linear model. 284 

3.1.3 Isotopic signature 285 

Distinct isotopic signatures of individual mesocosms are shown in fig 3. All mesocosms fell within the range of 286 

hydrogenotrophic methanogenesis (δ13C = −110‰ to −60‰) (Chanton, 2005; Whiticar, 1999). However, M2 287 

(MFM) and M4 (HFM) indicated a slight tendency towards acetoclastic methanogenesis with less negative 288 

isotopic signature (δ13C = -60‰ to -50‰), both yielding mid -60‰ δ13C Keeling intercepts. A significant positive 289 

correlation (R2 = 0.5, p ≤ 0.001) and significant relationship also existed between CH4 flux and the Keeling 290 

intercept shown in fig 3. 291 
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 292 

Figure 3: Scatter plot visualizing the relationship between CH4 flux (µmol m-2 h-1) and Isotopic signature 293 

of emitted CH4 (keeling intercept ‰). Data points colored by flux category while the shaded area 294 

indicates the 95% confidence level interval for predictions of the linear model. 295 

3.2 Captured Metagenomics  296 

3.2.1 Microbial community composition 297 

Diverse methanogenic Archaea and methanotrophic Bacteria were observed in all samples. In total, 20 298 

methanogenic Archaea and 5 methanotrophic Bacteria were detected. Methanogens which utilize CO2 + H2, 299 

methanol, acetate and methyl amines substrates for ATP and biomass production were all observed throughout 300 

the samples, which indicates a high functional potential. Although less diverse than the methanogens, 301 

methanotrophs from Alphaproteobacteria, Gammaproteobacteria and Verrucomicrobia Phylum were present in 302 

all samples. However, due to the environmental conditions no methanotrophs from the NC10 Phylum were 303 

detected. This community composition resulted in a median α-diversity measure of 2.38, which is a measure of 304 

the diversity of the peatland ecosystem. 305 
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3.2.2 Total taxonomic distribution 306 

At genus level, 20 methanogenic genera were identified. The highest relative abundance of methanogens included 307 

Methanoregula which contributed 54% to the total proportion, followed by Methanosarcina (17%), 308 

Methanosphaerula and Methanothermobacter which contributed 5% each to the total proportion of methanogens 309 

(fig 2). Within the methanogen community, genera with the ability to metabolize via hydrogenotrophic, 310 

acetoclastic and methylotrophic methanogenesis pathways were also detected. Hydrogenotrophic methanogens 311 

made up (78%) of the total proportion, while Methanosarcina which can utilize several substrates for ATP and 312 

biomass production contributed 17%, followed by methylotrophic methanogens (<5%) and finally, acetoclastic 313 

methanogens which contributed to <1% of the total.  314 

In addition to methanogens, 5 genera of CH4 reducing Bacteria were detected including methanotrophs from 315 

Alphaproteobacteria, Gammaproteobacteria and Verrucomicrobia class. Type II Alphaproteobacteria was the 316 

dominant Subphylum, including both Methylocella (37%) which contributed to largest proportion, followed by 317 

Methylosinus (28%). Type I Gammaproteobacteria genera Methylococcus (14%) and Methylobacter (10%) 318 

represented the lowest proportion. Finally, Verrucomicrobia included one genus, Methylacidiphilum, which 319 

contributed to 10% of the total proportion of methanotrophs. 320 

3.2.3 β-diversity 321 

β-diversity, which measures the change in diversity of species from one category to another, was measured as 322 

mean distance to the group centroid and highest in HFM (fig 4). HFM resulted in an average distance to median 323 

of 0.046, followed by MFM (0.042) and LFM (0.031). The largest distance between medians to centroids was 324 

observed between HFM and LFM, while the smallest distance between medians to centroids was observed 325 

between MFM and LFM. Due to a high variation and lack of replication, this relationship was observed as non-326 

significant. Although the values for β-diversity are low, the differences between centroids indicates that 327 

communities of methanogens and methanotrophs become more similar to each other as the magnitude of flux 328 

decreases.   329 
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 330 

Figure 4: β-diversity boxplot of multivariate homogeneity of groups using Bray-Curtis distances. 331 

Dispersions of samples analyzed at genus level across HFM, MFM and LFM (HFM n = 3, MFM n = 21, 332 

LFM n = 3). 333 

3.2.4 Taxonomy 334 

The PERMANOVA and SIMPER analysis showed that the variation between the relative abundance of taxa 335 

between HFM, MFM and LFM was not significant. The small differences resulted in a non-significant weak 336 

correlation where 6% of the variation in taxa could be explained by HFM, MFM or LFM (R2 = 0.06, p ≥ 0.05). 337 

When comparing the relative abundance of methanogens and methanotrophs between HFM, MFM and LFM, five 338 

taxa including Methanoregula, Methanosarcina, Methylocella, Methylosinus and Methylobacter always 339 

contributed to the top 70% of cumulative sums (table 1, 2 and 3). However, in the HFM to LFM comparison, the 340 

addition of a sixth genus, Methylacidiphilum, was required to reach the 70% cut off (Table 3). 341 

In all three comparisons, we observe that the hydrogenotrophic Methanoregula contributed the most to 342 

dissimilarity (table 1, 2 and 3) while type II Alphaproteobacteria genera, Methylocella and Methylosinus 343 
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contributed the second and third highest between flux categories. The order of contributions from the remaining 344 

taxa Methanosarcina, Methylobacter and Methylacidiphilum changed depending on the comparison between 345 

HFM, MFM and LFM. 346 

Table 1: Results of SIMPER analysis. Taxa are ranked according to their average contribution to 347 
dissimilarity between MFM and HFM. Average abundances, ratio (between averages using the greatest 348 
common denominator), relative contribution of taxa and p-value of the permutation test (Probability of 349 
getting a larger or equal average contribution in random permutation of the group factor) are also 350 
included. A cut-off at a cumulative dissimilarity of 70% was applied. 351 

Genus Average SD Avg. 

MFM 

Avg. 

HFM 

Ratio Relative Contribution 

(%) 

p - 

value 

Methanoregula 0.094 0.06 4370 7752 115:204 33% 0.17 

Methylocella 0.035 0.02 4826 5842 19:23 12% 0.39 

Methylosinus 0.035 0.02 3440 4586 1720:2293 13% 0.21 

Methanosarcina 0.019 0.01 1985 2699 1985:2699 7% 0.31 

Methylobacter 0.015 0.01 1234 1810 617:905 5% 0.26 

 352 

Table 2: Results of SIMPER analysis. Taxa are ranked according to their average contribution to 353 

dissimilarity between MFM and LFM. Average abundances, ratio (between averages using the greatest 354 

common denominator), relative contribution of taxa and p-value of the permutation test (Probability of 355 

getting a larger or equal average contribution in random permutation of the group factor) are also 356 

included. A cut-off at a cumulative dissimilarity of 70% was applied. 357 

Genus Average SD Avg. 

MFM 

Avg. 

LFM 

Ratio Relative Contribution 

(%) 

p - 

value 

Methanoregula 0.061 0.04 4370 3757 4370:3757 26% 0.91 

Methylocella 0.033 0.02 4826 5111 254:269 15% 0.45 

Methylosinus 0.032 0.02 3440 4323 3440:4323 14% 0.32 

Methylobacter 0.017 0.01 1234 1647 1234:1647 8% 0.10 
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Methanosarcina 0.015 0.01 1234 1647 1234:1647 7% 0.95 

 358 

Table 3: Results of SIMPER analysis. Taxa are ranked according to their average contribution to 359 

dissimilarity between HFM and LFM. Average abundances, ratio (between averages using the greatest 360 

common denominator), relative contribution of taxa and p-value of the permutation test (Probability of 361 

getting a larger or equal average contribution in random permutation of the group factor) are also 362 

included. A cut-off at a cumulative dissimilarity of 70% was applied. 363 

Genus Average SD Avg. 

HFM 

Avg. 

LFM 

Ratio Relative 

Contribution (%) 

p - 

value 

Methanoregula 0.063 0.07 7752 3757 456:221 26% 0.71 

Methylocella 0.035 0.03 5842 5111 5842:5111 15% 0.44 

Methylosinus 0.034 0.02 4586 4323 4586:4323 15% 0.32 

Methanosarcina 0.017 0.01 2699 1861 2699:1861 7% 0.61 

Methylobacter 0.014 0.01 1810 1647 1810:1647 6% 0.47 

Methylacidiphilum 0.013 0.008 1880 1290 188:129 6% 0.50 

    364 

3.2.5 Functional gene composition 365 

Of the total captured gene pool, 64% of sequence annotations were categorized by MG-RAST as coding for 366 

metabolism (KO level 1). For metabolism pathways, the top three sub-categories (KO level 2) were distributed 367 

across amino acid metabolism (32%), carbohydrate metabolism (27%) and energy metabolism (11%). Within the 368 

energy metabolism category, CH4 metabolism (PATH: KO00680) made up 17% of the captured genes (KO level 369 

4) with a total of 109 genes coding for CH4 metabolism. 370 

The composition of the functional genes can be observed in the NMDS (fig 5). The NMDS displays the functional 371 

genes grouped by HFM, MFM and LFM. Within the NMDS, we observe an overlapping between HFM, MFM 372 

and LFM with a lack of distinct separation between clusters, indicating similar abundances and variation within 373 
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HFM, MFM and LFM. The PERMANOVA also calculated the coefficient of determination and revealed that only 374 

7% (R2 = 0.07, p ≥ 0.44) of the variation in functional genes can be explained by HFM, MFM and LFM. Finally, 375 

we checked for differences between the means of HFM, MFM and LFM via pairwise distances and found no 376 

significant difference (p ≥ 0.05). 377 

 378 

Figure 5: Nonmetric Multidimensional Scaling (NMDS) of functional genes using Bray-Curtis distances. 379 

Samples analyzed at KO functional level 4 and colored by HFM, MFM and LFM (HFM n=3, MFM n=21, 380 

LFM n=3). 381 

In total, 21 genes of the 109 contributed to 70% of the cumulative sum (table 4, 5 and 6). When comparing HFM 382 

to MFM and LFM, the Wilks’ pairwise post hoc test revealed no significant difference between MFM (p ≥ 0.05) 383 

and LFM (p ≥ 0.05). Within the two comparisons, we observed that heterodisulfide reductase subunit A (hdrA) 384 

was the highest cumulative contributor to dissimilarity. In HFM, hdrA contributed to 13% of the cumulative total 385 

(table 4). When comparing to LFM, hdrA contributed 10%, 3% lower than the HFH to MFM comparison (table 386 

6). However, the permutation test revealed no significant difference between both MFM and LFM with regards 387 

to abundance of hdrA (table 4). Within the top 70% of cumulative genes, only the abundance of particulate 388 

methane monooxygenase (pmoA) was significantly higher in HFM when compared to MFM (p ≤ 0.01) (table 4). 389 

As observed in the HFM comparisons, 21 genes contributed to the total 70% cumulative sum of all captured genes 390 

when compared between HFM (table 4) and LFM (table 5). The Wilks’ pairwise post hoc test revealed no 391 

significant difference between HFM and LFM when compared to MFM (table 5). The largest contributor to the 392 

cumulative sum of genes in MFM when compared to HFM and LFM was the hdrA gene. The hdrA gene 393 

contributed to 13% in both comparisons. However, when comparing the abundances of the hdrA gene between 394 

HFM and LFM, the decrease was non- significant. However, as identified in the earlier comparison, the abundance 395 
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of pmoA was significantly lower (p ≤ 0.01) in HFM when compared to MFM (table 4), but the same observation 396 

was not observed when testing abundances in LFM (p ≥ 0.21) (table 5). Interestingly, mcrA, mcrG and mtd genes 397 

were significantly higher in LFM when compared to MFM (p ≤ 0.02) (table 6). 398 

As with the previous comparisons, 21 genes contributed to the cumulative sum of 70% within the LFM. However, 399 

the order and amount contributed to dissimilarity were not the same. The Wilks pairwise post hoc test revealed no 400 

significant difference between HFM and MFM when compared to LFM (p ≥ 0.05). Similarly, the hdrA gene was 401 

the largest contributor to the cumulative sum in HFM and MFM (table 5 and 6). The largest difference in the 402 

abundance of the hdrA gene occurred within HFM where the abundance increased by 3% (table 6). However, the 403 

increase was identified as non-significant. Interestingly, the mcrA gene was highest in abundance in LFM (277), 404 

54% higher than in HFM and 39% higher than MFM.  405 
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Table 4: Results of SIMPER analysis. Genes are ranked according to their average contribution to 406 

dissimilarity between MFM and HFM. Average abundances, ratio (between averages using the greatest 407 

common denominator), relative contribution of taxa and p-value of the permutation test (Probability of 408 

getting a larger or equal average contribution in random permutation of the group factor) are also 409 

included. A cut-off at a cumulative dissimilarity of 70% was applied. 410 

Contrast: MFM – HFM Average SD 
Avg. 

MFM 

Avg. 

HFM 
Ratio 

Relative  

Contribution 

(%) 

p - 

value 

hdrA - Heterodisulfide reductase 

subunit A 
0.040 0.044 429 225 143:75 13 0.72 

cutL/coxL - Carbon monoxide 

dehydrogenase large chain 
0.026 0.028 525 354 175:118 9 0.28 

mcrA - Methyl-coenzyme M 

reductase subunit A 
0.018 0.016 168 126 4:3 6 0.87 

coxS - carbon monoxide 

dehydrogenase small subunit S 
0.013 0.012 272 186 136:93 5 0.42 

frhG – coenzyme F420 

hydrogenase gamma subunit G 
0.010 0.009 98 65 98:65 3 0.54 

mtrA – tetrahydromethanopterin S 

methyltransferase subunit A 
0.009 0.008 80 80 1:1 3 0.73 

mvhA /vhuA /vhcA -F420 non 

reducing hydrogenase subunit A 
0.008 0.008 86 45 86:45 3 0.66 

cooS – carbon monoxide 

dehydrogenase catalytic subunit S 
0.008 0.006 91 64 91:64 3 0.76 

cutM/coxM – carbon monoxide 

dehydrogenase medium subunit 

M 

0.007 0.007 145 99 145:99 3 0.42 

fwdB/fmdB – formylmethanofuran 

dehydrogenase subunit B 
0.007 0.007 83 59 83:59 2 0.95 
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metF – methylenetetrahydrofolate 

reductase NADPH 
0.007 0.006 128 81 128:81 3 0.27 

pmoA - particulate methane 

monooxygenase  
0.007 0.006 21 62 21:62 2 0.01 

hoxH - hydrogen dehydrogenase 0.007 0.005 120 84 10:7 2 0.41 

mttB – trimethylamine corrinoid 

protein CO methyltransferase 
0.006 0.005 96 63 32:21 2 0.24 

mtrH - tetrahydromethanopterin S 

methyltransferase subunit 
0.005 0.004 59 42 59:42 2 0.92 

fwdD/fmdD – 

formylmethanofuran 

dehydrogenase subunit D 

0.004 0.004 38 33 38:33 2 0.76 

mtrE - tetrahydromethanopterin S 

methyltransferase subunit E 
0.004 0.004 43 32 43:32 1 0.86 

hdrB – heterodisulfide reductase 

subunit B 
0.004 0.003 55 37 55:37 2 0.91 

mtrF - tetrahydromethanopterin S 

methyltransferase subunit F 
0.004 0.003 38 25 38:25 1 0.95 

mcrG – methyl coenzyme M 

reductase gamma subunit 
0.004 0.003 44 52 11:13 2 0.79 

CODH ACSA – carbon monoxide 

dehydrogenase/acetyl CoA  

synthase subunit alpha 

0.004 0.004 42 20 21:10 1 0.65 

 411 
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Table 5: Results of SIMPER analysis. Genes are ranked according to their average contribution to 412 

dissimilarity between MFM and LFM. Average abundances, ratio (between averages using the greatest 413 

common denominator), relative contribution of taxa and p-value of the permutation test (Probability of 414 

getting a larger or equal average contribution in random permutation of the group factor) are also 415 

included. A cut-off at a cumulative dissimilarity of 70% was applied.  416 

Contrast: MFM – LFM Average SD 
Avg. 

MFM 

Avg. 

LFM 
Ratio 

Relative  

Contribution 

(%) 

p – 

value 

hdrA - Heterodisulfide reductase 

subunit A 
0.045 0.034 429 448 429:448 13 0.51 

mcrA - Methyl-coenzyme M 

reductase subunit A 
0.027 0.017 168 277 168:277 8 0.15 

cutL/coxL - Carbon monoxide 

dehydrogenase large chain 
0.021 0.016 525 573 175:191 6 0.82 

fwdB/fmdB – formylmethanofuran 

dehydrogenase subunit B 
0.014 0.009 83 161 83:161 4 0.05 

mtrA – tetrahydromethanopterin S 

methyltransferase subunit A 
0.014 0.008 80 143 80:143 4 0.10 

coxS - carbon monoxide 

dehydrogenase small subunit S 
0.011 0.007 272 311 272:311 3 0.87 

mvhA/vhuA/vhcA -F420 non 

reducing hydrogenase subunit A 
0.010 0.006 86 103 86:103 3 0.39 

cooS – carbon monoxide 

dehydrogenase catalytic subunit S 
0.010 0.007 91 125 91:125 3 0.36 

frhG – coenzyme F420 hydrogenase 

gamma subunit G 
0.009 0.008 98 113 98:113 3 0.70 

mtrH - tetrahydromethanopterin S 

methyltransferase subunit 
0.008 0.005 59 96 59:96 2 0.09 

mtrE - tetrahydromethanopterin S 

methyltransferase subunit E 
0.008 0.004 43 85 43:85 3 0.07 
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mtrF - tetrahydromethanopterin S 

methyltransferase subunit F 
0.007 0.004 38 77 38:77 2 0.05 

fwdD/fmdD – formylmethanofuran 

dehydrogenase subunit D 
0.007 0.004 38 76 1:2 2 0.06 

mcrG – methyl coenzyme M 

reductase gamma subunit 
0.007 0.004 44 84 11:21 2 0.02 

hoxH - hydrogen dehydrogenase 0.007 0.005 120 153 40:51 2 0.44 

mtd – 

methylenetetrahydromethanopterin 

dehydrogenase 

0.006 0.004 38 76 1:2 2 0.02 

cutM/coxM – carbon monoxide 

dehydrogenase medium subunit 
0.006 0.005 145 148 145:148 2 0.85 

frhB – coenzyme F420 hydrogenase 

β- subunit 
0.006 0.004 49 80 49:80 2 0.08 

metF – methylenetetrahydrofolate 

reductase NADPH 
0.006 0.005 128 156 32:39 1 0.88 

hdrB – heterodisulfide reductase 

subunit B 
0.006 0.004 55 82 55:82 2 0.24 

mcrB – methyl coenzyme M 

reductase β- subunit 
0.005 0.003 32 63 32:63 2 0.02 

 417 

  418 
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Table 6: Results of SIMPER analysis. Genes are ranked according to their average contribution to 419 

dissimilarity between HFM and LFM. Average abundances, ratio (between averages using the greatest 420 

common denominator), relative contribution of taxa and p-value of the permutation test (Probability of 421 

getting a larger or equal average contribution in random permutation of the group factor) are also 422 

included. A cut-off at a cumulative dissimilarity of 70% was applied. 423 

Contrast: HFM – LFM Average SD 
Avg. 

HFM 

Avg. 

LFM 
Ratio 

Relative  

Contribution 

(%) 

p – 

value 

hdrA - Heterodisulfide reductase 

subunit A 
0.040 0.016 225 448 225:448 10 0.65 

cutL/coxL - Carbon monoxide 

dehydrogenase large chain 
0.032 0.016 354 573 118:191 8 0.28 

mcrA - Methyl-coenzyme M 

reductase subunit A 
0.028 0.012 126 277 126:277 7 0.25 

coxS - carbon monoxide 

dehydrogenase small subunit S 
0.017 0.005 186 311 186:311 5 0.20 

fwdB/fmdB – formylmethanofuran 

dehydrogenase subunit B 
0.016 0.007 59 161 59:161 4 0.06 

mtrA – tetrahydromethanopterin S 

methyltransferase subunit A 
0.015 0.006 80 143 80:143 3 0.13 

metF – methylenetetrahydrofolate 

reductase NADPH 
0.011 0.004 81 156 27:52 3 0.06 

cooS – carbon monoxide 

dehydrogenase catalytic subunit S 
0.010 0.006 64 125 64:125 3 0.37 

mvhA/vhuA/vhcA -F420 non 

reducing hydrogenase subunit A 
0.010 0.005 45 103 45:103 2 0.48 

mtrH - tetrahydromethanopterin S 

methyltransferase subunit 
0.009 0.004 42 96 7:16 3 0.09 

frhG – coenzyme F420 hydrogenase 

gamma subunit G 
0.009 0.004 65 113 65:113 2 0.59 
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hoxH - hydrogen dehydrogenase 0.009 0.005 84 153 28:51 2 0.17 

mttB – trimethylamine corrinoid 

protein Co methyltransferase 
0.009 0.004 63 126 1:2 3 0.06 

mtrF - tetrahydromethanopterin S 

methyltransferase subunit F 
0.008 0.003 25 77 25:77 2 0.05 

mtrE - tetrahydromethanopterin S 

methyltransferase subunit E 
0.008 0.004 32 85 32:85 2 0.14 

fwdB/fmdB – formylmethanofuran 

dehydrogenase subunit B 
0.008 0.004 33 76 33:76 2 0.09 

cutM/coxM – carbon monoxide 

dehydrogenase medium subunit 
0.008 0.007 99 148 99:148 2 0.51 

mcrG – methyl coenzyme M 

reductase gamma subunit 
0.008 0.003 52 84 13:21 2 0.05 

mtd – 

methylenetetrahydromethanopterin 

dehydrogenase 

0.007 0.004 31 76 31:76 2 0.05 

frhB – coenzyme F420 hydrogenase 

β- subunit 
0.007 0.003 35 80 7:16 1 0.09 

hdrB – heterodisulfide reductase 

subunit B 
0.006 0.004 37 82 37:82 2 0.28 

424 
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4.0 Discussion: 425 

4.1 Functional potential of the microbial community  426 

The dominant methane production pathway within our samples, as shown by the taxonomy and δ13C signal of 427 

emitted CH4, was hydrogenotrophic methanogenesis. However, the presence of the genera acetoclastic 428 

Methanosaeta and Methanosarcina, which possess a more diverse genome allowing them to perform 429 

hydrogenotrophic, acetoclastic and methylotrophic methanogenesis, suggests that the community holds a 430 

metabolic potential to produce CH4 under altered environmental conditions. In addition, the presence of type I, II 431 

and Verrucomicrobia Proteobacteria indicates that peatland methanotrophs hold the ability to oxidise CH4 via 432 

Ribulose monophosphate, Serine or Calvin-Benson-Bassham cycles. Therefore, if temperate peatland 433 

environmental conditions which govern the production and consumption of CH4 are to change under future climate 434 

scenarios, we can expect CH4 production and consumption to still occur, but possibly using alternative metabolic 435 

pathways than currently observed.  436 

The potential to produce and consume CH4 under alternate environmental conditions is in agreement with other 437 

metagenomics studies, which concluded that shifts from one dominant functional group to another can occur as 438 

the microbial community already holds the metabolic potential to degrade soil organic carbon via different 439 

metabolic pathways (Manoharan et al., 2017; Tveit et al., 2013). The rate of such shifts is dependent upon the 440 

delivery of necessary products and environmental conditions conducive for methanogenesis. In the absence of 441 

acetogenesis and fermentation, the less dominant functional groups (i.e. acetoclastic and methylotrophic 442 

methanogens) may still remain dormant, due to the absence of necessary substrates to metabolize. 443 

4.2 Carbon flux characteristics 444 

We observed a high spatial variability in CH4 flux, which is consistent with research conducted in other temperate 445 

peatlands (Keane et al., 2021; Sun et al., 2013). The same pattern observed in CH4 fluxes was also detected in 446 

GPP and Reco, but not in NEE. The high productivity, observed as high GPP, may be explained by a higher amount 447 

of photosynthetic biomass within HFM, than in MFM and LFM. Reco followed the same pattern as CH4 and GPP, 448 

with highest observed flux in HFM and lowest in LFM. One potential reason for the high respiration from HFM 449 

could be the significantly higher relative abundance of pmoA. The pmoA gene codes for the first step in 450 

methanotrophy, where CH4 is reduced to methanol, and finally CO2, which is often used as a proxy for 451 

methanotrophy (Franchini et al., 2015; Freitag et al., 2010). The higher abundance of pmoA may indicate a higher 452 
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rate of methanotrophy, which may help to explain the higher CO2 flux respired by the methanotrophs in HFM. In 453 

addition, higher plant productivity causes higher autotrophic respiration, which generally makes up ~50% of Reco. 454 

However, the vegetation may also be supplying more substrates to the microbial community, which in turn is 455 

consumed and respired in the form of CO2. Characteristics beyond our control, such as redox potential, oxic status 456 

and substrate availability, may have additionally contributed to the variability in CH4 and CO2 fluxes (Bridgham 457 

et al., 2013; Ström et al., 2012). 458 

4.3 The relationship between CH4 magnitude and functional genes 459 

When comparing the dissimilarity of taxa and functional genes between flux categories, we discovered small 460 

dissimilarities in taxonomy and functional genes. This result indicates that, while variation within carbon fluxes 461 

is observed, the use of taxa and functional genes only explains a small amount of the variability and hence the 462 

relationship is not statistically significant.  463 

4.3.1 Taxonomic 464 

We found that the microbial community had a higher diversity of methanogens than methanotrophs. This can be 465 

the result of the high WTD limiting the habitable area of oxic-anoxic interface. The most abundant methanogen, 466 

Methanoregula, has been frequently detected in ombrotrophic peatland ecosystems and appears to dominate in 467 

sites with high Eriophorum spp. (Andersen et al., 2013, Chroňáková et al., 2019, Lin et al., 2014, Preston et al., 468 

2012). The tussock building E. vaginatum provides a habitable environment for fermenters and syntrophic bacteria 469 

where substrates such as H2 and CO2 for hydrogenotrophic methanogenesis are most likely more available due to 470 

the increase in oxygen provided to the peat through aerenchyma tissue of the plant (Chroňáková et al., 2019; 471 

Preston et al., 2012).  472 

When comparing our results to other metagenomic approaches, we find a higher diversity of methanogens than 473 

previous research. We identified 20 genera of methanogens, while Lin et al. (2012) detected 16 genera of 474 

methanogens using a whole metagenomic approach. We observe slightly higher diversity than studies in other 475 

ombrotrophic peatland environments, where sequences belonging to the orders Methanomicrobiales, 476 

Methanobacteriales, and Methanosarcinales were detected (Galand et al., 2003; Horn et al., 2003b; He et al., 477 

2015). However, it is difficult to conclude whether our results differ from other studies because of biological 478 

factors, different site characteristics or the addition of newly sequenced genomes within the databases used 479 

between studies. 480 
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The composition of the microbial community was dominated by hydrogenotrophic methanogens. The dominant 481 

genus, Methanoregula, is recognized as an indicative genus to ombrotrophic peatlands (Andersen et al., 2013; 482 

Chroňáková et al., 2019; Lin et al., 2014; Preston et al., 2012), and this is further confirmed by our results. This 483 

result was expected as methanogenic communities in ombrotrophic bogs differ significantly compared to fen 484 

ecosystems (Horn et al., 2003b). However, the presence of acetoclastic and methylotrophic methanogens within 485 

our samples indicates a high functional potential of ombrotrophic bogs with possibilities to switch between 486 

dominant methanogenic functional groups. Theoretically, if conditions were to shift within the peatland to favor 487 

acetoclastic or methylotrophic methanogenesis, the microbial community holds the functional potential to 488 

continue producing CH4 with little to no delay in transition period. This conclusion is of course made assuming 489 

that the necessary substrates and environmental conditions are met. 490 

When comparing the abundances of methanotrophs between HFM, MFM and LFM, we identified that the top 3 491 

contributors to the cumulative sums, Methylocella, Methylosinus and Methylobacter, did not change significantly 492 

in abundance or order of highest contributor. We expected that a higher proportion of type II and Verrucomicrobia 493 

methanotrophs would contribute higher to the cumulative sums due to their ability to resist acidic conditions found 494 

in bog environments (Hakobyan and Liesack, 2020; Dedysh, 2002, 2009), and this was confirmed by our results. 495 

Both type II Methylocella and Methylosinus are well adapted to the cold and acidic conditions common in northern 496 

ombrotrophic peatlands. These physiological traits explain why type II Alphaproteobacteria were dominant over 497 

type I Gammaproteobacteria and this is consistent with other research conducted in ombrotrophic bogs 498 

(Hakobyan and Liesack, 2020; Chen et al., 2008; Dedysh, 2002, 2009). However, the presence of thermophilic 499 

and halophilic Verrucomicrobia and Gammaproteobacteria methanotrophs, while lower in abundance, were also 500 

detected in each category. This indicates a tolerance to the acid and cold conditions experienced within northern 501 

ombrotrophic peatlands. These results, similar to those observed in the methanogen community, indicate that the 502 

methanotroph community hold the ability to continue to oxidise CH4 under alternate environmental conditions. 503 

4.3.2 Functional genes  504 

The functional gene composition of methanogens and methanotrophs does not hold a strong relationship to the 505 

magnitude of CH4 flux, contrary to results found by Zhang et al. (2019) were the authors observed significant 506 

correlation between mcrA and CH4 flux. However, Zhang et al. (2019) only targeted mcrA and pmoA when 507 

analysing their results, while our approach used a wider diversity of methanogenesis and methanotrophy related 508 

genes, which may have contributed to the observed difference. In our comparison, we observed small variations 509 
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in the relative abundance of genes when compared between HFM, MFM and LFM. The NMDS analysis agreed 510 

with the PERMANOVA and displayed overlap between samples with a distinct lack of cluster separation. This 511 

result indicates that the composition and relative abundance of functional genes has little variation between HFM, 512 

MFM and LFM. 513 

The top three genes that contributed the most to the dissimilarities between HFM, MFM and LFM were mcrA, 514 

hdrA and coxL. Both mcrA and hdrA genes act as key enzymes in the biological formation of CH4 and these genes 515 

are shared across hydrogenotrophic, acetoclastic and methylotrophic methanogens. The mcrA catalyzes the 516 

conversion of methyl-coenzyme M and coenzyme B into CH4 and the heterodisulfide of coenzyme M (HS-CoM) 517 

and coenzyme B (HS-CoB) (Scheller et al., 2010; Thauer, 2019). Subsequently, CoM and CoB must be reduced 518 

to regenerate the CoM-SH and CoB-SH thiols which are used as electron donors by mcrA, which is then catalyzed 519 

by hdrA (Scheller et al., 2010; Buan et al., 2011). Therefore, a co-dependence between mcrA and hdrA exists and 520 

this is essential for the biological formation of CH4. Due to the close nature of the two genes, targeting transcripts 521 

of hdrA may be important in future research. 522 

We assumed that the abundance of mcrA genes would be higher in HFM when compared to MFM and LFM in 523 

accordance with previous research (Franchini et al., 2015; Liebner et al., 2012). However, the opposite was 524 

discovered with the average relative abundances of mcrA lower in HFM when compared to MFM and LFM. This 525 

result is surprising, as previous research has found a significant relationship between key genes such as the mcrA 526 

and the magnitude of CH4 flux (Freitag et al., 2010; Zhang et al., 2019). We believe that the analysis of mcrA 527 

transcripts, rather than gene abundance, would yield a stronger relationship to the CH4 flux. While a close 528 

relationship of mcrA gene abundance to transcripts was observed by Franchini et al. (2015), gene abundance may 529 

not be the most effective in explaining small differences between flux categories. Rather, the use of gene 530 

transcripts may be a more appropriate method (Franchini et al., 2015; Freitag et al., 2010). 531 

In addition to mcrA and hdrA, the presence of carbon monoxide (CO) dehydrogenase (cooS, coxL, coxM, coxS, 532 

cutL, cutM) was of particular interest. These genes code for CO dehydrogenase and are involved in the Acetyl-533 

CoA pathway, which is not directly included in methanogenesis. Comparatively little is known today of the 534 

ecology, physiology, and biochemistry of CO utilization by methanogens (Ferry, 2010; Fischer et al., 1931). Only 535 

a few species are reported to metabolize CO, including Methanosarcina, which contributed 5% to 6% of the 536 

cumulative sums within our comparisons. However, according to Ferry (2010) it is not yet known if CO is a viable 537 

energy source for methanogens in peatland environments. Furthermore, the presence of six genes that code for 538 
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CO dehydrogenase within the top 70% of cumulative sums indicates that if CO is a viable substrate, a high 539 

functional potential could exist within peatland environments to use this lesser known substrate during 540 

methanogenesis. 541 

It is important to note that carbon monoxide dehydrogenase and hdrA genes are not strictly utilized by 542 

methanogens. A wide variety of microbes, including Acetogens, sulfur oxidizing Archaea and Bacteria, utilize 543 

the above-mentioned genes (Ernst et al., 2021; Ferry, 2010; Maupin-Furlow and Ferry, 1996). Therefore, the 544 

distribution of how many genes are strictly related to methanogenesis can be difficult to determine. 545 

4.4 The relationship between microbial diversity and the magnitude of CH4 flux 546 

The Shannon α-diversity of 2.38 indicates a low diversity. An et al. (2019), found that peatland environments hold 547 

an average Shannon α-diversity index of 6.8. However, the lower diversity observed in our is most likely due to 548 

the targeted approach, which only enriches taxa related to CH4 metabolism. The targeted approach, combined 549 

with the filtering of taxa that exclude other microbial groups, which if included within the analysis, would better 550 

represent peatland environments.  551 

Low dissimilarity was observed between the mesocosms when calculating the 𝛽- diversity. HFM held the highest 552 

dissimilarity indicating that as the CH4 flux increases, the abundance and variability of microbe’s increase. As the 553 

magnitude of CH4 flux reduced, the abundance and variability of methanogens and methanotrophs decreased. This 554 

trend indicates that 𝛽- diversity may act as a proxy for CH4 emissions, contrary to results found by Zhang et al. 555 

(2019) who concluded that abundance, rather than composition mainly affects CH4 emissions. However, due to 556 

the low replication in HFM and LFM, further research is needed to make this conclusion. 557 

4.5 δ13C of emitted CH4 and proportion of taxa 558 

The δ13C analysis and presence of multiple hydrogenotrophic methanogens indicated that the dominant metabolic 559 

pathway observed within the mesocosms was hydrogenotrophic methanogenesis. All flux categories returned the 560 

δ13C signal within the hydrogenotrophic range (δ13C = −110‰ to −60‰) (Chanton, 2005; Whiticar, 1999). This 561 

is not a surprising result, as there appears to be a pattern in northern and temperate wetlands of increasing 562 

hydrogenotrophic methanogenesis going from minerotrophic peats to ombrotrophic acidic bogs, similar to 563 

conditions observed with our site (Galand et al., 2010; Holmes et al., 2015; Horn et al., 2003a). Furthermore, the 564 
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positive correlation between δ13C-CH4 to CH4 emission rate indicates the CH4 emission to be mostly controlled 565 

by the trophic status for methanogenesis, rather than methanotrophy (Hornibrook, 2009). 566 

5.0 Conclusion 567 

In this paper, we addressed differences in the composition of taxonomy and functional genes of CH4 producing 568 

and consuming microbes between three flux categories: HFM, MFM and LFM. In addition, we determined that 569 

𝛽-diversity increases in HFM when compared to the MFM and LFM categories, and we observed that the δ13C of 570 

emitted CH4 matches the dominant taxonomic functional group. 571 

We observed small differences in the composition of both taxa and functional genes between flux categories. This 572 

indicates that, although we observe high spatial variability in CH4 fluxes, we cannot explain this variability by 573 

taxonomic composition and functional genes alone. Interestingly, we observed that 𝛽-diversity was higher in HFM 574 

when compared to MFM and LFM – indicating that diversity may be a plausible proxy for CH4 fluxes.  575 

The dominant methanogen, Methanoregula, made up over 50% of the community composition. This, in 576 

combination with the remaining hydrogenotrophic methanogens observed within the community composition, 577 

matched the observed δ13C isotopic signature of emitted CH4. This indicates that the dominant metabolic pathway 578 

in the Fäjemyr peatland is hydrogenotrophic methanogenesis. However, the presence of acetoclastic and 579 

methylotrophic taxa plus type I, II and Verrucomicrobia methanotrophs indicates that the microbial community 580 

holds the ability to produce and consume CH4 via alternate metabolic pathways. This is important in terms of 581 

future climate scenarios where peatlands can expect altered nutrient status, hydrology or peat chemistry. If this 582 

happens, we can expect that there will be methanogen and methanotrophs present to continue to produce and 583 

consume CH4 due to the potential for alternate metabolic pathways. 584 

Our results show that genetic potential is of minor importance in explaining small scale variability of CH4 fluxes 585 

observed in peatland environments. Additional proxies to understand this variability may be found in gene 586 

expression studies where activity levels are better represented rather than genetic potential. With the modeling 587 

community working continuously to build robust predictions of peatland CH4 emissions (Chadburn et al., 2020), 588 

the need for inclusion of genomic data may be considered. With this knowledge, the combination of traditional 589 

CH4 drivers, metagenomics and metatranscriptomic studies could increase our understanding of how and at what 590 

rate the key CH4 producing and consuming microorganisms’ function in peatland ecosystems. This information 591 
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on microbial diversity is necessary on both temporal and spatial scales for the development of more robust models 592 

to accurately predict upcoming emissions under future climate scenarios. 593 
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