Genetic functional potential displays minor importance in explaining spatial variability of methane fluxes within a *Eriophorum vaginatum* dominated Swedish peatland.

Joel D. White a,*, Lena Ström a, Veiko Lehsten a,c, Janne Rinne a,d, Dag Ahrén b

a Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12 S-223 62 Lund, Sweden. joel.white@nateko.lu.se; lena.strom@nateko.lu.se; veiko.lehsten@nateko.lu.se; janne.rinne@nateko.lu.se

b National Bioinformatics Infrastructure Sweden (NBIS), Department of Biology, Sölvegatan 35 Lund University, 22362 Lund, Sweden. dag.ahen@biol.lu.se

c Swiss Federal Institute for Forest, Snow and Landscape research (WSL), Birmensdorf, Switzerland.

d Natural Resources Institute Finland, Production Systems, Latokartanonkaari 9, 00790 Helsinki, Finland

Correspondence: Joel D. White (joel.white@nateko.lu.se)
Abstract. Microbial communities of methane (CH$_4$) producing methanogens and consuming methanotrophs play an important role for Earth's atmospheric CH$_4$ budget. Despite their global significance, knowledge on how much they control the spatial variation in CH$_4$ fluxes from peatlands is poorly understood. We studied variation in CH$_4$ producing and consuming communities in a natural peatland dominated by *Eriophorum vaginatum*, via a metagenomics approach using custom designed hybridization-based oligonucleotide probes to focus on taxa and functions associated with methane cycling. We hypothesized that sites with different magnitudes of methane flux are occupied by structurally and functionally different microbial communities, despite the dominance of a single vascular plant species. To investigate this, nine plant-peat mesocosms dominated by the sedge *Eriophorum vaginatum*, with varying vegetation coverage, were collected from a temperate natural wetland and subjected to a simulated growing season. During the simulated growing season, measurements of CH$_4$ emission, carbon dioxide (CO$_2$) exchange and δ^{13}C signature of emitted CH$_4$ were made. Mesocosms 1 through 9 were classified into three categories according to the magnitude of CH$_4$ flux. Gross primary production and ecosystem respiration followed the same pattern as CH$_4$ fluxes, but this trend was not observed in net ecosystem exchange. We observed that genetic functional potential was of minor importance in explaining spatial variability of CH$_4$ fluxes with only small shifts in taxonomic community and functional genes. In addition, a higher β-diversity was observed in samples with high CH$_4$ emission. Among methanogens, *Methanoregula*, made up over 50% of the community composition. This, in combination with the remaining hydrogenotrophic methanogens matched the δ^{13}C isotopic signature of emitted CH$_4$. However, the presence of acetoclastic and methylotrophic taxa and type I, II and *Verrucomicrobia* methanotrophs indicates that the microbial community holds the ability to produce and consume CH$_4$ in multiple ways. This is important in terms of future climate scenarios, where peatlands are expected to alter in nutrient status, hydrology, and peat biochemistry. Due to the high functional potential, we expect the community to be highly adaptive to future climate scenarios.
1.0 Introduction

Methane (CH\(_4\)) is second most important long-lived greenhouse has in the atmosphere (Dean et al., 2018; Dlugokencky et al., 2009; Saunois et al., 2020). Atmospheric CH\(_4\) concentrations have increased twofold during the industrial period (Dlugokencky et al., 2003). Following a decade of near-zero increase by the turn of the millennium, globally averaged atmospheric CH\(_4\) is on the rise again at a rate of 5 ppb yr\(^{-1}\) (Dlugokencky et al., 2009; Dlugokencky et al., 2003; Saunois et al., 2016b; Saunois et al., 2020). CH\(_4\) is emitted from both natural and anthropogenic sources (Dean et al., 2018; Saunois et al., 2016a). Within all natural sources, the largest contributor to CH\(_4\) emissions are wetlands producing 149Tg (range 102–182) CH\(_4\) yr\(^{-1}\), i.e. 40 % of the total natural CH\(_4\) emission (Dean et al., 2018; Saunois et al., 2020).

Microbial CH\(_4\) emission is a byproduct of microbial metabolism and is produced by methanogenic Archaea following hydrolysis and fermentation (Ferry, 1999). CH\(_4\) production occurs under anoxic conditions, where organic carbon bound to dead organic matter is converted into CH\(_4\) via methanogenesis (Ferry, 1999). Methanogenesis is the final reaction in anaerobic degradation of organic matter and occurs stepwise in cooperation between different microbial functional groups.

Methanotrophs, of the phyla, Proteobacteria, Verrucomicrobia, and candidate phylum NC10 act as a natural bio-filter by oxidizing CH\(_4\) and thereby reducing emissions. Inhabiting the oxic-anoxic interfaces, methanotrophs oxidize between 10 to 90% of the CH\(_4\) produced by methanogenic archaea before it is emitted to the atmosphere (Hakobyan and Liesack, 2020; Wendlandt et al., 2010). Methanotrophs can be found in a number of environments including wetlands, marine or freshwater sediments, rice paddies and sewage, and grow on one-carbon compounds such as methanol and methylated amines (Wendlandt et al., 2010; Chen et al., 2008; Dedysh, 2002, 2009). A common characteristic of all aerobic methanotrophs is their ability to oxidize CH\(_4\) to carbon dioxide (CO\(_2\)) and water.

CH\(_4\) emissions from natural wetlands are known to exhibit both spatial and temporal variability (Crill et al., 1988; Sun et al., 2013). The spatial variability makes wetland CH\(_4\) emissions difficult to model and predict (Wania et al., 2009, 2010), as CH\(_4\) emission within similar environmental conditions (i.e. ecotype) can vary by several orders of magnitude without an apparent explanation (Bridgham et al., 2013). According to current knowledge, both production and consumption of CH\(_4\) within peatland ecotypes is driven by (i) water table depth (WTD), which determines the thickness of oxic and anoxic zones; (ii) plant species composition, which provides substrates and plant mediated transport of CH\(_4\) to the atmosphere; (iii) soil temperature, which affects the rate of microbiological
processes; and (iv) substrate availability for biogeochemical processes such as methanogenesis and methanotrophy (Joabsson et al., 1999; Korrensalo et al., 2018; Mastepanov et al., 2013; Strack et al., 2004; Ström et al., 2015).

Recent advancements in molecular techniques have allowed researchers to explore further drivers affecting the magnitude of CH$_4$ fluxes (Fierer et al., 2014; Galand et al., 2003; Galand et al., 2002; Juottonen et al., 2008). Shifts within microbial community composition and function, where metabolic processes occur, are expected to contribute to the observed variability of CH$_4$ fluxes within ecotypes (Bridgham et al., 2013; Dean et al., 2018). Therefore, the ability to include the functional potential of microbial communities as a potential driver of CH$_4$ fluxes has gained more attention.

The field of environmental genomics has developed rapidly, utilizing the genetic material taken from un-cultured environmental samples to identify accurately the functional gene composition (Ungerer et al., 2008; Ward et al., 2008). Techniques include the establishment of polymerase chain reaction (PCR) based studies, where marker genes are used to evaluate microbial community composition via amplification of regions conserved across species (Brumfield et al., 2020; Lane et al., 1986). The targeting of the marker gene 16S in ribosomal ribonucleic acid (rRNA) that occur in Bacterial and Archaea genomes has often been recognized as the gold standard in prokaryotic identification (Brumfield et al., 2020; Lane et al., 1986). In CH$_4$ research, key genes such as methyl coenzyme M reductase (mcrA) and methane monooxygenase component A alpha chain (mnoX) are often targeted to determine community composition and functional potential (Chroňáková et al., 2019; Freitag et al., 2010; Galand et al., 2005; Liebner et al., 2012). However, recent research has suggested that studying the entire metagenome increases the possibility to predict soil functional potential as opposed to enriching for singular genes (Gravel et al., 2012; Kushwaha et al., 2015; Manoharan et al., 2015).

In order to attain the necessary depth of sequencing coverage required to analyze the functional potential of soil microbial communities, whole metagenomic sequencing is required (Dinsdale et al., 2008; Fierer et al., 2014). Though, even with the constant advancements in sequencing technology, metagenomics studies require large financial and computational resources to obtain the necessary depth of coverage to ensure small microbial communities, including Archaea, are detected (Escobar-Zepeda et al., 2015; Pereira-Marques et al., 2019). In response to these limitations, we applied the molecular technique "captured metagenomics", which targets key genes related to the metabolism of both methanogenic Archaea and methanotrophic Bacteria (Kushwaha et al., 2015; Manoharan et al., 2015).
Captured metagenomics provides an alternative to studying the entire deoxyribonucleic acid (DNA) pool of metagenomic communities (Gasc et al., 2016; Kushwaha et al., 2015; Manoharan et al., 2015). The sequence capture technique hybridizes DNA fragment targets from a metagenomic DNA fragmented pool through the custom set of probes designed via the MetCap pipeline (Kushwaha et al., 2015). This method makes it possible to target thousands of key genes related to methanogen and methanotroph metabolism, while avoiding lengthy lab hours and massive sequencing efforts required of large-scale metagenomic study. In addition, this allows for multiple biological replicates at a reasonable cost per sample (Gasc et al., 2016; Kushwaha et al., 2015; Manoharan et al., 2015).

Here, we address the functional potential impact of CH$_4$ producing and consuming microbes on the magnitude of CH$_4$ flux. To determine the functional genetic diversity, we apply captured metagenomics on genes encoding for enzymes related to CH$_4$ metabolism on nine peat-plant mesocosms dominated by the sedge *Eriophorum vaginatum*. We aim to (1) identify whether the composition of both CH$_4$ producing and consuming taxa shift in dissimilarity in response to variations in CH$_4$ flux, (2) determine whether the β-diversity increases with increasing CH$_4$ emission; and finally, (3) identify whether the δ^{13}C of emitted CH$_4$ matches the dominant taxa in samples.

2.0 Methodology

2.1 Site description

To study the functional diversity of a microbial community producing and consuming CH$_4$, we collected peat-plant mesocosms from Fäjemyr, an ombrotrophic bog located in Skåne, southern Sweden (56°15’53.3”N 13°33’14.1”E). The peatland is classified as an eccentric bog, and is dominated by semi-forested areas alternating between raised hummocks, hollows and moss lawns (Lonnstad and Löfroth, 1994; Lund et al., 2007). Long-term (1961-1990) mean annual temperature and precipitation are 6.2°C and 700mm respectively (Smhi, 2006). The peat depth ranges between 4-5m, while the peat water pH is generally below 4 throughout the entirety of the growing season (Lund et al., 2007).

Vegetation composition at Fäjemyr is diverse including hummocks dominated by dwarf shrubs such as *Calluna vulgaris* and *Erica tetralix*. The moss lawns are carpeted with *Sphagnum-*mosses including *S. magellanicum* and *S. rubellum*, while the raised drier hummocks are dominated by dwarf Scots pine (*Pinus sylvestris*). The dominant sedge species within the site is *Eriophorum vaginatum* (Lonnstad and Löfroth, 1994; Lund et al., 2007).
2.2 Experimental design

A total of 9 cylindrical mesocosms (height: 26 cm, diameter: 27 cm) were collected on the 30th of March, 2017. The mesocosms, numbered M1-M9, were carefully cut from the peatland, transferred directly into plastic containers for transportation to Lund University (82 km away) where they were incubated under temperature and light controlled conditions in a growth room. Over the first month we started at 10 °C and no light, temperature and light levels were gradually increased to allow the mesocosms to adjust and to simulate the onset of the growing season. For the final 4 weeks of the experiment, the conditions in the growth room were kept at 20 °C, 500 µmol PAR m⁻² s⁻¹ and 17 daylight hours (based on sunrise and sunset at Fäjemyr). Due to the effect of heat radiation from the lamps, the temperature varied over the day from 18±0.3 °C when the lamps were off to 23±1 °C when they were on. Additionally, the light level varied (512±42 µmol PAR m⁻² s⁻¹) somewhat over the surface due to variations in individual lamp efficiency. The mesocosms were rotated bi-weekly to minimize the effect of spatial variations in growth conditions.

All mesocosms were watered daily with deionized water to maintain a constant water table depth at 5 cm below the surface. During the experiment, weekly to bi-weekly (final 3 weeks, n = 6) measurements of CO₂ and CH₄ fluxes were conducted. The δ¹³C of emitted CH₄ was measured on three occasions in the final weeks. Upon completion of the experiment, peat samples were removed from the top oxic-anoxic interface (5 cm), bottom (15 cm) and from the peat sticking to the root surface (rhizosphere) for DNA extraction. Resulting in a total of 27 samples peat samples for genomic analysis (each mesocosm n = 3)

2.3 Flux measurements

Flux measurements of CO₂ and CH₄ were made using the static chamber technique (Crill et al., 1988; Livingston and Hutchinson, 1995). For each mesocosm, 6-minute-long measurements in both light and dark conditions were conducted to establish Net Ecosystem Exchange (NEE) and Ecosystem Respiration (Rₑₑₑ). We used a negative sign convention where negative values indicate an uptake of CO₂ from the atmosphere and positive a release. Gross Primary Production (GPP) was calculated according to the relationship GPP = NEE - Rₑₑₑ. Measurements were performed using a transparent 5-liter cylindrical polycarbonate chamber that was covered with a dark hood for Rₑₑₑ measurements. The chamber was equipped with a rubber list to ensure an airtight seal and a fan to circulate air. Both CO₂ and CH₄ concentrations were measured with a LGR Fast Greenhouse Gas analyser (model 911-0010, Los Gatos Research, CA USA). The CO₂ and CH₄ fluxes were calculated via changes in gas concentration.
as a function of time using linear fitting over 6-minute measurement periods. Data was corrected for both air pressure, volume of the chamber and ambient air temperature.

2.4 Stable isotope analysis

The CH$_4$ emission and its δ13C signature were determined using a cavity ring-down laser absorption spectrometer with the closed chamber technique described above (G2201i, Picarro, Santa Clara, USA). The surface of each peat mesocosm was covered with a transparent cylindrical chamber for 25-30 minutes while the CH$_4$ mixing ratio and δ13C-CH$_4$ was recorded with 1 second intervals. Data was averaged into one minute averages. CH$_4$ emission were calculated using linear fitting, and the δ13C signature of emitted CH$_4$ was determined with a Keeling plot intercept approach (Keeling, 1958; Thom et al., 1993). The resulting δ13C-CH$_4$ values were corrected by adding a constant value of 3.4 ‰, based of comparison with isotopic mass spectrometer.

2.5 Captured metagenomics

2.5.1 Peat samples and DNA extraction

Peat material was collected from three sampling locations within each mesocosm. Samples were taken from the top oxic-anoxic interface (5 cm), bottom (15 cm) and from the root adjacent peat directly attached to the root surface (10 cm). The peat material was stored at 20°C and then thawed at 4°C prior to DNA extraction. DNA was extracted following the DNeasy® PowerSoil® Kit (Qiagen, Hilden, Germany) and carried out according to the manufacturer's protocol, following the recommended 0.25 g of input material. After DNA extraction, samples were tested for quality (absorbance ratio 260/280) and concentration on a NanoDrop lite (NanoDrop Technologies, Willington NC, USA) and Invitrogen Qubit 4 fluorometer (Thermo Fisher Scientific, Waltham MA, USA) respectively.

2.5.2 SeqCap EZ probe generation

Genes encoding enzymes closely related to the CH$_4$ production and oxidation in pathway map00680 were identified from the Kyoto Encyclopedia of Genes and Genomes (KEGG). The nucleotide sequences were downloaded via a custom R script (https://github.com/dagahren/metagenomic-project). In total, 548,104 genes were downloaded and compiled into a local database, subsequently referred to here as the CH$_4$ database. The nucleotide coding sequences of the CH$_4$ database were used to design hybridisation-based probes for sequence capture. The probe sequences were generated using the MetCap pipeline, where sequences were clustered with
90% sequence similarity with an average of 4 probes per cluster (Kushwaha et al., 2015; Manoharan et al., 2015). In total, 193,386 individual probes were generated after clustering. They were generated with a melting temperature of 55°C and probe length 40mer which is suitable for use with our protocol that is based on NimbleGen SeqCap EZ (Roche NimbleGen Inc., Madison, USA).

2.5.3 Probe hybridisation, library generation and sequencing

Depending on the extracted DNA concentration, 150 ng or 1 μg of genomic DNA in a total volume of 100 μl low TE, was sheared for 13 cycles of 30s on, 30 s off, using a Bioruptor Pico and 0.65 ml Bioruptor tubes (Diagenode SA, Seraing, Belgium). 1 μl of the sheared samples was run on a DNA HS chip prior to contamination clean up. The fragmented DNA was then purified using 1.8× AMPure XP beads (Beckman Coulter, Indianapolis, USA) and used as input material for preparation of pre-capture libraries and constructed according to the Nimblegen SeqCap EZ HyperCap Workflow User’s Guide (Version 1.0, June 2016). We used two modifications to this method to allow for improved hybridization: (i) for the adapter ligation step, 5 μl of 15 μM KAPA unique dual index mixed adapters were used instead of single index adapters, (ii) for the pre-capture PCR, 7 cycles was used for libraries with a genomic DNA input of 150 ng, and 5 cycles where the input was 1 μg.

Pre-capture libraries were purified with 1.8x Ampure beads and quantified by Quant-iT double-stranded DNA high sensitivity assay and the average fragment size determined by analysis on a Fragment Analyser (Agilent, Santa Clara, USA) using a high sensitivity NGS Kit. Libraries were multiplexed in pools of 15 in equimolar amounts based on the aforementioned concentrations and sizes. 1 μg of each pool was transferred to a test tube and hybridised to custom probes according to the NimbleGen SeqCap EZ SR User’s Guide (Version 4.3, October 2014). When setting up the hybridisations, SeqCap EZ Developer Reagent and HyperCap Universal Blocking Oligos were added to each pool, according to manufacturer’s instructions. The capture tubes were incubated in a thermal cycler set at 47 °C, with the heated lid set to 57 °C for 69 hours.

The final captured library pool was reagent-treated and further purified using 1.8× AMPure XP beads to remove unligated adapters. The quantity and quality of the final pool was assessed by Qubit and Bioanalyzer and subsequently by qPCR using the Illumina Library Quantification Kit from Kapa on a Roche Light Cycler (LC480II, Basel, Switzerland). Briefly, a 20 μl PCR reaction (performed in triplicate for each pooled library) was prepared on ice with 12 μl SYBR Green I Master Mix and 4 μl diluted pooled DNA (1:1000 to 1:100,000 depending on the initial concentration determined by the Qubit). PCR thermal cycling conditions consisted of
initial denaturation at 95°C for 5 minutes, 35 cycles of 95°C for 30 seconds (denaturation) and 60°C for 45 s for annealing and extension, a melt curve analysis at 95°C and cooling at 37°C.

The captured libraries were sequenced on an Illumina HiSeq4000 platform using sequencing by synthesis technology to generate 2 x 150 base pair (bp) paired-end reads, the analysis was carried out by the Centre for Genomic Research, University of Liverpool, United Kingdom.

2.6 Data Analysis

Raw fastq files were trimmed for the presence of Illumina adapter sequences using Cutadapt version 1.2.1 (Martin, 2011). The option -O 3 was used, which means that the 3’ end of any reads that matched the adapter sequence were removed by 3bp. The reads were further trimmed using Sickle version 1.200 with a minimum window quality score of 20 (Joshi, 2011). This meant that reads shorter than 20bp were removed.

Following sequence trimming, reads from each of the captured data sets were submitted to Metagenomic Rapid Annotations using Subsystems Technology (MG-RAST) for sequence annotation (Meyer et al., 2008). Default parameters were used for quality filtering of bad reads and removal of sequence duplicates. Once annotated, sequences were filtered for both taxonomic and functional annotations via the KEGG CH4 metabolism filter (ko:00680). The taxonomic and functional annotations from MG-RAST were annotated using refseq and KEGG (KO) databases (Kanehisa et al., 2015; O'leary et al., 2016) and exported to R for downstream analysis.

2.7 Statistical analysis

All statistics were completed in R and visualized using ‘ggplot2’ (Hadley, 2016). Given the small sample size ($n = 9$), as well as the non-normal distribution of the values, a permutation test was used based around the 6 temporal replicates (M1-9 $n = 6$, total $n = 54$) of CH4 and CO2 flux from each mesocosm and we used an ‘independence test’ in R from the ‘coin’ package (Hothorn et al., 2021). We tested pairwise for differences in means and performed a subsequent correction for multiple testing as described by Holm (1979). To evaluate the statistical relationship between CH4 and CO2 flux, a Pearson’s correlation test was used from the package ‘corrplot’ (Wei and Simko, 2017).

Further statistical tests for use on genomic data, including the Permutational multivariate analysis of variance (PERMANOVA), α-diversity and β-diversity, and Nonmetric Multidimensional Scaling (NMDS), were completed using the ‘vegan’ package (Oksanen et al., 2019). Due to the low number of replicates and non-normal
distribution we performed a PERMANOVA to determine the most influential taxa and functional genes (Anderson, 2001). Input data for the PERMANOVA was double root transformed to reduce the influence of highly abundant taxa and genes. When computing the PERMANOVA and NMDS Bray-Curtis distances were used to quantify the compositional dissimilarity between groups with 999 permutations (Anderson, 2001). To test for significance between flux categories, we performed a pairwise comparisons between group levels with False Discovery Rate (FDR) corrections for multiple testing via the ‘RVAideMemoire’ package (Herv, 2021). Finally, the similarity percentage test (SIMPER) was used to evaluate the contribution of individual taxa and genes to the overall Bray-Curtis dissimilarity, a cut off of 70% was applied (Warton et al., 2012).

3.0 Results

3.1 Mesocosm characteristics

3.1.1 Carbon fluxes

Carbon fluxes of CH\textsubscript{4} and CO\textsubscript{2} vary among the mesocosms and are shown in fig 1. The mean flux of CH\textsubscript{4} mesocosms ranged between 152 (SD ±54) in M9 to 371 (SD ±23) µmol m-2 h-1 in M4. After observing such large variability within CH\textsubscript{4} fluxes, we performed a pairwise randomization and established that M4 had a significantly higher flux than M1-3 and M5-9 (p ≤ 0.0001) while M9 had a significantly lower flux (p ≤ 0.0005) than the remaining mesocosms. For further analysis, we separated the measurements from M4 and M9 from the remaining mesocosms, enabling us to test for a plausible explanation to the observed differences between fluxes when compared to the structure and function of the microbial community. Hereafter, M4 will be referred to as HFM (high flux mesocosm), M9 as LMF (low flux mesocosm) and the remaining mesocosms as MFM (medium flux mesocosm).

GPP and R\textsubscript{eco} generally followed the same observed pattern as CH\textsubscript{4}. With HFM being significantly higher than MFM (p ≤ 0.008) and LFM (p ≤ 0.004) in GPP. While R\textsubscript{eco} was also significantly different between HFM - MFM (p ≤ 0.001) and HFM - LFM (p ≤ 0.002). However, the same trend was not observed in NEE, where the highest recorded mean flux was observed in M8 (i.e. MFM category), not in the HFM category as observed in GPP and R\textsubscript{eco}.
Figure 1: Boxplots of carbon fluxes measured during the last 6 weeks of the lab experiment. The boxes show quartiles and the median, the whiskers denote data within 1.5 times of the interquartile range and the closed circles denote outliers. Methane flux (CH$_4$), Gross Primary Productivity (GPP), Ecosystem Respiration (R$_{eco}$), and Net Ecosystem Exchange (NEE). Note the units on the y-axis (mesocosms 1 – 9: n = 6).

In an attempt to investigate the relationships between carbon fluxes we conducted a correlation test and found that the flux of CH$_4$ held a positive relationship to R$_{eco}$ ($R^2 = 0.60$, $p \leq 0.04$), but not to GPP or NEE (fig 2). When analysing CO$_2$ fluxes, GPP held a strong negative relationship to R$_{eco}$ ($R^2 = 0.70$, $p \leq 0.002$), while NEE held a strong positive relationship to GPP ($R^2 = 0.82$, $p \leq 0.001$) (fig 2).

3.1.2 Vegetation

The peatland mesocosms were dominated by the sedge *E. vaginatum*, but also included small amounts of the *Sphagnum*-mosses *S. magellanicum* and *S. rubellum*. The number of sedge tillers ranged between 384 in HFM, 276 (mean) in MFM and 134 in LFM (fig 2). The number of *E. vaginatum* tillers held a strong correlation coefficient and significant relationship to GPP ($R^2 = 0.95$, $p \leq 0.01$) and R$_{eco}$ ($R^2 = 0.94$, $p \leq 0.01$) (fig 2). While...
the remaining carbon fluxes CH$_4$ ($R^2 = 0.44$, $p > 0.05$) and NEE ($R^2 = 0.64$, $p > 0.05$) had a high correlation coefficient, this relationship was not significant to the number of *E. vaginatum* tillers.

Figure 2: The relationship between mesocosm carbon fluxes and the number of tillers of *E. vaginatum*. Data points represent the mean flux of each individual mesocosm while the shaded area indicates the 95% confidence level interval for predictions of the linear model.

3.1.3 Isotopic signature

Distinct isotopic signatures of individual mesocosms are shown in fig 3. All mesocosms fell within the range of hydrogenotrophic methanogenesis ($δ^{13}C = −110‰ to −60‰$) (Chanton, 2005; Whiticar, 1999). However, M2 (MFM) and M4 (HFM) indicated a slight tendency towards acetoclastic methanogenesis with less negative isotopic signature ($δ^{13}C = −60‰ to −50‰$), both yielding mid-60‰ $δ^{13}C$ Keeling intercepts. A significant positive correlation ($R^2 = 0.5$, $p ≤ 0.001$) and significant relationship also existed between CH$_4$ flux and the Keeling intercept shown in fig 3.
Figure 3: Scatter plot visualizing the relationship between CH$_4$ flux (µmol m$^{-2}$ h$^{-1}$) and Isotopic signature of emitted CH$_4$ (keeling intercept ‰). Data points colored by flux category while the shaded area indicates the 95% confidence level interval for predictions of the linear model.

3.2 Captured Metagenomics

3.2.1 Microbial community composition

Diverse methanogenic *Archaea* and methanotrophic *Bacteria* were observed in all samples. In total, 20 methanogenic *Archaea* and 5 methanotrophic *Bacteria* were detected. Methanogens which utilize CO$_2$ + H$_2$, methanol, acetate and methyl amines substrates for ATP and biomass production were all observed throughout the samples, which indicates a high functional potential. Although less diverse than the methanogens, methanotrophs from Alphaproteobacteria, Gammaproteobacteria and Verrucomicrobia Phylum were present in all samples. However, due to the environmental conditions no methanotrophs from the NC10 Phylum were detected. This community composition resulted in a median α-diversity measure of 2.38, which is a measure of the diversity of the peatland ecosystem.
3.2.2 Total taxonomic distribution

At genus level, 20 methanogenic genera were identified. The highest relative abundance of methanogens included *Methanoregula* which contributed 54% to the total proportion, followed by *Methanosarcina* (17%). *Methanosphaerula* and *Methanothermobacter* which contributed 5% each to the total proportion of methanogens (fig 2). Within the methanogen community, genera with the ability to metabolize via hydrogenotrophic, acetoclastic and methylotrophic methanogenesis pathways were also detected. Hydrogenotrophic methanogens made up (78%) of the total proportion, while *Methanosarcina* which can utilize several substrates for ATP and biomass production contributed 17%, followed by methylotrophic methanogens (<5%) and finally, acetoclastic methanogens which contributed to <1% of the total.

In addition to methanogens, 5 genera of CH$_4$ reducing Bacteria were detected including methanotrophs from *Alphaproteobacteria, Gammaproteobacteria* and *Verrucomicrobia* class. Type II *Alphaproteobacteria* was the dominant Subphylum, including both *Methylocella* (37%) which contributed to largest proportion, followed by *Methylosinus* (28%). Type I *Gammaproteobacteria* genera *Methylcococcus* (14%) and *Methylobacter* (10%) represented the lowest proportion. Finally, *Verrucomicrobia* included one genus, *Methylacidiphilum*, which contributed to 10% of the total proportion of methanotrophs.

3.2.3 β-diversity

β-diversity, which measures the change in diversity of species from one category to another, was measured as mean distance to the group centroid and highest in HFM (fig 4). HFM resulted in an average distance to median of 0.046, followed by MFM (0.042) and LFM (0.031). The largest distance between medians to centroids was observed between HFM and LFM, while the smallest distance between medians to centroids was observed between MFM and LFM. Due to a high variation and lack of replication, this relationship was observed as non-significant. Although the values for β-diversity are low, the differences between centroids indicates that communities of methanogens and methanotrophs become more similar to each other as the magnitude of flux decreases.
Figure 4: β-diversity boxplot of multivariate homogeneity of groups using Bray-Curtis distances. Dispersions of samples analyzed at genus level across HFM, MFM and LFM (HFM n = 3, MFM n = 21, LFM n = 3).

3.2.4 Taxonomy

The PERMANOVA and SIMPER analysis showed that the variation between the relative abundance of taxa between HFM, MFM and LFM was not significant. The small differences resulted in a non-significant weak correlation where 6% of the variation in taxa could be explained by HFM, MFM or LFM (R² = 0.06, p ≥ 0.05). When comparing the relative abundance of methanogens and methanotrophs between HFM, MFM and LFM, five taxa including *Methanoregula*, *Methanosarcina*, *Methylocella*, *Methylosinus* and *Methylobacter* always contributed to the top 70% of cumulative sums (table 1, 2 and 3). However, in the HFM to LFM comparison, the addition of a sixth genus, *Methylacidiphilum*, was required to reach the 70% cut off (Table 3).

In all three comparisons, we observe that the hydrogenotrophic *Methanoregula* contributed the most to dissimilarity (table 1, 2 and 3) while type II *Alphaproteobacteria* genera, *Methylocella* and *Methylosinus*...
contributed the second and third highest between flux categories. The order of contributions from the remaining taxa Methanosarcina, Methylobacter and Methylococcus changed depending on the comparison between HFM, MFM and LFM.

Table 1: Results of SIMPER analysis. Taxa are ranked according to their average contribution to dissimilarity between MFM and HFM. Average abundances, ratio (between averages using the greatest common denominator), relative contribution of taxa and p-value of the permutation test (Probability of getting a larger or equal average contribution in random permutation of the group factor) are also included. A cut-off at a cumulative dissimilarity of 70% was applied.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Average SD</th>
<th>Avg. MFM</th>
<th>Avg. HFM</th>
<th>Ratio</th>
<th>Relative Contribution (%)</th>
<th>p - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanoregula</td>
<td>0.094 0.06</td>
<td>4370</td>
<td>7752</td>
<td>115:204</td>
<td>33%</td>
<td>0.17</td>
</tr>
<tr>
<td>Methylocella</td>
<td>0.035 0.02</td>
<td>4826</td>
<td>5842</td>
<td>19:23</td>
<td>12%</td>
<td>0.39</td>
</tr>
<tr>
<td>Methylosinus</td>
<td>0.035 0.02</td>
<td>3440</td>
<td>4586</td>
<td>1720:2293</td>
<td>13%</td>
<td>0.21</td>
</tr>
<tr>
<td>Methanosarcina</td>
<td>0.019 0.01</td>
<td>1985</td>
<td>2699</td>
<td>1985:2699</td>
<td>7%</td>
<td>0.31</td>
</tr>
<tr>
<td>Methylobacter</td>
<td>0.015 0.01</td>
<td>1234</td>
<td>1810</td>
<td>617:905</td>
<td>5%</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Table 2: Results of SIMPER analysis. Taxa are ranked according to their average contribution to dissimilarity between MFM and LFM. Average abundances, ratio (between averages using the greatest common denominator), relative contribution of taxa and p-value of the permutation test (Probability of getting a larger or equal average contribution in random permutation of the group factor) are also included. A cut-off at a cumulative dissimilarity of 70% was applied.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Average SD</th>
<th>Avg. MFM</th>
<th>Avg. LFM</th>
<th>Ratio</th>
<th>Relative Contribution (%)</th>
<th>p - value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanoregula</td>
<td>0.061 0.04</td>
<td>4370</td>
<td>3757</td>
<td>4370:3757</td>
<td>26%</td>
<td>0.91</td>
</tr>
<tr>
<td>Methylocella</td>
<td>0.033 0.02</td>
<td>4826</td>
<td>5111</td>
<td>254:269</td>
<td>15%</td>
<td>0.45</td>
</tr>
<tr>
<td>Methylosinus</td>
<td>0.032 0.02</td>
<td>3440</td>
<td>4323</td>
<td>3440:4323</td>
<td>14%</td>
<td>0.32</td>
</tr>
<tr>
<td>Methylobacter</td>
<td>0.017 0.01</td>
<td>1234</td>
<td>1647</td>
<td>1234:1647</td>
<td>8%</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Table 3: Results of SIMPER analysis. Taxa are ranked according to their average contribution to dissimilarity between HFM and LFM. Average abundances, ratio (between averages using the greatest common denominator), relative contribution of taxa and p-value of the permutation test (Probability of getting a larger or equal average contribution in random permutation of the group factor) are also included. A cut-off at a cumulative dissimilarity of 70% was applied.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Average</th>
<th>SD</th>
<th>Avg. HFM</th>
<th>Avg. LFM</th>
<th>Ratio</th>
<th>Relative Contribution (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanoregula</td>
<td>0.063</td>
<td>0.07</td>
<td>7752</td>
<td>3757</td>
<td>456:221</td>
<td>26%</td>
<td>0.71</td>
</tr>
<tr>
<td>Methylocella</td>
<td>0.035</td>
<td>0.03</td>
<td>5842</td>
<td>5111</td>
<td>5842:5111</td>
<td>15%</td>
<td>0.44</td>
</tr>
<tr>
<td>Methylosinus</td>
<td>0.034</td>
<td>0.02</td>
<td>4586</td>
<td>4323</td>
<td>4586:4323</td>
<td>15%</td>
<td>0.32</td>
</tr>
<tr>
<td>Methanosarcina</td>
<td>0.017</td>
<td>0.01</td>
<td>2699</td>
<td>1861</td>
<td>2699:1861</td>
<td>7%</td>
<td>0.61</td>
</tr>
<tr>
<td>Methylobacter</td>
<td>0.014</td>
<td>0.01</td>
<td>1810</td>
<td>1647</td>
<td>1810:1647</td>
<td>6%</td>
<td>0.47</td>
</tr>
<tr>
<td>Methylacidiphilum</td>
<td>0.013</td>
<td>0.008</td>
<td>1880</td>
<td>1290</td>
<td>188:129</td>
<td>6%</td>
<td>0.50</td>
</tr>
</tbody>
</table>

3.2.5 Functional gene composition

Of the total captured gene pool, 64% of sequence annotations were categorized by MG-RAST as coding for metabolism (KO level 1). For metabolism pathways, the top three sub-categories (KO level 2) were distributed across amino acid metabolism (32%), carbohydrate metabolism (27%) and energy metabolism (11%). Within the energy metabolism category, CH₄ metabolism (PATH: KO00680) made up 17% of the captured genes (KO level 4) with a total of 109 genes coding for CH₄ metabolism.

The composition of the functional genes can be observed in the NMDS (fig 5). The NMDS displays the functional genes grouped by HFM, MFM and LFM. Within the NMDS, we observe an overlapping between HFM, MFM and LFM with a lack of distinct separation between clusters, indicating similar abundances and variation within
HFM, MFM and LFM. The PERMANOVA also calculated the coefficient of determination and revealed that only 7% ($R^2 = 0.07$, $p \geq 0.44$) of the variation in functional genes can be explained by HFM, MFM and LFM. Finally, we checked for differences between the means of HFM, MFM and LFM via pairwise distances and found no significant difference ($p \geq 0.05$).

![Nonmetric Multidimensional Scaling (NMDS) of functional genes using Bray-Curtis distances.](image)

Figure 5: Nonmetric Multidimensional Scaling (NMDS) of functional genes using Bray-Curtis distances. Samples analyzed at KO functional level 4 and colored by HFM, MFM and LFM (HFM n=3, MFM n=21, LFM n=3).

In total, 21 genes of the 109 contributed to 70% of the cumulative sum (table 4, 5 and 6). When comparing HFM to MFM and LFM, the Wilks’ pairwise post hoc test revealed no significant difference between MFM ($p \geq 0.05$) and LFM ($p \geq 0.05$). Within the two comparisons, we observed that heterodisulfide reductase subunit A ($hdrA$) was the highest cumulative contributor to dissimilarity. In HFM, $hdrA$ contributed to 13% of the cumulative total (table 4). When comparing to LFM, $hdrA$ contributed 10%, 3% lower than the HFM to MFM comparison (table 6). However, the permutation test revealed no significant difference between both MFM and LFM with regards to abundance of $hdrA$ (table 4). Within the top 70% of cumulative genes, only the abundance of particulate methane monooxygenase ($pmoA$) was significantly higher in HFM when compared to MFM ($p \leq 0.01$) (table 4).

As observed in the HFM comparisons, 21 genes contributed to the total 70% cumulative sum of all captured genes when compared between HFM (table 4) and LFM (table 5). The Wilks’ pairwise post hoc test revealed no significant difference between HFM and LFM when compared to MFM (table 5). The largest contributor to the cumulative sum of genes in MFM when compared to HFM and LFM was the $hdrA$ gene. The $hdrA$ gene contributed to 13% in both comparisons. However, when comparing the abundances of the $hdrA$ gene between HFM and LFM, the decrease was non-significant. However, as identified in the earlier comparison, the abundance
of pmoA was significantly lower (p ≤ 0.01) in HFM when compared to MFM (table 4), but the same observation was not observed when testing abundances in LFM (p ≥ 0.21) (table 5). Interestingly, mcrA, mcrG and mtd genes were significantly higher in LFM when compared to MFM (p ≤ 0.02) (table 6).

As with the previous comparisons, 21 genes contributed to the cumulative sum of 70% within the LFM. However, the order and amount contributed to dissimilarity were not the same. The Wilks pairwise post hoc test revealed no significant difference between HFM and MFM when compared to LFM (p ≥ 0.05). Similarly, the hdrA gene was the largest contributor to the cumulative sum in HFM and MFM (table 5 and 6). The largest difference in the abundance of the hdrA gene occurred within HFM where the abundance increased by 3% (table 6). However, the increase was identified as non-significant. Interestingly, the mcrA gene was highest in abundance in LFM (277), 54% higher than in HFM and 39% higher than MFM.
Table 4: Results of SIMPER analysis. Genes are ranked according to their average contribution to dissimilarity between MFM and HFM. Average abundances, ratio (between averages using the greatest common denominator), relative contribution of taxa and p-value of the permutation test (Probability of getting a larger or equal average contribution in random permutation of the group factor) are also included. A cut-off at a cumulative dissimilarity of 70% was applied.

<table>
<thead>
<tr>
<th>Contrast: MFM – HFM</th>
<th>Average</th>
<th>SD</th>
<th>Avg. MFM</th>
<th>Avg. HFM</th>
<th>Ratio</th>
<th>Relative Contribution (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdrA - Heterodisulfide reductase subunit A</td>
<td>0.040</td>
<td>0.044</td>
<td>429</td>
<td>225</td>
<td>143:75</td>
<td>13</td>
<td>0.72</td>
</tr>
<tr>
<td>cutL/corL - Carbon monoxide dehydrogenase large chain</td>
<td>0.026</td>
<td>0.028</td>
<td>525</td>
<td>354</td>
<td>175:118</td>
<td>9</td>
<td>0.28</td>
</tr>
<tr>
<td>mcrA - Methyl-coenzyme M reductase subunit A</td>
<td>0.018</td>
<td>0.016</td>
<td>168</td>
<td>126</td>
<td>4:3</td>
<td>6</td>
<td>0.87</td>
</tr>
<tr>
<td>coxS - carbon monoxide dehydrogenase small subunit S</td>
<td>0.013</td>
<td>0.012</td>
<td>272</td>
<td>186</td>
<td>136:93</td>
<td>5</td>
<td>0.42</td>
</tr>
<tr>
<td>frhG – coenzyme F420 hydrogenase gamma subunit G</td>
<td>0.010</td>
<td>0.009</td>
<td>98</td>
<td>65</td>
<td>98:65</td>
<td>3</td>
<td>0.54</td>
</tr>
<tr>
<td>mtrA – tetrahydromethanopterin S methyltransferase subunit A</td>
<td>0.009</td>
<td>0.008</td>
<td>80</td>
<td>80</td>
<td>1:1</td>
<td>3</td>
<td>0.73</td>
</tr>
<tr>
<td>mvhA/hua/vha -F420 non reducing hydrogenase subunit A</td>
<td>0.008</td>
<td>0.008</td>
<td>86</td>
<td>45</td>
<td>86:45</td>
<td>3</td>
<td>0.66</td>
</tr>
<tr>
<td>cooS – carbon monoxide dehydrogenase catalytic subunit S</td>
<td>0.008</td>
<td>0.006</td>
<td>91</td>
<td>64</td>
<td>91:64</td>
<td>3</td>
<td>0.76</td>
</tr>
<tr>
<td>cutM/corM – carbon monoxide dehydrogenase medium subunit M</td>
<td>0.007</td>
<td>0.007</td>
<td>145</td>
<td>99</td>
<td>145:99</td>
<td>3</td>
<td>0.42</td>
</tr>
<tr>
<td>fvdB/fmdB – formylmethanofuran dehydrogenase subunit B</td>
<td>0.007</td>
<td>0.007</td>
<td>83</td>
<td>59</td>
<td>83:59</td>
<td>2</td>
<td>0.95</td>
</tr>
<tr>
<td>Gene/Acid</td>
<td>Description</td>
<td>Log2FC</td>
<td>Log2FoldChange</td>
<td>Adj.P.Value</td>
<td>p.Value</td>
<td>q.Value</td>
<td>Adj.q.Value</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--------</td>
<td>----------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>metF</td>
<td>methylenetetrahydrofolate reductase NADPH</td>
<td>0.007</td>
<td>0.006</td>
<td>128:81</td>
<td>3</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>pmoA</td>
<td>particulate methane monooxygenase</td>
<td>0.007</td>
<td>0.006</td>
<td>21:62</td>
<td>2</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>hosH</td>
<td>hydrogen dehydrogenase</td>
<td>0.007</td>
<td>0.005</td>
<td>120:84</td>
<td>2</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>mtrB</td>
<td>trimethylamine corrinoid protein CO methyltransferase</td>
<td>0.006</td>
<td>0.005</td>
<td>96:63</td>
<td>2</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>mtrH</td>
<td>tetrahydromethanopterin S methyltransferase subunit</td>
<td>0.005</td>
<td>0.004</td>
<td>59:42</td>
<td>2</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>fwdD/fmdD</td>
<td>formylmethanofuran dehydrogenase subunit D</td>
<td>0.004</td>
<td>0.004</td>
<td>38:33</td>
<td>2</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>mtrE</td>
<td>tetrahydromethanopterin S methyltransferase subunit E</td>
<td>0.004</td>
<td>0.004</td>
<td>43:32</td>
<td>1</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>hdrB</td>
<td>heterodisulfide reductase subunit B</td>
<td>0.004</td>
<td>0.003</td>
<td>55:37</td>
<td>2</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>mtrF</td>
<td>tetrahydromethanopterin S methyltransferase subunit F</td>
<td>0.004</td>
<td>0.003</td>
<td>38:25</td>
<td>1</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>mcrG</td>
<td>methyl coenzyme M reductase gamma subunit</td>
<td>0.004</td>
<td>0.003</td>
<td>44:52</td>
<td>2</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>CODH ACSA</td>
<td>carbon monoxide dehydrogenase/acetyl CoA synthase subunit alpha</td>
<td>0.004</td>
<td>0.004</td>
<td>42:20</td>
<td>1</td>
<td>0.65</td>
<td></td>
</tr>
</tbody>
</table>
Table 5: Results of SIMPER analysis. Genes are ranked according to their average contribution to dissimilarity between MFM and LFM. Average abundances, ratio (between averages using the greatest common denominator), relative contribution of taxa and p-value of the permutation test (Probability of getting a larger or equal average contribution in random permutation of the group factor) are also included. A cut-off at a cumulative dissimilarity of 70% was applied.

<table>
<thead>
<tr>
<th>Contrast: MFM – LFM</th>
<th>Average MFM</th>
<th>Average LFM</th>
<th>Ratio (between averages using the greatest common denominator)</th>
<th>Relative Contribution (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdrA - Heterodisulfide reductase subunit A</td>
<td>0.045</td>
<td>0.034</td>
<td>429:448</td>
<td>13</td>
<td>0.51</td>
</tr>
<tr>
<td>mcrA - Methyl-coenzyme M reductase subunit A</td>
<td>0.027</td>
<td>0.017</td>
<td>168:277</td>
<td>8</td>
<td>0.15</td>
</tr>
<tr>
<td>cutL/coxL - Carbon monoxide dehydrogenase large chain</td>
<td>0.021</td>
<td>0.016</td>
<td>525:573</td>
<td>6</td>
<td>0.82</td>
</tr>
<tr>
<td>fwdB/fmdB – formylmethanofuran dehydrogenase subunit B</td>
<td>0.014</td>
<td>0.009</td>
<td>83:161</td>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>mtrA – tetrahydromethanopterin S methyltransferase subunit A</td>
<td>0.014</td>
<td>0.008</td>
<td>80:143</td>
<td>4</td>
<td>0.10</td>
</tr>
<tr>
<td>coxS - carbon monoxide dehydrogenase small subunit S</td>
<td>0.011</td>
<td>0.007</td>
<td>272:311</td>
<td>3</td>
<td>0.87</td>
</tr>
<tr>
<td>mvhA/vhuA/vhcA -F420 non-reducing hydrogenase subunit A</td>
<td>0.010</td>
<td>0.006</td>
<td>86:103</td>
<td>3</td>
<td>0.39</td>
</tr>
<tr>
<td>cooS – carbon monoxide dehydrogenase catalytic subunit S</td>
<td>0.010</td>
<td>0.007</td>
<td>91:125</td>
<td>3</td>
<td>0.36</td>
</tr>
<tr>
<td>frhG – coenzyme F420 hydrogenase gamma subunit G</td>
<td>0.009</td>
<td>0.008</td>
<td>98:113</td>
<td>3</td>
<td>0.70</td>
</tr>
<tr>
<td>mtrH - tetrahydromethanopterin S methyltransferase subunit</td>
<td>0.008</td>
<td>0.005</td>
<td>59:96</td>
<td>2</td>
<td>0.09</td>
</tr>
<tr>
<td>mtrE - tetrahydromethanopterin S methyltransferase subunit E</td>
<td>0.008</td>
<td>0.004</td>
<td>43:85</td>
<td>3</td>
<td>0.07</td>
</tr>
</tbody>
</table>

https://doi.org/10.5194/bg-2021-353
<table>
<thead>
<tr>
<th>Gene</th>
<th>Function</th>
<th>E-value</th>
<th>Score 1</th>
<th>Score 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>mtrF - tetrahydromethanopterin S methyltransferase subunit F</td>
<td></td>
<td>0.007</td>
<td>0.004</td>
<td>38</td>
<td>77</td>
<td>38:77</td>
<td>2</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fwdD/fmdD – formylmethanofuran dehydrogenase subunit D</td>
<td></td>
<td>0.007</td>
<td>0.004</td>
<td>38</td>
<td>76</td>
<td>1:2</td>
<td>2</td>
<td>0.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mcrG – methyl coenzyme M reductase gamma subunit</td>
<td></td>
<td>0.007</td>
<td>0.004</td>
<td>44</td>
<td>84</td>
<td>11:21</td>
<td>2</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hoxH - hydrogen dehydrogenase</td>
<td></td>
<td>0.007</td>
<td>0.005</td>
<td>120</td>
<td>153</td>
<td>40:51</td>
<td>2</td>
<td>0.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mtd – methylenetetrahydromethanopterin dehydrogenase</td>
<td></td>
<td>0.006</td>
<td>0.004</td>
<td>38</td>
<td>76</td>
<td>1:2</td>
<td>2</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cutM/coxM – carbon monoxide dehydrogenase medium subunit</td>
<td></td>
<td>0.006</td>
<td>0.005</td>
<td>145</td>
<td>148</td>
<td>145:148</td>
<td>2</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frhB – coenzyme F420 hydrogenase β- subunit</td>
<td></td>
<td>0.006</td>
<td>0.004</td>
<td>49</td>
<td>80</td>
<td>49:80</td>
<td>2</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>metF – methylenetetrahydrofolate reductase NADPH</td>
<td></td>
<td>0.006</td>
<td>0.005</td>
<td>128</td>
<td>156</td>
<td>32:39</td>
<td>1</td>
<td>0.88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hdfB – heterodisulfide reductase subunit B</td>
<td></td>
<td>0.006</td>
<td>0.004</td>
<td>55</td>
<td>82</td>
<td>55:82</td>
<td>2</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mcrB – methyl coenzyme M reductase β- subunit</td>
<td></td>
<td>0.005</td>
<td>0.003</td>
<td>32</td>
<td>63</td>
<td>32:63</td>
<td>2</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 6: Results of SIMPER analysis. Genes are ranked according to their average contribution to dissimilarity between HFM and LFM. Average abundances, ratio (between averages using the greatest common denominator), relative contribution of taxa and p-value of the permutation test (Probability of getting a larger or equal average contribution in random permutation of the group factor) are also included. A cut-off at a cumulative dissimilarity of 70% was applied.

<table>
<thead>
<tr>
<th>Contrast: HFM – LFM</th>
<th>Average</th>
<th>SD</th>
<th>Avg. HFM</th>
<th>Avg. LFM</th>
<th>Ratio</th>
<th>Relative Contribution (%)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdrA - Heterodisulfide reductase subunit A</td>
<td>0.040</td>
<td>0.016</td>
<td>225</td>
<td>448</td>
<td>225:448</td>
<td>10</td>
<td>0.65</td>
</tr>
<tr>
<td>cutL/coxL - Carbon monoxide dehydrogenase large chain</td>
<td>0.032</td>
<td>0.016</td>
<td>354</td>
<td>573</td>
<td>118:191</td>
<td>8</td>
<td>0.28</td>
</tr>
<tr>
<td>mcrA - Methyl-coenzyme M reductase subunit A</td>
<td>0.028</td>
<td>0.012</td>
<td>126</td>
<td>277</td>
<td>126:277</td>
<td>7</td>
<td>0.25</td>
</tr>
<tr>
<td>coxS - carbon monoxide dehydrogenase small subunit S</td>
<td>0.017</td>
<td>0.005</td>
<td>186</td>
<td>311</td>
<td>186:311</td>
<td>5</td>
<td>0.20</td>
</tr>
<tr>
<td>fwdB/fmdB – formylmethanofuran dehydrogenase subunit B</td>
<td>0.016</td>
<td>0.007</td>
<td>59</td>
<td>161</td>
<td>59:161</td>
<td>4</td>
<td>0.06</td>
</tr>
<tr>
<td>mtrA – tetrahydromethanopterin S methyltransferase subunit A</td>
<td>0.015</td>
<td>0.006</td>
<td>80</td>
<td>143</td>
<td>80:143</td>
<td>3</td>
<td>0.13</td>
</tr>
<tr>
<td>metF – methylenetetrahydrofolate reductase NADPH</td>
<td>0.011</td>
<td>0.004</td>
<td>81</td>
<td>156</td>
<td>27:52</td>
<td>3</td>
<td>0.06</td>
</tr>
<tr>
<td>cooS – carbon monoxide dehydrogenase catalytic subunit S</td>
<td>0.010</td>
<td>0.006</td>
<td>64</td>
<td>125</td>
<td>64:125</td>
<td>3</td>
<td>0.37</td>
</tr>
<tr>
<td>mvhA/hua/vhcA -F420 non reducing hydrogenase subunit A</td>
<td>0.010</td>
<td>0.005</td>
<td>45</td>
<td>103</td>
<td>45:103</td>
<td>2</td>
<td>0.48</td>
</tr>
<tr>
<td>mtrH - tetrahydromethanopterin S methyltransferase subunit</td>
<td>0.009</td>
<td>0.004</td>
<td>42</td>
<td>96</td>
<td>7:16</td>
<td>3</td>
<td>0.09</td>
</tr>
<tr>
<td>frhG – coenzyme F420 hydrogenase gamma subunit G</td>
<td>0.009</td>
<td>0.004</td>
<td>65</td>
<td>113</td>
<td>65:113</td>
<td>2</td>
<td>0.59</td>
</tr>
<tr>
<td>Gene</td>
<td>Protein Description</td>
<td>Log2 Fold Change</td>
<td>P-value</td>
<td>FDR Adjusted</td>
<td>q-value</td>
<td>% Presence</td>
<td>MAF</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------------</td>
<td>---------</td>
<td>--------------</td>
<td>---------</td>
<td>------------</td>
<td>-----</td>
</tr>
<tr>
<td>hoxH</td>
<td>hydrogen dehydrogenase</td>
<td>0.009</td>
<td>0.005</td>
<td>84</td>
<td>153</td>
<td>28:51</td>
<td>2</td>
</tr>
<tr>
<td>mttB</td>
<td>trimethylamine corrinoid protein Co methyltransferase</td>
<td>0.009</td>
<td>0.004</td>
<td>63</td>
<td>126</td>
<td>1:2</td>
<td>3</td>
</tr>
<tr>
<td>mtrF</td>
<td>tetrahydromethanopterin S methyltransferase subunit F</td>
<td>0.008</td>
<td>0.003</td>
<td>25</td>
<td>77</td>
<td>25:77</td>
<td>2</td>
</tr>
<tr>
<td>mtrE</td>
<td>tetrahydromethanopterin S methyltransferase subunit E</td>
<td>0.008</td>
<td>0.004</td>
<td>32</td>
<td>85</td>
<td>32:85</td>
<td>2</td>
</tr>
<tr>
<td>fwdB/fndB</td>
<td>formylmethanofuran dehydrogenase subunit B</td>
<td>0.008</td>
<td>0.004</td>
<td>33</td>
<td>76</td>
<td>33:76</td>
<td>2</td>
</tr>
<tr>
<td>cutM/coxM</td>
<td>carbon monoxide dehydrogenase medium subunit</td>
<td>0.008</td>
<td>0.007</td>
<td>99</td>
<td>148</td>
<td>99:148</td>
<td>2</td>
</tr>
<tr>
<td>mcrG</td>
<td>methyl coenzyme M reductase gamma subunit</td>
<td>0.008</td>
<td>0.003</td>
<td>52</td>
<td>84</td>
<td>13:21</td>
<td>2</td>
</tr>
<tr>
<td>mtd</td>
<td>methylenetetrahydromethanopterin dehydrogenase</td>
<td>0.007</td>
<td>0.004</td>
<td>31</td>
<td>76</td>
<td>31:76</td>
<td>2</td>
</tr>
<tr>
<td>frhB</td>
<td>coenzyme F420 hydrogenase β- subunit</td>
<td>0.007</td>
<td>0.003</td>
<td>35</td>
<td>80</td>
<td>7:16</td>
<td>1</td>
</tr>
<tr>
<td>hdrB</td>
<td>heterodisulfide reductase subunit B</td>
<td>0.006</td>
<td>0.004</td>
<td>37</td>
<td>82</td>
<td>37:82</td>
<td>2</td>
</tr>
</tbody>
</table>
4.0 Discussion:

4.1 Functional potential of the microbial community

The dominant methane production pathway within our samples, as shown by the taxonomy and δ^{13}C signal of emitted CH_{4}, was hydrogenotrophic methanogenesis. However, the presence of the genera acetoclastic *Methanoseta* and *Methanosarcina*, which possess a more diverse genome allowing them to perform hydrogenotrophic, acetoclastic and methylotrophic methanogenesis, suggests that the community holds a metabolic potential to produce CH_{4} under altered environmental conditions. In addition, the presence of type I, II, and Verrucomicrobia Proteobacteria indicates that peatland methanotrophs hold the ability to oxidise CH_{4} via Ribulose monophosphate, Serine or Calvin-Benson-Bassham cycles. Therefore, if temperate peatland environmental conditions which govern the production and consumption of CH_{4} are to change under future climate scenarios, we can expect CH_{4} production and consumption to still occur, but possibly using alternative metabolic pathways than currently observed.

The potential to produce and consume CH_{4} under alternate environmental conditions is in agreement with other metagenomics studies, which concluded that shifts from one dominant functional group to another can occur as the microbial community already holds the metabolic potential to degrade soil organic carbon via different metabolic pathways (Manoharan et al., 2017; Tveit et al., 2013). The rate of such shifts is dependent upon the delivery of necessary products and environmental conditions conducive for methanogenesis. In the absence of acetogenesis and fermentation, the less dominant functional groups (i.e. acetoclastic and methylotrophic methanogens) may still remain dormant, due to the absence of necessary substrates to metabolize.

4.2 Carbon flux characteristics

We observed a high spatial variability in CH_{4} flux, which is consistent with research conducted in other temperate peatlands (Keane et al., 2021; Sun et al., 2013). The same pattern observed in CH_{4} fluxes was also detected in GPP and R_{eco}, but not in NEE. The high productivity, observed as high GPP, may be explained by a higher amount of photosynthetic biomass within HFM, than in MFM and LFM. R_{eco} followed the same pattern as CH_{4} and GPP, with highest observed flux in HFM and lowest in LFM. One potential reason for the high respiration from HFM could be the significantly higher relative abundance of *pmoA*. The *pmoA* gene codes for the first step in methanotrophy, where CH_{4} is reduced to methanol, and finally CO_{2}, which is often used as a proxy for methanotrophy (Franchini et al., 2015; Freitag et al., 2010). The higher abundance of *pmoA* may indicate a higher
rate of methanotrophy, which may help to explain the higher CO$_2$ flux respired by the methanotrophs in HFM. In addition, higher plant productivity causes higher autotrophic respiration, which generally makes up ~50% of R_{ecos}. However, the vegetation may also be supplying more substrates to the microbial community, which in turn is consumed and respired in the form of CO$_2$. Characteristics beyond our control, such as redox potential, oxic status and substrate availability, may have additionally contributed to the variability in CH$_4$ and CO$_2$ fluxes (Bridgham et al., 2013; Ström et al., 2012).

4.3 The relationship between CH$_4$ magnitude and functional genes

When comparing the dissimilarity of taxa and functional genes between flux categories, we discovered small dissimilarities in taxonomy and functional genes. This result indicates that, while variation within carbon fluxes is observed, the use of taxa and functional genes only explains a small amount of the variability and hence the relationship is not statistically significant.

4.3.1 Taxonomic

We found that the microbial community had a higher diversity of methanogens than methanotrophs. This can be the result of the high WTD limiting the habitable area of oxic-anoxic interface. The most abundant methanogen, *Methanoregula*, has been frequently detected in ombrotrophic peatland ecosystems and appears to dominate in sites with high *Eriophorum* spp. (Andersen et al., 2013, Chroňáková et al., 2019, Lin et al., 2014, Preston et al., 2012). The tussock building *E. vaginatum* provides a habitable environment for fermenters and syntrophic bacteria where substrates such as H$_2$ and CO$_2$ for hydrogenotrophic methanogenesis are most likely more available due to the increase in oxygen provided to the peat through aerenchyma tissue of the plant (Chroňáková et al., 2019; Preston et al., 2012).

When comparing our results to other metagenomic approaches, we find a higher diversity of methanogens than previous research. We identified 20 genera of methanogens, while Lin et al. (2012) detected 16 genera of methanogens using a whole metagenomic approach. We observe slightly higher diversity than studies in other ombrotrophic peatland environments, where sequences belonging to the orders *Methanomicrobiales*, *Methanobacteriales*, and *Methanosarcinales* were detected (Galand et al., 2003; Horn et al., 2003b; He et al., 2015). However, it is difficult to conclude whether our results differ from other studies because of biological factors, different site characteristics or the addition of newly sequenced genomes within the databases used between studies.
The composition of the microbial community was dominated by hydrogenotrophic methanogens. The dominant genus, *Methanoregula*, is recognized as an indicative genus to ombrotrophic peatlands (Andersen et al., 2013; Chroňáková et al., 2019; Lin et al., 2014; Preston et al., 2012), and this is further confirmed by our results. This result was expected as methanogenic communities in ombrotrophic bogs differ significantly compared to fen ecosystems (Horn et al., 2003b). However, the presence of acetoclastic and methylotrophic methanogens within our samples indicates a high functional potential of ombrotrophic bogs with possibilities to switch between dominant methanogenic functional groups. Theoretically, if conditions were to shift within the peatland to favor acetoclastic or methylotrophic methanogenesis, the microbial community holds the functional potential to continue producing CH$_4$ with little to no delay in transition period. This conclusion is of course made assuming that the necessary substrates and environmental conditions are met.

When comparing the abundances of methanotrophs between HFM, MFM and LFM, we identified that the top 3 contributors to the cumulative sums, *Methylocella*, *Methylosinus* and *Methylobacter*, did not change significantly in abundance or order of highest contributor. We expected that a higher proportion of type II and Verrucomicrobia methanotrophs would contribute higher to the cumulative sums due to their ability to resist acidic conditions found in bog environments (Hakobyan and Liesack, 2020; Dedysh, 2002, 2009), and this was confirmed by our results. Both type II *Methylocella* and *Methylosinus* are well adapted to the cold and acidic conditions common in northern ombrotrophic peatlands. These physiological traits explain why type II Alphaproteobacteria were dominant over type I Gammaproteobacteria and this is consistent with other research conducted in ombrotrophic bogs (Hakobyan and Liesack, 2020; Chen et al., 2008; Dedysh, 2002, 2009). However, the presence of thermophilic and halophilic Verrucomicrobia and Gammaproteobacteria methanotrophs, while lower in abundance, were also detected in each category. This indicates a tolerance to the acid and cold conditions experienced within northern ombrotrophic peatlands. These results, similar to those observed in the methanogen community, indicate that the methanotroph community hold the ability to continue to oxidise CH$_4$ under alternate environmental conditions.

4.3.2 Functional genes

The functional gene composition of methanogens and methanotrophs does not hold a strong relationship to the magnitude of CH$_4$ flux, contrary to results found by Zhang et al. (2019) were the authors observed significant correlation between mcrA and CH$_4$ flux. However, Zhang et al. (2019) only targeted mcrA and pmoA when analysing their results, while our approach used a wider diversity of methanogenesis and methanotrophy related genes, which may have contributed to the observed difference. In our comparison, we observed small variations...
The NMDS analysis agreed with the PERMANOVA and displayed overlap between samples with a distinct lack of cluster separation. This result indicates that the composition and relative abundance of functional genes has little variation between HFM, MFM and LFM.

The top three genes that contributed the most to the dissimilarities between HFM, MFM and LFM were \(mcrA \), \(hdrA \) and \(coxL \). Both \(mcrA \) and \(hdrA \) genes act as key enzymes in the biological formation of \(\text{CH}_4 \) and these genes are shared across hydrogenotrophic, acetoclastic and methylotrophic methanogens. The \(mcrA \) catalyzes the conversion of methyl-coenzyme M and coenzyme B into \(\text{CH}_4 \) and the heterodisulfide of coenzyme M (HS-CoM) and coenzyme B (HS-CoB) (Scheller et al., 2010; Thauer, 2019). Subsequently, CoM and CoB must be reduced to regenerate the CoM-SH and CoB-SH thiols which are used as electron donors by \(mcrA \), which is then catalyzed by \(hdrA \) (Scheller et al., 2010; Buan et al., 2011). Therefore, a co-dependence between \(mcrA \) and \(hdrA \) exists and this is essential for the biological formation of \(\text{CH}_4 \). Due to the close nature of the two genes, targeting transcripts of \(hdrA \) may be important in future research.

We assumed that the abundance of \(mcrA \) genes would be higher in HFM when compared to MFM and LFM in accordance with previous research (Franchini et al., 2015; Liebner et al., 2012). However, the opposite was discovered with the average relative abundances of \(mcrA \) lower in HFM when compared to MFM and LFM. This result is surprising, as previous research has found a significant relationship between key genes such as the \(mcrA \) and the magnitude of \(\text{CH}_4 \) flux (Freitag et al., 2010; Zhang et al., 2019). We believe that the analysis of \(mcrA \) transcripts, rather than gene abundance, would yield a stronger relationship to the \(\text{CH}_4 \) flux. While a close relationship of \(mcrA \) gene abundance to transcripts was observed by Franchini et al. (2015), gene abundance may not be the most effective in explaining small differences between flux categories. Rather, the use of gene transcripts may be a more appropriate method (Franchini et al., 2015; Freitag et al., 2010).

In addition to \(mcrA \) and \(hdrA \), the presence of carbon monoxide (CO) dehydrogenase \((\text{cooS}, coxL, coxM, coxS, cutL, cutM) \) was of particular interest. These genes code for CO dehydrogenase and are involved in the Acetyl-CoA pathway, which is not directly included in methanogenesis. Comparatively little is known today of the ecology, physiology, and biochemistry of CO utilization by methanogens (Ferry, 2010; Fischer et al., 1931). Only a few species are reported to metabolize CO, including \textit{Methanosarcina}, which contributed 5% to 6% of the cumulative sums within our comparisons. However, according to Ferry (2010) it is not yet known if CO is a viable energy source for methanogens in peatland environments. Furthermore, the presence of six genes that code for
CO dehydrogenase within the top 70% of cumulative sums indicates that if CO is a viable substrate, a high functional potential could exist within peatland environments to use this lesser known substrate during methanogenesis.

It is important to note that carbon monoxide dehydrogenase and *hdrA* genes are not strictly utilized by methanogens. A wide variety of microbes, including *Acetogens*, sulfur oxidizing *Archaea* and *Bacteria*, utilize the above-mentioned genes (Ernst et al., 2021; Ferry, 2010; Maupin-Furlow and Ferry, 1996). Therefore, the distribution of how many genes are strictly related to methanogenesis can be difficult to determine.

4.4 The relationship between microbial diversity and the magnitude of CH$_4$ flux

The Shannon α-diversity of 2.38 indicates a low diversity. An et al. (2019), found that peatland environments hold an average Shannon α-diversity index of 6.8. However, the lower diversity observed in our is most likely due to the targeted approach, which only enriches taxa related to CH$_4$ metabolism. The targeted approach, combined with the filtering of taxa that exclude other microbial groups, which if included within the analysis, would better represent peatland environments.

Low dissimilarity was observed between the mesocosms when calculating the β-diversity. HFM held the highest dissimilarity indicating that as the CH$_4$ flux increases, the abundance and variability of microbes increase. As the magnitude of CH$_4$ flux reduced, the abundance and variability of methanogens and methanotrophs decreased. This trend indicates that β-diversity may act as a proxy for CH$_4$ emissions, contrary to results found by Zhang et al. (2019) who concluded that abundance, rather than composition mainly affects CH$_4$ emissions. However, due to the low replication in HFM and LFM, further research is needed to make this conclusion.

4.5 δ13C of emitted CH$_4$ and proportion of taxa

The δ13C analysis and presence of multiple hydrogenotrophic methanogens indicated that the dominant metabolic pathway observed within the mesocosms was hydrogenotrophic methanogenesis. All flux categories returned the δ13C signal within the hydrogenotrophic range (δ13C = −110‰ to −60‰) (Chanton, 2005; Whiticar, 1999). This is not a surprising result, as there appears to be a pattern in northern and temperate wetlands of increasing hydrogenotrophic methanogenesis going from minerotrophic peats to ombrotrophic acidic bogs, similar to conditions observed with our site (Galand et al., 2010; Holmes et al., 2015; Horn et al., 2003a). Furthermore, the
positive correlation between $\delta^{13}\text{C-CH}_4$ to CH$_4$ emission rate indicates the CH$_4$ emission to be mostly controlled by the trophic status for methanogenesis, rather than methanotrophy (Hornibrook, 2009).

5.0 Conclusion

In this paper, we addressed differences in the composition of taxonomy and functional genes of CH$_4$ producing and consuming microbes between three flux categories: HFM, MFM and LFM. In addition, we determined that β-diversity increases in HFM when compared to the MFM and LFM categories, and we observed that the $\delta^{13}\text{C}$ of emitted CH$_4$ matches the dominant taxonomic functional group.

We observed small differences in the composition of both taxa and functional genes between flux categories. This indicates that, although we observe high spatial variability in CH$_4$ fluxes, we cannot explain this variability by taxonomic composition and functional genes alone. Interestingly, we observed that β-diversity was higher in HFM when compared to MFM and LFM – indicating that diversity may be a plausible proxy for CH$_4$ fluxes.

The dominant methanogen, *Methanoregula*, made up over 50% of the community composition. This, in combination with the remaining hydrogenotrophic methanogens observed within the community composition, matched the observed $\delta^{13}\text{C}$ isotopic signature of emitted CH$_4$. This indicates that the dominant metabolic pathway in the Fäjemyr peatland is hydrogenotrophic methanogenesis. However, the presence of acetoclastic and methylotrophic taxa plus type I, II and *Verrucomicrobia* methanotrophs indicates that the microbial community holds the ability to produce and consume CH$_4$ via alternate metabolic pathways. This is important in terms of future climate scenarios where peatlands can expect altered nutrient status, hydrology or peat chemistry. If this happens, we can expect that there will be methanogen and methanotrophs present to continue to produce and consume CH$_4$ due to the potential for alternate metabolic pathways.

Our results show that genetic potential is of minor importance in explaining small scale variability of CH$_4$ fluxes observed in peatland environments. Additional proxies to understand this variability may be found in gene expression studies where activity levels are better represented rather than genetic potential. With the modeling community working continuously to build robust predictions of peatland CH$_4$ emissions (Chadburn et al., 2020), the need for inclusion of genomic data may be considered. With this knowledge, the combination of traditional CH$_4$ drivers, metagenomics and metatranscriptomic studies could increase our understanding of how and at what rate the key CH$_4$ producing and consuming microorganisms’ function in peatland ecosystems. This information
on microbial diversity is necessary on both temporal and spatial scales for the development of more robust models to accurately predict upcoming emissions under future climate scenarios.

Data availability

The annotated metagenomes are available at the MG-RAST server under the project ID: 91052. In addition, all raw sequences will be made public via NCBI Bio Project ID: PRJNA691743 upon acceptance of this manuscript.

Code availability

Code used in the analysis can be found at https://github.com/joel332/Analysis-of-captured-metagenomic-data/tree/main.

Author contributions

JW, LS and DA planned the experiment; JW, LS, JR performed the measurements; JW and VL analyzed the data, JW wrote the draft; JW, LS, JR, VL an DA reviewed and edited the manuscript.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgments

We would like to thank Pia and the staff from the Centre for Genomic Research, Ulrika from Roche Diagnostics Scandinavia, Frans-Jan Parmentier, colleagues, friends and family for the valuable discussions and Oskar Ström for laboratory assistance. The data handling was enabled by resources in project (SNIC 2019/8-365) provided by the Swedish National Infrastructure for Computing (SNIC) at UPPMAX, partially funded by the Swedish Research Council through grant agreement no. 2018-05973.

Financial support

We would like to thank the Swedish research council for environment, agricultural sciences and spatial planning (FORMAS - 997-610) and the Crafoord Institute (20200738) for financial support.

References

https://doi.org/10.5194/bg-2021-353
Preprint. Discussion started: 12 January 2022
© Author(s) 2022. CC BY 4.0 License.

Thauer, R. K.: Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes, Biochemistry, 58, 5198-5220, 10.1021/acs.biochem.9b01614, 2019.

