
Sun-Induced Fluorescence as a Proxy of Primary Productivity
across Vegetation Types and Climates
Mark Pickering 1, Alessandro Cescatti 2, and Gregory Duveiller 2,3

1JRC consultant, Ispra, Italy
2European Commission, Joint Research Centre, Ispra, Italy
3Max Planck Institute for Biogeochemistry, Jena, Germany

Correspondence: Mark.Pickering1@ext.ec.europa.eu, Alessandro.Cescatti@ec.europa.eu, GDuveiller@bgc-jena.mpg.de

Abstract.

Sun-induced chlorophyll fluorescence (SIF) retrieved from satellites has shown potential as a remote sensing proxy for gross

primary productivity (GPP). However, to fully exploit the potential of this signal, the robustness and stability of the SIF-GPP

relationship across vegetation types and climates must be assessed. For this purpose, current studies have been limited by the

availability of SIF datasets with sufficient spatial resolution to disentangle the signal between different vegetation cover types.5

To overcome this limitation the analysis uses GOME-2 (Global Ozone Monitoring Experiment 2) SIF retrievals, downscaled

to a resolution of 0.05◦ (∼ 5km) to explore the relationship between SIF and FLUXCOM GPP (GPPFX), a data-driven dataset

of primary productivity obtained by upscaling flux-tower measurements. The high resolution of the downscaled SIF (SIFDS)

dataset allows the relationships to be broken down by vegetation cover for separate climate zones, thus enabling a confrontation

between GPP and SIF at fine granularity. This analysis first investigates the spatial and temporal relationships between FLUX-10

COM GPP and downscaled SIF at a global scale. A reasonably strong linear relationship is generally observed between SIFDS

and GPPFX in all vegetation categories, and an analysis of covariance (ANCOVA) shows that the spatial response is similar

between certain plant traits, with some distinction between herbaceous and woody vegetation, and notable exceptions, such as

equatorial broadleaf forests. Geographical regions of non-linearity suggest where SIFDS could potentially provide information

about ecosystem dynamics that are not represented in the FLUXCOM GPP dataset. With the demonstration of downscaled15

SIF as a proxy for GPP, the response of SIFDS to short-term fluctuations in several meteorological variables is analysed and

the most significant short-term environmental driving and limiting meteorological variables determined. Vegetation groupings

of similar SIF-meteo response reinforce the vegetation categorisations suggested by the ANCOVA analysis. This comparative

exploration of two of the most recent products in carbon productivity estimation shows the value in downscaling SIF data, pro-

vides an independent probe of the FLUXCOM GPP model, enhances our understanding of the global SIF-GPP spatio-temporal20

relationship with a particular focus on the role of vegetation cover, and explores the similarity of the SIF and GPP responses to

meteorological fluctuations. Additional analyses with alternative SIF and GPP datasets support these conclusions.
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1 Introduction

Accurately quantifying the gross primary productivity (GPP) of vegetation systems across the globe is vital for modelling the

future trajectories of atmospheric carbon fluxes and making projections regarding the Earth’s climate. Indeed one of the largest25

sources of uncertainty in the carbon cycle is represented by the interaction between atmospheric carbon dioxide, climate

and terrestrial ecosystem dynamics (Friedlingstein et al., 2019; Anav et al., 2015). Photosynthesis drives this interaction,

with vegetation removing carbon from the atmosphere and investing it in growth, cell maintenance and respiration. In turn,

photosynthesis is regulated by environmental conditions, and, as climates change, both the mean weather and its variability

will change, impacting the productivity of vegetation systems (Seneviratne et al., 2012).30

It is not possible to directly measure GPP at a global level, however many techniques have been developed to derive pro-

ductivity at different scales using a range of data-driven or model-based approaches.Light use efficiency (LUE) models, for

example, estimate GPP as a function of the absorbed photosynthetically active radiation (APAR), the efficiency of utilising

light in photosynthesis εLUE and the effect of climatic constraints, such as temperature (T) and precipitation (P):

GPP = εLUE x APAR x f(T) x f(P) (1)35

(Ryu et al., 2019; Running et al., 2004; Zhang et al., 2017; Lee et al., 2013; Pei et al., 2022).

A relevant assessment based on a process-oriented ensemble, known as TRENDY, provides a model-based estimation of

global GPP ranging between 83− 172 PgC yr−1, with the wide range of values highly dependent on the model assumptions.

Eddy covariance sites, or flux towers, provide the most accurate ways of measuring carbon fluxes at ecosystem scale, through

the systematic observation of the net ecosystem exchange of CO2. These measurements have been standardised and made40

available thanks to the FLUXNET initiative that is linking different continental networks of eddy covariance towers (Baldocchi

et al., 2001). The FLUXCOM project has upscaled FLUXNET data to a global estimate of GPP using machine learning

methods to integrate site-level observations, satellite remote sensing information, and meteorological data (Tramontana et al.,

2016). Whilst FLUXCOM is a large step forward in estimating GPP at a global level, it is not without its limitations and

uncertainties. In fact, the various FLUXCOM GPP estimates use an ensemble of different machine learning methods and data45

inputs, which result in a broad spread of mean global GPP estimates among the ensemble members between 108− 130 PgC

yr−1. A comparative study between FLUXCOM and TRENDY finds that for 70% of the globe at least the 9 out of 16 TRENDY

models fall outside the FLUXCOM range (Jung et al., 2020).

In recent years, sun-induced chlorophyll-a fluorescence (SIF), retrieved from space-based instruments, has grown in use as a

remotely sensed proxy for GPP, in addition to more traditional remote proxies such as spectral vegetation indices (Frankenberg50

et al., 2011a; Joiner et al., 2011; Porcar-Castell et al., 2014). This fluorescent light - resulting from the re-emission by leaves of

incident photons at lower energy - is considered to be the mechanism developed by plants to respond near-instantaneously to

rapid perturbations in the environmental conditions of light and temperature, with the SIF yield also dependent on biophysical

conditions such as the concentration of the CO2-fixing enzyme Rubisco and drought stress (Frankenberg and Berry, 2017; Ryu

et al., 2019). The SIF flux can similarly be expressed in terms of the absorbed incident radiation and the efficiency with which55
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this radiation is converted into �uorescent radiation,� F:

SIF = � F x � escx APAR (2)

where the term,� esc, accounts for the ef�ciency of photons to escape re-absorption and scattering by other leaves in the canopy

(Lee et al., 2013). Rearranging the equations for instantaneous SIF and GPP �uxes:

GPP =
� LUE

� F x � esc
x SIF (3)60

we see that under conditions in which the various conversion ef�ciencies remain constant, there is a linear relationship between

SIF and GPP. Whilst at small spatio-temporal timescales, where leaf chemistry is particularly sensitive to changes in absorbed

photosynthetically active radiation and the fraction of �uoresced photons escaping from the canopy, there is evidence for

the divergence of SIF and GPP from linearity, it appears that the broader canopy-scale relationship smooths over these non-

linearities (Magney et al., 2020). Indeed, there is a substantial body of evidence that shows that SIF, measured from space-based65

instruments, is positively correlated with leaf photochemistry, often exhibiting a generally linear relationship in both space and

time, and across spatio-temporal scales (Zhang et al., 2016; Sun et al., 2018; Magney et al., 2020). However, this SIF-GPP

relationship may exhibit some dependency on the vegetation type, for example through the canopy structure that is affecting

� esc, as well as the leaf photochemical properties and external conditions, for example climate drivers. Due to the relatively fast

response of SIF and close link to leaf photochemistry, compared to other remote indicators of greenness, such as NDVI, SIF70

has the potential to be an indicator of environmental stress for the plant photosystem (Walther et al., 2019; Jiao et al., 2019).

There is currently no orbiting satellite designed explicitly to directly measure SIF from space. The �rst that will do so is

the exploratory mission FLEX, scheduled for launch in the coming years (Coppo et al., 2017). In the meanwhile, SIF has

been retrieved from other instruments designed for measuring the atmosphere greenhouse gas concentration, namely GOSAT,

SCIAMACHY, the Global Ozone Monitoring Experiment-2 (GOME-2), the Orbiting Carbon Observatory 2 (OCO-2) and75

the TROPO-spheric Monitoring Instrument (TROPOMI) (Guanter et al., 2012; Joiner et al., 2012, 2013; Sun et al., 2018;

Köhler et al., 2018b; Guanter et al., 2021; Doughty et al., 2019). However, several issues hamper the use of these data for the

quanti�cation of terrestrial GPP. First, some instruments (GOSAT, OCO-2) are sampling the surface, leaving wide gaps between

different satellite overpasses. Second, the time series of observations is shorter than desired for carbon science, especially for

the more recent instruments (e.g. OCO-2 and TROPOMI). Third, most have a spatial resolution that is too coarse to isolate80

homogeneous vegetation patches of distinct land cover types.

Efforts have been made to improve the resolution and coverage of SIF datasets by combining SIF data with other high

resolution remote sensing data (Gentine and Alemohammad, 2018; Li and Xiao, 2019; Zhang et al., 2018a; Yu et al., 2018;

Gensheimer et al., 2022). These approaches generally rely on statistical inference, through machine learning methods. A down-

scaling methodology, based on a light use ef�ciency model, combines the GOME-2 data with several explanatory biophysical85

variables in a process oriented scheme. The resulting dataset has a spatial resolution of0:05� (5km) and is therefore at a scale

relevant to studies of land cover at global scale (Duveiller et al., 2020; Duveiller and Cescatti, 2016). This model ensures that

the downscaling method is grounded in theory whilst also preserving the GOME-2 signal. Downscaling the SIF in this way
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results in a high resolution dataset with a reasonably long archive, improving accuracy in the exploration of the SIF relationship

with vegetation cover.90

If downscaled sun-induced �uorescence is to be used as a proxy for ecosystem productivity it is important to understand the

spatial and temporal relationships between SIF and the current state-of-the-art GPP datasets at a global scale, and in particular

understand how they deviate for differing vegetation covers and climate zones. To this end, this paper serves several purposes.

Firstly, the analysis provides a thorough test of the utility of the downscaling method to reproduce known SIF-GPP patterns,

in particular through the spatio-temporal correlation between downscaled SIF and FLUXCOM GPP. Exploring variations in95

the FLUXCOM GPP with an independent SIF dataset, often likewise regarded as a proxy to GPP, helps to probe its strengths

and limitations through areas of coherence and divergence. Similarly, comparisons with alternative SIF and GPP products

such as TROPOMI SIF (Guanter et al., 2021) and FluxSat GPP (Joiner and Yoshida, 2021) are provided in an appendix, in

order to ensure the consistency and robustness of the conclusions. Second, as a global, high-resolution investigation into the

SIF-GPP relationship, the analysis allows us to learn more about the differing spatial linear relationship between SIF and GPP100

and their variation in nature with a particular focus on similarities and differences between vegetation covers. This allows the

determination of which vegetation covers have a similar SIF-GPP response, and for which vegetation covers care should be

taken in the use of SIF as a proxy for GPP. Finally, having established the spatio-temporal relationship between the downscaled

SIF and the FLUXCOM GPP, the paper investigates the response of downscaled SIF to �uctuations in several meteorological

factors, in the process determining the most signi�cant driving and limiting meteorological factors in monthly SIF �uctuations.105

By utilising the high resolution of the downscaled SIF, it is possible to understand with improved con�dence the extent to which

vegetation cover plays a role in these relationships using dedicated techniques (e.g. Álvaro Moreno-Martínez et al., 2018).

2 Data

2.1 Vegetation cover data

The data relating to the vegetation cover of each pixel is derived from the Copernicus Climate Change Service (C3S) via110

the climate data store platform, with the data created by the ESA CCI program (CCI, 2017; Defourny, 2019). The land cover

classes are converted to vegetation covers, as used by dynamic global vegetation models, whilst aggregating the data to a spatial

resolution of0:05� . The following vegetation covers are considered: grassland = `GRA', crops = `CRO', evergreen broad-leaf

forest = `EBF', deciduous broad-leaf forest = `DBF', evergreen needle-leaf forest = `ENF', and deciduous needle-leaf forest =

`DNF'. To ensure a high homogeneity in the selected data, the dominant vegetation type must cover at least75%of a pixel and115

with no change in the majority land cover classi�cation over the considered years, 2007-2014.

2.2 Climate classi�cation

The climate zone classi�cation used in the analysis follows the Köppen-Geiger climate classi�cation scheme (Kottek et al.,

2006; Rubel and Kottek, 2010; Rubel et al., 2017). The classi�cation maps are representative of the period 1986-2010 and are
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available at a spatial resolution of0:0833� which are extrapolated via binomial interpolation to grid cells (referred to hereon as120

pixels) of0:05� .

Four broad categories are considered from this scheme: equatorial, arid, temperate and continental. Equatorial contains

`Group A' climate regions: areas where each month is above18� C and with high precipitation. Arid regions are `Group B'

climates: areas de�ned by low precipitation. Temperate regions are `Group C' climates: with the coldest month averaging

0� 18� C and at least one month averaging more than10� C. Finally, continental regions are `Group D' climates: at least one125

month must average below0� C and at least one month above10� C. Figure 1 shows the spatial distribution of the global climate

groupings and the dominant vegetation cover of the pixels considered in the analysis.

Figure 1.The dominant Köppen–Geiger climate zone and vegetation cover corresponding to each of the pixels passing the full set of selection

requirements.

2.3 Growing season data

The Vegetation Index and Phenology (VIP) global dataset from NASA's Making Earth System Data Records for Use in Re-

search Environments (MEaSUREs) program is used to de�ne the growing seasons at each grid cell for each year (Didan, 2016).130

The datasets are created using surface re�ectance data from the MODIS instrument. This data provides a consistent NDVI and

EVI measurement from which to characterise the vegetation phenology. The Vegetation Index and Phenology (VIP) Phenology

NDVI (VIPPHEN) v004 dataset has a global spatial resolution of0:05� and provides annual metrics on the start and length of

the growing season for each pixel for the years 2000-2014.

Whilst correlation between SIF and GPP has been observed across all seasons, only the relationship between downscaled135

SIF and FLUXCOM GPP during the growing season of each pixel is considered in the present study (Magney et al., 2019;

Bowling et al., 2018). This removes the effect of winter periods, when there is little primary productivity and when the retrieval

of SIF can be problematic at northern latitudes. Off-season, the relatively weak SIF signal and the quality requirements in the

downscaling process result in a dataset with gaps. Including this data in the analysis would likely result in distorted conclusions
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regarding average downscaled SIF signals over the time period. Additionally, only the �rst growing season of each year is140

considered in regions with multiple growing seasons.

2.4 SIF data

Two SIF datasets are considered in this analysis, produced via the downscaling method detailed in references Duveiller and

Cescatti (2016) and Duveiller et al. (2020). The two retrievals have a spectral wavelength around 740nm, and differ in the

retrieval method for obtaining the input data from the GOME-2 satellite, the �rst product developed by Joiner et al. (2013), is145

referred to as SIFJJ in this document, whilst the second, developed by Köhler et al. (2015), is referred to as SIFPK. A correction

factor to convert the instantaneous SIF to the daily average is applied to both datasets to ensure comparability with estimates

at different acquisition times (Frankenberg et al., 2011b; Köhler et al., 2018a). The downscaling method calibrates these input

retrievals via a light use ef�ciency model using high resolution biophysical variables from the MODIS (MOderate Resolution

Imaging Spectroradiometer) instrument of the Terra and Aqua Satellites. The optimal combination of variables is identi�ed in150

combination with OCO-2 data, and the downscaled dataset is found to have a high level high spatio-temporal agreement with

observations from the TROPOMI mission.

The resulting downscaled SIFPK and SIFJJ products have a spatial resolution of0:05� and a temporal separation of 8 days

(with measurements averaged over a sliding window of 16 days). The datasets currently cover the timespan 2007-2017, with

46 measurements each year (with the exception of the 2007 SIF dataset, containing 44). Duveiller et al. (2020) shows that155

the downscaled SIFJJ dataset is found to have a slightly higher level of agreement with the OCO-2 validation data than the

downscaled SIFPK dataset and so is primarily used in this paper, and is henceforth referred to as `downscaled SIF' (or SIFDS).

The higher agreement likely results from the spatial smoothing step of the downscaling process that bene�ted the noisier SIFJJ

more than the SIFPK.

To ensure high quality in the data, and compatibility with the other datasets, several requirements are placed on each pixel160

in each year, further to the requirements detailed in Duveiller et al. (2020), Köhler et al. (2015), and Joiner et al. (2013).

There must be at least 10 instances of valid SIFDS observations of the pixel within the growing season with fewer than40%

of the expected number of SIFDS missing or invalid. There must also be least six years of valid measurements satisfying the

requirements between 2007-2014. The selections ensure that the SIF signal, which is relatively weak compared to background

noise, and affected by cloud coverage, is representative of the growing season as a whole as well as excluding regions with short165

growing seasons that may be more susceptible to �uctuations from unusual weather conditions. Requiring multiple years of

data passing the quality requirements enables the investigation of temporal trends, whilst also ensuring that the measurements

are representative of each pixel.

In order to reduce spatial auto-correlation and the double-counting of interpolated pixels in other datasets, pixels considered

in the analysis must be separated by a two-pixel gap in all directions (Ploton et al., 2020). Each pixel is matched with the dom-170

inant vegetation cover and climate classi�cation, as well as FLUXCOM GPP and meteorological data, passing the respective

requirements. Figure 2 shows the mean downscaled SIF for the growing season of each pixel passing the analysis selection

requirements, averaged over the period 2007-2014.
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