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Abstract.

Sun-induced chlorophyll fluorescence (SIF) retrieved from satellites has shown potential as a remote sensing proxy for gross

primary productivity (GPP). However, to fully exploit the potential of this signal, the robustness and stability of the SIF-GPP

relationship across vegetation types and climates must be assessed. For this purpose, current studies have been limited by the

availability of SIF datasets with sufficient spatial resolution to disentangle the signal between different vegetation cover types.5

To overcome this limitation the analysis uses GOME-2 (Global Ozone Monitoring Experiment 2) SIF retrievals, downscaled

to a resolution of 0.05◦ (∼ 5km) to explore the relationship between SIF and FLUXCOM GPP (GPPFX), a data-driven dataset

of primary productivity obtained by upscaling flux-tower measurements. The high resolution of the downscaled SIF (SIFDS)

dataset allows the relationships to be broken down by vegetation cover for separate climate zones, thus enabling a confrontation

between GPP and SIF at fine granularity. This analysis first investigates the spatial and temporal relationships between FLUX-10

COM GPP and downscaled SIF at a global scale. A reasonably strong linear relationship is generally observed between SIFDS

and GPPFX in all vegetation categories, and an analysis of covariance (ANCOVA) shows that the spatial response is similar

between certain plant traits, with some distinction between herbaceous and woody vegetation, and notable exceptions, such as

equatorial broadleaf forests. Geographical regions of non-linearity suggest where SIFDS could potentially provide information

about ecosystem dynamics that are not represented in the FLUXCOM GPP dataset. With the demonstration of downscaled15

SIF as a proxy for GPP, the response of SIFDS to short-term fluctuations in several meteorological variables is analysed and

the most significant short-term environmental driving and limiting meteorological variables determined. Vegetation groupings

of similar SIF-meteo response reinforce the vegetation categorisations suggested by the ANCOVA analysis. This comparative

exploration of two of the most recent products in carbon productivity estimation shows the value in downscaling SIF data, pro-

vides an independent probe of the FLUXCOM GPP model, enhances our understanding of the global SIF-GPP spatio-temporal20

relationship with a particular focus on the role of vegetation cover, and explores the similarity of the SIF and GPP responses to

meteorological fluctuations. Additional analyses with alternative SIF and GPP datasets support these conclusions.
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1 Introduction

Accurately quantifying the gross primary productivity (GPP) of vegetation systems across the globe is vital for modelling the

future trajectories of atmospheric carbon fluxes and making projections regarding the Earth’s climate. Indeed one of the largest25

sources of uncertainty in the carbon cycle is represented by the interaction between atmospheric carbon dioxide, climate

and terrestrial ecosystem dynamics (Friedlingstein et al., 2019; Anav et al., 2015). Photosynthesis drives this interaction,

with vegetation removing carbon from the atmosphere and investing it in growth, cell maintenance and respiration. In turn,

photosynthesis is regulated by environmental conditions, and, as climates change, both the mean weather and its variability

will change, impacting the productivity of vegetation systems (Seneviratne et al., 2012).30

It is not possible to directly measure GPP at a global level, however many techniques have been developed to derive pro-

ductivity at different scales using a range of data-driven or model-based approaches.Light use efficiency (LUE) models, for

example, estimate GPP as a function of the absorbed photosynthetically active radiation (APAR), the efficiency of utilising

light in photosynthesis εLUE and the effect of climatic constraints, such as temperature (T) and precipitation (P):

GPP = εLUE x APAR x f(T) x f(P) (1)35

(Ryu et al., 2019; Running et al., 2004; Zhang et al., 2017; Lee et al., 2013; Pei et al., 2022).

A relevant assessment based on a process-oriented ensemble, known as TRENDY, provides a model-based estimation of

global GPP ranging between 83− 172 PgC yr−1, with the wide range of values highly dependent on the model assumptions.

Eddy covariance sites, or flux towers, provide the most accurate ways of measuring carbon fluxes at ecosystem scale, through

the systematic observation of the net ecosystem exchange of CO2. These measurements have been standardised and made40

available thanks to the FLUXNET initiative that is linking different continental networks of eddy covariance towers (Baldocchi

et al., 2001). The FLUXCOM project has upscaled FLUXNET data to a global estimate of GPP using machine learning

methods to integrate site-level observations, satellite remote sensing information, and meteorological data (Tramontana et al.,

2016). Whilst FLUXCOM is a large step forward in estimating GPP at a global level, it is not without its limitations and

uncertainties. In fact, the various FLUXCOM GPP estimates use an ensemble of different machine learning methods and data45

inputs, which result in a broad spread of mean global GPP estimates among the ensemble members between 108− 130 PgC

yr−1. A comparative study between FLUXCOM and TRENDY finds that for 70% of the globe at least the 9 out of 16 TRENDY

models fall outside the FLUXCOM range (Jung et al., 2020).

In recent years, sun-induced chlorophyll-a fluorescence (SIF), retrieved from space-based instruments, has grown in use as a

remotely sensed proxy for GPP, in addition to more traditional remote proxies such as spectral vegetation indices (Frankenberg50

et al., 2011a; Joiner et al., 2011; Porcar-Castell et al., 2014). This fluorescent light - resulting from the re-emission by leaves of

incident photons at lower energy - is considered to be the mechanism developed by plants to respond near-instantaneously to

rapid perturbations in the environmental conditions of light and temperature, with the SIF yield also dependent on biophysical

conditions such as the concentration of the CO2-fixing enzyme Rubisco and drought stress (Frankenberg and Berry, 2017; Ryu

et al., 2019). The SIF flux can similarly be expressed in terms of the absorbed incident radiation and the efficiency with which55
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this radiation is converted into fluorescent radiation, εF:

SIF = εF x εesc x APAR (2)

where the term, εesc, accounts for the efficiency of photons to escape re-absorption and scattering by other leaves in the canopy

(Lee et al., 2013). Rearranging the equations for instantaneous SIF and GPP fluxes:

GPP =
εLUE

εF x εesc
x SIF (3)60

we see that under conditions in which the various conversion efficiencies remain constant, there is a linear relationship between

SIF and GPP. Whilst at small spatio-temporal timescales, where leaf chemistry is particularly sensitive to changes in absorbed

photosynthetically active radiation and the fraction of fluoresced photons escaping from the canopy, there is evidence for

the divergence of SIF and GPP from linearity, it appears that the broader canopy-scale relationship smooths over these non-

linearities (Magney et al., 2020). Indeed, there is a substantial body of evidence that shows that SIF, measured from space-based65

instruments, is positively correlated with leaf photochemistry, often exhibiting a generally linear relationship in both space and

time, and across spatio-temporal scales (Zhang et al., 2016; Sun et al., 2018; Magney et al., 2020). However, this SIF-GPP

relationship may exhibit some dependency on the vegetation type, for example through the canopy structure that is affecting

εesc, as well as the leaf photochemical properties and external conditions, for example climate drivers. Due to the relatively fast

response of SIF and close link to leaf photochemistry, compared to other remote indicators of greenness, such as NDVI, SIF70

has the potential to be an indicator of environmental stress for the plant photosystem (Walther et al., 2019; Jiao et al., 2019).

There is currently no orbiting satellite designed explicitly to directly measure SIF from space. The first that will do so is

the exploratory mission FLEX, scheduled for launch in the coming years (Coppo et al., 2017). In the meanwhile, SIF has

been retrieved from other instruments designed for measuring the atmosphere greenhouse gas concentration, namely GOSAT,

SCIAMACHY, the Global Ozone Monitoring Experiment-2 (GOME-2), the Orbiting Carbon Observatory 2 (OCO-2) and75

the TROPO-spheric Monitoring Instrument (TROPOMI) (Guanter et al., 2012; Joiner et al., 2012, 2013; Sun et al., 2018;

Köhler et al., 2018b; Guanter et al., 2021; Doughty et al., 2019). However, several issues hamper the use of these data for the

quantification of terrestrial GPP. First, some instruments (GOSAT, OCO-2) are sampling the surface, leaving wide gaps between

different satellite overpasses. Second, the time series of observations is shorter than desired for carbon science, especially for

the more recent instruments (e.g. OCO-2 and TROPOMI). Third, most have a spatial resolution that is too coarse to isolate80

homogeneous vegetation patches of distinct land cover types.

Efforts have been made to improve the resolution and coverage of SIF datasets by combining SIF data with other high

resolution remote sensing data (Gentine and Alemohammad, 2018; Li and Xiao, 2019; Zhang et al., 2018a; Yu et al., 2018;

Gensheimer et al., 2022). These approaches generally rely on statistical inference, through machine learning methods. A down-

scaling methodology, based on a light use efficiency model, combines the GOME-2 data with several explanatory biophysical85

variables in a process oriented scheme. The resulting dataset has a spatial resolution of 0.05◦ (5km) and is therefore at a scale

relevant to studies of land cover at global scale (Duveiller et al., 2020; Duveiller and Cescatti, 2016). This model ensures that

the downscaling method is grounded in theory whilst also preserving the GOME-2 signal. Downscaling the SIF in this way
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results in a high resolution dataset with a reasonably long archive, improving accuracy in the exploration of the SIF relationship

with vegetation cover.90

If downscaled sun-induced fluorescence is to be used as a proxy for ecosystem productivity it is important to understand the

spatial and temporal relationships between SIF and the current state-of-the-art GPP datasets at a global scale, and in particular

understand how they deviate for differing vegetation covers and climate zones. To this end, this paper serves several purposes.

Firstly, the analysis provides a thorough test of the utility of the downscaling method to reproduce known SIF-GPP patterns,

in particular through the spatio-temporal correlation between downscaled SIF and FLUXCOM GPP. Exploring variations in95

the FLUXCOM GPP with an independent SIF dataset, often likewise regarded as a proxy to GPP, helps to probe its strengths

and limitations through areas of coherence and divergence. Similarly, comparisons with alternative SIF and GPP products

such as TROPOMI SIF (Guanter et al., 2021) and FluxSat GPP (Joiner and Yoshida, 2021) are provided in an appendix, in

order to ensure the consistency and robustness of the conclusions. Second, as a global, high-resolution investigation into the

SIF-GPP relationship, the analysis allows us to learn more about the differing spatial linear relationship between SIF and GPP100

and their variation in nature with a particular focus on similarities and differences between vegetation covers. This allows the

determination of which vegetation covers have a similar SIF-GPP response, and for which vegetation covers care should be

taken in the use of SIF as a proxy for GPP. Finally, having established the spatio-temporal relationship between the downscaled

SIF and the FLUXCOM GPP, the paper investigates the response of downscaled SIF to fluctuations in several meteorological

factors, in the process determining the most significant driving and limiting meteorological factors in monthly SIF fluctuations.105

By utilising the high resolution of the downscaled SIF, it is possible to understand with improved confidence the extent to which

vegetation cover plays a role in these relationships using dedicated techniques (e.g. Álvaro Moreno-Martínez et al., 2018).

2 Data

2.1 Vegetation cover data

The data relating to the vegetation cover of each pixel is derived from the Copernicus Climate Change Service (C3S) via110

the climate data store platform, with the data created by the ESA CCI program (CCI, 2017; Defourny, 2019). The land cover

classes are converted to vegetation covers, as used by dynamic global vegetation models, whilst aggregating the data to a spatial

resolution of 0.05◦. The following vegetation covers are considered: grassland = ‘GRA’, crops = ‘CRO’, evergreen broad-leaf

forest = ‘EBF’, deciduous broad-leaf forest = ‘DBF’, evergreen needle-leaf forest = ‘ENF’, and deciduous needle-leaf forest =

‘DNF’. To ensure a high homogeneity in the selected data, the dominant vegetation type must cover at least 75% of a pixel and115

with no change in the majority land cover classification over the considered years, 2007-2014.

2.2 Climate classification

The climate zone classification used in the analysis follows the Köppen-Geiger climate classification scheme (Kottek et al.,

2006; Rubel and Kottek, 2010; Rubel et al., 2017). The classification maps are representative of the period 1986-2010 and are
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available at a spatial resolution of 0.0833◦ which are extrapolated via binomial interpolation to grid cells (referred to hereon as120

pixels) of 0.05◦.

Four broad categories are considered from this scheme: equatorial, arid, temperate and continental. Equatorial contains

‘Group A’ climate regions: areas where each month is above 18◦C and with high precipitation. Arid regions are ‘Group B’

climates: areas defined by low precipitation. Temperate regions are ‘Group C’ climates: with the coldest month averaging

0− 18◦C and at least one month averaging more than 10◦C. Finally, continental regions are ‘Group D’ climates: at least one125

month must average below 0◦C and at least one month above 10◦C. Figure 1 shows the spatial distribution of the global climate

groupings and the dominant vegetation cover of the pixels considered in the analysis.

Figure 1. The dominant Köppen–Geiger climate zone and vegetation cover corresponding to each of the pixels passing the full set of selection

requirements.

2.3 Growing season data

The Vegetation Index and Phenology (VIP) global dataset from NASA’s Making Earth System Data Records for Use in Re-

search Environments (MEaSUREs) program is used to define the growing seasons at each grid cell for each year (Didan, 2016).130

The datasets are created using surface reflectance data from the MODIS instrument. This data provides a consistent NDVI and

EVI measurement from which to characterise the vegetation phenology. The Vegetation Index and Phenology (VIP) Phenology

NDVI (VIPPHEN) v004 dataset has a global spatial resolution of 0.05◦ and provides annual metrics on the start and length of

the growing season for each pixel for the years 2000-2014.

Whilst correlation between SIF and GPP has been observed across all seasons, only the relationship between downscaled135

SIF and FLUXCOM GPP during the growing season of each pixel is considered in the present study (Magney et al., 2019;

Bowling et al., 2018). This removes the effect of winter periods, when there is little primary productivity and when the retrieval

of SIF can be problematic at northern latitudes. Off-season, the relatively weak SIF signal and the quality requirements in the

downscaling process result in a dataset with gaps. Including this data in the analysis would likely result in distorted conclusions
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regarding average downscaled SIF signals over the time period. Additionally, only the first growing season of each year is140

considered in regions with multiple growing seasons.

2.4 SIF data

Two SIF datasets are considered in this analysis, produced via the downscaling method detailed in references Duveiller and

Cescatti (2016) and Duveiller et al. (2020). The two retrievals have a spectral wavelength around 740nm, and differ in the

retrieval method for obtaining the input data from the GOME-2 satellite, the first product developed by Joiner et al. (2013), is145

referred to as SIFJJ in this document, whilst the second, developed by Köhler et al. (2015), is referred to as SIFPK. A correction

factor to convert the instantaneous SIF to the daily average is applied to both datasets to ensure comparability with estimates

at different acquisition times (Frankenberg et al., 2011b; Köhler et al., 2018a). The downscaling method calibrates these input

retrievals via a light use efficiency model using high resolution biophysical variables from the MODIS (MOderate Resolution

Imaging Spectroradiometer) instrument of the Terra and Aqua Satellites. The optimal combination of variables is identified in150

combination with OCO-2 data, and the downscaled dataset is found to have a high level high spatio-temporal agreement with

observations from the TROPOMI mission.

The resulting downscaled SIFPK and SIFJJ products have a spatial resolution of 0.05◦ and a temporal separation of 8 days

(with measurements averaged over a sliding window of 16 days). The datasets currently cover the timespan 2007-2017, with

46 measurements each year (with the exception of the 2007 SIF dataset, containing 44). Duveiller et al. (2020) shows that155

the downscaled SIFJJ dataset is found to have a slightly higher level of agreement with the OCO-2 validation data than the

downscaled SIFPK dataset and so is primarily used in this paper, and is henceforth referred to as ‘downscaled SIF’ (or SIFDS).

The higher agreement likely results from the spatial smoothing step of the downscaling process that benefited the noisier SIFJJ

more than the SIFPK.

To ensure high quality in the data, and compatibility with the other datasets, several requirements are placed on each pixel160

in each year, further to the requirements detailed in Duveiller et al. (2020), Köhler et al. (2015), and Joiner et al. (2013).

There must be at least 10 instances of valid SIFDS observations of the pixel within the growing season with fewer than 40%

of the expected number of SIFDS missing or invalid. There must also be least six years of valid measurements satisfying the

requirements between 2007-2014. The selections ensure that the SIF signal, which is relatively weak compared to background

noise, and affected by cloud coverage, is representative of the growing season as a whole as well as excluding regions with short165

growing seasons that may be more susceptible to fluctuations from unusual weather conditions. Requiring multiple years of

data passing the quality requirements enables the investigation of temporal trends, whilst also ensuring that the measurements

are representative of each pixel.

In order to reduce spatial auto-correlation and the double-counting of interpolated pixels in other datasets, pixels considered

in the analysis must be separated by a two-pixel gap in all directions (Ploton et al., 2020). Each pixel is matched with the dom-170

inant vegetation cover and climate classification, as well as FLUXCOM GPP and meteorological data, passing the respective

requirements. Figure 2 shows the mean downscaled SIF for the growing season of each pixel passing the analysis selection

requirements, averaged over the period 2007-2014.
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Figure 2. Mean downscaled SIF (above) and FLUXCOM GPP (below) over the growing season, corresponding to each of the pixels passing

the full set of selection requirements. The SIFDS fluxes and GPPFX estimations for each pixel are averaged over multiple years between 2007

and 2014.

2.5 GPP data

The gross primary productivity (GPP) dataset is provided by the FLUXCOM project, measured as a daily carbon uptake [gC175

m−2 day−1] (Jung and FLUXCOM Team, 2016; Tramontana et al., 2016; Jung et al., 2020). In the ‘RS only’ setup used in

this analysis and described in Tramontana et al. (2016) and Jung et al. (2019), an ensemble of nine machine learning methods

merge carbon flux estimations from FLUXNET eddy covariance towers with remote sensing data taken or derived from the

MODIS sensor to estimate gross primary productivity across the terrestrial surface. The remotely sensed data includes land

surface temperature, fraction of absorbed photosynthetic active radiation, normalized difference vegetation index, normalized180

difference water index and land surface water index. The resulting dataset, hereon referred to as ‘FLUXCOM GPP’ (or GPPFX),

consists of a global estimate of GPP at a spatial resolution of 0.0833◦. These estimates occur in timesteps of 8 days (46 over

the course of a year) and cover the downscaled SIF data collection period up until the year 2016.
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The GPP pixels are extrapolated via binomial interpolation to 0.05◦ pixels in order to focus on the comparison with the SIFDS

pixels. Figure 2 shows the FLUXCOM GPP for the growing season of each pixel passing the analysis selection requirements,185

averaged over the period 2007-2014.

2.6 Meteorological data

ERA5 is the fifth generation ECMWF reanalysis global climate and weather dataset, and the ERA5-Land dataset replays the

land component of the reanalysis to provide land variables at an enhanced resolution at 0.1◦. The dataset is extrapolated via

binomial interpolation to 0.05◦ pixels in order to focus on the comparison with the SIFDS pixels, with only non-consecutive190

months considered, in order to reduce temporal autocorrelation.

Meteorological variables are obtained from the ERA5-Land monthly reanalysis dataset (Muñoz Sabater, 2019b; Muñoz

Sabater et al., 2021). These include: air temperature (t2m [◦C]: temperature of air at 2m), surface net solar radiation (ssr [J

m−2]: amount of solar radiation reaching the surface of the Earth minus the amount reflected by the Earth’s surface) and

soil moisture (swvl1 [m3 m−3]: volume of water in soil layer 1, 0-7 cm, of the ECMWF Integrated Forecasting System). A195

variable that is not available is the mean monthly vapour pressure deficit (VPD [kPa]), the difference between the saturated

vapour pressure and the actual vapour pressure (Grossiord et al., 2020). It is important in regulating the stomatal conductance

of plants, and thus useful to relate to both SIF and GPP. Due to non-linearity in the vapour pressure-temperature response, the

average saturated vapour pressure of each month is calculated from the average of the saturation vapour pressure at the mean

daily maximum and mean daily minimum air temperatures over the course of the month, using the following formula (Allan200

and Pereira, 1998):

es = [e◦(Tmax) + e◦(Tmin)]/2 where: e◦(T) = 0.061 x exp 17.27T/(T+237.3) (4)

The latter formula is also used in the calculation of the actual vapour pressure from the dewpoint temperature. The mini-

mum and maximum air temperatures and the dewpoint temperature are taken from the ERA5-Land hourly reanalysis dataset

(Muñoz Sabater, 2019a).205

3 Methodology

The SIFDS-GPPFX spatio-temporal relationship at global scale is analysed via several diagnostics. Linear models and analysis of

covariance (ANCOVA) are performed to determine the similarities and dissimilarities in the response across different vegetation

covers. Finally, the response of the SIFDS to fluctuations in meteorological conditions is investigated to assess the potential of

this metric to diagnose the impact of environmental drivers. For the analysis, each 0.05◦ vegetated pixel is described by a210

time series of downscaled SIF, FLUXCOM GPP, and meteorological values, taken over the first growing season of each year

between 2007 and 2014. This same set of 135,000 global pixels is used in each analysis of the current paper, with consideration

given to the vegetation cover and climate zone of the pixels analysed.
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Several sections of the analysis of the SIF-GPP spatio-temporal relationship are repeated with the alternative FluxSat GPP

dataset (in place of the FLUXCOM GPP) and the TROPOMI SIF dataset (in place of the downscaled SIF) in order to ensure215

the robustness and consistency of the analysis. These can be found in appendix A3 and appendix A4 respectively.

3.1 The spatio-temporal relationship of SIFDS and GPPFX

Since the processes and drivers of variability in SIF and GPP may differ in time and space, we designed an analytical framework

to isolate the temporal components of the SIFDS-GPPFX relationship at different temporal resolutions (intra-and inter-annual)

from the spatial variations. The spatial component of the SIFDS-GPPFX correlation is isolated by determining the multi-year220

mean SIFDS and mean GPPFX for each pixel. Here ‘mean’ refers to the mean daily value of the downscaled SIF or FLUXCOM

GPP over the first growing season. These values are converted to a multi-year means by averaging over the period 2007-2014.

The Pearson’s spatial correlation coefficient, r, and a least-squares linear model are calculated at both a global scale, as well

as over a local moving window of 2.5◦ for each climate-vegetation category, with the latter requiring at least 10 pixels within

the moving window to be assessed and reported. The temporal component of the SIFDS-GPPFX correlation and linear model225

is assessed at both the inter- and intra-annual scales. The inter-annual correlation, refers to the temporal relationship between

the mean growing season SIFDS and GPPFX values between consecutive years at the same location. It should be noted that

a temporal degradation in the GOME-2 instruments has been observed, potentially affecting the long-term analysis of SIF

trends and therefore the SIF-GPP relationship, particularly from 2015 onwards (Zhang et al., 2018b). Whilst this may have

a slight impact on the analysis presented here - which uses data collected up until 2014 - we nevertheless consider the inter-230

annual comparison of SIFDS and GPPFX worthwhile. Meanwhile, the intra-annual correlation refers to the relationship between

individual SIFDS and GPPFX values made at 8-day timesteps within a growing season, in order to determine the internal growing

season statistics. A minimum of 10 observations within a growing season over at least 6 years is required. The correlation and

slope parameter of the least-squares linear relationship at each pixel is calculated for each year considered and averaged over

the multi-year time period.235

3.2 The spatial linear relationship between SIFDS and GPPFX

The same process and data used to isolate and determine the spatial component of the correlation is used to determine the global

spatial linear relationships between SIFDS and GPPFX. For this purpose, an area-weighted least squares linear model fits the

global SIFDS-GPPFX distribution of pixels for each climate and vegetation cover. Whilst theoretically the leaf photosynthesis

may be zero when the quantity of emitted SIF radiation is zero, this does not necessarily imply that the canopy level SIF-GPP240

relationship extends linearly to zero, as the canopy level SIF-GPP relationship smooths over known non-linearities at finer

scales and lower SIF yields (Magney et al., 2020). Additionally, forcing the linear regression through the origin based on a

prior expectation (in this case that SIF and GPP are simultaneously zero) that lies outside the bounds of the considered data will

introduce a bias into the regression parameters. Therefore the intercept of the SIFDS-GPPFX relationship is not forced through

zero to account for this variation, as well as potential deviations from linearity in the sampled pixels.245
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3.3 Spatial analysis of covariance between SIFDS and GPPFX

In order to assess and test similarities in the global SIFDS-GPPFX response between vegetation covers, an ANCOVA (analysis of

covariance) is performed. ANCOVA compares linear regressions between two or more groups whilst controlling for a covariate

to test about the stastistical significance of the effects. In this specific case, the downscaled SIF covariate is controlled for in a

spatial linear regression with the FLUXCOM GPP that differes between vegetation and climate groups. A comparison of the250

regression slope and intercept between pairs of vegetation cover groupings is conducted in terms of the significance (through

the p-value) and the size of the effect (through η2). The p-value for the slope parameter is the probability of obtaining an equal

or more extreme difference in the regression slopes of two vegetation groups under the null hypothesis that the vegetation

cover has no effect. The p-value for the intercept additionally assumes the null hypothesis for the regression slope. The size of

the effect is measured through η2 (0≤ η2 ≤ 1), the proportion of the sum of squares from the nominal grouping of vegetation255

cover, SSveg , to the overall sum of squares for the linear relationship, SSlm:

η2 = SSveg/SSlm (5)

Therefore, η2 gives the proportion of the variance attributable to the vegetation cover grouping and is conceptually similar to

the significance of the coefficient of determination, r2, in linear relationships. The p-value provides evidence for whether the

difference in SIFDS-GPPFX response is significant between vegetation covers, and η2 can be thought of as the magnitude of260

that difference. For each climate grouping, pairwise ANCOVA comparisons are made between vegetation covers for a sample

of 400-1000 pixels.

3.4 Estimating global GPP with downscaled SIF

The derived global spatial linear SIFDS-GPPFX relationships are used to project the downscaled GOME-2 SIF into an estimate

of gross primary productivity, GPPEst. This is also interpreted in terms of absolute and percentage differences to the FLUXCOM265

GPP, with the percentage difference calculated as:

GPPdiff = 100 x (GPPEst − GPPFX)/GPPFX (6)

Mapping the differences between FLUXCOM GPP and GPPEst, estimated using the downscaled SIF and SIFDS-GPPFX rela-

tionships, enables the display of areas where the global, category-dependent, linear relationships succeed or fail in replicating

the GPPFX from the local SIFDS observations. There are four different groupings of global linear relationships used in the270

breakdown. Firstly the GPP estimate depends only on separate SIFDS-GPPFX relationships for each Köppen–Geiger climate

zone; secondly, the GPP estimate depends is carried out separately for each vegetation cover, with no consideration for the

climate zone; third, both the climate zone and vegetation cover are taken into account; and finally the groupings used are sug-

gested from the analysis of covariance. The latter is also used to display an estimate of global GPP based on the downscaled

SIF, scaled by the FLUXCOM GPP relationships.275
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3.5 The SIFDS response to meteorological fluctuations

The response of length-of-day corrected downscaled SIF to anomalies in a number of meteorological variables is analysed in

order to determine similarities in response between different vegetation covers and to understand the driving meteorological

factors for SIF fluctuations in different climate zones. A focus is given to meteorological extremes, investigated through the

z-score from the long-term monthly mean. The study uses the same initial data as the investigation into SIFDS-GPPFX response,280

however monthly averages of the SIFDS are taken in order to compare with the month-averaged meteorological variables. The

meteorological factors considered are air temperature, solar radiation, soil moisture and vapour pressure deficit. Additionally,

only non-consecutive months within a growing season are included, in order to reduce temporal autocorrelation.

For every pixel, the mean and standard deviation of the SIFDS and meteorological variables is calculated for each month

over the period 2007-2014. These individual monthly values are re-expressed as a z-score for each pixel - i.e. the difference to285

the 2007-2014 monthly mean, standardised by the standard deviation. The FLUXCOM GPP is also included in the analysis,

though, as noted, the FLUXCOM GPP product takes several remotely-sensed climatic variables as input and so is not indepen-

dent of the meteorological drivers. The inclusion of the GPP product enables a comparison with the SIFDS, giving insight into

whether the SIF behaves as may be expected of an independent proxy for GPP.

4 Results290

4.1 The spatio-temporal correlation of SIFDS and GPPFX

The Pearson’s correlation coefficient, r, between the downscaled SIF and FLUXCOM GPP is projected into figure 3, to display

areas of high and low temporal and local spatial correlation, along with the slope parameter of a least-squares linear model

between the two. Meanwhile, figure 4 displays the global spatial and average global temporal correlations for each vegetation

cover and climate zone for comparative purposes.295

The first thing to note is that at a global scale, prior to the breakdown into separate climate-vegetation cover categories, there

is a reasonably strong correlation between the downscaled SIF and the FLUXCOM GPP. Between different climate-vegetation

groupings, however, there is variety in the strength of the correlation. Whilst the breakdown of the relationship by either climate

zone or vegetation cover separately provides extra information in comparison to no breakdown, greater variability is shown

from a breakdown by both categories simultaneously, highlighting the value of the downscaled SIF dataset in assessing the300

relationship with GPP across vegetation categories in different climates. The slight variation in correlation across different

vegetation covers suggests that, although there are more similarities than differences, there is value in breaking down the

relationship by vegetation cover.

The spatial and temporal analyses show that downscaled SIF functions as a reasonable spatial and temporal proxy for GPP,

across multiple timescales and vegetation covers. The figures show that regions and vegetation-climate categories with high305

correlation in one spatio-temporal analysis generally show high correlation in another analysis, suggesting that spatial and

temporal correlation in the SIFDS-GPPFX datasets are actually interlinked. The highest correlations are almost exclusively
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Figure 3. The Pearson’s correlation coefficient, r, (left) and the linear model slope parameter (right) for: Above: the intra-annual temporal

relationship between the downscaled SIF and FLUXCOM GPP over 8-day timesteps within a growing season. Middle: the inter-annual

temporal relationship between the mean annual downscaled SIF and mean annual FLUXCOM GPP. Below: the spatial relationship between

the mean annual downscaled SIF and mean annual FLUXCOM GPP, with the correlation determined for a given dominant vegetation cover

and climate zone over a 2.5◦ moving window.
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Figure 4. The Pearson’s correlation coefficient, r, between downscaled SIF and FLUXCOM GPP for the spatial relationship, intra-annual

temporal relationship within a growing season, and the inter-annual temporal trend across years. For the spatial analysis, a single global

spatial correlation is calculated for each vegetation cover and climate zone, whilst the temporal relationships display the median global

correlation and 25% upper and lower quantiles for each pixel, broken down by vegetation cover and climate zone.

found between between SIFDS and GPPFX within the same growing season as a result of the strong effect of seasonality in the

key environmental drivers of primary productivity, such as radiation, temperature and water availability. Indeed, all vegetation-

climate categories except for equatorial broadleaf forests exhibit r > 0.5, with all regions outside the tropics and the arid310

grasslands of central Australia showing high correlation. Larger intra-annual slope parameters between SIFDS and GPPFX are

similarly found in the high latitude regions which experience the largest seasonality.

The spatial correlation and the temporal trend between years show similar features, though are generally weaker than the

intra-annual correlation, with some regions of tropical rainforest and continental forest in Russia displaying anti-correlation.
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There is also a wider distribution in the strength of the SIFDS-GPPFX correlation. This is despite the fact that the temporal315

analyses have a more granular level of spatial detail, with each pixel more susceptible to fluctuations. This is particularly true

of the inter-annual comparison, which uses fewer data points in the regression.

4.2 The spatial linear relationship between SIFDS and GPPFX

Figure 5 shows the relative distribution and spatial linear relationship between the mean growing season FLUXCOM GPP as

a function of the respective mean values of the downscaled SIF during the growing season. The data are broken down into320

separate categories depending on the Köppen–Geiger climate grouping and dominant vegetation cover of the pixel.

The significant substructure in the SIFDS-GPPFX distribution and greater deviation from the linearity in the ‘ALL’ categories,

suggest that the SIFDS-GPPFX spatial relationship response is dependent on both the climate and vegetation covers. There is

also some evidence that there is a slight trend towards a reduction in the slope in cooler climates, though this may result from

factors other than the climate itself, for example, differences in the spatial distribution of vegetation between evergreen and325

deciduous types or between C3 and C4 crops and grasses.

In all categories except EBF, the spatial correlations are comparable to the relationship observed between FLUXCOM GPP

and SIF measurements from the OCO-2 instrument, as seen in Sun et al. (2018) confirming the overall value of the downscaled

SIF product for this specific exercise. In the Sun et al. (2018) study, the following correlation coefficients are exhibited (broken

down by biome): rGRA = 0.74; rCRO = 0.88; rEBF = 0.74; rDBF = 0.8; rNF = 0.84 (needleleaf). The differences to this study330

may result from the selection criteria of the biomes, the singular grouping of vegetation covers across different climate zones,

and the forcing of the linear relationship intercept through zero. In particular, the latter assumption of the SIF-GPP relationship

leads to higher correlation coefficients compared to allowing the intercept to float. The observed linear relationship is found to

be stronger with the FluxSat GPP dataset, as displayed in appendix A3

We acknowledge that, in some categories, a linear model may be too simplistic to represent the relationship between SIFDS335

and GPPFX. This is more true for the woody plants which display some complexity in the SIFDS-GPPFX relationship, in contrast

to herbaceaous vegetation, which remains highly linear, despite exhibiting a greater range in values. The clearest deviation from

linearity is found in highly productive equatorial evergreen forests, where a wide range of spatio-temporal variation in SIFDS

is observed, while a considerably smaller variability is reproduced in the modelled GPPFX. This non-linearity is explored in

more depth in the discussion.340

Whilst at first glance the heatmap of temperate deciduous broadleaf forests similarly hints at a plateau effect, the figure can in

fact be divided into two areas of high SIFDS and low SIFDS data points corresponding to separate spatial locations. The lower

SIFDS values correspond to deciduous forests in Southern Africa and South America, whilst the higher SIFDS values occur

in North America and Europe, suggesting that there may not be global universality in the SIFDS-GPPFX relationship, or that

different types of deciduous broadleaf forests found in distinct regions could respond differently, possibly based on differences345

in species composition. It should be noted that this distinction is not observed in the TROPOMI SIF dataset for the year 2020

(appendix A4).
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Figure 5. The spatial relationship between the mean growing season downscaled SIF and FLUXCOM GPP, broken down into separate

Köppen–Geiger climate zones and vegetation cover categories. The plot shows the frequency distribution of pixels into SIFDS-GPPFX bins,

relative to the highest frequency bin in that category. A black dashed line representing a linear model in each category is overlaid and

compared to a grey dotted line representing a linear model produced without the breakdown into separate categories (i.e. ‘ALL-ALL’). The

linear model equation, correlation coefficient r, root mean squared error (RMSE) and number of pixels are included.
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4.3 Spatial analysis of covariance between SIFDS and GPPFX

The results of the analysis of covariance between pairs of vegetation covers within a climate zone, are shown in figure 6 through

the η2 for the slope and intercept of the linear relationship. It should be noted that the ANCOVA analysis assumes linearity350

between SIFDS and GPPFX, which is present in most vegetation covers, with noted exceptions. Appendix A1 contains the full

table of results, whilst similar analyses comparing the downscaled SIF - FluxSat GPP relationship and the TROPOMI SIF -

FLUXCOM GPP relationship can be found in appendices A3 and A4 respectively.

The ANCOVA results in equatorial regions show that the categorisation by vegetation class is not a significant factor in

the slope-dependence of the SIFDS-GPPFX for all vegetation types except evergreen broadleaf forests, which, as discussed,355

exhibits non-linearity in the SIFDS-GPPFX relationship. Differing intercepts between the DBF and the herbaceous vegetation

covers, however, suggest that whilst the SIFDS-GPPFX relationship scales in similar ways between vegetation covers, there

may be differences in the starting potential. Linear relationships in grass and cropland are statistically indistinguishable, whilst

around 10% of the sum of squares between DBF and CRO/GRA intercepts can be attributed to the vegetation classification.

In equatorial broadleaf forests 12− 19% of the difference in the SIFDS-GPPFX scaling can be attributed to the categorisation,360

and therefore when using SIF as a proxy for productivity, EBF should clearly be considered separately from other vegetation

classes.

In arid climates the difference between the slopes of vegetation covers is significant in terms of the p-value for all except

the ENF-CRO pair. However, there is little to distinguish the SIFDS-GPPFX scaling by vegetation categories, with less than

2% of the sum of squares attributable to the vegetation covers for all except GRA-DBF (7%). If the assumption is made365

that the vegetation categorisation has no effect on the SIFDS-GPPFX slope, and that the slopes can be considered parallel

between vegetation covers, then the intercepts generally distinguish between the woody and non-woody vegetation covers,

with crossover in CRO-ENF. Between the ENF-DBF intercepts, 2% of the sum of squares is attributable to the vegetation

cover, whilst the proportion is 8% for GRA-CRO. Mixing between herbaceous and woody covers, on the other hand, and the

proportion of the sum of squares attributable to the vegetation cover is between 21− 36%, with the exception of ENF-CRO,370

which are statistically almost indistinguishable.

In temperate regions the only major distinction in the gradient of the SIFDS-GPPFX relationship between vegetation covers

is found in deciduous broadleaf forests (4− 12%). As discussed in the previous section, temperate DBF is dominated by two

distinct Northern and Southern hemisphere clusters with differing SIFDS-GPPFX relationships, which results in a distinct and

separate linear relationship. This feature is not observed in the TROPOMI SIF analysis. Regarding the other vegetation covers,375

assuming that the categorisation is of little importance to the slope, accounting for ≤ 2% of the sum of squares, and that the

slopes could be considered parallel between the vegetation covers, the differences in the intercept broadly divide along the

lines of woody and herbaceous species. The sum of squares attributable to differences in the intercept are: woody-woody, 9%;

herbaceous-herbaceous, 13%; woody-herbaceous, 27-68%.

Finally, in continental climates, ENF and DNF species exhibit a similar (< 1%) SIFDS-GPPFX scaling (though a much larger380

difference attributable to the intercept 30%) and are somewhat distinct from the other vegetation species (6− 11%), with the
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Figure 6. The η2 parameter of an analysis of covariance between pairs of vegetation covers in different Köppen–Geiger climate groupings,

for the slope (left) and intercept (right) of the linear relationship between downscaled SIF and FLUXCOM GPP. ANCOVA is performed on

the intercept under the assumption that the difference between slopes is not significant. The η2 parameter is comparable to the percentage

of the difference in the slope or intercept (the latter assuming equivalence of the slopes) attributable to the difference in vegetation cover,

with lower values signifying a smaller difference between vegetation covers. A slightly bolder line is used to separate the herbaceous species

(CRO, GRA) from the woody species (EBF, DBF, ENF, DNF).
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exception of CRO-ENF (3%). This feature in the slope of continental needleleaf forests is not observed in the analysis that

uses FluxSat GPP in place of the FLUXCOM GPP. Within these other vegetation species, < 5% of the difference in the SIFDS-

GPPFX slope can be attributed to the choice of vegetation cover and, assuming the null hypothesis for the slope, the intercept

again distinguishes between the herbaceous plants (GRA-CRO, 3%) and mixed, herbaceous-woody (DBF-CRO, 21%; DBF-385

GRA, 30%).

Overall, when analysing the the scaling of the SIFDS-GPPFX response (i.e. the slope) between vegetation covers within a

climate zone, the ANCOVA analysis suggests that there are large similarities, with potential slight exceptions in temperate

deciduous broadleaf forests, continental needleaf forests, and the major exception of tropical evergreen forests. In terms of

the scaling of the SIFDS-GPPFX slope, these three vegetation covers may be treated as being reasonably distinct, with at least390

around 5% and up to 20% of the difference between slopes being attributable to the vegetation classification. Amongst the

other species where the slope does not distinguish between vegetation covers so prominently (with generally less than 3% of

the slope variation attributable to the vegetation categorisation), the intercept, and therefore the systemic difference between

the linear relationships, loosely depends on whether the species is woody or herbaceous, with higher values for woody species.

The difference in the SIFDS-GPPFX response between cropland and grassland is particularly minor. A caveat must be made that395

there are some exceptions to these generalisations, and there is no statistically concrete global distinction between groupings

of vegetation covers.

The results demonstrate that within a climate grouping there are broad similarities in the SIFDS-GPPFX response of the

considered vegetation classifications, excluding three key exceptions. When accounting for differences in the intercept, a loose

possible grouping may be suggested of herbaceous and woody vegetation within each climate zones, with the exceptions of400

equatorial-EBF, temperate DBF, and continental forests (which can be fully distinguished when the difference in the intercept

is considered, or split between broadleaf and needleleaf if considering only the scaling). This reduces the climate-vegetation

categories for which we expect differing SIFDS-GPPFX responses from 18 groups to 12 overall, with around three distinct

groups in each climate zone, depending on the aggressiveness of the grouping.

4.4 Estimating the global spatial distribution of GPP with downscaled SIF405

The mean growing season downscaled SIF can be projected into an estimate of growing season GPP using the global linear

relationships for each climate and vegetation cover category displayed in figure 5. The absolute and percentage difference of

this estimated GPP, GPPEst, to the FLUXCOM GPP is shown in figure 7, which displays areas where the global, category-

dependent, linear relationship shows positive or negative biases in replicating the GPPFX from the local SIFDS observations.

The figures are created using three different versions of the global spatial linear relationships between SIFDS and GPPFX. In the410

first instance, four separate linear relationships are derived for the four different climate zones. In the second instance the linear

relationships are derived separately for each climate zone and vegetation cover, with 18 separate SIFDS-GPPFX relationships.

Finally, separate linear relationships are derived in each climate zone for each the different vegetation groupings suggested by

the results of the analysis of covariance, with 12 groups overall.
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Figure 7. The absolute (left) and percentage (right) difference between the mean annual estimated primary production, GPPEst and the mean

annual FLUXCOM GPP. GPPEst is estimated by projecting the downscaled SIF at each pixel using SIFDS-GPPFX relationships derived within:

top, each climate zone; upper middle, each vegetation cover; lower middle, each vegetation cover within each climate zone; bottom, different

climate-vegetation groupings suggested by the analysis of covariance.

The figures show that there is added value for GPP prediction in breaking down the relationship into the differing vegetation415

covers since the SIFDS-GPPFX relationship is not climate and vegetation invariant. When only the Köppen–Geiger climate

grouping is used to classify the spatial SIFDS-GPPFX relationships, there is a significantly greater difference between the

FLUXCOM GPP and the GPP estimated from the downscaled SIF, compared to when vegetation cover is taken into account.

As may be expected, the vegetation covers flagged as particularly distinguished in their spatio-temporal SIFDS-GPPFX response,

such as equatorial evergreen forests and continental needleleaf forests, especially suffer from this lack of a breakdown. When420

only the vegetation covers are considered, and no climate grouping is proposed, there is a smaller difference between the

estimated GPP and the FLUXCOM GPP than in the case of the climate groupings alone, suggesting that differences between
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Figure 8. The global GPP estimated from the downscaled SIF and the SIFDS-GPPFX spatial linear relationships between vegetation groupings

suggested from the results of the analysis of covariance.

vegetation covers are more important in determining the SIFDS-GPPFX relationship than the climate zone grouping. However

there are still noticeable differences compared to the relationships that include a breakdown by climate grouping, as can be

seen in the width of the inset histograms. The similarity in the lower figures, where the SIFDS-GPPFX scaling depends on425

the grouping suggested by the analysis of covariance, compared to the unique vegetation covers in the middle figures, show

that whilst vegetation cover appears to be an important parameter in classifying SIFDS-GPPFX relationships, it is possible to

combine vegetation groups in a way that doesn’t noticeably affect the SIFDS-GPPFX scaling. It should be noted that vegetation

cover here may be a proxy for other variables, such as local conditions, soil type or a refined climate grouping, and in this sense

further investigation in similar, localised conditions is required.430

Figure 8 shows the global gross primary production estimated from the downscaled SIF and the SIFDS-GPPFX relationships

between vegetation groupings suggested by the ANCOVA results. It is particularly notable that in equatorial rainforests, the

flat linear relationship derived between SIFDS-GPPFX results in estimated GPP values with low variation.

4.5 The SIFDS response to meteorological fluctuations

Figure 9 shows the average z-score of the SIFDS with respect to the z-score of the four meteorological variables considered435

in this study as environmental drivers of primary productivity. Each bin contains multiple data points (at least five in order to

be displayed) with the SIFDS z-score taken as the average of the data points within the bin. The figure shows how anomalies

in monthly values of climate drivers - relative to the ‘average’ conditions for that month - are related to fluctuations in SIFDS.

The figures are broken down into the same categorisation as in the previous study, clearly showing that in the various climates,

vegetation covers respond differently, and sometimes in opposing directions, to climate drivers depending on the limiting440

20



Figure 9. The relationship between fluctuations in meteorological variables and the corresponding fluctuations in the measured downscaled

SIF. The fluctuations are measured relative to the monthly mean for each pixel and expressed as a z-score. The four meteorological variables

are air temperature and net surface solar radiation (t2m and ssr, left) and vapour pressure deficit and soil moisture (VPD and swvl1, right).

The SIFDS response in each bin is the mean of all data points in each bin of meteorological z-score. The data is broken down into separate

Köppen–Geiger climate zones and land cover categories.

factor of photosynthesis (e.g. water scarcity, low temperatures, etc). Equivalent figures for the FLUXCOM GPP can be found

in appendix A2.

Figure 10 shows the average SIFDS and GPPFX z-scores as a function of the corresponding z-score of the four meteorological

variables. The figure uses the exact data that is input into figure 9, and categorises the temperature, VPD, soil moisture and
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solar radiation z-score of pixels from the long-term monthly mean into 10 groups between -2.5 and +2.5. The median corre-445

sponding SIFDS and GPPFX z-scores, relative to the long-term monthly mean of each pixel, are shown for each meteorological

variable. The results are broken down by the Köppen–Geiger climate and vegetation cover groupings discussed previously. The

figure therefore shows the average SIFDS and GPPFX fluctuations that correspond to a given fluctuation in each meteorological

condition, and can be used to interpret the meteorological drivers that may result in fluctuations in vegetation productivity.

The first point to note is that the link between SIFDS and meteorological fluctuations is more significant in some cli-450

mate/vegetation cover categories than others. The SIFDS from grasslands and croplands responds in a very similar manner

across all climates, but often differs from the response of woody vegetation. The SIFDS and GPPFX together respond in a

similar way to the meteorological fluctuations, with the GPPFX generally more responsive, particularly in the case of woody

vegetation. This is likely caused by the inclusion of meteorological information in the FLUXCOM GPP product, resulting in

a correlation and so over-sensitivity. Whilst the SIFDS may be less sensitive in general, unlike the FLUXCOM model it also455

captures information relating to the physiology of the plant, potentially bringing extra information into consideration when

determining vegetation response.

Clear and expected trends in the SIFDS data can be picked out. For example, plants in cooler climates respond more positively

to higher temperature fluctuations and plants in arid climates benefit significantly from soil moisture and reduced VPD (more

humid conditions). Arid and continental climates, which in general are often harsher environments for plant life, exhibit a larger460

meteorological dependence than equatorial and temperate ones, whilst herbaceous plants are generally also more weather

dependent. As the SIFDS response is measured with respect to conditions in an average month, the response often differs

between Köppen–Geiger climates, for example, DBF and ENF forests respond positively to VPD (drier air) in temperate and

continental climates but negatively in tropical and arid climates.

The response of SIFDS to fluctuations in the meteorological variables is not always of simple interpretation since there may465

be co-limitation from multiple drivers linked by complex correlation patterns. In figure 9, co-limitation is observed where

the direction of the SIFDS response lies along the diagonal, for example the preference for both high temperatures and high

levels of radiation in temperate deciduous broadleaf forests, or for conditions of low VPD and high soil moisture content

in grassland and croplands. Co-dependence between the atmospheric variables means that it is difficult to directly explain

fluctuations in SIFDS via individual meteorological variables in isolation of the other meteorological variables, for example,470

the correlation between warmer temperatures and high VPD, results in a similar SIFDS response in cooler continental woody

forests. Additionally, differences and sub-patterns in the SIFDS-meteorological response may be complicated by the spatial

distribution of plant species, which is not captured by the broad Köppen–Geiger categorisation. For example equatorial EBF

forests may be located in wetter environments than Equatorial DBF forests, and therefore profit from differing fluctuations in

the local climate, in this case a lower soil moisture and higher VPD.475

Figure 10 shows that the strength of the relationship between the SIFDS fluctuations and the meteorological fluctuations gen-

erally increases for more extreme deviations of SIFDS. For example, in continental deciduous needleleaf forests, a two standard

deviation increase in the temperature (relative to the long-term mean for that month) corresponds to a SIFDS that is an average

of 0.8 standard deviations higher than usual. In comparison, a smaller temperature fluctuation of between 1 and 1.5 standard de-
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Figure 10. The average fluctuation in the remotely-sensed downscaled SIF and FLUXCOM GPP, as a function of the fluctuation in several

meteorological variables. The fluctuations are defined in terms of the z-score of each variable, calculated for 10 different bins between -2.5

and 2.5, and the corresponding median SIFDS/GPPFX z-score, relative to the long-term (2007-2014) monthly mean for each pixel (each pixel

may contribute multiple months within the growing season). The meteorological variables considered from the Copernicus Climate Service

(C3S) Climate Data Store (CDS) and are: surface net solar radiation (SSR), air temperature (T2M), vapour pressure deficit (VPD) and soil

moisture (SWVL1). The data is broken down into separate Köppen–Geiger climate zones and land cover categories.
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viations above the monthly mean temperature would correspond to a slightly lower increase in the SIF (+0.3 standard devations480

above the monthly mean). The results therefore provide evidence that not only do fluctuations in meteorological conditions

correspond to fluctuations in SIF, but more extreme fluctuations often result in more extreme fluctuations in SIF. In this context

the study suggests that it may be possible to use high-resolution SIF as a near-real time measure of the response of vegetation

productivity to climate fluctuations, as well as demonstrating where vegetation may be resistant to certain fluctuations. For

example, evergreen broadleaf forests appear to show relatively little deviation in SIF up to reasonably extreme weather fluc-485

tuations. It is important to note though, that ‘extreme fluctuations’ here are measured relative to a location’s average climate

variation, which may be small in absolute terms compared to other categories. As the climate categorisation considered in this

study is relatively broad, further research of using high resolution SIF on specific ecosystems is required.

Finally, the results are used to determine the driving and limiting climate variables on a global scale. Figure 11 shows a map

of the meteorological variable corresponding to the highest and lowest average SIF fluctuation.490

5 Discussion

5.1 The use of downscaled SIF be used as a proxy for GPP: does it add value?

The study demonstrates the utility of the Duveiller et al. (2020) downscaling method in providing a robust, high-resolution

SIF dataset that can be used as proxy for gross primary production. This method uses a light-use efficiency modelling based

approach to establish a relationship between SIF and higher resolution remote sensing variables. The resulting high resolution495

SIFDS benefits the analysis in enabling higher quality selections in the vegetation classification of pixels, and therefore more

precision when assessing the different dynamics and patterns of the relationships between SIFDS and GPPFX across different

vegetation covers and climate regions. A high level of spatio-temporal correlation is found across almost all Köppen–Geiger

climate and vegetation groupings, comparable to levels observed between non-downscaled SIF and FLUXCOM GPP. Breaking

down the correlations into their separate constituent vegetation covers shows diversity in the SIFDS-GPPFX relationship, and500

therefore that there is some dependence on vegetation cover in the relationship between canopy-level SIF and vegetation

productivity. For the most part, the downscaled SIF reproduces the spatial patterns observed in the FLUXCOM GPP data, for

example in figure 2, and scales linearly, with a few notable exceptions.

The clear response of SIFDS to meteorological fluctuations of key climatic drivers shows that it is possible to observe the

temporal patterns and anomalies of vegetation productivity and stress remotely, via satellite. This suggests the possibility of505

using SIF in the near-real-time monitoring of vegetation reaction to environmental conditions. As climates change it becomes

increasingly important to know how vegetation responds to both long-term trends in the climate as well as increasingly frequent

extreme weather events.

The reproduction of known SIF-GPP patterns using the downscaled SIF demonstrates its utility as a high-resolution proxy

of primary productivity. In support of these conclusions, appendix A4 replicates the main analysis results with the substitution510

of a single year of TROPOMI data in place of the downscaled SIF, whilst appendix A3 ensures the conclusions are not unique

to the choice of the GPP dataset. In this sense the analysis serves as a diagnostic benchmark for the comparison of SIF and GPP
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Figure 11. The driving (above) and limiting (below) meteorological conditions displayed at a globe scale. The driving and limiting variables

are those that respectively correspond to the largest upward and downward fluctuations in downscaled SIF for each Köppen–Geiger climate-

vegetation grouping.

datasets. The use of the downscaling method on recent and future retrievals of SIF, such as the high-resolution retrievals from

the TROPOMI satellite instrument, will enable further study on the relationship between SIF and GPP. Furthermore, the current

downscaled SIF dataset provides an archive at a comparable resolution for the analysis of trends across longer timescales.515

5.2 Areas of divergence between SIFDS and GPPFX

Figure 2 shows a clear divergence between the most productive areas in terms of FLUXCOM GPP, the equatorial rainforests of

Brazil, central Africa and Indonesia, and the regions with the highest levels of downscaled SIF, the croplands of the mid-West,

Western Europe and South America.
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Equatorial broadleaf forests are also areas with reduced spatio-temporal correlation and scaling between SIFDS and GPPFX,520

as seen in figure 3, with some areas anti-correlated. Figure 5 shows that the high variance in downscaled SIF is not matched

by the similarly wide variation in FLUXCOM GPP observed in other vegetation types resulting in a flat relationship. This may

hint at a saturation at high values of GPPFX, whereby the observed SIFDS increases without a corresponding increase in GPPFX

at the same rate. Such a plateau, particularly in evergreen broadleaf forests, could be driven by the saturation of the fraction

of absorbed photosynthetically active radiation at high LAI values or perhaps by constraints in the GPPFX model. Indeed the525

largest uncertainty in the FLUXCOM dataset is found in the tropics, an area with limited FLUXNET sites, and a similarly

low correlation has been observed between SIFDS and GPPFX on a seasonal scale (Jung et al., 2020). A similar, if slightly

reduced, plateau in the spatial SIFDS-GPPFX relationship in evergreen needleleaf forests supports evidence of non-linearity

in the temporal relationship found in Kim et al. (2021), similarly attributed to GPPFX saturation (as measured via an eddy

covariance system) with absorbed photosynthetically active radiation.530

The comparatively higher values of SIFDS in productive farm-belts supports evidence, such as in Guanter et al. (2014), that

SIF-based crop productivity estimates are higher than other GPP estimates. The distribution of C3 and C4 crops may play a

role here, as demonstrated by Zhang et al. (2017), which finds an underestimation of the FLUXCOM GPP in cropland areas,

in addition to an overestimation in tropical rainforests. It may therefore be the case that the downscaled SIF is more sensitive

to C3/C4 differences than the FLUXCOM GPP model. Additionally some studies, such as He et al. (2020) and Li and Xiao535

(2022), show more linearity between SIF and GPP in C4 crops, compared to C3 crops, with GPP estimated by eddy covariance

towers. Differences in crop cover impacting the SIFDS-GPPFX scaling may also be seen in figure 7. For example, in East

Asia, there is an under-estimate of productivity based on the global SIFDS-GPPFX relationship, and local measurements of

downscaled SIF, whilst there is an over-estimate in the Americas, Africa and Europe.

The divergences between SIFDS and GPPFX may partially be attributed to the procedures used to collect and model the input540

data, however the divergences also support growing evidence of physiological reasons for the SIFDS-GPPFX differences. This

suggests that downscaled SIF could provide added value to the FLUXCOM estimate of the GPP in certain regions where the

characterization of vegetation based on FaPAR and functional types in the machine learning framework is not sufficient to

capture the spatio-temporal pattern of primary productivity.

5.3 The universality of the SIFDS-GPPFX relationship across vegetation covers545

Differences in the spatio-temporal SIFDS-GPPFX correlation and linear relationship suggests that there is some deviation,

on average, between vegetation covers. However, there is also substantial variability within vegetation groupings, meaning

that for all except the clearest outliers, it is not possible to statistically distinguish between vegetation categories based on

these deviations alone. Equatorial evergreen broadleaf forests clearly stand out as an outlier, with a spatio-temporal SIFDS-

GPPFX relationship that is divergent from the other vegetation types and should be treated separately when projecting estimates550

of productivity from SIF, until the reasons for this divergence are fully accounted for. For the other vegetation covers with

SIFDS-GPPFX relationships that scale more linearly, there is no fixed η2 threshold to categorically dictate when the vegetation

categorisation plays an important role in distinguishing between the SIFDS-GPPFX relationships. This is particularly true in
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cases where the difference in the slope is small (η) but significant (p-value), whilst the difference in the intercept is large.

Additionally, the intercept in the linear relationship tends to be slightly higher for woody trees compared to the herbaceous555

species and therefore a categorisation could loosely divide along this broad physiological plant trait.

The universality of the SIF-GPP relationship with respect to vegetation groupings is in area of active debate (Turner et al.,

2021; Li and Xiao, 2022). Differences between vegetation covers likely result from differences is the canopy architecture and

physiology, in particular the leaf clustering, chlorophyll content and maximum carboxylation capacity (Verrelst et al., 2015).

This is particularly true for differences between herbaceous and woody vegetation, where for the latter, the lower photon escape560

probability from the canopy results in a lower intensity of SIF for a given productivity. Additionally, as discussed previously,

further disaggregation of vegetation covers may be beneficial, for example distinguishing between deciduous broadleaf forests

in Northern and Southern hemispheres, and between C3/C4 vegetation. Indeed it may be the case that there are more differences

within certain vegetation covers, than between vegetation covers, and this effect may depend on the scale of the analysis. It is

important to note however, that vegetation cover in the analysis may partially be a proxy for other factors or regional variables,565

such as background climate conditions and soil properties (Reichstein et al., 2014).

Distinctions between vegetation covers in the SIFDS response to meteorological fluctuations shows the divide is broadly

along these lines of woody vs non-woody vegetation types. Herbaceous plants are more susceptible to changes in water supply

than woody species, universally preferring high soil moisture and low vapour pressure deficit in all environments. For woody

trees, vapour pressure deficit tends to be more important than soil moisture, and plays very little role at all in the SIFDS response570

of tropical evergreen broadleaf forests. This highlights the importance of using soil moisture, in addition to VPD, in quantifying

droughts, and in particular its impacts on herbaceous vegetation (Stocker et al., 2018). Additionally, herbaceous species tend

to respond stronger to meteorological fluctuations, with the exception of needleleaf forests. Overall, the study shows that it is

possible to draw a distinction in the SIFDS-GPPFX and SIFDS-meteorological relationships between vegetation covers. These

loosely divide between woody and herbaceous vegetation, with particular cases where further investigation is needed to fully575

understand the relationship dynamics.

6 Conclusions

This exploratory analysis confronts two observation-based products that inform on the spatio-temporal variability of primary

productivity at global scale, highlighting areas of coherence and divergence. Firstly, it demonstrates the utility of the Duveiller

et al. (2020) downscaling method in providing a high-resolution SIF dataset that can be used as proxy for gross primary580

production for specific vegetation covers. Secondly, in highlighting areas of divergence, the study provides a remotely-sensed,

independent comparison of downscaled SIF with the FLUXCOM GPP model. The relatively fine resolution of the downscaled

SIF enables a global exploration of the spatio-temporal relationship between SIFDS and GPPFX at a level that distinguishes

between differing vegetation cover types, enabling a categorisation of vegetation covers based on the SIFDS-GPPFX response.

For the most part, the gradient of the spatial SIFDS-GPPFX response is similar between differing vegetation types, with the585

exception of equatorial broadleaf forests, and, potentially, slight exceptions in continental needleleaf forests and temperate
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deciduous broadleaf forests. However, the GPPFX systematic potential for a given SIFDS observation displays more variation

between species, with some divergence between woody and non-woody plants. The study provides both evidence for the spatio-

temporal correlation between downscaled SIF and FLUXCOM GPP, with different climate and vegetation covers exhibiting

variability in the SIFDS-GPPFX relationship. The temporal component of the SIFDS-GPPFX relationship is generally stronger590

than the spatial component, in particular at an intra-annual scale. Regions of climate and vegetation cover exhibiting high

spatial correlation between SIFDS and GPPFX also tend to exhibit higher temporal correlation, suggesting that the mechanisms

driving spatial and temporal variability are similar. Vegetation in some climates, such as tropical rainforests, shows divergence

from linearity in the SIFDS-GPPFX relationship. Here the downscaled SIF data may provide additional, independent information

to the FLUXCOM model, particularly at high GPPFX values where the model may be at risk of saturation of photosynthetically595

active radiation.

The study also demonstrates the possibility of using near real-time satellite SIF measurements to study the response of

vegetation to meteorological anomalies over short (monthly) timescales. Proving this technique at a global scale demonstrates

that high-resolution SIF responds to meteorological fluctuations in a similar way to FLUXCOM GPP. As such it has potential

as a near real-time indicator of vegetation status that, unlike FLUXCOM GPP, is independent of meteorological variables on600

aggregate. Whilst there is similarity in the SIFDS-GPPFX response between vegetation covers, there is more diversity between

different vegetation covers in the SIFDS response to meteorological fluctuations, particularly between herbaceous species and

woody trees.

The further collection of high-resolution SIF data via the downscaling method of Duveiller et al. (2020) in addition to

satellites such as OCO-2 and the future FLEX mission, will continue aid the understanding of the relationship between SIF,605

environmental conditions and plant productivity, as well as the variety of response between vegetation covers. The benefit will

be to advance our understanding and estimation of the Earth’s productivity, on both a local and global level.
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Appendix A: Appendix

A1 Full ANCOVA results for downscaled SIF and FLUXCOM GPP

Table A1 contains the full results of the analysis of covariance for the SIFDS-GPPFX relationship between pairs of land covers.

In each climate category, vegetation cover pairs with the largest η2 for the slope are listed first, where the slope is significant815

(p-value < 0.05). If differences in the regression slope are not significant (i.e. the slopes are considered to be parallel), then the

difference in the size of the effect of the intercept is considered, such that the lowest ranked pairs within a climate zone are the

most similar in their SIFDS-GPPFX response.

land cover slope intercept

Climate LC1 LC2 p-value η2 p-value η2

Equatorial EBF DBF 1.34x10−95 0.19 < 1.00x10−99 0.53

Equatorial EBF GRA 1.59x10−77 0.17 < 1.00x10−99 0.49

Equatorial EBF CRO 1.85x10−55 0.12 < 1.00x10−99 0.49

Equatorial DBF CRO 1.53x10−01 < 0.01 3.91x10−45 0.10

Equatorial DBF GRA 1.36x10−01 < 0.01 1.37x10−39 0.09

Equatorial GRA CRO 8.38x10−01 < 0.01 5.09x10−01 < 0.01

Arid GRA DBF 4.35x10−28 0.07 < 1.00x10−99 0.36

Arid CRO DBF 3.01x10−10 0.02 6.88x10−91 0.23

Arid DBF ENF 4.64x10−06 0.02 1.75x10−05 0.02

Arid GRA CRO 1.41x10−04 0.01 3.14x10−36 0.08

Arid GRA ENF 1.00x10−03 0.01 6.46x10−79 0.21

Arid ENF CRO 6.36x10−01 < 0.01 4.27x10−05 < 0.01

Temperate DBF ENF 4.09x10−56 0.12 3.08x10−08 0.02

Temperate DBF GRA 5.80x10−39 0.08 < 1.00x10−99 0.50

Temperate DBF CRO 2.36x10−23 0.05 5.81x10−86 0.18

Temperate EBF DBF 1.80x10−19 0.04 < 1.00x10−99 0.20

Temperate ENF GRA 1.77x10−12 0.02 1.00x10−99 0.56

Temperate ENF CRO 6.22x10−08 0.02 < 1.00x10−99 0.27

Temperate EBF ENF 2.33x10−07 0.01 2.25x10−42 0.09

Temperate EBF GRA 9.52x10−01 < 0.01 1.00x10−99 0.68

Temperate EBF CRO 9.14x10−01 < 0.01 < 1.00x10−99 0.47

Temperate GRA CRO 8.28x10−01 < 0.01 1.55x10−63 0.13

Continental DBF DNF 5.72x10−54 0.11 1.71x10−07 0.01

Continental DNF GRA 3.77x10−49 0.10 < 1.00x10−99 0.25

Continental DBF ENF 4.57x10−43 0.09 9.59x10−11 0.02

Continental ENF GRA 1.27x10−34 0.07 < 1.00x10−99 0.60

Continental DNF CRO 1.54x10−26 0.06 9.95x10−62 0.13

Continental DBF CRO 9.06x10−23 0.05 < 1.00x10−99 0.21

Continental ENF CRO 8.43x10−15 0.03 < 1.00x10−99 0.42

Continental DBF GRA 1.66x10−11 0.02 < 1.00x10−99 0.30

Continental GRA CRO 2.66x10−09 0.02 4.24x10−14 0.03

Continental ENF DNF 9.18x10−05 0.01 < 1.00x10−99 0.32

Table A1. Analysis of covariance between pairs of land covers in different Köppen–Geiger climate groupings. ANCOVA is only performed

on the intercept when the difference between slopes is not considered significant.
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A2 FLUXCOM GPP response to meteorological fluctuations

Figure A1. The relationship between fluctuations in meteorological variables and the corresponding fluctuations in the FLUXCOM GPP.

The fluctuations are measured relative to the monthly mean for each pixel and expressed as a z-score. The four meteorological variables

are air temperature and net surface solar radiation (t2m and ssr, left) and vapour pressure deficit and soil moisture (VPD and swvl1, right).

The GPPFX response in each bin is the mean of all data points in each bin of meteorological z-score. The data is broken down into separate

Köppen–Geiger climate zones and land cover categories.
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A3 Comparison of downscaled SIF with FluxSat GPP820

A3.1 FluxSat GPP data

The presented analysis is repeated with an alternative GPP product to verify that the conclusions drawn regarding the nature of

the spatial SIF-GPP relationship are not unique to the dataset. FluxSat is a global 0.05◦ GPP estimate derived from the MODIS

Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectances, input into neural networks that upscale

GPP estimated from FLUXNET eddy covariance tower sites (Joiner and Yoshida, 2021).825

The data is aggregated to 8-day time steps and the growing season GPP is averaged over the period 2007-2014 in order to

ensure compatibility with the downscaled SIF data. The pixels considered in the analysis are the same as those used in the main

paper, and the methodology used is the same.

A3.2 FluxSat GPP distribution

Figure A2 shows the spatial distribution of the mean growing season FluxSat GPP and the difference to the mean growing830

season FLUXCOM GPP. The figure is comparable to that of downscaled SIF distribution, figure 2. The figures shows that there

is a significant difference between FluxSat and FLUXCOM GPP across most of the world.

Figure A2. Left: The mean growing season FluxSat GPP 2007-2014. Right: The difference (FluxSat - FLUXCOM) between mean FluxSat

GPP and mean FLUXCOM GPP (2007-2014).

A3.3 Spatial relationship between downscaled SIF and FluxSat GPP

Figure A3 shows the relative distribution and spatial linear relationship between the mean growing season FluxSat GPP as a

function of the respective mean values of the downscaled SIF. The data are broken down into separate categories depending on835

the Köppen–Geiger climate grouping and dominant vegetation cover of the pixel. The figures show spatial correlations for the

downscaled SIF and FluxSat GPP, are generally higher than those of the downscaled SIF and FLUXCOM GPP and so exhibit

greater linearity.
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Figure A3. The spatial relationship between the mean growing season downscaled SIF and FluxSat GPP, broken down into separate Köp-

pen–Geiger climate zones and vegetation cover categories. The plot shows the frequency distribution of pixels into SIFDS-GPPFX bins, relative

to the highest frequency bin in that category. A black dashed line representing a linear model in each category is overlaid and compared to

a grey dotted line representing a linear model produced without the breakdown into separate categories (i.e. ‘ALL-ALL’). The linear model

equation, correlation coefficient r, root mean squared error (RMSE) and number of pixels are included.
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land cover slope intercept

Climate LC1 LC2 p-value η2 p-value η2

EQUATORIAL EBF DBF 6.24x10−11 0.02 < 1.00x10−99 0.49

EQUATORIAL EBF GRA 1.82x10−46 0.10 < 1.00x10−99 0.55

EQUATORIAL EBF CRO 2.82x10−48 0.10 < 1.00x10−99 0.46

EQUATORIAL DBF CRO 3.50x10−15 0.03 2.15x10−31 0.07

EQUATORIAL DBF GRA 1.43x10−07 0.01 1.23x10−31 0.07

EQUATORIAL GRA CRO 4.85x10−09 0.02 5.15x10−05 0.01

ARID GRA DBF 6.80x10−06 0.01 5.25x10−42 0.11

ARID CRO DBF 4.02x10−01 < 0.01 2.19x10−30 0.08

ARID DBF ENF 1.40x10−02 0.01 1.25x10−01 < 0.01

ARID GRA CRO 2.14x10−08 0.02 2.84x10−05 0.01

ARID GRA ENF 3.98x10−16 0.04 5.99x10−11 0.03

ARID ENF CRO 8.20x10−05 0.01 2.61x10−05 0.01

TEMPERATE DBF ENF 4.00x10−27 0.06 3.94x10−17 0.04

TEMPERATE DBF GRA < 1.00x10−99 0.22 < 1.00x10−99 0.37

TEMPERATE DBF CRO 4.62x10−57 0.12 < 1.00x10−99 0.27

TEMPERATE EBF DBF 6.07x10−40 0.08 < 1.00x10−99 0.21

TEMPERATE ENF GRA 1.59x10−06 0.01 < 1.00x10−99 0.32

TEMPERATE ENF CRO 3.47x10−04 0.01 < 1.00x10−99 0.22

TEMPERATE EBF ENF 9.00x10−03 < 0.01 < 1.00x10−99 0.22

TEMPERATE EBF GRA 3.42x10−01 < 0.01 < 1.00x10−99 0.62

TEMPERATE EBF CRO 5.23x10−01 < 0.01 < 1.00x10−99 0.54

TEMPERATE GRA CRO 8.66x10−01 < 0.01 9.95x10−01 < 0.01

CONTINENTAL DBF DNF 3.00x10−03 < 0.01 1.21x10−24 0.05

CONTINENTAL DNF GRA 1.92x10−08 0.02 < 1.00x10−99 0.27

CONTINENTAL DBF ENF 2.96x10−20 0.04 6.30x10−02 < 0.01

CONTINENTAL ENF GRA 1.79x10−01 < 0.01 < 1.00x10−99 0.42

CONTINENTAL DNF CRO 4.35x10−29 0.06 < 1.00x10−99 0.37

CONTINENTAL DBF CRO 4.96x10−43 0.09 1.81x10−55 0.12

CONTINENTAL ENF CRO 8.07x10−06 0.01 < 1.00x10−99 0.48

CONTINENTAL DBF GRA 2.11x10−17 0.04 2.72x10−44 0.09

CONTINENTAL GRA CRO 1.07x10−13 0.03 2.22x10−12 0.02

CONTINENTAL ENF DNF 5.12x10−16 0.03 3.44x10−81 0.17

Table A2. Analysis of covariance between pairs of land covers in different Köppen–Geiger climate groupings for the relationship between

downscaled SIF and FluxSat GPP. ANCOVA is only performed on the intercept when the difference between slopes is not considered

significant.

A3.4 Spatial analysis of covariance between downscaled SIF and FluxSat GPP

The ANCOVA analysis is repeated for the downscaled SIF with FluxSat GPP, and the η2 parameters for slope and intercept are840

displayed in figure A4, whilst the full results can be found in table A2.

The results support the analysis of covariance between the downscaled SIF and the FLUXCOM GPP. The difference in the

SIF-GPP scaling between vegetation covers is relatively unimportant with a the exceptions of equatorial evergreen broadleaf

forests and temperate deciduous broadleaf forests. Continental needleleaf forests are less of an exception when the FluxSat

GPP is considered however. Indeed, in general, the differences between vegetation covers are less prominent with the FluxSat845

GPP. There is less difference in the scaling of the SIF-GPP relationship between land covers, than there is in the starting

potential, with the significance and the magnitude of effect of the choice of vegetation covers on the intercept slightly greater in

comparisons between a woody and a non-woody species, than within woody/non-woody groupings. This intercept is generally

higher for woody vegetation.
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Figure A4. The η2 parameter of an analysis of covariance between pairs of vegetation covers in different Köppen–Geiger climate groupings,

for the slope (left) and intercept (right) of the linear relationship between downscaled SIF and FluxSat GPP. ANCOVA is performed on the

intercept under the assumption that the difference between slopes is not significant. The η2 parameter is comparable to the percentage of the

difference in the slope or intercept (the latter assuming equivalence of the slopes) attributable to the difference in vegetation cover, with lower

values signifying a smaller difference between vegetation covers. A slightly bolder line is used to separate the herbaceous species (CRO,

GRA) from the woody species (EBF, DBF, ENF, DNF).
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A4 Comparison with TROPOMI SIF850

A4.1 TROPOMI SIF data

As described in Duveiller et al. (2020) the downscaled SIF dataset is independently validated with OCO-2 SIF observations

and, after bias correction, the resulting downscaled SIF data show high spatio-temporal agreement with the first SIF retrievals

from the TROPOMI mission. Further comparison of the length-of-day corrected TROPOMI data with FLUXCOM GPP is

provided to support the specific analysis presented in this paper (Guanter et al., 2021).855

The TROPOMI data is averaged to 8-day time steps with the composite containing observations with a zenith angle below

40◦. The pixels considered in the analysis are the same as those used in the main paper, with the requirements on missing data

points loosened to ensure coverage. Due to the shorter time span of available data from TROPOMI, only the 2020 dataset is

analysed here. Additionally, the analysis differs from that presented in the paper as the coverage of the VIPPHEN phenology

dataset does not extend to the years covered by TROPOMI and the growing season of 2014 - the final VIPPHEN year available860

- is used to define the growing season and compare SIF and GPP. Finally the comparison is made with an extended FLUXCOM

GPP dataset which may contain methodological differences from that used in the paper.

A4.2 TROPOMI SIF distribution

Figure A5 shows the spatial distribution of the mean growing season TROPOMI SIF and the difference to the mean growing

season downscaled SIF. The figure is comparable to that of downscaled SIF distribution, figure 2. TROPOMI generally shows865

a lower SIF than the downscaled values, with a mean difference of -0.077. These are relatively evenly distributed across the

globe, with the exception of the tropics, which shows an excess in TROPOMI compared to downscaled SIF.

Figure A5. Left: The mean TROPOMI SIF in the 2020 growing season. Right: The difference (TROPOMI - downscaled) between mean

TROPOMI SIF (2020) and mean downscaled SIF (2007-2014).

A4.3 Intra-annual correlation between TROPOMI SIF and FLUXCOM GPP

Figure A6 displays the intra-annual correlation between TROPOMI SIF and FLUXCOM GPP, as well as the difference

(TROPOMI - downscaled) when compared to the intra-annual correlation between downscaled SIF and FLUXCOM GPP.870
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The figure shows that across the growing season, the intra-annual correlation between TROPOMI SIF and FLUXCOM GPP

is very similar to that of the downscaled SIF and GPP across a growing season, with the vast majority of points showing a

difference of less that 0.1. Significant differences between the two SIF products are mostly observed in equatorial rainforests.

Figure A6. Left: The intra-annual temporal correlation between TROPOMI SIF and FLUXCOM GPP in 2020. Right: The difference

(TROPOMI - downscaled) between TROPOMI SIF (2020) and downscaled SIF (2007-2014) in the intra-annual temporal correlation be-

tween SIF and FLUXCOM GPP.

A4.4 Spatial relationship between TROPOMI SIF and FLUXCOM GPP

Figure A7 shows the relative distribution and spatial linear relationship between the mean growing season FLUXCOM GPP as875

a function of the respective mean values of the TROPOMI SIF. The data are broken down into separate categories depending

on the Köppen–Geiger climate grouping and dominant vegetation cover of the pixel. The figures show spatial correlations for

the TROPOMI SIF and FLUXCOM GPP, that are broadly similar with those of the downscaled SIF and FLUXCOM GPP.

A4.5 Spatial analysis of covariance between TROPOMI SIF and FLUXCOM GPP

The ANCOVA analysis is repeated for the TROPOMI SIF with FLUXCOM GPP for the full year of 2020, and the η2 parameters880

for slope and intercept are displayed in figure A8, whilst the full results can be found in table A3.

The results support the main features of the analysis with downscaled SIF seen in figure 6. The difference in the scaling of the

SIF-GPP relationship (i.e. the slope) between vegetation covers is relatively unimportant. There are however, a few exceptions,

the most significant of which is evergreen broadleaf forests in equatorial regions. The difference between deciduous broadleaf

forests and other vegetation covers in temperate regions is no longer present, suggesting it may be a feature of the downscaled885

SIF. There is a slight distinction that can be drawn between the scaling of continental needleleaf forests and other vegetation

covers. In general, there is a slight decrease in the differences between the vegetation covers in the TROPOMI SIF dataset.

Though the slopes are similar, a reasonable proportion of the difference in the intercept of the linear relationship is at-

tributable to the difference in vegetation covers. This difference broadly divides along the lines of herbaceous or non-woody

vegetation (CRO, GRA) and woody vegetation (EBF, DBF, ENF, DNF). The intercept, which can be interpreted as the starting890

potential of the SIF-GPP relationship, is generally higher for woody trees (i.e. more SIF is released for a given GPP).
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Figure A7. The spatial relationship between the mean growing season TROPOMI SIF and FLUXCOM GPP, broken down into separate

Köppen–Geiger climate zones and vegetation cover categories. The plot shows the frequency distribution of pixels into SIFDS-GPPFX bins,

relative to the highest frequency bin in that category. A black dashed line representing a linear model in each category is overlaid and

compared to a grey dotted line representing a linear model produced without the breakdown into separate categories (i.e. ‘ALL-ALL’). The

linear model equation, correlation coefficient r, root mean squared error (RMSE) and number of pixels are included.
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Figure A8. The η2 parameter of an analysis of covariance between pairs of vegetation covers in different Köppen–Geiger climate groupings,

for the slope (left) and intercept (right) of the linear relationship between TROPOMI SIF and FLUXCOM GPP. ANCOVA is performed on

the intercept under the assumption that the difference between slopes is not significant. The η2 parameter is comparable to the percentage

of the difference in the slope or intercept (the latter assuming equivalence of the slopes) attributable to the difference in vegetation cover,

with lower values signifying a smaller difference between vegetation covers. A slightly bolder line is used to separate the herbaceous species

(CRO, GRA) from the woody species (EBF, DBF, ENF, DNF).
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land cover slope intercept

Climate LC1 LC2 p-value η2 p-value η2

EQUATORIAL EBF DBF 1.13x10−22 0.05 5.77x10−65 0.14

EQUATORIAL GRA EBF 2.68x10−43 0.10 < 1.00x10−99 0.59

EQUATORIAL CRO EBF 1.26x10−30 0.06 < 1.00x10−99 0.54

EQUATORIAL CRO DBF 7.52x10−01 < 0.01 < 1.00x10−99 0.30

EQUATORIAL GRA DBF 1.09x10−01 < 0.01 < 1.00x10−99 0.42

EQUATORIAL GRA CRO 9.00x10−02 < 0.01 1.16x10−08 0.02

ARID GRA DBF 5.00x10−03 < 0.01 7.84x10−88 0.22

ARID CRO DBF 1.58x10−05 0.01 1.98x10−68 0.18

ARID DBF ENF 8.00x10−02 < 0.01 4.98x10−16 0.06

ARID GRA CRO 1.90x10−02 < 0.01 1.60x10−27 0.06

ARID GRA ENF 2.85x10−06 0.01 2.53x10−39 0.11

ARID CRO ENF 1.34x10−06 0.02 4.50x10−01 < 0.01

TEMPERATE DBF ENF 1.00x10−03 < 0.01 9.40x10−01 < 0.01

TEMPERATE GRA DBF 4.20x10−02 < 0.01 < 1.00x10−99 0.58

TEMPERATE CRO DBF 7.10x10−02 < 0.01 < 1.00x10−99 0.28

TEMPERATE EBF DBF 1.60x10−01 < 0.01 9.44x10−01 < 0.01

TEMPERATE GRA ENF 1.66x10−13 0.03 < 1.00x10−99 0.52

TEMPERATE CRO ENF 2.30x10−01 < 0.01 < 1.00x10−99 0.27

TEMPERATE EBF ENF 6.00x10−03 < 0.01 6.58x10−01 < 0.01

TEMPERATE GRA EBF 3.53x10−08 0.01 < 1.00x10−99 0.58

TEMPERATE CRO EBF 3.12x10−01 < 0.01 < 1.00x10−99 0.26

TEMPERATE GRA CRO 4.58x10−07 0.01 1.85x10−44 0.09

CONTINENTAL DBF DNF 2.03x10−29 0.06 9.89x10−10 0.02

CONTINENTAL GRA DNF 4.91x10−11 0.02 < 1.00x10−99 0.46

CONTINENTAL DBF ENF 5.96x10−32 0.07 1.55x10−04 0.01

CONTINENTAL GRA ENF 3.91x10−12 0.02 < 1.00x10−99 0.58

CONTINENTAL CRO DNF 6.18x10−08 0.01 1.69x10−96 0.20

CONTINENTAL CRO DBF 1.61x10−12 0.03 < 1.00x10−99 0.30

CONTINENTAL CRO ENF 1.16x10−09 0.02 < 1.00x10−99 0.35

CONTINENTAL GRA DBF 2.58x10−18 0.04 < 1.00x10−99 0.31

CONTINENTAL GRA CRO 6.82x10−01 < 0.01 8.96x10−05 0.01

CONTINENTAL ENF DNF 9.00x10−01 < 0.01 3.40x10−44 0.09

Table A3. Analysis of covariance between pairs of land covers in different Köppen–Geiger climate groupings for the relationship between

TROPOMI SIF and FLUXCOM GPP. ANCOVA is only performed on the intercept when the difference between slopes is not considered

significant.
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