
 

1 

 

A Coupled Ground Heat Flux-Surface Energy Balance Model of 1 

Evaporation Using Thermal Remote Sensing Observations 2 

Devansh Desai1,10,11*, Kaniska Mallick2,3*, Bimal K. Bhattacharya1,#, Ganapati S. Bhat4, Ross 3 

Morrison5, Jamie Clevery6, Will Woodgate7, Jason Beringer8, Kerry Cawse-Nicholson9, Siyan 4 

Ma3, Joseph Verfaillie3, Dennis Baldocchi3 5 

1Agriculture &Land Ecosystem Division, Space Applications Center, ISRO, Ahmedabad, India 6 
2Remote Sensing and Natural Resources Modeling, Department ERIN, Luxembourg Institute of 7 

Science and Technology, Belvaux, Luxembourg 8 
3Environemtal Science Policy and Management, University of California, Berkeley, United 9 

States 10 
4Centre for Atmosphere and Oceanic Studies, Indian Institute of Sciences, Bengaluru, India 11 
5Centre for Ecology and Hydrology, Lancaster, UK 12 
6Terrestrial Ecosystem Research Network, College of Science and Engineering, James Cook 13 

University, Cairns, Queensland 14 
7CSIRO Land and Water, Private Bag 5, Floreat 6913, Western Australia. 15 
8School of Earth and Environment, The University of Western Australia, WA, 6009, Australia 16 
9Carbon Cycles and Ecosystems, Jet Propulsion Laboratory, California Institute of Technology, 17 

United States 18 
10Department of Physics, Electronics & Space Sciences, Gujarat University, Ahmedabad, India 19 
11Department of Physics, Institute of Science, Silver Oak University, Ahmedabad, Gujarat, India 20 

Corresponding authors: Kaniska Mallick (kaniska.mallick@gmail.com) and Devansh Desai 21 

(ddesai10793@gmail.com) 22 

#Contributed equally to revision 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

mailto:Kaniska.mallick@gmail.com
mailto:ddesai10793@gmail.com


 

2 

 

Abstract 31 

One of the major undetermined problems in evaporation (ET) retrieval using thermal infrared 32 

remote sensing is the lack of a physically based ground heat flux (G) model and its integration 33 

with the surface energy balance model. Here, we present a novel approach based on coupling a 34 

thermal inertia (TI)-based mechanistic G model with an analytical surface energy balance model, 35 

Surface Temperature Initiated Closure (STIC, version STIC1.2). The coupled model is named 36 

STIC-TI and it uses noon-night (1:30 pm and am) land surface temperature (TS), surface albedo, 37 

and vegetation index from MODIS Aqua in conjunction with a clear-sky net radiation model and 38 

ancillary meteorological information. SEB flux estimates from STIC-TI were evaluated with 39 

respect to the in-situ fluxes from Eddy Covariance measurements in diverse ecosystems of 40 

contrasting aridity in both northern and southern hemispheres. Sensitivity analysis revealed 41 

substantial sensitivity of STIC-TI-derived fluxes due to TS uncertainty. An evaluation of 42 

noontime G (Gi) estimates showed 12-21% error across six flux tower sites in both the 43 

hemispheres and a comparison between STIC-TI versus other G models also revealed the 44 

substantially better performance of the former. While the instantaneous noontime net radiation 45 

(RNi) and latent heat flux (LEi) was overestimated (15% and 25%), sensible heat flux (Hi) was 46 

underestimated (22%). The errors in Gi were associated with the errors in daytime TS and 47 

mismatch of footprint between the model estimates and measurements. Overestimation 48 

(underestimation) of LEi (Hi) was associated with the overestimation of net available energy (RNi 49 

– Gi) and use of unclosed surface energy balance measurements. The deviations of STIC-TI heat 50 

flux estimates from measurements were found to be restricted within -40 to 30 day view angle, 51 

while no impact of night view angle was evident. Being independent of any leaf-scale 52 

parameterization and having a coupled sub-model of G, STIC-TI can make a valuable 53 

contribution to mapping and monitoring ecosystem water stress and evaporation using noon-54 

night thermal infrared observations from existing and future EO missions such as INSAT 4th 55 

generation and TRISHNA. 56 

Keywords: Thermal remote sensing, water stress, evaporation, ground heat flux, thermal inertia, 57 

surface energy balance, STIC, terrestrial ecosystem 58 
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1 Introduction 59 

One of the outstanding challenges in evaporation (ET) estimation through surface energy balance 60 

(SEB) model concerns an accurate characterization of ground heat flux in the open canopy 61 

system with mixed vegetation such as savanna or in ecosystems with low mean fractional 62 

vegetation cover, prevailing water stress, and strong seasonality in soil moisture. Ground heat 63 

flux (G) is an intrinsic component of SEB (Sauer and Horton, 2005), affecting the net available 64 

energy for ET (the equivalent water depth of latent heat flux, LE) and sensible heat flux (H). It 65 

represents an energy flow path that couples surface with the atmosphere and has important 66 

implications for the underlying thermal regime (Sauer and Horton, 2005). Depending on the 67 

vegetation fraction and water stress, the magnitude of instantaneous G varies greatly across 68 

different ecosystems. In the humid ecosystems with predominantly dense canopies and high 69 

mean fractional vegetation cover, G contributes to a small proportion in the surface energy 70 

balance. Dense canopy cover leads to less transmission of radiative fluxes through multiple 71 

layers of canopies, which results in low warming of the soil floor. Due to persistently high soil 72 

water content, humid ecosystems generally show low diurnal and seasonal variability in G. By 73 

contrast, the magnitude of G is substantially large in arid and semi-arid ecosystems with sparse 74 

and open canopy and soil moisture deficits. Due to prevailing feedback between the physics of 75 

ground heat flux, land-atmosphere interactions and vegetation ecophysiology, evaporation 76 

modelling in the complex ecosystems remained a challenging task (Wang et al., 2013; Kiptala et 77 

al., 2013). This paper addresses the challenge of simultaneous estimation of G and ET by 78 

combining thermal remote sensing observations with a mechanistic G model and a SEB model.   79 

SEB models mainly emphasize on estimating sensible heat flux (H) by resolving the 80 

aerodynamic conductance (gA) and computes LE as a residual SEB component as follows: 81 

LE =  RN − G −  H (1) 

RN is the net radiation. The proportion of RN that is partitioned into G depends upon soil 82 

properties like its albedo, soil moisture, soil thermal properties such as thermal conductivity and 83 

heat capacity, which vary with mineral, organic and soil water fractions. SEB models use land 84 

surface temperature (LST or TS) as an important lower boundary condition for estimating H and 85 

LE. Due to the extraordinarily high sensitivity of TS to evaporative cooling and soil water 86 
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content variations, thermal infrared (TIR) remote sensing is extensively used in large scale 87 

evaporation diagnostics (Kustas and Anderson, 2009; Mallick et al., 2014, 2015a, 2018a; 88 

Cammalleri and Vogt, 2015; Anderson et al., 2012). Evaporation estimation through SEB models 89 

commonly employ empirical sub-models of G in a stand-alone mode. Despite the utility of 90 

mechanistic G models is demonstrated in different studies (Verhoef, 2004; Murray and Verhoef, 91 

2007; Verhoef et al., 2012), no TIR-based evaporation study attempted to couple a mechanistic 92 

G model with a SEB model.  93 

The SEB models for ET estimation driven by remote sensing observations generally use linear 94 

and non-linear relationships for estimating G and such methods generally employ RN, TS, albedo 95 

(αR), and NDVI (e.g., Bastiaanssen et al., 1998; Friedl, 2002; Santanello and Friedl, 2003). 96 

While the inclusion of TS and albedo serves as a proxy for soil moisture and surface 97 

characteristics effects in G, inclusion of NDVI provides a scaling of G - RN ratio for different 98 

fractional vegetation cover. Unfortunately, the empirical approaches do not include any 99 

information of soil temperature or daily temperature amplitude. These empirical models also lack 100 

the universal consensus. Setting G as a fraction of RN does not solve the energy balance equation 101 

and disregards the role of thermal inertia of the land surface (Mallick et al., 2015b). This could 102 

introduce substantial uncertainty in LE estimation because G effectively couples the surface 103 

energy balance with energy transfer processes in the soil thermal regime. It provides physical 104 

feedback to LE through the effects of soil moisture, temperature, and conductivity (thermal and 105 

hydraulic) (Sauer and Horton, 2005). Such feedbacks are most critical in the arid and semi-arid 106 

ecosystems where LE is significantly constrained by the soil moisture dry-down. The limits 107 

imposed on LE by the water stress consequently result in greater partitioning of the net available 108 

energy (i.e., RN – G) into H and G (Castelli et al., 1999).  109 

When LE is reduced due to soil moisture dry-down, both G and TS tend to show rapid intra-110 

seasonal rise. Therefore, the surface energy balance equation could be linked with mechanistic G 111 

model, TS harmonics (Verhoef, 2004), and soil moisture availability. Realizing the importance of 112 

direct estimates of G in LE and invigorated by the advent of TIR remote sensing, Verhoef et al. 113 

(2012) demonstrated the potential of a TI-based mechanistic model (Murray and Verhoef, 2007) 114 

(MV2007 hereafter) for spatiotemporal G estimates in semi-arid ecosystems of Africa. Some 115 

studies also emphasized the importance of using noontime and nighttime Ts and RN for 116 
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estimating G (Mallick et al., 2015b; Bennet et al., 2008; Tsuang, 2005). The method of MV2007 117 

has so far been tested in a stand-alone mode, and no remote sensing method has so far been 118 

attempted to combine such a mechanistic G model (e.g., MV2007-TI model) with a SEB model 119 

for coupled energy-water flux estimation and validation.  120 

By integrating TS into a combined structure of the Penman-Monteith (PM) and Shuttleworth-121 

Wallace (SW) model, an analytical SEB model was proposed by Mallick et al. (2014, 2015a, 122 

2016). The model, Surface Temperature Initiated Closure (STIC), is based on finding analytical 123 

solution for aerodynamic and canopy-surface conductance (gA and gS) where the expressions of 124 

the conductances were constrained by an aggregated water stress factor. Through physically 125 

linking water stress (TS derived) with gA and gS, STIC established direct feedback between TS, H 126 

and LE, and simultaneously overcame the need of empirical parameterization for estimating the 127 

conductances (Mallick et al., 2016, 2018a). Different versions of STIC have been extensively 128 

validated in different ecological transects (Tropical rainforest to woody savanna) and aridity 129 

gradients (humid to arid) (Trebs et al., 2021; Bai et al., 2021; Mallick et al., 2015a; 2016; 2018a, 130 

b; Bhattarai et al., 2018, 2019). Based on the conclusions of Verhoef et al. (2012), Mallick et al. 131 

(2014; 2015a,b; 2016; 2018a,b, 2022), Bhattarai et al. (2018, 2019), and Bai et al. (2021), there 132 

is a need to address some of the challenges in SEB modeling, which are, (i) accurate estimation 133 

of G and ET in sparse vegetation, (ii) testing the utility of coupling a TI-based G model with an 134 

analytical SEB model for accurately estimating G and ET, and (iii) detailed evaluation of a 135 

coupled G-SEB model at the ecosystem scale. Realizing the significance of mechanistic G model 136 

(MV2007), the advantage of the analytical STIC model, and to mitigate some of the overarching 137 

gaps in SEB modeling in sparsely vegetated open canopy systems, this study presents the first-138 

ever coupled implementation of MV2007 G with the most recent version of STIC (STIC1.2). We 139 

name this new coupled model as STIC-TI and it requires noon-night Ts and associated remotely 140 

sensed land surface variables as inputs. We performed subsequent evaluation of STIC-TI in nine 141 

terrestrial ecosystems in arid, semi-arid and sub-humid climate in India, the United States of 142 

America (USA) (representing northern hemisphere) and Australia (representing southern 143 

hemisphere) at the eddy covariance flux tower sites. The current study addresses the following 144 

research questions and objectives: 145 
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(i) What is the performance of STIC-TI G estimates when compared with conventionally used 146 

empirical G models in ecosystems having low mean fractional vegetation cover (fc) (≤0.5) and 147 

having larger soil exposure to radiation for example in Savanna? 148 

(ii) How do the estimates from STIC-TI LE and H fluxes compare with LE and H observations in 149 

diverse terrestrial ecosystems that represent a varied range of fc (0.25 – 0.5) covering 150 

cropland, savanna, mulga vegetation (woodlands and open-forests dominated by the mulga 151 

tree [Acacia aneura]) spread across arid, semi-arid, sub-humid, humid climates over a vast 152 

range of rainfall (250 to 1730 mm), temperature (-4 to 46C) and soil regimes? 153 

(iii) What is the seasonal variability of G and evaporative fraction from STIC-TI model in a wide 154 

range of ecosystems having contrasting aridity and vegetation cover? 155 

It is important to mention that assessing the performance of STIC-TI LE and H with respect to 156 

other SEB models is not within the scope of the present study. The prime focus of the current 157 

study is to assess the sensitivity of STIC-TI, temporal variability of the retrieved SEB fluxes, and 158 

cross-site validation of the individual SEB components. 159 

A list of variables, their symbols and corresponding units are given in Table A1 in Appendix A. 160 

2 Study area and datasets 161 

2.1Study site characteristics 162 

The present study was conducted using data from nine flux tower sites (four sites in India; three 163 

sites in Australia; two sites in USA) equipped with Eddy Covariance (EC) measurement systems. 164 

The distribution of the flux tower sites considered for the present study are shown in Fig.1 165 

below. The sites cover a wide range of climate, vegetation types, low fractional vegetation cover 166 

(fc) of around 0.5 and have contrasting aridity (Table 1). In India, a network of EC towers was 167 

set up under Indo-UK INCOMPASS (INteraction of Convective Organization and Monsoon 168 

Precipitation, Atmosphere, Surface and Sea) Program (Turner et al., 2019) at Jaisalmer (IND-Jai) 169 

in Rajasthan state, Nawagam (IND-Naw) in Gujarat state, Samastipur (IND-Sam) in Bihar state 170 

and under Newton-Bhaba programme (Morisson et al., 2019 a,b) at Dharwad (IND-Dha) in 171 

Karnataka state. The flux footprint for EC towers in India varied from 500 m – 1 km (Bhat et al., 172 

2019). In the present study, about 90% of the fluxes came from an area within 500 m to 1 km 173 
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from the EC tower. Therefore, the relative contribution of vegetated land surface area to the 174 

fluxes is close to 90% (Schmid, 2002; Vesala et al., 2008). The remaining percentage of fluxes 175 

were originated from an area beyond the flux footprint. The mean annual fc was found to vary 176 

from 0.25 to 0.52 with standard deviation (SD) ranging from 0.1 to 0.16. 177 

The IND-Jai site represents arid western zone over desert plains of natural grassland ecosystem. 178 

The region receives very low rainfall (100 – 300 mm) during monsoon and experiences a wide 179 

range in air temperature, high solar radiation, wind speed and high evaporative demand (Raja et 180 

al., 2015). The IND-Naw site represents semi-arid agroecosystem in the middle Gujarat 181 

agroclimatic zone of north-west India and has a pre-dominant rice-wheat cropping system. The 182 

IND-Sam site has sub-humid climate of north-west alluvial plain zone in the Indo-Gangetic Plain 183 

(IGP) situated in the eastern India and this site also follows rice-wheat crop rotation. IND-Dha 184 

represents humid sub-tropical climate of transition zone in the southern India and this site 185 

comprises of crops. 186 

 

Figure 1: Locations of the flux tower sites in India, Australia and USA overlaid on climate type 

map. (Image Source: By Peel, M. C., Finlayson, B. L., and McMahon, T. A. (University of 

Melbourne) enhanced, modified, and vectorized by Ali Zifan; Hydrology and Earth System 

Sciences: "Updated world map of the Köppen-Geiger climate classification". Legend 

explanation, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=47086879) 

1: IND-Jai

2: IND-Naw

3: IND-Sam

4: IND-Dha

5: AU-ASM

6: AU-Ade

7: AU-How

8: US-Ton

9: US-Var
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In USA, two EC tower sites were located at Tonzi Ranch (US-Ton) and Vaira Ranch (US-Var), 187 

in the lower foothills of the Sierra Nevada Mountains. Both the EC stations are part of the 188 

AMERIFLUX Management Project (https://ameriflux.lbl.gov/). US-Ton is classified as an oak 189 

savanna woodland. While the overstorey is dominated by blue oak trees (40% of total 190 

vegetation) with intermittent grey pine trees (3 treesha-1), the understory species include a variety 191 

of grasses and herbs. The mean annual rainfall at this site is 559 mm. US-Var isa grassland 192 

dominated site and the growing season is confined to the wet season only, typically from October 193 

to early May. The mean annual rainfall at this site is 559 mm. The mean annual fc was found to 194 

vary from 0.18 to 0.26 and SD of the order of 0.06 to 0.07. 195 

In Australia, three EC tower sites were located at Howard Springs (AU-How), Alice Springs 196 

Mulga (AU-ASM), Adelaide river (AU-Ade) in the Northern Territory as part of the OzFlux 197 

network (Beringer et al., 2016) and the Terrestrial Ecosystem Research Network (TERN), which 198 

is supported by the National Collaborative Infrastructure Strategy (NCRIS) 199 

(http://www.ozflux.org.au/monitoringsites/index.html). The AU-How is situated in the Black 200 

Jungle Conservation Reserve representing an open woodland savanna and the mean annual 201 

rainfall is 1750 mm. The AU-ASM is located on Pine Hill cattle station near Alice Springs. The 202 

woodland is characterized by mulga canopy and mean annual rainfall is 306 mm. AU-Ade 203 

represents savanna with a mean annual rainfall of 1730 mm. The mean annual fc varied from 204 

0.21 to 0.48 having SD range of 0.08 - 0.17. A description of Australian flux sites is given in 205 

Beringer et al. (2016). Average heights of vegetation are 1.15 m at IND-Naw, 1 m at IND-Jai, 206 

1.23 m at IND-Sam, 1.5 m at IND-Dha, 6.5 m at AU-ASM, 15m at AU-How, 7 m at AU-Ade, 207 

10 m at US-Ton, and ≤ 0.5 m at US-Var. 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

https://ameriflux.lbl.gov/
http://www.ozflux.org.au/monitoringsites/index.html
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Table 1: An overview of the EC flux tower site characteristics in the present study 218 

Hemisphere Sites 

Latitude 

(N), 

Longitude 

(E) 

Climate & 

Vegetation  

Mean fc 

(SD) 

Soil 

texture 

TA range 

(C) 

Mean 

Annual P 

(mm) 

Observation 

period 

 

 

 

 

 

 

 

 

 

Northern 

 

 

 

Jaisalmer 

(IND-Jai) 

26.99, 

71.34 

 

Arid grassland 

 

0.25(±0.1) 

Loamy fine 

sand 

 to coarse 

sand 

8 – 40 

 

250 

 

2017 – 2018 

Nawagam 

(IND-

Naw) 

22.80, 

72.57 

 

Semi-arid 

cropland 

 

0.41(±0.13) 
Sandy 

loam 
9 – 39 

 

700 

 

2017 – 2018 

Samastipur 

(IND-

Sam) 

 

26.00, 

85.67 

 

 

Humid 

subtropical 

cropland  

 

0.52(±0.16) 

Sandy 

loam to 

loam 

10 – 39 

 

1000 

 

2017 – 2018 

Dharwad   

(IND-Dha) 

15.50, 

74.99 

Tropical 

Savanna  
0.36(±0.11) 

Shallow to 

medium 

black clay 

and red 

sandy loam 

soils 

12 – 40 

 

650 

 

2016 – 2018 

Tonzi 

ranch  

(US-Ton) 

38.43,  

-120.96 

Woody 

Savanna  
0.18(±0.06) 

Red sandy 

clay loam 
0 – 40 559 2011 – 2019 

Vaira 

ranch  

(US-Var) 

38.41,  

-120.95 

 

Arid grassland 

 

0.26(±0.07) 
Rocky silt 

loam 
0 – 40 559 2011 – 2019 

 

 

 

 

 

Southern 

Alice 

Springs 

Mulga 

(AU-

ASM) 

 

-22.28, 

133.24 

 

 

Semi-arid 

mulga 

 

0.21(±0.09) 
Loamy 

sand 
(-4) – 40 305 2011 – 2014 

Howard 

Springs  

(AU-How) 

-12.49, 

131.15 

Tropical 

savanna  
0.48(±0.17) 

Red 

kandasol 
19 – 34 1700 2011 – 2014 

Adelaide 

River 

 (AU-Ade) 

-13.07, 

131.11 

 

Savanna 

 

0.42(±0.08) 

 

Yellow 

hydrosol, 

shallow, 

loamy sand 

with coarse 

gravel 

 

16 – 37 1730 2007 – 2009 

TA: Air temperature during the observation period; P: rainfall (mm) measured using rain gauge at flux tower site during the study 219 
period. IND is for India, AU is for Australia, and US is for the United States; SD is standard deviation of annual mean fc which is 220 
computed from NDVI as mentioned in section 3.1. 221 
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2.2Datasets 222 

2.2.1Micrometeorological data at flux tower sites 223 

Standardized, controlled and harmonized surface energy balance (SEB) flux and meteorological 224 

data from nine EC towers were used in the present analysis. In Australia, H and LE were 225 

measured through the EC systems and RN were measured through net radiometers at varying 226 

heights of 15 m (AU-Ade), 23 m (AU-How), and 11.6 m (AU-ASM), respectively. In India, the 227 

EC measurement height was maintained approximately at 8 m above the surface, except at IND-228 

Dha where it was installed at a height of 4.2 m. In USA, the SEB measurements were carried out 229 

at tower heights of 23 m at US-Ton and 2 m US-Var. A summary of the instrumentation is given 230 

in Table A2 of Appendix A. All the flux tower sites were equipped with a range of 231 

meteorological instrumentation which measured diurnal air temperature (TA) and relative 232 

humidity (RH), four components of the net radiation (RN, consisting of down- and up-welling 233 

shortwave and long-wave radiation (SW↓, SW↑, LW↑ and LW↓, respectively)) above the 234 

vegetated canopy. In addition, the diurnal soil heat flux (G) and soil temperature (TST) were 235 

measured at all the three Australian sites and two US sites. In India, the diurnal soil heat flux was 236 

measured only at IND-Dha. 237 

For the Indian sites, the raw EC measurements of the turbulent wind vectors (u, v and w, for 238 

horizontal, meridional and vertical, respectively), sonic temperature (T), and CO2 and water 239 

vapor mass density were recorded at a sampling rate of 20 Hz. Raw EC data were post-processed 240 

to obtain level-3 quality controlled and harmonized surface fluxes at 30-minute flux averaging 241 

intervals using EddyPRO® Flux Calculation Software (LI-COR Biosciences, Lincoln, Nebraska, 242 

USA) using the data handling protocol described by Bhat et al. (2019). The EC data from the 243 

OzFlux sites was averaged over 30 minutes recorded by the logger and processed through levels 244 

using the PyFluxPro standard software processing scripts as mentioned in Isaac et al. (2017). The 245 

Level 3 (L3) used in this paper was produced using PyFluxPro (Isaac et al., 2017) employing the 246 

Dynamic INtegrated Gap filling and partitioning for Ozflux (DINGO) system as described in 247 

Donohue et al. (2014) and Beringer et al. (2016).The quality checked  EC data at 30 minute 248 

intervals for two AMERIFLUX sites US-Ton and US-Var was acquired from 249 

https://doi.org/10.17190/AMF/1245971&https://doi.org/10.17190/AMF/1245984,  respectively. 250 

https://doi.org/10.17190/AMF/1245971&
https://doi.org/10.17190/AMF/1245984
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2.2.2 Remote sensing data 251 

Optical and thermal remote sensing observations available from Moderate Resolution Imaging 252 

Spectroradiometer (MODIS) (Didan et al., 2015) on-board Aqua platform were used in the 253 

present study (Table 2) for estimating G and associated SEB fluxes. These include eight-day land 254 

surface temperature (LST or TS) at 1:30 pm and 1:30 am, and surface emissivity (εs) 255 

(MYD11A2), daily surface albedo (αR) (MCD43A3), 16-day NDVI (MYD13A2). The overpass 256 

times of MODIS Aqua are at 1:30 pm and 1:30 am. The 8-day average values of clear-sky TS 257 

available from MYD11A2 data were used (Source: 258 

https://vip.arizona.edu/documents/viplab/MYD11A2.pdf) for all nine flux tower sites. Since 259 

MYD21A2 LST product is known to provide better accuracy (1 – 1.5 K) (Hulley et al, 2016) as 260 

compared to MYD11A2 LST over semi-arid and arid ecosystems, the former was also used in 261 

STIC-TI to compare LE and H estimates (see Table 5 in section 4.4) with the estimates of 262 

MYD11A2 LST over the arid and semi-arid sites (IND-Jai, IND-Naw, US-Ton). The noon-night 263 

pair of thermal remote sensing observations from Aqua are close to the time of occurrences of 264 

maximum and minimum soil surface temperature (see Figure 2) and are therefore ideal for soil 265 

heat flux modeling using thermal inertia. The MODIS Terra overpass times are at 11 am and 11 266 

pm and are far from the time of occurrences of minimum-maximum soil temperatures. 267 

Therefore, MODIS Aqua acquisition times were used in the present study. 268 

Table 2: A summary of MODIS Aqua optical and thermal remote sensing products used in the 269 

present study  270 

Data type Product ID 

(version) 

Variables 

used 

Spatial 

resolution 

(m) 

Temporal 

resolution 

Purpose Inputs to 

equation 

numbers 

LST and 

emissivity 

MYD11A2 

(V006) 

 

MYD21A2 

 

TS (1:30 pm 

and am)  

and εs 

923 8-day For 

estimating 

RNi, Gi, LEi, 

Hi 

(5), (13), 

(C6), (C7), 

(B8) 

Surface 

albedo 

MCD43A3 

(V006) 

αR 462 8-day 

composite 

from daily 

For 

estimating 

RNi,Gi 

(5), (B3) 

https://vip.arizona.edu/documents/viplab/MYD11A2.pdf
https://vip.arizona.edu/documents/viplab/MYD11A2.pdf
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Vegetation 

index 

MYD13Q1 

(V006) 

NDVI 250 16-day For 

estimating 

Gi 

(4) 

3 Methodology 271 

3.1 Coupled soil heat flux-SEB model  272 

In this paper, we modified a thermal inertia (TI) based soil heat flux (G) model using noon-night 273 

thermal remote sensing observations and thereafter coupled the TI-based G with STIC1.2. A 274 

clear-sky net radiation (RN) model was also introduced into this coupled model and RN 275 

estimation algorithm is described in Appendix B. The estimation of G through modifying 276 

MV2007-TI approach and its coupling with STIC1.2 is the most novel component of the 277 

modeling scheme, and it is therefore described in the main body of the paper (section 3.1.1). 278 

Such a coupling enabled the implementation of a mechanistic G model along with an analytical 279 

SEB model using optical-thermal remote sensing data. The coupled model is hereafter referred as 280 

STIC-TI.  281 

3.1.1 MV2007 soil heat flux model based on Thermal Inertia (TI)   282 

The functional form for estimating instantaneous G (Gi, hereafter) (eq. 2 below) is based on the 283 

harmonic analysis of soil surface temperature and is described in detail by Murray and Verhoef 284 

(2007) and Maltese et al. (2013).  285 

Gi =  Γ [(1 − 0.5fC)(∑A√nωsin (nωt + ϕn
′ + 

π

4
− 
π∆t

12
)

k

n=1

)] =  ΓJS (2) 

Gi is the soil heat flux at the surface at a particular instance (Wm−2), Γ is the soil thermal inertia 286 

(J m−2 K−1 s−0.5), k is the total number of harmonics used, A is the amplitude (C) of the nth soil 287 

surface temperature (TST) harmonic, ω is the angular frequency (rads−1), t is the time (s), ϕn is 288 

the phase shift of the nth soil surface temperature harmonic (rad), JS is the summation of harmonic 289 

terms of soil surface temperature (K), and Δt(s) is time offset between the canopy composite 290 

temperature and the below-canopy soil surface temperature. Here, we represent Gi and A as 291 

ecosystem-scale (≤ 1km) soil heat flux and surface soil temperature amplitude (averaged from 292 
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soil surface to 10 cm depth), respectively and assume it to be valid for different vegetated 293 

landscape.  294 

Since we have considered a single pair (noon-night corresponding to 1:30 pm and 1:30 am) of 295 

MODIS aqua LST data in the present study, the phase shift (ϕn) is taken as zero and number of 296 

harmonics is taken as one (k=1) for estimating Gi. Thus equation (2) is modified as follows:  297 

Gi =  Γ [(1 − 0.5fC) (A√ωsin (ωt′ + 
π

4
− 
π∆t

12
))] =  ΓJS (3) 

Δt(s) is found to be 1.5 h (Murray and Verhoef, 2007). With the two boundary values (i.e., Δt 298 

=1.5 h for fc = 1 and Δt = 0 for fc = 0), a linear approach is proposed here to describe the time 299 

offset Δt as a function of vegetation fraction (fc) (Murray and Verhoef, 2007; Maltese et al., 300 

2013). fc was derived from NDVI on a given day or period and from the upper-lower limits of 301 

annual NDVI cycle. 302 

                                         Δt =  1.5 fc (4) 

3.1.1.1 Scaling function for estimating ecosystem-scale surface soil temperature amplitude (A) 303 

Estimating ecosystem-scale A involves two steps, (a) computing point-scale soil surface 304 

temperature amplitude (from surface to 0.1m depth) (TSTA, hereafter) from the available 305 

measurements of soil surface temperature, and (b) linking TSTA with remote sensing variables to 306 

develop scaling functions for A. Point-scale soil temperature measured at different depths within 307 

top 10 cm soil layer at AU-ASM, US-Ton, US-Var was averaged and considered as 308 

representative surface soil temperature (0 – 10 cm). For Ind-Dha and AU-Ade, single-depth (10 309 

cm) soil temperature measurement was used. Studies also showed that LST carries some signal 310 

beneath the skin of the surface (Johnston et al., 2022). 311 

Several studies suggested theoretical sinusoidal trajectory of soil surface and sub-surface 312 

temperatures (Gao et al., 2010), where the amplitude is maximum at the surface, and it gradually 313 

decreases with depth to become 37% of surface amplitude until the damping depth (Hillel, 1982). 314 

However, at deeper depths, soil temperatures remain constant with time and do not show many 315 

fluctuations as compared to surface or near-surface soil temperatures. This invariant soil 316 

temperature is called deep soil temperature (Mihailovic et al., 1999). However, the diurnal 317 
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surface soil temperature measurements (within top 0.1 m depth) across different flux tower sites 318 

showed a sinusoidal-exponential behavior, i.e., sinusoidal pattern from sunrise until the 319 

afternoon and exponential pattern from afternoon through sunset to the next sunrise. An 320 

illustrative example of the theoretical and observed trajectories of surface soil temperature is 321 

shown in Fig. 2. This diurnal surface soil temperature variation has a single harmonic component 322 

(Gao et al., 2010). For computing TSTA, theoretical half-curve of sinusoidal pattern is assumed 323 

and was derived from measurements as exemplified in Fig 2. 324 

 

Figure 2. An illustrative example of typical diurnal variation of observed soil temperature 

(TST) (from surface to 0.1m depth) at OzFlux sites and timings of MODIS AQUA 

observations. Here, TSTmax and TSTmin are maximum and minimum point-scale observed soil 

surface temperatures 

 325 

It is evident from Fig. 2 that TSTmin represents minimum surface soil temperature occurring 1-326 

1.5h after sunrise and TSTmax occurs during 12.30 – 15.00h local time. The in-situ measured TST 327 

on completely clear-sky days at OzFlux sites were used to extract TSTmax and TSTmin and TSTA was 328 

derived as (TSTmax- TSTmin) from the theoretical half-curve of sinusoidal pattern. 329 

TSTA is generally influenced by several land surface characteristics such as surface temperature 330 

and surface albedo of soil-canopy complex, surface heat capacities, fractional canopy cover and 331 
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thermal conductivity (White, 2013). TS and αR are the major thermal and reflective land surface 332 

properties that have strong synergy with surface soil temperature dynamics. Hence, we have used 333 

bivariate regression analysis to develop a scaling function for estimating ecosystem-scale TSTA 334 

(top to 0.1m depth). The bivariate regression is based on the difference of noon (d) and night (n) 335 

TS data andR (Duan et al., 2013, Li Tian et al., 2014) from MODIS Aqua. The scaling function 336 

given in eq. (5) estimates ecosystem-scale TSTA (symbolized as ‘A’ in equation 5) from surface to 337 

0.1 m soil depth: 338 

A = B1(TSd − TSn) + B2(αR) + B3 (5) 

Here, B1, B2, B3 are coefficients of regression model; TSd and TSn are noon and nighttime LST, 339 

respectively. The results of this regression analysis are elaborated in section 4.1. 340 

3.1.1.2 Estimating Γ 341 

Γ is the key variable for estimating Gi using eq. (2). MV2007 adopted the concept of normalized 342 

thermal conductivity (Johansen, 1975) and developed a physical method to estimate Γ as 343 

follows: 344 

Γ = e
[Υ′(1− S𝑟

(Υ′− δ))](τ∗ − τ0) + τ0 (6) 

where τ* and τ0 are the thermal inertia for saturated and air-dry soil (J m−2K−1s−0.5); τ0 = D1θ* + 345 

D2; τ* = D3 (θ*
-1.29); ´ (−) is a parameter depending on the soil texture (Murray and Verhoef, 346 

2007; Minasny, 2007; Anderson et al., 2007); Sr (m
3 m−3) is relative saturation and is equal to 347 

(θ/θ*); δ (unitless) is the shape parameter which is dependent on the soil texture. θ* (m3 m−3) is 348 

the soil porosity (equal to the saturated soil moisture content when soil moisture suction is zero), 349 

θ (cm3 cm−3) is the volumetric soil moisture and D1, D2, D3 are coefficients which were derived 350 

from a large number of experimental data. The reported global values of D1, D2, and D3 were 351 

taken as -1062.4, 1010.8, 788.2, respectively (Maltese et al., 2013). The value for θ* and shape 352 

parameter for soil textures across study sites were specified according to Van Genuchten et al. 353 

(1980). The details are mentioned in Table E1 of Appendix E. 354 

In the present study, the relative soil moisture saturation, Sr (θ/θ*) is represented in terms of an 355 

aggregated moisture availability (M) of canopy-soil complex through a linear function (eq. 12). 356 
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In case of zero canopy cover, M represents the soil moisture availability from surface to 0.1 m 357 

depth. In sparse and open canopy, rates of moisture availability from soil to root and root to 358 

canopy were assumed same.  359 

Theoretically, M is expressed as available soil moisture fraction between field capacity (θfc) and 360 

permanent wilting (θwp) point as given in eq. (7) below. 361 

M =
 θ − θwp

θfc − θwp
 (7) 

Where, θfc (m3 m−3) is the volumetric soil moisture at the field capacity (at a suction of 330 hPa) 362 

and θwp (m3 m−3) is the volumetric soil moisture at the permanent wilting point (at suction of 363 

15000 hPa) (Singh, 2007). Since θfc, θ*, θwp are characteristic volumetric soil moisture contents 364 

corresponding to specific suctions and depends on the soil texture, dividing the numerator and 365 

denominator in eq. (7) by θ* gives the following expression: 366 

M =

θ
 θ∗
− 
θwp
θ∗

fc
∗
− 
θwp
θ∗

 (8) 

Due to their dependence on soil texture, the ratios (θfc/θ*) and (θwp/θ*) are treated as constants. 367 

These are represented as C and C in the later equations (eq. 9, 10, and 11). The constants, C and 368 

C vary from 0.3 to 0.8 and from 0.1 to 0.4 (Murray and Verhoef, 2007; Minasny et al., 2011; 369 

Anderson et al., 2007), respectively over different soil textures. 370 

M =

θ
 θ∗
−  C

C −  C
 

(9) 

M(C − C′) =  (
θ

 θ∗
) − C′ (10) 

By replacing Sr in eq. (6) as θ/θ* and by rearranging eq. (10), the following linear function is 371 

obtained. 372 

Sr =
θ

 θ∗
= M (C − C′) +   C′ = M′ (11) 
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Thus, the modified equation to calculate Γ is given by eq. (12) as follows: 373 

 Γ = e
[Υ′(1− M′

(Υ′− δ)
)]
(τ∗ − τ0) + τ0 (12) 

By substituting the values obtained from eq. (4), (5) and (12) into eq. (3), we obtained the 374 

instantaneous ecosystem-scale Gi corresponding to MODIS Aqua noontime overpass. The 375 

intrinsic link between Gi estimates through MV2007-TI and SEB scheme in STIC1.2 is made 376 

through M, where the computation of M follows the procedure as described in Mallick et al. 377 

(2016, 2018a, b) and Bhattarai et al. (2018). (description in Appendix C).  378 

3.1.1.3 Estimating M 379 

In STIC1.2, an aggregated moisture availability (M) of canopy-soil complex is expressed as the 380 

ratio of the ‘vapor pressure difference’ between the aerodynamic roughness height of the canopy 381 

(i.e., source/sink height) and air to the ‘vapor pressure deficit’ between aerodynamic roughness 382 

height to the atmosphere: 383 

M =
(e0 − eA)

(e0
∗ − eA)

=
(e0 − eA)

κ(eS
∗ − eA)

=
s1(T0D − TD)

κs2(TS − TD)
 (13) 

Where e0 and e0
* are the actual and saturation vapor pressure at the source/sink height; eA is the 384 

atmospheric vapor pressure; eS
* is the saturation vapor pressure at the surface; T0D is dew point 385 

temperature at the source/sink height; TS is the LST; TD is the air dew point temperature; s1 and 386 

s2 are the psychrometric slopes of the saturation vapor pressure and temperature between (T0D – 387 

TD) versus (e0 – eA) and (TS – TD) versus (eS
* - eA) relationship; and κ is the ratio between (e0

* - 388 

eA) and (eS
* - eA). To solve the eq. (13), estimation of T0D is necessary. An initial estimate of T0D 389 

[T0D = [(eS
* - eA) – s3TS + s1TD]/(s1 – s3)] and M were obtained following Venturini et al. (2008) 390 

where s1 and s3 were approximated in TD and TS, respectively. However, eq. (13) cannot be 391 

directly solved because there are two unknowns in one equation. However, since T0D also 392 

depends on LE (Mallick et al., 2016, 2018a), an iterative updation of T0D (and M) was carried out 393 

by expressing T0D as a function of LE [T0D = TD + (LE/cpgAs1)] which is described in detail by 394 

Mallick et al. (2016, 2018a) and Bhattarai et al.(2018). In the numerical iteration, s1 was not 395 

updated to avoid numerical instability and it was expressed as a function of TD. 396 
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3.1.2 STIC-TI: Coupling modified MV2007-TI and STIC 1.2 397 

The initiation of the coupling between MV2007-TI and STIC1.2 was executed through linking 398 

Gi estimates from the modified MV2007-TI with M estimates from STIC1.2. Having the initial 399 

estimates of M (through eq. 13), an initial estimation of Gi was made from eq. (2) where Sr in eq. 400 

11 was replaced with the initial estimates of M′. From the initial estimates of Gi (eq. 2) and RNi 401 

(equations in Appendix B), initial estimates of LEi and Hi were obtained through the PMEB 402 

equation. Analytical expressions of the conductances for estimating H and LE through the PMEB 403 

equation were obtained by solving the state equations as described in the Appendix. The process 404 

was then iterated by updating T0D [T0D = TD + (LE /cpgAs1)] and M in every time step (as 405 

mentioned in Mallick et al., 2016, 2018a), and re-estimating Gi (using eq. 3), net available 406 

energy (RNi– Gi), conductances, LEi and Hi, until stable estimates of LEi were obtained. The 407 

conceptual block diagram and algorithm flow of STIC-TI is shown in Fig. 3a and Fig 3b, 408 

respectively. 409 

 410 

 411 

 412 

 413 

 414 

 415 
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(a)

 

(b)

 

Figure 3: (a) Conceptual diagram of STIC-TI model showing different input variables and model outputs, 

(b) Algorithmic flow for estimating G and associated SEB fluxes through STIC-TI. 
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Examples of iterative stabilization of Gi and LEi for Indian, Australian and US ecosystems of 416 

India are shown in Fig. 4. The iterative stabilization of Gi and LEi was obtained between 8-25 417 

iterations for all sites. 418 

  

 

Figure 4: Illustrative examples of iterative stabilization of STIC-TI Gi (yellow marker line) and LEi (grey 

marker line) in (a) IND-Jai, (b) AU-ASM, (c) US-Ton 

 419 

The noteworthy features of STIC-TI are: (1) estimating G by modifying the mechanistic 420 

MV2007-TI model using noon and midnight TS information from thermal remote sensing 421 

observations available through polar orbiting satellite platform (e.g. MODIS Aqua), (2) coupling 422 

the mechanistic MV2007-TI G model with STIC1.2 to simultaneously estimate surface moisture 423 

availability (M), G, and SEB fluxes, (3) introducing water stress information in G (through M) to 424 

better constrain the aerodynamic and canopy-surface conductances as well as the SEB fluxes, 425 
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and (4) derivation of amplitude of ecosystem-scale surface soil temperature (from top soil to 0.1 426 

m soil depth). 427 

3.1.3 Generation of remote sensing inputs 428 

Two of the key variables in SEB modeling are Ts and εs. These two variables were retrieved at 429 

923m spatial resolution from MODIS Aqua noon-night TIR observations (MYD11A2) in bands 430 

11.03 µm and 12.02 µm using a generalized split-window algorithm (Wan et al., 2015). For 431 

optimal retrieval, tractable sub-ranges of atmospheric column water vapor and lower boundary 432 

air surface temperature were used. Land surface emissivity was estimated from land cover types 433 

and anisotropy factors. The MYD21A2 LST product was generated using Temperature-434 

Emissivity Separation (TES) algorithm (Hulley et al, 2016) and improved water vapor scaling 435 

method to remove the atmospheric effects. Albedo was estimated from MODIS (MCD43A2 436 

Version 6.0) Bidirectional Reflectance Distribution Function and Albedo (BRDF/Albedo) daily 437 

dataset (Schaaf et al., 2002)) at 462 m spatial resolution. Actual albedo is a value which is 438 

interpolated between white-sky and black-sky albedo as a function of fractional diffuse skylight 439 

(which is a function of aerosol optical depth). NDVI was obtained from level 3 MODIS 440 

vegetation indices product (MYD13Q1, version 6.1), which are generated every 16-day at 250 441 

meter (m) spatial resolution. All the input remote sensing variables mentioned in table 2 were 442 

resampled to spatial resolution of MYD11A2 product (923 m). 443 

3.2 Sensitivity and statistical analysis  444 

The accuracy of STIC-TI heavily depends on the accuracy of TS, NDVI, and R due to the dual 445 

role of TS in estimating M and Gi, the role of NDVI in Gi, and the combined role of TS and R in 446 

estimating RNi. Therefore, one-dimensional sensitivity analysis was conducted to assess the 447 

impacts of uncertainty in TS, NDVI and R on Gi, Hi and LEi. The sensitivity was assessed by 448 

varying noon-time TS by ±0.5 K, ±1.0 K and ±1.5 K (keeping nighttime TS constant so that 449 

amplitude can vary automatically); varying NDVI by ±0.05; ±0.10, ±0.15; and varying albedo by 450 

±0.02, ±0.05, ±0.10, respectively. SEB fluxes were computed by using TS, NDVI, and R for 451 

three different periods of the year in all the eight ecosystems. Sensitivity analyses were 452 

conducted by increasing and decreasing systematically TS, NDVI, R from its central value while 453 

keeping the other variables and parameters constant. This procedure was selected because the 454 
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fluxes and intermediate outputs of the STIC-TI model reflect an integrated effect due to 455 

uncertainty in TS. In the first run, SEB fluxes were computed using in-situ TS measurements 456 

obtained from the flux tower outgoing longwave radiation measurements. Then TS was increased 457 

and decreased at constant interval and a new set of fluxes were estimated. In the similar way, R 458 

and NDVI were increased and decreased at constant intervals and new set of fluxes were 459 

computed. The sensitivity of STIC-TI was assessed by the equation 14. 460 

Sensitivity =  
Ei0 − EiM
Oi

 ∗ 100 (14) 

Ei0 is the estimated (original) model output and EiM is the estimated (modified) output obtained 461 

by changing the variable whose sensitivity is to be tested. Oi is actual measurements. Apart from 462 

the sensitivity analysis, the following set of statistical metrics were used to assess model 463 

performances. 464 

𝑅2       =

(

 
∑ (Ei − E̅) (Oi − O̅)
n
i=1

√∑ (Ei − E̅)
2n

i=1 √∑ (Oi − O̅)
2n

i=1 )

 

2

 

 

(15) 

RMSE =√∑
(Ei−Oi)

n

2
n
i=1  

(16) 

BIAS    =  
∑ ( Ei−Oi)
n
i=1

n
 (17) 

MAPD = 
100

n
∑ |

 Ei− Oi

 Oi
|n

i=1  

 

(18) 

KGE =  1 − √(𝑟 − 1)2 + (
σ𝐸
σ𝑜
− 1)

2

+ (
E̅

O̅
− 1)

2

 
(19) 

Where R2 is the coefficient of determination, RMSE is root-mean-square error, BIAS is the mean 465 

bias, MAPD is the mean absolute percent deviation, KGE is Kling-Gupta efficiency, n is the total 466 

number of data pairs, the bar indicates mean value of the measured variable and model estimates 467 

of the same variable. Ei and Oi are the model estimated and measured SEB fluxes, r is 468 

the Pearson’s correlation coefficient and O̅  is the average of measured values and E̅  is the 469 
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average of estimated values and o is standard deviation of observation values and E is the 470 

standard deviation of estimated values. The KGE has been widely used for calibration and 471 

evaluation hydrological models in recent years and it combines the three components of Nash-472 

Sutcliffe efficiency (NSE) of model errors (i.e., correlation, bias, ratio of variances or 473 

coefficients of variation) in a more balanced way. But it has not been widely used for analyzing 474 

the ET model performances. KGE = 1 indicates perfect agreement between modeled estimates 475 

and observations. The performance of a model is considered ‘poor’ for KGE between 0 and 0.5 476 

and models with negative KGE values is considered ‘not satisfactory’. 477 

4 Results 478 

4.1 Ecosystem- scale surface soil temperature amplitude (A) 479 

The scaling functions developed to estimate ecosystem-scale (1km) surface soil temperature 480 

amplitude (A) from point-scale TSTA were used to estimate Gi. However, before the development 481 

of the scaling functions, analysis was carried out to investigate the relationship of soil 482 

temperature amplitude between the two different spatial scales. The scatterplot (Fig. 5a) of noon-483 

night LST difference (Ts) versus TSTA for different albedo classes showed a linear increase in 484 

Ts with increasing TSTA. However, some divergence of data points within the cluster were also 485 

noticed which could be associated with different albedo (R) levels. Bivariate linear function was 486 

fitted between TSTA as predictand (Y) versus Ts (Tsd – Tsn) and R as predictors (X1 and X2, 487 

respectively). The function was found to be Y = 0.59X1 – 51.3X2 + 8.66 by combining the data 488 

of nine ecosystems (r = 0.86). The coefficients in the above expressions correspond to B1 (0.59), 489 

B2 (51.3), B3 (8.66) of eq. 5 in section 3.1.1.1. The estimated amplitude from this ecosystem-490 

scale predictors and scaling functions was treated as ecosystem-scale surface soil temperature 491 

amplitude (A). 492 



 

24 

 

 
 

Figure 5. (a) Two-dimensional scatterplots between (Ts) versus TSTA at different αR levels 

over different ecosystems. Here TSTA in y-axis is the observed soil temperature amplitude that 

is used to develop the scaling function and delta Ts is noon-night LST difference of MODIS 

AQUA; (b) Validation of ecosystem-scale estimates of A from the above functions over 

different sites. 
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Validation of ecosystem-scale estimates of A from the above functions over different sites is 493 

shown in Fig. 5b with respect to TSTA for the independent datasets. The estimated A was found to 494 

have MAPD of 19.9%, negative bias, and R2 = 0.90 over different ecosystems. The temporal 495 

variation of estimated A and TSTA is shown in Fig D1 in Appendix D. Further analysis was 496 

carried out to investigate the bias in A at three fractional vegetation cover (fc) slabs (fc0.3; 497 

0.3fc0.5; fc>0.5) representing bare soil (slab 1), 30 – 50% canopy cover (slab 2) and more 498 

than 50% canopy cover (slab 3), respectively. While negative bias was noted for slab 1 and slab 499 

3 (-0.54C and -0.83 C), the bias was positive (0.49 C) in the intermediate fc which represents 500 

sparse and patchy canopy cover. The signals of surface albedo, emissivity and temperatures of 501 

soil surface and canopy are relatively pure in slab1 and slab 3 as compared to slab 2, where the 502 

surface signal carries more heterogeneity. Given TSTA is computed from the in-situ 503 

measurements, it is likely to carry more heterogeneity in slab 2 as compared to the other two 504 

slabs. The land surface emissivity in MYD11A2 was estimated from land cover types and 505 

anisotropy factor, which have differential impacts on TST   and TS leading to such opposite bias in 506 

slab 2 as compared to slab 1 and slab 3.  507 

4.2 Sensitivity analysis of STIC-TI Gi, LEi and Hi to land surface variables 508 

4.2.1 Sensitivity of Gi to land surface variables 509 

The average sensitivity of Gi to three land surface variables (TS, NDVI, R) by combining the 510 

estimates of wet and dry periods is shown in Fig. 6. Gi was found to be substantially sensitive to 511 

TS with error magnitude ranging from 2 – 18% due to TS uncertainties of ±0.5 – 2.5 K (Fig. 6a), 512 

with greater sensitivity to TS during the summer season as compared to other seasons. The 513 

median sensitivity of Gi due to ±5 – 10% uncertainty in R varied from 5 to 12% in all the 514 

ecosystems (Fig. 6b). The uncertainties in NDVI revealed 2 to 15% error in Gi estimates (Fig. 515 

6c), and no significant difference in the mean sensitivity due to NDVI uncertainties was noted 516 

between the ecosystems. The sensitivity of Gi decreased with increasing values of NDVI. 517 

4.2.2 Sensitivity of LEi and Hi to land surface variables 518 

Both LEi and Hi were sensitive to TS to the order of 2 – 29% (LEi) and 5 – 35% (Hi) for TS 519 

uncertainty of ±0.5 – 2.5 K from its mean values (Table 3). Interestingly, LEi was more sensitive 520 

to TS uncertainties as compared to Hi in the rainfed ecosystems. The highest mean sensitivity of 521 



 

26 

 

LEi to TS was found in arid (IND-Jai: 2 – 28%), semi-arid (AU-ASM: 5 – 21%), tropical savanna 522 

(IND-Dha: 3 – 26%), savanna (US-Ton: 4-29%) and arid (US-Var: 3-26%) ecosystems. The 523 

mean sensitivity of Hi to TS was maximum in sub-humid (IND-Sam: 2 – 32%), semi-arid (IND-524 

Naw: 2 – 28%), savanna (AU-Ade: 8 – 17%) (Table 3). A greater sensitivity of the SEB fluxes 525 

due to R uncertainties was found than due to NDVI. The median sensitivity of LEi and Hi due to 526 

10% uncertainty from mean R varied within 2 – 16% in all the ecosystems (Table 3). By 527 

contrast, errors in the two SEB fluxes were substantially low (2 – 13%) due to ±0.05 – 0.15 528 

uncertainty from mean NDVI (Table 3).  529 

 

 

 

Figure 6: Sensitivity of STIC-TI Gi due to uncertainties in TS (a), R (b), and NDVI (c) for eight 

(a)

(b)

(c)
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flux tower sites in India and Australia. The uncertainties were introduced by taking the mean 

values of these variables during three different periods (summer, rainy and winter) of a year. 

Mean uncertainties of the three periods are presented in the figure. 

 

Table 3: Sensitivity (in percent) of LEi and Hi due to TS, NDVI, and R uncertainties 530 

Study sites 

Sensitivity of LEi and Hi to TS, NDVI and αR (percent change) 

TS uncertainty 

(±0.5 – 2.5 K) 

αR uncertainty 

(±5 – 10%) 

NDVI uncertainty 

(±0.05 – 0.15) 

LEi Hi LEi Hi LEi Hi 

IND-Jai 2-28 1-6 3-14 2-13 2-8 2-6 

IND-Dha 3-26 2-8 2-12 3-12 3-10 3-9 

IND-Naw 1-20 2-28 2-10 3-10 2-7 2-6 

IND-Sam 1-16 5-32 4-13 6-11 2-5 2-7 

US-Ton 4-29 4-12 3-12 4-12 3-8 5-7 

US-Var 3-26 6-14 4-11 2-10 4-10 2-8 

AU-ASM 5-21 2-10 3-12 2-13 2-10 2-11 

AU-How 8-13 2-15 2-11 4-16 3-12 3-13 

AU-Ade 2-17 8-17 3-12 2-10 3-10 3-9 

 531 

4.3 Comparative evaluation of STIC-TI and contemporary Gi models 532 

The performances of STIC-TI and existing Gi models were evaluated and compared with respect 533 

to in-situ Gi measurements. The existing models reported by Moran et al. (1989), Bastiaanssen et 534 

al. (1998), Su (2002), and Boegh et al. (2004) have been considered for comparing with TI-based 535 

model. These four existing models are referred here as MOR89, BAS98, SU02 and BO04, 536 

respectively. While the models MOR89, SU02 and BO04 are based on linear regression between 537 

G versus NDVI, BAS98 is based on multivariate regression of G with NDVI, LST and R. The 538 

performance of the STIC-TI was substantially better as compared to MOR89, SU02 and BO04 539 

with respect to MAPD (19%), RMSE (22 Wm-2) and coefficient of determination (R2 = 0.8) 540 

when compared with in-situ measurements over one Indian, three Australian and two US flux 541 
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tower sites (Table 4) and also comparable with BAS98 Gi model. The validation plot of retrieved 542 

noontime Gi from STIC-TI is shown in Fig. 7. 543 

 

Figure 7: Validation of noontime (1:30 pm) Gi estimates with respect to in-situ measurements in 

different ecosystems. The regression between the two sources of Gi is Gi (STIC-TI) = 0.90Gi 

(tower) -0.10. 

Table 4: A comparison of error statistics of Gi estimates from STIC-TI and existing Gi models 544 

over different ecosystems 545 

G models R2 RMSE (W m-2) MAPD (%) KGE 

STIC-TI  0.80 22 19 0.74 

MOR89 0.70 31 29 0.46 

BAS98 0.80 20 18 0.61 

SU02 0.80 30 26 0.54 

BO04 0.70 35 29 0.48 

The RMSE varied from 9 to 20 W m-2 with MAPD ranging from 12 to 21% across individual 546 

flux tower sites. High magnitude of Gi was predicted in the arid and semi-arid systems (120 – 547 
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240 W m-2) as compared to the humid systems (20 – 90 W m-2), which was in close 548 

correspondence with the observations. The model also captured the range of Gi that are generally 549 

found in different biomes (20 – 140 W m-2 for grasslands, 20 – 90 W m-2 for cropland) (Purdy et 550 

al., 2016). Due to the paucity of Gi measurements, direct validation of Gi was only possible for 551 

32 days (concurrent to MODIS overpass) at the IND-Dha site. Overall, STIC-TI tends to provide 552 

reasonable G estimates for the terrestrial ecosystems having soil temperature amplitude above 553 

5ºC. 554 

4.4 Evaluation of STIC-TI LEi, Hi, and EF 555 

The modeled versus measured LEi and Hi showed good agreement in all the nine ecosystems 556 

with RMSE in LEi and Hi estimates using MYD11 LST product to the order of 29 – 62 W m-2 557 

and 26 – 61 W m-2, MAPD of 9 – 31% and 20 – 36%, BIAS of -29 to 38 W m-2 and -44 to 32 W 558 

m-2 (Fig. 8a, b; Table 5) and high R2 of 0.8.  559 

 

  

Figure 8: (a) Validation of STIC-TI LEi estimates with respect to in-situ measurements in 

different ecosystems; (b) Validation of STIC-TI Hi estimates with respect to in-situ 

measurements in different ecosystems. 

 560 

Table 5: Error statistics of STIC-TI LEi and Hi estimates with respect to EC measurements in 561 

different ecosystems of India, US, and Australia using MYD11A2 LST product for all nine sites 562 

and using MYD21A2 LST product for three semi-arid and arid sites. The statistics obtained by 563 

using MYD21A2LST are shown in the parentheses. 564 

(a) (b)
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Sites STIC-TI (LEi and Hi) 

R2 BIAS 

(W m-2) 

RMSE 

(W m-2) 

MAPD  

(%) 

KGE 

LEi Hi LEi Hi LEi Hi LEi Hi LEi Hi 

IND-Jai 
0.90 

(0.91) 

0.90 

(0.92) 

-21 

(-16) 

12 

(9) 

57 

(45) 

27 

(21) 

31 

(24) 

22 

(19) 

0.80 

(0.82) 

0.76 

(0.79) 

IND-Naw 
0.90 

(0.92) 

0.80 

(0.85) 

19 

(12) 

-26 

(-16) 

44 

(37) 

51 

(46) 

17 

(16) 

28 

(25) 

0.92 

(0.92) 

0.71 

(0.73) 

IND-Dha   0.90 0.90 38 -44 43 35 27 25 0.71 0.64 

IND-Sam 0.90 0.80 12 -10 32 61 9 27 0.95 0.70 

US-Ton 
0.90 

(0.91) 

0.90 

(0.92) 

-29 

(-18) 

-32 

(-21) 

53 

(45) 

34 

(27) 

25 

(22) 

17 

(15) 

0.85 

(0.87) 

0.91 

(0.93) 

US-Var 0.90 0.80 -19 -28 49 39 27 20 0.82 0.89 

AU-ASM 
0.90 

(0.93) 

0.90 

(0.91) 

-3 

(6) 

22 

(16) 

46 

(37) 

26 

(18) 

29 

(24) 

20 

(17) 

0.94 

(0.95) 

0.83 

(0.85) 

AU-How 0.90 0.90 16 -25 42 27 17 21 0.89 0.85 

AU-Ade 0.90 0.90 21 15 29 53 28 36 0.77 0.80 

 565 

Arid ecosystems in India (IND-Jai), US (Ton and Var) and semi-arid ecosystem in Australia 566 

(AU-ASM) revealed relatively high MAPD (31%, 25%, 27%, and 28%) (Table 5). In general, 567 

STIC-TI was able to produce the dominant convective heat fluxes with respect to the EC 568 

measurements as evident through low RMSE for Hi and high RMSE for LEi in the IND-Jai, US-569 

Ton, US-Var, and AU-Ade where LEi is inherently low except few rainy days. A uniform 570 

distribution of data points around 1:1 validation line (Fig. 8a) indicated overall low BIAS in LEi 571 

estimates. However, modeled Hi was consistently lower than the observations (negative BIAS) in 572 

the tropical savanna (IND-Dha and AU-How) and semi-arid (IND-Naw) ecosystems [(-44) – (-573 

25) W m-2 and -26 W m-2) while a consistent positive BIAS was observed in the AU-ASM 574 

(semi-arid) and AU-Ade (savanna), US-Var (arid) (Fig. 8b; Table 5). This consequently led to 575 

overall low negative BIAS (-10 W m-2), relatively low R2 in Hi (R
2 = 0.8) as compared to the 576 

errors in LEi (BIAS = 15 W m-2, R2 = 0.9). The regression between the modeled and tower 577 

measurements of LEi is LEi(STIC-TI) = 0.98LEi(tower) – 0.266. The regression between the 578 

modeled and tower measurements of Hi is Hi (STIC-TI) = 0.93Hi(tower) + 4.90. The KGE 579 

statistics varied in the range of 0.71 – 0.95 for LEi and in the range of 0.64 –0.91 for Hi, 580 

respectively across all nine flux tower sites, thus revealed reasonably high efficiency of the 581 

model to capture the magnitude and variability of SEB fluxes. 582 
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The effects of day-night view angle of MODIS Aqua on STIC-TI were further investigated, 583 

where the percent deviations in LEi, Hi and Gi with respect to measurements were analysed in 584 

response to the day and night view angle distributed over 12 angular bins within ±50 at 10 585 

interval. Number of occurrences of deviations in each bin of day view angle are plotted in Figure 586 

F (Refer Appendix F), which showed similar near normal distribution of the three fluxes with Gi 587 

deviation having less peak occurrence as compared to the other two. This is due to a smaller 588 

number of available datasets used in case of Gi. It has been found that 90% of deviations occur 589 

within -40 to 30day view angle thus showing some impact of day view angle on the modeled 590 

fluxes. The night view angle variation apparently had no impact on the modelled fluxes. 591 

 

Figure 9: Relationship between KGE of STIC-TI (Gi and LEi) with Ts/fc in different terrestrial 

ecosystems. 

Further investigation was made on whether KGE for STIC-TI Gi and LEi follow any systematic 592 

pattern and the ratio TS and fc was used as proxy for surface heterogeneity and dryness. The 593 

plot of KGE of Gi and LEi with this ratio is shown in Fig. 9. KGE-Gi was found to show a 594 

systematic decrease with increase in Ts-fc ratio up to 40, after which it remained unchanged 595 

with increase in the ratio. Although KGE of LEi also decreased (20% reduction) with increase in 596 

Ts-fc ratio, KGE-LEi was found to increase beyond Ts-fc 40. This revealed that the model 597 
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efficiency remained high (>0.8) within certain dryness limits (Ts-fc ratio <20 and >50) and the 598 

efficiency reduced moderately (within 0.7 – 0.8) for intermediate dryness. Interestingly, the use 599 

of MYD21A2 LST in STIC-TI showed improvements (see the parentheses in different columns 600 

in Table 5) in LEi and Hi error statistics as compared to using MYD11A2 LST in terms of higher 601 

R2 and KGE, and lower RMSE in LEi (3-8% less) and Hi (2-3% less) for semi-arid and arid sites 602 

such as IND-Jai, IND-Naw and US-Ton. 603 

An independent evaluation of multi-temporal heat fluxes over two US flux sites for the years 604 

2016-2018 is shown in Fig. 10 and Fig 11. STIC-TI Gi estimates with MYD11A2 LST product 605 

showed close match with in-situ measurements with respect to intra and inter-annual variability 606 

in Gi followed by LEi and Hi. This further demonstrates the merit of the coupled model for 607 

reproducing ecosystem-scale Gi estimates especially for shorter and open canopies. 608 
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Figure 10: Illustrative examples of temporal evolution of STIC-TI derived fluxes using MYD11A2 

LST product versus observed SEB fluxes for three consecutive years from 2016 to 2018 in a 

grassland ecosystem in United States (e.g., US-Var). 

 

Figure 11: Illustrative examples of temporal evolution of STIC-TI derived fluxes using MYD11A2 

LST product versus observed SEB fluxes for three consecutive years from 2016 to 2018 in a woody 

savanna ecosystem in the United States (e.g., US-Ton). 

The temporal behavior of STIC-TI and observed evaporative fraction (EF) (ratio of LE and RN – 609 

G) (Fig. 12) along with observed monthly rainfall (P) distinctly captured the substantial temporal 610 

variability in EF during the dry-to-wet transition in the Indian study sites, which also 611 

corresponded to low (high)  and P. In IND-Naw and IND-Sam, a marked rise (>0.4) in STIC-TI 612 

EF was noted during day-of-the-year (DOY) 25 to 75 where wheat is grown under assured 613 

irrigation. The impact of irrigation is thus captured by the substantial increase in EF in the 614 

absence of P. In contrast, the rainfed grassland system (IND-Jai) showed peak EF (~0.8), which 615 

corresponded to south-west monsoon rainfall during June to September and a progressive decline 616 
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in EF during the dry down period in October to April corresponding to post south-west monsoon 617 

phase. Some intermittent spikes in EF were also noted during dry-down phase in both STIC-TI 618 

and observations. The intermittent EF spikes during the soil moisture dry down phase could be 619 

due to enhanced LE through moisture advection from the surrounding vegetation causing an 620 

enhancement of evaporation than expected. This is known as the ‘clothesline effect’ which 621 

frequently occurs in semi-arid and arid ecosystems. In addition to IND-Jai, the response of both 622 

modeled and measured EF to wet and dry spells was also noted during south-west monsoon 623 

period at all other flux tower sites of India. 624 

  

  

Figure 12: Illustrative examples of temporal variation of STIC-TI derived EF using MYD11A2 LST 

product with respect to measured EF and P in (a) IND-Naw, (b) IND-Jai, (c) IND-Sam, and (d) IND-

Dha 

 

The temporal behavior of EF from STIC-TI using MYD11A2 LST product and EC 625 

measurements along with measured  and P at the OzFlux and AmeriFlux sites also revealed 626 

(Fig. 13) close correspondence of STIC-TI with EC observations. Low EF (0.05 – 0.40) during 627 

the dry season around DOY 100 – 250 and high EF (>0.4) during the wet season (DOY 1 – 120 628 
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and 300 to 360) in AU-ASM, US-Ton and US-Var was observed. The analysis showed that 629 

STIC-TI EF can capture the annual variability of observed EF and its responses across different 630 

ecosystems during wet and dry seasons. The plots of STIC-TI EF versus measured  (in the inset 631 

of Fig. 13) revealed triangular scatter close to right-angled triangle with positive slope of 632 

hypotenuse in three ecosystems AU-ASM, US-Var and US-Ton. This showed that in the water-633 

controlled ecosystems, where distinct wet-dry seasons exist, the positive EF- relationship is an 634 

outcome of the soil moisture controls on transpiration during the dry season. 635 

  

 
Figure 13: Comparison of temporal variation of STIC-TI derived EF using MYD11A2 LST with respect to 

measured EF,  and Pin (a) AU-ASM, (b) US-Var, (c) US-Ton. The scatterplots in the inset shows the 

relationship between STIC-TI EF with respect to measured . 
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5 Discussion 636 

5.1 Interaction of flux and internal SEB metrices 637 

From section 4.1 we found relatively reduced sensitivity of Gi to Ts uncertainties. In any given 638 

condition, if an over(under) estimation of M due to noontime TS uncertainties (through eq. 13) 639 

leads to an over(under) estimation of , the effects of such over(under) estimation of (due to 640 

noontime TS uncertainties) tend to be compensated by under(over) estimation of amplitude A (in 641 

eq. 5), ultimately leading to a reduction of the sensitivity of Gi to TS. While the scatter between G 642 

versus A for a wide range of  (Fig. 14a) revealed large scatter with increasing amplitude under 643 

the dry conditions (low ), the scatter between versus TS for different M (Fig. 14b) revealed 644 

exponential reduction of  with increasing Ts and dryness, and almost no significant change in  645 

with increasing TS at a constantly high dryness (M<0.25). Thus, the confounding effects of , A, 646 

and M through eq. 3, 5, 12 and 13 led to a reduction of sensitivity of G to TS, as exemplified in 647 

Fig. 14.  648 

(a) 

 

(b) 

 

Figure 14: Response plots among parameters of TI-based Gi model, such as (a) Gi versus 

Amplitude (A) for varying  and (b) Noon-time TS versus  with varying . 

 649 

Concerning LEi and Hi, dual uncertainties could be propagated in both the fluxes through 650 

daytime TS (through M and Gi), leading to high sensitivity of these two SEB fluxes due to TS 651 

perturbations. The relatively high sensitivity of LEi to TS (as compared to Hi) in the non-652 

irrigated ecosystems could be due to partial compensation of gA/gS in both numerator and 653 

denominator of the PMEB equation for H (eq. C7 of Appendix C). A recent study (Fig.10 in 654 

Mallick et al., 2018a) showed high sensitivity of gS due to TS (1% change in TS led to 5.2–655 

7.5% change in gS) as compared to gA sensitivity to TS (1% change in TS led to 1.6–2% 656 
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change in gA), suggesting that errors in gS due to TS uncertainty tend to be larger than errors in 657 

gA. Partial cancellation of the conductance errors in the numerator of eq. (C7 of Appendix C) 658 

might have resulted in compensation of Hi errors in the water-limited ecosystems. In this 659 

environment, the variability of LEi is mainly dominated by gA/gS, which makes LEi highly 660 

sensitive due to TS uncertainties. Combined uncertainty due to gA/gS in the denominator and 661 

gA in the numerator of eq. (C6 of Appendix C) resulted into greater sensitivity in LEi to TS in 662 

the arid and tropical savannah ecosystems (Mallick et al., 2015, 2018a; Winter & Eltahir, 663 

2010). The very low sensitivity of LEi and Hi due to uncertainties in NDVI is because NDVI 664 

was not used in the conductance parameterizations and effects due to NDVI in STIC-TI was 665 

only propagated through Gi. The sensitivity of LEi and Hi to albedo was mainly due to the 666 

dependence of net radiation (RNi) on albedo, and any resultant uncertainty in RNi (due to 667 

albedo) tends to be reflected in the sensitivity of LEi and Hi to albedo. 668 

5.2 Possible sources of errors in SEB flux evaluation 669 

In STIC-TI, underestimation and overestimation errors in Gi in different ecosystems (Fig. 7) 670 

could originate due to the errors in MYD11A2 LST product. A host of studies previously 671 

reported that the standard deviations of errors in retrieved emissivity in bands 31 and 32 are 672 

0.009, and the maximum error in retrieved Ts of MOD11A1 LST falls within 2-3 K, which is 673 

mainly due to the errors in surface emissivity correction (Duan et al., 2017; Wan, 2014; Lei et 674 

al., 2018). In the present analysis, we found an overestimation error of MODIS TS in the range of 675 

0.5 – 1.5 K when compared with in-situ infrared temperature measurements at the tropical 676 

savanna site. As mentioned in section 3.1, a positive (negative) bias in TS would tend to an 677 

overestimation (underestimation) of amplitude (A) in eq. (5); underestimation (overestimation) 678 

of M in eq. (13), and consequent underestimation (overestimation) of  (eq. 12) and Gi, 679 

respectively. Furthermore, the standard deviation of NDVI surrounding the tower sites varied 680 

from 0.01 – 0.05 when compared to the ground measurements, which could be another source of 681 

error in the STIC-TI model. In addition, NDVI saturates at LAI > 3. However, STIC-TI provides 682 

direct estimates of ecosystem G and is independent of RN.  683 

Despite the comparable accuracy of current G estimates with the G model of Bastiaanssen et al 684 

(1998), the foundation of STIC-TI lies in the use of soil moisture characteristics with varying soil 685 

textural types which are known to influence the soil heat conductance and thereby G. Thus, the 686 
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control of soil moisture on evaporation is explicitly included in STIC-TI as opposed to the semi-687 

empirical G function of Bastiaanssen et al (1998). The higher accuracies of TI-based thermal 688 

diffusion model as compared to RN-based empirical G models were also reported by Purdy et al. 689 

(2016) at daily or longer time scales in cropland, grassland. All these G model estimates many a 690 

times differ from in situ measurements because of the no accounting of leaf litter presence or 691 

layer on soil floor in the remote sensing-based G-model.  692 

The overestimation (underestimation) of LEi(Hi) is also due to the effects of spatial resolution of 693 

different input variables on these two SEB fluxes and conducted statistical evaluation with 694 

respect to the measured SEB fluxes. Eswar et al. (2017) demonstrated the need for spatial 695 

disaggregation models for monitoring LEi at field scale using contextual models by 696 

disaggregation of evaporative fraction () and downwelling shortwave radiation ratio (RG). 697 

Using different disaggregation models, they estimated LEi at 250m spatial resolution and 698 

reported RMSE of 30 – 32 W m-2 as compared to LEi obtained at 1000m spatial resolution with 699 

RMSE of 40 – 70 Wm-2 over different sites in India. Anderson et al. (2007) reviewed different 700 

validation experiments conducted in diverse agricultural landscapes (Anderson et al.,2004, 2005; 701 

Norman et al., 2003) and reported RMSE in LEi in the range of 35 – 40 W m-2 (15%) at 30 – 120 702 

m disaggregated spatial resolution. Current analysis also brought out the need for noon-night 703 

thermal imaging with spatial resolution finer than 1000m to adequately capture the magnitude 704 

and variability of LEi in the terrestrial ecosystems especially agroecosystems where average field 705 

sizes are less (< 0.5 ha) and fragmented such as in India and other sub-continents.  706 

As seen in Fig. 8a and Table 5, there is a gross overestimation of LEi with respect to the tower 707 

observations when MYD11A2 LST was used. The consistent positive BIAS in STIC-TI LEi in 708 

five out of nine sites is presumably due to the overestimation of RNi (Figure B1 of Appendix B) 709 

and underestimation of Gi. Figure 7 shows overestimation of Gi for three OzFlux sites and US 710 

sites and underestimation of Gi for Indian site with Gi (STIC-TI) = 0.90 Gi(tower) - 0.10 and 711 

overestimation of RNi at the ecosystem-scale, with RNi (STIC-TI) = 0.78RNi (tower) +58.92 712 

(Appendix-B2). This means a systematic overestimation of the net available energy (RNi – Gi) 713 

will be obvious in cases where STIC-TI shows underestimation of Gi, which consequently leads 714 

to an overestimation of retrieved LEi. It may be also noted that the use of MYD21A2 LST led to 715 

relatively better accuracy in LEi (3-8%) and Hi (2-3%) as compared to using MYD11A2 LST in 716 

semi-arid and arid ecosystems. The higher retrieval accuracy of MYD21A2 LST using TES 717 
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(Temperature-Emissivity Separation) algorithm over MYD11A2 LST that uses split-window 718 

algorithm (Wan et al, 2015) is the main reason for obtaining higher accuracy in LEi and Hi 719 

estimates. 720 

5.3 Effects of SEB closure  721 

Given there is a widespread lack of SEB closure (H + LE  RN – G) or residual energy balance, 722 

knowledge of the impact of different vegetation types and climatic variables on SEB ‘non-723 

closure’ is essential. A recent study by Dare-Idowu et al. (2021) covering 8 growing seasons and 724 

3 crops (maize, wheat, and rapeseed) in two sites of south-western France showed that the 725 

systematic effect of each site on SEB closure was stronger than the influence of crop type and 726 

stage. Same study revealed a greater percentage of SEB closure under unstable atmospheric 727 

conditions and in the prevailing wind directions, and sensible heat advection accounted for more 728 

than half of the imbalance at both the sites. 729 

In our study, using unclosed SEB observations for Indian sites in the absence of in-situ Gi 730 

observations also added to the consistent positive BIAS in the statistical evaluation of LEi. A 731 

ubiquitous lack of energy balance closure to the order of 10 – 20% worldwide at most of the EC 732 

sites is reported in different literatures (Stoy et al., 2013; Wilson et al., 2002), which implies a 733 

systematic underestimation (overestimation) of LEi (EC tower) (and/or Hi(EC tower)). 734 

Accommodating an average 15% imbalance in LEi (EC tower) would tend to diminish the 735 

positive BIAS in STIC-TI. Therefore, the pooled gain (0.98) and positive BIAS between the 736 

STIC-TI and tower LEi is determined by the overestimation of (RNi – Gi), combined with the 737 

underestimation of measured LEi from the EC towers. An underestimation of Hi (negative BIAS) 738 

is associated with two reasons; (a) ignoring the two-sided aerodynamic conductance of the leaves 739 

(Jarvis and McNaughton, 1986; Monteith and Unsworth, 2013; Schymanski et al., 2017), which 740 

could lead to substantial underestimation of Hi, and (b) due to the complementary nature of the 741 

PMEB equation, if LEi is overestimated, Hi will be underestimated. In addition, frequent micro-742 

advection fluxes alter measured in situ H and LE fluxes. But these advection conditions are not 743 

explicitly accounted in the current STIC-TI model. At the EC tower sites, the fraction of residual 744 

energy balance to RN can be quantified with respect to vegetation/crop growth characteristics or 745 

biophysical properties. However, where G observations are lacking such as in many Indian EC 746 
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tower sites, the TI-based G model can be used to fill up the missing G observations to quantify 747 

residual energy balance and to correct the SEB non-closure. 748 

6 Summary and conclusions 749 

This study addressed one of the outstanding challenges in simultaneous retrieval of ground heat 750 

flux (G) and evaporation (ET) in open canopy, water-controlled and radiation-controlled 751 

ecosystems. It demonstrated coupling of a thermal inertia (TI)-based mechanistic G model with a 752 

surface energy balance (SEB) model (Surface Temperature Initiated Closure, STIC) using 753 

satellite-based land surface temperature (Ts) and associated biophysical variables and has 754 

minimal independence on in-situ measurements. The model is called STIC-TI, and this is the 755 

first ever implementation of a coupled G-SEB model which also does not require any empirical 756 

function for inferring the aerodynamic (gA) and canopy-surface (gS) conductance. The estimation 757 

of gA and gS in STIC-TI is independent of any parameterization of surface roughness and 758 

atmospheric stability and does not involve any look-up table for biome or plant functional 759 

attributes. By linking TS with thermal inertia (Γ) and surface moisture availability (M), STIC-TI 760 

derives G through the harmonics equation between G and Γ, and subsequently coupled G with 761 

the SEB fluxes. Independent validation of STIC-TI using measured flux data from nine terrestrial 762 

ecosystems in arid, semi-arid and sub-humid climate in India, USA (representing northern 763 

hemisphere) and Australia (representing southern hemisphere) led us to the following 764 

conclusions: 765 

(i) The retrieved G and associated SEB fluxes through STIC-TI were reasonably sensitive to 766 

uncertainties in TS and vegetation index. However, a compensation effect was evident due to 767 

the partial cancellation of overestimated TI and underestimated A in the harmonics equation 768 

of G. Both, latent and sensible heat fluxes (LE and H), were extremely sensitive to TS 769 

uncertainties, with maximum sensitivity of LE (H) to TS found in arid and semi-arid (sub-770 

humid) ecosystems.  771 

(ii) G estimates through STIC-TI performed better as compared to most of the contemporary 772 

empirical G models, with lower MAPD and higher correlation coefficient with respect to in-773 

situ measurements. The most notable advantages of STIC-TI are, (a) it provides direct 774 

estimates of G and is not dependent on net radiation estimates, (b) the ecosystem-scale 775 
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surface soil temperature amplitude used in G model can advance our understanding on 776 

associated terrestrial ecosystem processes. 777 

(iii) Underestimation of G in some ecosystems was primarily attributed to the inherent bias in 778 

MODIS TS product, NDVI saturation at higher LAI (>3) in conjunction with the spatial 779 

scale mismatch between single MODIS pixel and the footprint of G measurements. The 780 

consequent overestimation (underestimation) of LE (H) in some ecosystems was associated 781 

with the overestimation of net available energy, use of ‘unclosed’ SEB observation in LE 782 

and H validation, the spatial scale discrepancy between MODIS pixel versus eddy 783 

covariance measurement footprint, the complementary nature of the Penman Monteith 784 

Energy Balance equation (for H), and possibly due to ignoring the two-sided aerodynamic 785 

conductance by the leaves (for H), respectively. 786 

(iv) While the MODIS Aqua day view angle within -40 to 30showed moderate impact on the 787 

deviations in the modeled heat fluxes, the night view angle had no impact on the flux 788 

deviations. 789 

The requirement of few input variables in STIC-TI generates promise for surface-atmosphere 790 

exchange studies using readily available data from the current generation remote sensing 791 

satellites (e.g., MODIS, INSAT) that have noon-night TIR observations. STIC-TI can be 792 

potentially used for distributed ET mapping using current and future 4th generation Indian 793 

Geostationary satellite observations from INSAT as well as future high spatial resolution (~ 794 

60m) TIR observations with 3-day revisit from polar orbiting platform (Lagouarde et al., 2018, 795 

2019) through the planned Indo-French space-borne mission, TRISHNA (Thermal infrared 796 

Imaging Satellite for High-resolution Natural Resource Assessment). This simple approach will 797 

also help in catering the need for a reliable, space-time continuous ET datasets in data-poor 798 

regions like Indian sub-tropics, South-East Asia, and other parts of the world from thermal 799 

remote sensing observation. 800 
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Appendix A 1118 

Table A1: A list of symbols, their descriptions and units used in the present study 1119 

Attributes Symbol Description 

 

 

Temperature 

TA Air temperature (o C) 

TMax Maximum air temperature (o C) 

TMin Minimum air temperature (o C) 

TD Air dew-point temperature (o C) 

TSTA point-scale soil temperature amplitude 

Ts noon-night LST difference (o C) 

TST Soil temperature (o C) 
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TS Land surface temperature (LST) (o C) 

 

 

Humidity, vapor 

pressures 

RH Relative humidity (%) 

eA Atmospheric vapor pressure at the level of TA measurement (hPa) 

eA
* Saturation vapor pressure at the level of TA measurement (hPa) 

eS
* Saturation vapor pressure at surface (hPa) 

DA Atmospheric vapor pressure deficit at the level of TA measurement (hPa) 

 

 

Radiation 

RG Downwelling shortwave radiation (or global radiation) (W m-2) 

RR Upwelling or reflected shortwave radiation (W m-2) 

RL Downwelling longwave radiation (W m-2) 

RL Upwelling longwave radiation (W m-2) 

τsw Atmospheric transmissivity for shortwave radiation (unitless) 

R Broadband shortwave surface albedo (unitless) 

 

SEB 

components 

LEi Latent heat flux (W m-2); subscript ‘i’ signifies ‘instantaneous’ 

Hi Sensible heat flux (W m-2); subscript ‘i’ signifies ‘instantaneous’ 

Gi Ground heat flux (W m-2); subscript ‘i’ signifies ‘instantaneous’ 

RNi Net radiation (W m-2); subscript ‘i’ signifies ‘instantaneous’ 

 Net available energy (W m-2); i.e., RN– G 

 

 

 

 

 

 

 

A Ecosystem-scale surface soil temperature amplitude(oC) 

TSd Daytime TS (o C) 

TSn Nighttime TS (o C) 

ω Angular frequency (rad s-1) 

ϕn
′  Phase shift of the nth soil surface temperature harmonic (rad) 

Δ Shape parameter (unitless) 

Sr Relative soil moisture saturation (m3 m-3) 
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MV2007 model 

fs Sand fraction (unitless) 

θfc Soil water content at field capacity (m3 m-3) 

 θwp Soil water content at permanent wilting point (m3 m-3) 

θ* Soil porosity (cm3 cm-3) 

JS Summation of harmonic terms of soil surface temperature (K) 

´ Soil textural parameter (unitless) 

Γ Soil thermal inertia (J K-1 m-2 s-0.5) 

τ0 Thermal inertia of air-dry soil (J K-1 m-2 s-0.5) 

τ* Thermal inertia of saturated soil (J K-1 m-2 s-0.5) 

t’ Time of satellite overpass (seconds) 

Δt Time offset between the canopy composite temperature and the below-

canopy soil surface temperature (seconds) 

κ Total number of harmonics used (unitless) 

fc Vegetation fraction (unitless) 

 Volumetric soil moisture (cm cm-3) 

Clear-sky RNi 

model 

Rns Net shortwave radiation (W m-2) 

Rnl Net long wave radiation (W m-2) 

Gsc Solar constant (1367 W m-2) 

βe Sun elevation angle (0). 

s Infrared surface emissivity (unitless) 

a Atmospheric emissivity (unitless) 

           E Eccentricity correction factor due to variation in Sun-Earth distance 

(unitless) 

 M Aggregated moisture availability (0-1) 
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STIC-TI model 

gA Aerodynamic conductance (m s-1) 

gS Canopy-surface conductance (m s-1) 

T0 Aerodynamic temperature (or source/sink height temperature) (oC) 

T0D Dewpoint temperature at the source/sink height (oC) 

 Evaporative fraction (unit less) 

e0 Vapor pressure at the source/sink height (hPa) 

e0
* Saturation vapor pressure at the source/sink height (hPa) 

D0 Vapor pressure deficit at source/sink height (hPa) 

s1 Psychrometric slope of vapor pressure and temperature between (T0D -TD) 

versus (e0 -eA) (h Pa K-1) 

s2 Psychrometric slope of vapor pressure and temperature between (TS-TD) 

versus (es
*-eA) (h Pa K-1) 

s3 Psychrometric slope of vapor pressure and temperature between (T0D -TD) 

versus (es
*-eA). 

κ Ratio between (e0
* - eA) and (es

* - eA) (unitless) 

s Slope of saturation vapor pressure vs. temperature curve (h Pa K-1) 

 Priestley-Taylor coefficient (unitless) 

Ancillary 

meteorological 

variables 

U Wind speed at 8 m height (m s-1) 

u* Friction velocity (m s-1) 

 

 

 

Constants 

P Precipitation (mm d-1) 

 Psychrometric constant (h Pa k-1) 

cp Specific heat capacity of air at constant pressure (MJ kg-1 K-1) 

 Density of air (Kg m-3) 
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 Stefan–Boltzmann constant (5.67 x 10 -8 Wm-2K-4) 

 1120 

 1121 

Table A2: Summary of instruments used, height or depth and period of measurements, measured 1122 

variables at nine EC flux tower sites 1123 

Type of primary instruments 

used for in situ data recording 

at flux tower sites 

Measurement Height/ Depth (m) at 

different sites 

Measured variables 

Net radiometer • 3m (IND-Naw, IND-Jai, IND-

Sam) 

• 15m (AU-Ade)  

• 12.2m (AU-ASM) 

• 23m (AU-How)2m (US-Ton, 

US-Var) 

Four radiation flux components: 

shortwave incoming (RG) and 

outgoing (RR); longwave incoming 

(RL) and outgoing (RL) 

EC assembly with IRGA 

(Infrared Gas Analyzer), three-

dimensional sonic anemometer, 

TC probe 

• 8m (IND-Naw; IND-Jai; IND-

Sam) 

• 4.5m (IND-Dha) 

• 15m (AU-Ade)  

• 11.6m(AU-ASM) 

• 23m (AU-How)  

• 2m (US-Ton, US-Var) 

High response wind vectors (u, v and 

w), sonic temperature, and CO2- water 

vapor mass at 10/20 Hz frequency 

Humidity and temperature probe 

 

• 8m (IND-Naw, IND-Jai, IND-

Sam) 

• 4.5m (IND-Dha) 

• 15m (AU-Ade), 11.6m (AU-

ASM) 

• 23m (AU-How), 70m (AU-

How) 

• 2m (US-Ton, US-Var) 

TA and RH 

Soil temperature probe 

 

• -0.1m (IND-Dha) 

• -0.15m (AU-Ade) 

• (-0.02, -0.06m) (AU- ASM) 

• -0.08m (AU- How) 

• -0.02m, -.0.04m, -0.08m, and -

0.16m (US-Ton, US-Var) 

TST 

Soil heat flux plates 

 

 

• Ground, 0.1 m (IND-Dha) 

• Ground, -0.15 m (AU-Ade) 

• Ground, -0.08 m (AU-ASM) 

• Ground, -0.15 m (AU-How) 

• -0.01m (US-Ton, US-Var) 

Soil heat flux (G) 
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Appendix B 1124 

B1: Clear-sky instantaneous net radiation (RNi) model 1125 

Net radiation (RN) is defined as the difference between the incoming and outgoing radiation 1126 

fluxes, which includes both longwave and shortwave radiation at the surface of earth.  1127 

Terrestrial RN has four components: downwelling and upwelling shortwave radiation (RG and 1128 

RR), downwelling and upwelling longwave radiation (RL and RL), respectively.  1129 

         RN  = (RG − RR) + (RL↓  −  RL↑) (B1) 

Out of these four terms mentioned in eq.(B1), RG and RL are dependent on various factors such 1130 

as geographic location, season, cloudiness, aerosol loading, atmospheric water vapor content and 1131 

less on surface properties. On the other hand, the upwelling radiations in eq. (B1) strongly 1132 

depends on the surface properties such as surface reflectance and emittance, land surface 1133 

temperature, and soil water content (Zerefos and Bais, 2013). 1134 

Instantaneous net radiation (RNi) can be derived using eq. B2 as follows (Mallick et al., 2007):  1135 

        RNi = Rns − Rnl (B2) 

         Rns = (1 − αR) RG (B3) 

        Rnl = RL↓  − RL↑ (B4) 

Where, Rns is net shortwave radiation (W m-2), Rnl is net longwave radiation (W m-2).and αRis 1136 

the broadband surface albedo shortwave spectrum. 1137 

A WMO (World Meteorological Organization) shortwave radiation model (Cano et al.,1986) 1138 

calibrated over Indian conditions (Mallick et al., 2007, 2009) was used to compute RG using the 1139 

following equation: 1140 

RG = τswGscE (sinβe)
1.15 (B5) 
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Where,sw is the is the global clear sky transmissivity for the shortwave radiation (0.7), Gsc is the 1141 

solar constant (1367 Wm-2), ε is the eccentricity correction factor due to variation in Sun-Earth 1142 

distance and βe is the sun elevation in degrees.  1143 

RLat any instance was calculated as follows: 1144 

RL↓  =  εa σ (273.14 + TA)
4        (B6) 

Where, σ is the Stefan–Boltzmann constant (5.67 x10-8 Wm-2K-4); TA is the air temperature (0C); 1145 

εa is the atmospheric emissivity. 1146 

Atmospheric emissivity ( εa ) was computed using the following equation (Bastiaanssen et 1147 

al.,1998):  1148 

εa  =  0.85 − lnτsw
0.09

 (B7) 

RLat any particular instance was calculated as follows: 1149 

RL↑ = εs σ(273.14 + Ts)
4 (B8) 

Where, εsis the surface emissivity in thermal infrared (8 – 14 m) spectrum and TS is the land 1150 

surface temperature (0C). 1151 

B2: Evaluation of STIC-TI RNi
 1152 

Comparison of the clear-sky RNi estimates with respect to in situ measurements revealed RMSE 1153 

in RNi to the order of 27 – 72 W m-2, MAPD 8 –24%, BIAS (-67) – 50 W m-2, and R2 varying 1154 

from 0.62– 0.90 across all the sites (Fig. B2, Table B2). Among the nine sites, a consistent 1155 

underestimation of RNi was noted in IND-Dha, US-Ton, and US-Var (with BIAS of -23 W m-2, -1156 

61 W m-2 and -67 W m-2), whereas substantial overestimation of RNi was found in IND-Sam, 1157 

IND-Naw, and AU-ASM with a BIAS of 50 W m-2, 37 W m-2 and 43 W m-2, respectively (Table 1158 

B2). 1159 
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Figure B2: Validation of STIC-TI derived RNi estimates with respect to in situ measurements in 

different ecosystems. The regression equation between modeled versus in-situ RNi is, RNi (STIC-TI) = 

0.78RNi (tower) +58.92. 

Table B2: Performance evaluation statistics of clear-sky RNi estimates in nine different 1160 

agroecosystems 1161 

Sites Error statistics of clear-sky RNi model 

estimates 
 

R2 BIAS 

(W m-2) 

RMSE 

(W m-2) 
 

MAPD 

(%) 

IND-Jai 0.81 -9 32 8 

IND-Naw 0.81 37 56 12 

IND-Dha 0.81 -23 42 9 

IND-Sam 0.64 50 67 15 

US-Ton 0.68 -61 69 21 

US-Var 0.62 -67 72 24 

Au-How 0.87 7 27 15 

AU-ASM 0.88 43 50 14 

AU-Ade 0.90 11 27 16 
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Appendix C 1162 

C1: Estimating SEB fluxes using STIC1.2 analytical model and thermal remote sensing 1163 

data 1164 

STIC1.2 (Mallick et al., 2014, 2015a,b, 2016, 2018a) is a one-dimensional physically based SEB 1165 

model and is based on the integration of satellite LST observations into the Penman–Monteith 1166 

Energy Balance (PMEB) equation (Monteith, 1965). In STIC1.2, the vegetation–substrate 1167 

complex is considered as a single slab. Therefore, the aerodynamic conductances from individual 1168 

air-canopy and canopy-substrate components is regarded as an ‘effective’ aerodynamic 1169 

conductance (gA), and surface conductances from individual canopy (stomatal) and substrate 1170 

complexes is regarded as an ‘effective’ canopy-surface conductance (gS) which simultaneously 1171 

regulate the exchanges of sensible and latent heat fluxes (H and LE) between surface and 1172 

atmosphere. One of the fundamental assumptions in STIC1.2 is the first order dependence of 1173 

these two critical conductances on M through TS. Such an assumption enabled an integration of 1174 

satellite LST in the PMEB model (Mallick et al., 2016). The common expression for LE and H 1175 

according to the PMEB equation is as follows: 1176 

LE =  
sϕ +  ρcPg

A
DA

s +  γ (1 + 
g

A

g
S

)
 

 

 

(C6) 

H =

γϕ(1 + 
g
A

g
S

) −  ρcPg
A
DA

s +  γ (1 + 
g
A

g
S

)
 

 

 

(C7) 

In the above equations, the two biophysical conductances (gA and gS) are unknown and the 1177 

STIC1.2 methodology is based on finding analytical solutions for the two unknown 1178 

conductances to directly estimate LE (Mallick et al., 2016, 2018a). The need for such analytical 1179 

estimation of these conductances is motivated by the fact that gA and gS can neither be measured 1180 

at the canopy nor at larger spatial scales, and there is no universally agreed appropriate model of 1181 

gA and gS that currently exists (Matheny et al., 2014; van Dijk et al., 2015). By integrating TS 1182 

with standard SEB theory and vegetation biophysical principles, STIC1.2 formulates multiple 1183 
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state equations in order to eliminate the need to use the empirical parameterizations of the gA and 1184 

gS and also to bypass the scaling uncertainties of the leaf-scale conductance functions to 1185 

represent the canopy-scale attributes. The state equations for the conductances are expressed as a 1186 

function of those variables that are mostly available as remote sensing observations and weather 1187 

forecasting models. In the state equations, a direct connection to TS is established by estimating 1188 

M as a function of TS. The information of M is subsequently used in the state equations of 1189 

conductances, aerodynamic variables (aerodynamic temperature, aerodynamic vapor pressure), 1190 

and evaporative fraction, which is eventually propagated into their analytical solutions. M is a 1191 

unitless quantity, which describes the relative wetness (or dryness) of a surface and also controls 1192 

the transition from potential to actual evaporation; which implies M→1 under saturated surface 1193 

conditions and M→0 under extremely dry conditions. Therefore, M is critical for providing a 1194 

constraint against which the conductances are estimated. Since TS is extremely sensitive to the 1195 

surface moisture variations, it is extensively used for estimating M in a physical retrieval scheme 1196 

(detail in Appendix A3 of Bhattarai et al., 2018; Mallick et al., 2016, 2018a). It is hypothesized 1197 

that linking M with the conductances will simultaneously integrate the information of TS into the 1198 

PMEB model. To illustrate, we express the state equations by symbols, sv1= f {c1, c2, c3, v1, v2, 1199 

v3, v4, sv3, sv5}; sv2 = f {v4, sv1, sv5, sv6}; sv3 = f {c3, v3, v4, sv4, sv5}; sv4 = f {c3, v3, sv1, sv2, 1200 

sv7, sv8}. Here, f, sv, v, and c denote the function, state variables, input variables (5 input 1201 

variables; radiative and meteorological), and constants (3 constants), respectively. Here sv1 to sv4 1202 

are gA, gS, aerodynamic temperature (T0), evaporative fraction (), and sv8 is M. Given the 1203 

estimates of M, net radiative energy (RN i– Gi), TA, RH, the four state equations are solved 1204 

simultaneously to derive analytical solutions for the four state variables and to produce a surface 1205 

energy balance “closure” that is independent of empirical parameterizations for gA, gS, T0, and Λ. 1206 

However, the analytical solutions to the four state equations contain three accompanying 1207 

unknown state variables (effective vapor pressures at source/sink height, and Priestley-Taylor 1208 

variable), and as a result there are four equations with seven unknowns. Consequently, an 1209 

iterative solution was found to determine the three additional unknown variables as detailed in 1210 

this section above and also described in Mallick et al. (2016, 2018a) and Bhattarai et al. (2018). 1211 

The state equations of STIC are given below. 1212 
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gA  =  
ϕ

ρcP [(T0 − TA) + (
e0 − eA
γ )]

 
(C1) 

gS  =  gA
(e0 − eA)

(e0
∗ − e0)

 
(C2) 

T0  =  TA + (
e0 − eA
γ

) (
1 − Λ

Λ
) 

(C3) 

Λ =  
2αs

2s +  2γ +  γ
gA
gS
(1 + M)

 
(C4) 

Detailed derivations of these four state equations are given in Mallick et al. (2016). Given the 1213 

values of M, RN, G, TA, and RH or eA, the four state equations can be solved simultaneously to 1214 

derive analytical solutions for the four unobserved variables and to simultaneously produce a 1215 

‘closure’ of the PMEB model that is independent of empirical parameterizations for both gA and 1216 

gS. However, the analytical solutions to the four state equations contain three accompanying 1217 

unknowns; e0 (vapor pressure at the source/sink height), e0
* (saturation vapor pressure at the 1218 

source/sink height), and Priestley-Taylor coefficient (), and as a result there are four equations 1219 

with seven unknowns. Consequently, an iterative solution was needed to determine the three 1220 

unknown variables (as described in Appendix A2 in Mallick et al. 2016). Once the analytical 1221 

solutions of gA and gS are obtained, both variables are returned into eq. (13) to directly estimate 1222 

LE.  1223 

In STIC-TI, an initial value of  was assigned as 1.26; initial estimates of e0
* were obtained from 1224 

TS through temperature-saturation vapour pressure relationship, and initial estimates of e0 were 1225 

obtained from M as,  e0 = eA +M(e0
∗ − eA). Initial T0D and M were estimated according to 1226 

Venturini et al. (2008) as described in section 3.2, and initial estimation of G was performed 1227 

from initial M using the equation sets eq. (2) – eq. (11). With the initial estimates of these 1228 

variables; first estimate of the conductances, T0, , H, and LE were obtained. The process was 1229 

then iterated by updating e0
*, D0, e0, T0D, M, and  (using eq. A9, A10, A11, A17, A16 and A15 1230 

in Mallick et al., 2016), with the first estimates of gS, gA, T0, and LE, and re-computing G, , gS, 1231 

gA, T0, , H, and LE in the subsequent iterations with the previous estimates of e0
*, e0, T0D, M, 1232 
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and  until the convergence of LE was achieved. Stable values of G, conductances, LE, H, T0, 1233 

e0
*, e0, T0D, M, and  were obtained within ~25 iterations. The inputs needed for computation of 1234 

LEi (eq.C6) are air temperature (TA), land surface temperature (TS), relative humidity (RH), net 1235 

radiation (RNi) and soil heat flux (Gi).  1236 

Appendix D 1237 

The temporal variation of estimated A and TSTA is shown in Fig. D1. The annual variations of 1238 

TSTA in different ecosystem was found to be within the ranges of 1 - 4C. 1239 

1240 
Figure D1: Temporal variation of A and TSTA in (a) AU-ASM (2013), (b) US-Ton (2014), (c) 1241 

US- Var (2014). 1242 

 1243 

 1244 

 1245 

 1246 
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Appendix E 1247 

Table E1:  Soil textural properties and their values used in the present study (Murray and 1248 

Verhoef, 2007; Minasny et al., 2011; Anderson et al., 2007) 1249 

Soil texture Water 

retention 

Shape 

parameter 

(δ) 

Field capacity  

(vol/vol)  

(%) 

𝛉𝐟𝐜 

Wilting point 

(vol/vol) 

(%) 

𝛉𝐰𝐩 

Sand 

fraction 

(fs) 

Saturated soil 

moisture 

(vol/vol) 

(%) 

θ* 

Sand 2.77 10 5 0.92 43 

Loamy Sand 2.39 12 5 0.82 41 

Sandy loam 2.27 18 8 0.58 41 

Loam 2.20 28 14 0.43 43 

Silty loam 2.22 31 11 0.17 45 

Sandy clay loam 2.17 27 17 0.58 39 

Clay loam 2.14 36 22 0.40 41 

Silty clay loam 2.14 38 22 0.10 43 

Sandy clay 2.11 36 25 0.52 38 

Silty clay 2.12 41 27 0.06 46 

Clay 2.10 42 30 0.22 38 
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Appendix F 1250 

Day view angle effect on deviations of STIC-TI heat flux estimates from measurements is shown 1251 

in Figure F. 1252 

 

Figure F: Number of occurrences of deviations of STIC-TI heat flux estimates (Gi, Hi, LEi) from 

measurements in each 10 bin within ±50 day view angle of MODIS Aqua 

 1253 

 1254 


