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Abstract  31 

The major undetermined problem in evaporation (ET) retrieval using thermal infrared (TIR) 32 

remote sensing is the lack of a physically based ground heat flux (G) model and its amalgamation 33 

with surface energy balance (SEB) model. Here, we present a novel approach based on coupling a 34 

thermal inertia (TI)-based mechanistic G model with an analytical SEB model (Surface 35 

Temperature Initiated Closure) (STIC, version STIC1.2). The coupled model is named as STIC-36 

TI and it uses noon-night land surface temperature (TS), surface albedo and vegetation index from 37 

MODIS Aqua in conjunction with a clear-sky net radiation model and ancillary meteorological 38 

information. The SEB flux estimates from STIC-TI were evaluated with respect to the in-situ 39 

fluxes from Eddy Covariance (EC) measurements in diverse agriculture and natural ecosystems of 40 

contrasting aridity in the northern hemisphere (e.g., India, United States of America) and southern 41 

hemisphere (e.g., Australia). Sensitivity analysis revealed substantial sensitivity of the STIC-TI 42 

derived fluxes due to TS uncertainty and partial compensation of sensitivity of G to TS due to the 43 

nature of the equations used in the TI-based G model. An evaluation of STIC-TI G estimates with 44 

respect to in-situ measurements showed an error range of 12-21% across six flux tower sites in 45 

both the hemispheres. A comparison of STIC-TI G estimates with other G models revealed 46 

substantially better performance of the former. While the instantaneous noontime net radiation 47 

(RNi) and latent heat flux (LEi) was overestimated (15% and 25%), sensible heat flux (Hi) was 48 

underestimated with error of 22%. The errors in Gi were associated with the errors in daytime TS 49 

and mismatch of footprint between the model estimates and measurements. Overestimation 50 

(underestimation) of LEi (Hi) was associated with the overestimation of net available energy (RNi 51 

– Gi) and use of unclosed SEB measurements. Being independent of any leaf-scale conductance 52 

parameterization and having a coupled sub-model of G, STIC-TI can make valuable contribution 53 

to map and monitor water stress and evaporation in the terrestrial ecosystems using noon-night 54 

thermal infrared observations from existing and future EO missions such as INSAT 4th generation 55 

and TRISHNA. 56 

Keywords: Thermal remote sensing, water stress, evaporation, ground heat flux, thermal inertia, 57 

surface energy balance, STIC, terrestrial ecosystem 58 
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1 Introduction 59 

Ground heat flux (G) is an intrinsic component of the surface energy balance (Sauer and Horton, 60 

2005), affecting the net available energy for evaporation (ET) (the equivalent water depth of latent 61 

heat flux, LE) and sensible heat flux. It represents an energy flow path that couples surface with 62 

atmosphere and has important implications for the underlying thermal regime (Sauer and Horton, 63 

2005). Evaporation is also an integral component of the surface energy balance where water is lost 64 

from and within the soil-vegetation substrate complex through the ‘physics of evaporation and 65 

‘ecophysiology’ of transpiration while regulating the temperature and growth of vegetation (Martel 66 

et al., 2018). Due to complex feedback between the physics of ground heat flux, land-atmosphere 67 

interactions and vegetation ecophysiology, evaporation modelling at different space-time scales 68 

remained a challenging task (Wang et al., 2013; Kiptala et al., 2013). This paper addresses the 69 

challenge of simultaneous estimation of G and ET by combining thermal remote sensing 70 

observations with a mechanistic G model and analytical surface energy balance (SEB) model.   71 

Land surface temperature (LST or TS) retrieved through thermal infrared (TIR) remote sensing 72 

carries imprints of soil water content and is extraordinarily sensitive to evaporative cooling, which 73 

makes it a crucial variable for estimating sensible heat flux (H) ET through the SEB models 74 

(Kustas and Anderson, 2009; Mallick et al., 2014, 2015a, 2018a; Cammalleri and Vogt, 2015; 75 

Anderson et al., 2012). However, it is the aerodynamic temperature (T0) that is responsible for the 76 

sensible heat transfer and the inequality of Ts versus T0 introduces additional uncertainty in ET 77 

retrieval through the SEB models. The differences between Ts and T0 is accommodated either by 78 

using two-source approximation of SEB (Anderson et al., 2012) or through an empirical extra-79 

resistance in the single-source SEB models (Su, 2002). In the SEB method, TS represents the lower 80 

boundary condition to estimate both sensible (H) and latent heat fluxes (LE) (Anderson et al., 81 

2012; Mallick et al., 2014, 2015a, 2018a). SEB models mainly emphasize on estimating H by 82 

resolving the aerodynamic conductance (gA) and resolves LE as a residual SEB component as 83 

follows: 84 

LE =  RN − G −  H (1) 

RN is the net radiation. The proportion of RN that is partitioned into conductive heat flux (G) 85 

depends upon soil properties like its albedo, soil moisture, soil thermal properties such as heat 86 
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conductance and capacity, which vary with mineral, organic and water fractions. The magnitude 87 

of G varies greatly across different ecosystems from as low as < 20 W m-2 under dense forest to as 88 

high as 100 W m-2 over dry soils in arid and semi-arid landscapes or the rows between crops. In 89 

the humid ecosystems with predominantly dense canopies and high mean fractional vegetation 90 

cover, G contributes to a small proportion in eq. (1). Dense canopy cover leads to less transmission 91 

of downwelling shortwave radiation flux through multiple layers of canopies, which results in low 92 

warming of the soil floor. Due to persistently high soil water content, humid ecosystems generally 93 

show low diurnal and seasonal variability in G. By contrast, the magnitude of G is substantially 94 

large in the arid and semi-arid ecosystems with sparse and open canopy and high water stress. One 95 

of the outstanding challenges in SEB modeling concerns an accurate estimation of G in the open 96 

canopy system such as savanna with mixed vegetation or in ecosystems with low mean fractional 97 

vegetation cover, predominant water stress, and strong seasonality in soil moisture.  98 

While the utility of a surface heat capacity and thermal inertia (TI)-based mechanistic G model 99 

was demonstrated by Murray and Verhoef (2007), Verhoef et al. (2012), and Mallick et al. (2015b); 100 

the potential of an analytical SEB model (Mallick et al., 2014, 2015, 2016, 2018a,b) for mapping 101 

ET in a variety of ecological transects was also demonstrated by Bhattarai et al. (2018, 2019). 102 

Recognizing the significant conclusions of Verhoef et al. (2012), Mallick et al. (2014; 2015a,b; 103 

2016; 2018a,b) and Bhattarai et al. (2018, 2019), there is a need to overcome the challenges of 104 

accurate G estimation and to complement the overarching gaps in SEB modeling in the sparsely 105 

vegetated open canopy systems. Present study coupled the TI-based G model of Murray and 106 

Verhoef (2007), after required modification, with the current version of an analytical ET model, 107 

the Surface Temperature Initiated Closure (STIC, version 1.2; Mallick et al., 2014, 2015a, 2016, 108 

2018a,b) and evaluated this new coupled G-SEB model in different ecosystems of contrasting 109 

aridity. 110 

Remote sensing-based ET models generally use linear and non-linear relationships for estimating 111 

G and such methods generally employ RN, TS, albedo (αR), and NDVI (e.g., Bastiaanssen et al., 112 

1998; Friedl, 2002; Santanello and Friedl, 2003). While the inclusion of TS and albedo serves as a 113 

proxy for soil moisture and surface characteristics effects in G, inclusion of NDVI provides a 114 

scaling of G - RN ratio for different fractional vegetation cover. Unfortunately, all the approaches 115 

are empirical and do not include any information of deep soil temperature or daily temperature 116 
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amplitude as lower boundary conditions. These empirical model functions also lack the universal 117 

consensus. Setting G as a fraction of RN does not solve the energy balance equation and disregards 118 

the role of thermal inertia of the land surface (Mallick et al., 2015b). This could introduce 119 

substantial uncertainty in LE estimation because G effectively couples the surface energy balance 120 

with energy transfer processes in the soil thermal regime. It provides physical feedback to LE 121 

through the effects of soil moisture, temperature, and conductivity (thermal and hydraulic) (Sauer 122 

and Horton, 2005). Such feedbacks are most critical in the arid and semi-arid ecosystems where 123 

LE is significantly constrained by the soil moisture dry-down. The limits imposed on LE by the 124 

water stress consequently result in greater partitioning of the net available energy (i.e., RN – G) 125 

into H and G (Castelli et al., 1999).  126 

When LE is reduced due to soil moisture dry-down and water stress, both G and TS tend to show 127 

rapid rise. Therefore, the surface energy balance equation could be linked with mechanistic G 128 

model, TS harmonics (Verhoef, 2004), and soil moisture availability. Realizing the importance of 129 

direct estimates of G in LE and invigorated by the advent of TIR remote sensing, Verhoef et al., 130 

(2012) demonstrated the potential of a TI-based mechanistic model (Murray and Verhoef, 2007) 131 

(MV2007 hereafter) for spatio-temporal G estimates in the semi-arid ecosystems of Africa. Some 132 

studies also emphasized the importance of using day-night TS and RN for estimating G (Mallick et 133 

al., 2015b; Bennet et al., 2008; Tsuang, 2005). The method of MV2007 has so far been tested in a 134 

stand-alone mode, and no remote sensing method is so far attempted to combine such a mechanistic 135 

G model (e.g., MV2007-TI model) with a SEB model for coupled energy-water flux estimation 136 

and validation.  137 

By integrating TS into a combined structure of the Penman-Monteith (PM) and Shuttleworth-138 

Wallace (SW) model, an analytical SEB modeling was proposed by Mallick et al., (2014, 2015a, 139 

2016). The model, Surface Temperature Initiated Closure (STIC), is based on finding analytical 140 

solution for aerodynamic and canopy-surface conductance (gA and gS) where the expressions of 141 

the conductances were constrained with an aggregated water stress factor. Through physically 142 

linking water stress (Ts derived) with gA and gS, STIC established a direct feedback between TS, 143 

H and LE, and simultaneously overcame the need of empirical parameterization for estimating the 144 

conductances (Mallick et al., 2016, 2018a). Different versions of STIC have been extensively 145 

validated in different ecological transects (Tropical rainforest to woody savanna) and aridity 146 

https://doi.org/10.5194/bg-2021-356
Preprint. Discussion started: 16 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 

6 

 

gradients (humid to arid) (Trebs et al., 2021; Bai et al., 2021; Mallick et al., 2015a; 2016; 2018a, 147 

b; Bhattarai et al., 2018, 2019). Realizing the significance of mechanistic G model (MV2007) and 148 

the advantage of analytical solution for different turbulent heat fluxes and conductances from the 149 

STIC model, this paper presents the first-ever coupled implementation of MV2007 G with the 150 

most recent version of STIC (STIC1.2). We name this new coupled model as STIC-TI and it 151 

requires day-night Ts and associated remotely sensed land surface variables as inputs. We 152 

performed subsequent evaluation of STIC-TI in nine terrestrial ecosystems in arid, semi-arid and 153 

sub-humid climate in India, the United States of America (USA) (representing northern 154 

hemisphere) and Australia (representing southern hemisphere) at the eddy covariance flux tower 155 

sites. The current study addresses the following research questions and objectives: 156 

(i) What is the performance of STIC-TI G estimates when compared with contemporary empirical 157 

models in ecosystems having low mean fractional vegetation cover (fc) (≤0.5) and having larger 158 

soil exposure to radiation for example in Savanna? 159 

(ii) How do the estimates from STIC-TI LE and H fluxes compare with LE and H observations in 160 

diverse terrestrial ecosystems that represent a varied range of fc (0.25 – 0.5) covering cropland, 161 

savanna, mulga vegetation spread across arid, semi-arid, sub-humid, humid climates over a vast 162 

range of rainfall (250 to 1730 mm), temperature (-4 to 46C) and soil regimes? 163 

(iii) What is the seasonal variability of G and evaporative fraction from STIC-TI model in a wide 164 

range of ecosystems having contrasting aridity and vegetation cover? 165 

It is important to mention that assessing the performance of STIC-TI LE and H with respect to 166 

other SEB models is not within the scope of the present study. The prime focus of the current study 167 

is to assess the sensitivity of STIC-TI, temporal variability of the retrieved SEB fluxes, and cross-168 

site validation of the individual SEB components. 169 

A list of variables, their symbols and corresponding units are given in Table A1 in Appendix A. 170 

2 Study area and datasets 171 

2.1 Study site characteristics 172 

The present study was conducted at nine flux tower sites (four sites in India; three sites in Australia; 173 

two sites in USA) equipped with Eddy Covariance (EC) measurement systems. The distribution 174 
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of the flux tower sites considered for the present study are shown in Fig. 1 below. The sites cover 175 

a wide range of climate, vegetation types, low fractional vegetation cover (fc) of around 0.5 and 176 

have contrasting aridity (Table 1). In India, a network of EC towers was set up under Indo-UK 177 

INCOMPASS (INteraction of Convective Organization and Monsoon Precipitation, Atmosphere, 178 

Surface and Sea) Program (Turner et al., 2019) at Jaisalmer (IND-Jai) in Rajasthan state, Nawagam 179 

(IND-Naw) in Gujarat state, Samastipur (IND-Sam) in Bihar state and under Newton-Bhaba 180 

programme (Morisson et al., 2019 a,b) at Dharwad (IND-Dha) in Karnataka state. The fetch ratio 181 

of EC towers in India varied from 1:50 to 1:100 representing 90% of fetch area. The mean annual 182 

fc was found to vary from 0.25 to 0.52 with standard deviation (SD) ranging from 0.1 to 0.16. 183 

The IND-Jai site represents arid western zone over desert plains of natural grassland ecosystem. 184 

The region receives very low rainfall (100 – 300 mm) during monsoon and experiences a wide 185 

range in air temperature, high solar radiation, wind speed and high evaporative demand (Raja et 186 

al., 2015). The IND-Naw site represents semi-arid agroecosystem in the middle Gujarat agro-187 

climatic zone of north-west India and has a pre-dominant rice-wheat cropping system. The IND-188 

Sam site has sub-humid climate of north-west alluvial plain zone in the Indo-Gangetic Plain (IGP) 189 

situated in the eastern India and this site also follows rice-wheat crop rotation. IND-Dha represents 190 

humid sub-tropical climate of transition zone in the southern India and this site comprises of crops.  191 

 

1: IND-Jai

2: IND-Naw

3: IND-Sam

4: IND-Dha

5: AU-ASM

6: AU-Ade

7: AU-How

8: US-Ton

9: US-Var

https://doi.org/10.5194/bg-2021-356
Preprint. Discussion started: 16 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 

8 

 

Figure 1: Locations of the flux tower sites in India, Australia and USA overlaid on climate type 

map. (Image Source: By Peel, M. C., Finlayson, B. L., and McMahon, T. A. (University of 

Melbourne) enhanced, modified, and vectorized by Ali Zifan; Hydrology and Earth System 

Sciences: "Updated world map of the Köppen-Geiger climate classification" (Supplement) map 

in PDF (Institute for Veterinary Public Health). Legend explanation, CC BY-SA 4.0, 

https://commons.wikimedia.org/w/index.php?curid=47086879) 

In USA, two EC tower sites were located at Tonzi Ranch (US-Ton) and Vaira Ranch (US-Var), in 192 

the lower foothills of the Sierra Nevada Mountains. Both the EC stations are part of the 193 

AMERIFLUX Management Project (https://ameriflux.lbl.gov/). US-Ton is classified as an oak 194 

savanna woodland on privately owned land. While the overstorey is dominated by blue oak trees 195 

(40% of total vegetation) with intermittent grey pine trees (3 trees ha-1), the understory species 196 

include a variety of grasses and herbs. The mean annual rainfall at this site is 559 mm. US-Var is 197 

a grassland dominated site and the growing season is confined to the wet season only, typically 198 

from October to early May. The mean annual rainfall at this site is 559 mm. The mean annual fc 199 

was found to vary from 0.18 to 0.26 and SD of the order of 0.06 to 0.07.  200 

In Australia, three EC tower sites were located at Howard Springs (AU-How), Alice Springs 201 

Mulga (AU-ASM), Adelaide river (AU-Ade) in the Northern Territory as part of the OzFlux 202 

network (Beringer et al., 2016) and the Terrestrial Ecosystem Research Network (TERN), which 203 

is supported by the National Collaborative Infrastructure Strategy (NCRIS) 204 

(http://www.ozflux.org.au/monitoringsites/index.html). The AU-How is situated in the Black 205 

Jungle Conservation Reserve representing an open woodland savanna and the mean annual rainfall 206 

is 1750 mm. The AU-ASM is located on Pine Hill cattle station near Alice Springs. The woodland 207 

is characterized by mulga canopy and mean annual rainfall is 306 mm. AU-Ade represents savanna 208 

with a mean annual rainfall of 1730 mm. The mean annual fc varied from 0.21 to 0.48 having SD 209 

range of 0.08 - 0.17. A description of Australian flux sites is given in Beringer et al. (2016).  210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 
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Table 1: An overview of the EC flux tower site characteristics in the present study 219 

Hemisphere Sites 

Latitude 

(N), 

Longitude 

(E) 

Climate & 

Vegetation  

Mean fc 

(SD) 

Soil 

texture 

TA range 

(C) 

Mean 

Annual P 

(mm) 

Observation 

period 

 

 

 

 

 

 

 

 

 

Northern 

 

 

 

Jaisalmer 

(IND-Jai) 

26.99, 

71.34 

 

Arid grassland 

 

0.25(±0.1) 

Loamy fine 

sand 

 to coarse 

sand 

8 – 40 

 

250 

 

2017 – 2018 

Nawagam 

(IND-

Naw) 

22.80, 

72.57 

 

Semi-arid 

cropland 

 

0.41(±0.13) 
Sandy 

loam 
9 – 39 

 

700 

 

2017 – 2018 

Samastipur 

(IND-

Sam) 

 

26.00, 

85.67 

 

 

Humid 

subtropical 

cropland  

 

0.52(±0.16) 

Sandy 

loam to 

loam 

10 – 39 

 

1000 

 

2017 – 2018 

Dharwad   

(IND-Dha) 

15.50, 

74.99 

Tropical 

Savanna  
0.36(±0.11) 

Shallow to 

medium 

black clay 

and red 

sandy loam 

soils 

12 – 40 

 

650 

 

2016 – 2018 

Tonzi 

ranch  

(US-Ton) 

38.43,  

-120.96 

Woody 

Savanna  
0.18(±0.06) 

Red sandy 

clay loam 
0 – 40 559 2011 – 2019 

Vaira 

ranch  

(US-Var) 

38.41,  

-120.95 

 

Arid grassland 

 

0.26(±0.07) 
Rocky silt 

loam 
0 – 40 559 2011 – 2019 

 

 

 

 

 

Southern 

Alice 

Springs 

Mulga 

(AU-

ASM) 

 

22.28, 

133.24 

 

 

Semi-arid 

mulga 

 

0.21(±0.09) 
Loamy 

sand 
(-4) – 40 305 2011 – 2014 

Howard 

Springs  

(AU-How) 

12.49, 

131.15 

Tropical 

savanna  
0.48(±0.17) 

Red 

kandasol 
19 – 34 1700 2011 – 2014 

Adelaide 

River 

 (AU-Ade) 

13.07, 

131.11 

 

Savanna 

 

0.42(±0.08) 

 

Yellow 

hydrosol, 

shallow, 

loamy sand 

with coarse 

gravel 

 

16 – 37 1730 2007 – 2009 

TA: Air temperature during the observation period; P: rainfall (mm) measured using rain gauge at flux tower site during the study 220 
period. IND is for India, AU is for Australia, and US is for the United States; SD is standard deviation of annual mean fc which is 221 
computed from NDVI as mentioned in section 3.1. 222 

 223 
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2.2 Datasets 224 

2.2.1 Micrometeorological data at flux tower sites 225 

Standardized, controlled and harmonized surface energy balance (SEB) flux and meteorological 226 

data from nine EC towers were used in the present analysis. In Australia, the SEB measurements 227 

were carried out at varying heights of 15 m, 23 m and 11.6 m at AU-Ade, AU-How and AU-ASM, 228 

respectively. In India, the EC measurement height was maintained approximately at 8 m above the 229 

surface, except at IND-Dha where it was installed at a height of 4.2 m. In USA, the SEB 230 

measurements were carried out at tower heights of 23 m at US-Ton and 2 m US-Var. A summary 231 

of the instrumentation is given in Table A2 of appendix A. All the flux tower sites were equipped 232 

with a range of meteorological instrumentation which measured diurnal air temperature (TA) and 233 

relative humidity (RH), four components of the net radiation (RN, consisting of down- and up-234 

welling shortwave and long-wave radiation (SW↓, SW↑, LW↑ and LW↓, respectively)) above the 235 

vegetated canopy. In addition, the diurnal soil heat flux (G) and soil temperature (TST) were 236 

measured at all the three Australian sites and two US sites. In India, the diurnal soil heat flux was 237 

measured only at IND-Dha. 238 

For the Indian sites, the raw EC measurements of the turbulent wind vectors (u, v and w, for 239 

horizontal, meridional and vertical, respectively), sonic temperature (T), and CO2 and water vapor 240 

mass density were recorded at a sampling rate of 20 Hz. Raw EC data were post-processed to 241 

obtain level-3 quality controlled and harmonized surface fluxes at 30-minute flux averaging 242 

intervals using EddyPRO® Flux Calculation Software (LI-COR Biosciences, Lincoln, Nebraska, 243 

USA) using the data handling protocol described by Bhat et al. (2019). The EC data from the 244 

OzFlux sites was averaged over 30 minutes recorded by the logger and processed through levels 245 

using the PyFluxPro standard software processing scripts as mentioned in Isaac et al. (2017). The 246 

Level 3 (L3) used in this paper was produced using PyFluxPro (Isaac et al., 2017) employing the 247 

Dynamic INtegrated Gap filling and partitioning for Ozflux (DINGO) system as described in 248 

Donohue et al. (2014) and Beringer et al. (2016). The quality checked  EC data at 30 minute 249 

intervals for two AMERIFLUX sites US-Ton and US-Var was acquired from 250 

https://doi.org/10.17190/AMF/1245971& https://doi.org/10.17190/AMF/1245984,  respectively. 251 
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2.2.2 Remote sensing data 252 

Optical and thermal remote sensing observations available from Moderate Resolution Imaging 253 

Spectroradiometer (MODIS) (Didan et al., 2015) on-board Aqua platform were used in the present 254 

analysis (Table 2) for estimating G and associated SEB fluxes.  These include land surface products 255 

(eight-day) of noon-night land surface temperature (LST or TS) and surface emissivity (εs) 256 

(MYD11A2), daily surface albedo (αR) (MCD43A3), 16-day NDVI (MYD13A2). The overpass 257 

times of MODIS Aqua are at 1:30 pm and 1:30 am (IST). The noon-night pair of thermal remote 258 

sensing observations from Aqua are close to time of occurrences of maximum and minimum soil 259 

surface temperature (see Figure 2) and are therefore ideal for soil heat flux modeling using thermal 260 

inertia. The MODIS Terra overpass times are at 11 AM and 11 PM and are quite away from time 261 

of occurrences of minimum-maximum soil temperatures. Therefore, MODIS Aqua acquisition 262 

times were used. 263 

Table 2: A summary of MODIS Aqua optical and thermal remote sensing products used in the 264 

present study  265 

Data type Product ID 

(version) 

Variables 

used 

Spatial 

resolution 

(m) 

Temporal 

resolution 

Purpose Inputs to 

equation 

numbers 

Land 

surface 

temperature 

and 

emissivity 

MYD11A2 

(V006) 

TS and εs 923 8-day For 

estimating 

RNi, Gi, LEi, 

Hi 

(5), (13), 

(C6), (C7), 

(B8) 

Surface 

albedo 

MCD43A3 

(V006) 

αR 462 

 

8-day 

composite 

from daily 

For 

estimating 

RNi, Gi 

(5), (B3) 

Vegetation 

index 

MYD13Q1 

(V006) 

NDVI 250 16-day For 

estimating 

Gi 

(4) 

The key variables of SEB modeling such as LST and εs, were retrieved at 923m spatial resolution 266 

from MODIS Aqua noon-night thermal infrared (TIR) observations (MYD11A2) in bands 11.03 267 

µm and 12.02 µm using a generalized split-window algorithm by Wan et al., (2015). The land 268 
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surface emissivity was estimated from land cover types, atmospheric column water vapor and 269 

lower boundary air surface temperature that are separated into tractable sub-ranges for optimal 270 

retrieval. The albedo was estimated from MODIS (MCD43A2 Version 6) Bidirectional 271 

Reflectance Distribution Function and Albedo (BRDF/Albedo) daily dataset (Schaaf et al., (2002)) 272 

at 462 m spatial resolution. Eight-day compositing for albedo was done from daily products 273 

(MYD11A2). NDVI was estimated from MODIS Vegetation Indices (MYD13Q1) Version 6 data 274 

and are generated every 16-day at 250 meter (m) spatial resolution as a Level 3 product. 275 

MYD13Q1 contains Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation 276 

Index (EVI). In the present study, NDVI has been used because of its universal applicability (Xue 277 

and Su, 2017; Drori et al. 2020; Bhandari et al., 2012). All the input remote sensing variables 278 

mentioned in table 2 are resampled to spatial resolution of MYD11A2 (V006) product (923 m). 279 

3 Methodology 280 

3.1 Coupled soil heat flux-SEB model  281 

In this paper, we modified a thermal inertia (TI) based soil heat flux (G) model using noon-night 282 

thermal remote sensing observations and thereafter coupled the TI-based G with STIC1.2. A clear-283 

sky net radiation (RN) model was also introduced into this coupled model and RN estimation 284 

algorithm is described in Appendix B. The estimation of G through modifying MV2007-TI 285 

approach and its coupling with STIC1.2 is the most novel component of the modeling scheme, and 286 

it is therefore described in the main body of the paper (section 3.1.1). Such a coupling enabled the 287 

implementation of a mechanistic G model along with an analytical SEB model using optical-288 

thermal remote sensing data. The coupled model is hereafter referred as STIC-TI. The noteworthy 289 

features of STIC-TI are: (1) estimating G by modifying the mechanistic MV2007-TI model using 290 

noon-night TS data from thermal remote sensing observations available through polar orbiting 291 

satellite platform (e.g. MODIS Aqua), (2) coupling MV2007-TI G model with STIC1.2 to 292 

simultaneously estimate surface moisture availability (M), G, and SEB fluxes, (3) introducing 293 

moisture availability information in G to better constrain the aerodynamic and canopy-surface 294 

conductances as well as the SEB fluxes, (4) the G model uses fundamental soil physical properties, 295 

moisture constants and soil texture that majorly influence soil heat conduction, (5) derivation of 296 

amplitude of ecosystem-scale surface soil temperature (from top soil to 0.1 m soil depth). 297 
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3.1.1 MV2007 soil heat flux model based on Thermal Inertia (TI)   298 

The functional form for estimating instantaneous G (Gi, hereafter) (eq. 2 below) is based on the 299 

harmonic analysis of soil surface temperature and is described in detail by Murray and Verhoef 300 

(2007) and Maltese et al. (2013).  301 

Gi =  Γ [(1 − 0.5fC) (∑ A√nωsin (nωt +  ϕn
′ +  

π

4
−  

π∆t

12
)

k

n=1

)] =  ΓJS (2) 

Gi is the soil heat flux at the surface at a particular instance (W m−2), Γ is the soil thermal inertia 302 

(J m−2 K−1 s−0.5), k is the total number of harmonics used, A is the amplitude (C) of the nth soil 303 

surface temperature (TST) harmonic, ω is the angular frequency (rads−1), t is the time (s), ϕn is the 304 

phase shift of the nth soil surface temperature harmonic (rad), JS is the summation of harmonic 305 

terms of soil surface temperature (K), and Δt(s) is time offset between the canopy composite 306 

temperature and the below-canopy soil surface temperature. Here, we represent Gi and A as 307 

ecosystem-scale (≤ 1km) soil heat flux and surface soil temperature amplitude (within 0.1 m from 308 

the soil top), respectively and assume it to be valid for different vegetated landscape.  309 

Since we have considered a single pair (noon-night corresponding to 1 pm and 1 am) of MODIS 310 

aqua LST data in the present study, the phase shift (ϕn) is taken as zero and number of harmonics 311 

is taken as one (k=1) for estimating noontime Gi. Thus equation (2) is modified as follows:  312 

Gi =  Γ [(1 − 0.5fC) (A√ωsin (ωt′ +  
π

4
−  

π∆t

12
))] =  ΓJS (3) 

Δt(s) is found to be 1.5 h (Murray and Verhoef, 2007). With the two boundary values (i.e., Δt =1.5 313 

h for fc = 1 and Δt = 0 for fc = 0), a linear approach is proposed here to describe the time offset Δt 314 

as a function of vegetation fraction (fc) (Murray and Verhoef, 2007; Maltese et al., 2013).  The fc 315 

was derived from NDVI on a given day or period and its practically occurring upper-lower limits 316 

obtained from annual cycle. 317 

 318 

 319 
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                                         Δt =  1.5 fc (4) 

3.1.1.1 Scaling function for estimating ecosystem-scale surface soil temperature amplitude (A) 320 

Estimating ecosystem-scale A involves two steps, (a) computing point-scale soil surface 321 

temperature amplitude (from surface to 0.1m depth) (TSTA, hereafter) from the available 322 

measurements of soil surface temperature, and (b) linking TSTA with remote sensing variables to 323 

develop scaling functions for A.   324 

Several studies suggested theoretical sinusoidal trajectory of soil surface and sub-surface 325 

temperatures (Gao et al., 2010), where the amplitude is maximum at the surface and it gradually 326 

decreases with depth to become close to zero until the damping depth where soil temperature is 327 

almost invariant through day-night called deep soil temperature. However, the diurnal surface soil 328 

temperature measurements (within top 0.1 m depth) across different flux tower sites showed a 329 

sinusoidal-exponential behavior, i.e. sinusoidal pattern from sunrise until the afternoon and 330 

exponential pattern from afternoon through sunset to the next sunrise. An illustrative example of 331 

the theoretical and observed trajectories of surface soil temperature is shown in Fig. 2. This diurnal 332 

surface soil temperature variation has a single harmonic component (Gao et al., 2010). For 333 

computing TSTA, theoretical half-curve of sinusoidal pattern is assumed and was derived from 334 

measurements as exemplified in Fig 2. 335 

 336 
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Figure 2. An illustrative example of typical diurnal variation of soil temperature (TST) (from 

surface to 0.1m depth) and timings of MODIS AQUA observations. Here, TSTmax and TSTmin are 

maximum and minimum point-scale soil surface temperatures 

 337 

It is evident from Fig. 2 that TSTmin represents minimum surface soil temperature occurring 1-1.5 338 

h after sunrise and TSTmax occurs during 12.30 – 15.00 h local time. TSTmin is thus close to deep soil 339 

temperature as well as minimum soil temperature of other sub-surface soil layers. Both TSTmin and 340 

TSTmax represent lower and upper limits of surface soil temperature on a given day and also lower 341 

and upper boundary conditions of soil heat flux conducting through topsoil at noontime. The in-342 

situ measured TST on completely clear-sky days at OzFlux sites were used to extract TSTmax and 343 

TSTmin. The TSTA was derived as the difference between TSTmax and TSTmin from the theoretical half-344 

curve of sinusoidal pattern. 345 

TSTA is generally influenced by several land surface characteristics such as surface temperature 346 

and surface albedo of soil-canopy complex, surface heat capacities, fractional canopy cover and 347 

thermal conductivity (White, 2013). TS and αR are the major thermal and reflective land surface 348 

properties that have strong synergy with surface soil temperature dynamics. Hence, we have used 349 

bivariate regression analysis to develop a scaling function for estimating ecosystem-scale TSTA 350 

(top to 0.1m depth). The bivariate regression is based on the difference of noon (d) and night (n) 351 
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TS data and R (Duan et al., 2013, Li Tian et al., 2014) from MODIS Aqua. The scaling function 352 

given in eq. (5) estimates ecosystem-scale TSTA (symbolized as ‘A’ in equation 5) from surface to 353 

0.1 m soil depth: 354 

A = B1(TSd − TSn) + B2(αR) + B3 (5) 

Here, B1, B2, B3 are coefficients of regression model; TSd and TSn are noon and nighttime LST, 355 

respectively. The results of this regression analysis are elaborated in section 4.1. 356 

3.1.1.2 Estimating Γ 357 

Γ is the key variable for estimating Gi using eq. (2). MV2007 adopted the concept of normalized 358 

thermal conductivity (Johansen, 1975) and developed a physical method to estimate Γ as follows: 359 

Γ = e[Υ′(1− S𝑟
(Υ′− δ))](τ∗ −  τ0) +  τ0 (6) 

where τ* and τ0 are the thermal inertia for saturated and air-dry soil (J m−2K−1s−0.5); τ0 = D1θ* + D2; 360 

τ* = D3 (θ*
-1.29); ´ (−) is a parameter depending on the soil texture (Murray and Verhoef, 2007; 361 

Minasny, 2007; Anderson et al., 2007); Sr (m
3 m−3) is relative saturation and is equal to (θ/θ*); δ 362 

(unitless) is the shape parameter which is dependent on the soil texture. θ* (m3 m−3) is the soil 363 

porosity (equal to the saturated soil moisture content when soil moisture suction is zero), θ (cm3 364 

cm−3) is the volumetric soil moisture and D1, D2, D3 are coefficients which were derived from a 365 

large number of experimental data. The reported global values of D1, D2, and D3 were taken as -366 

1062.4, 1010.8, 788.2, respectively (Maltese et al., 2013). The value for θ* and shape parameter 367 

for soil textures across study sites were specified according to Van Genuchten et al. (1980). The 368 

details are mentioned in Table E1 of Appendix E. 369 

In the present study, the relative soil moisture saturation, Sr (θ/θ*) is represented in terms of an 370 

aggregated moisture availability (M) of canopy-soil complex through a linear function (eq. 12). In 371 

case of zero canopy cover, M represents the soil moisture availability from surface to 0.1 m depth. 372 

In sparse and open canopy, rates of moisture availability from soil to root and root to canopy were 373 

assumed same.  374 
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Theoretically, M is expressed as available soil moisture fraction between field capacity (θfc) and 375 

permanent wilting (θwp) point as given in eq. (7) below. 376 

M =
 θ −  θwp

θfc −  θwp
 (7) 

Where, θfc (m3 m−3) is the volumetric soil moisture at the field capacity (at a suction of 330 hpa) 377 

and θwp (m3 m−3) is the volumetric soil moisture at the permanent wilting point (at suction of 15000 378 

hpa) (Singh, 2007). Since θfc, θ*, θwp are soil moisture constants and depends on the soil texture, 379 

dividing the numerator and denominator in eq. (7) by θ* gives the following expression: 380 

M =

θ
 θ∗

− 
θwp

θ∗

fc

∗
−  

θwp

θ∗

 (8) 

Due to their dependence on soil texture, the ratios (θfc/θ*) and (θwp/θ*) are treated as constants. 381 

These are represented as C and C in the later equations (eq. 9, 10, and 11). The constants, C and 382 

C vary from 0.3 to 0.8 and from 0.1 to 0.4 (Murray and Verhoef, 2007; Minasny et al., 2011; 383 

Anderson et al., 2007), respectively over different soil textures. 384 

M =

θ
 θ∗

−  C

C −  C
 

(9) 

M(C −  C′) =  (
θ

 θ∗
) − C′ (10) 

By replacing Sr in eq. (6) as θ/θ* and by rearranging eq. (10), the following linear function is 385 

obtained. 386 

Sr =
θ

 θ∗
= M (C −  C′) +   C′ = M′ (11) 

Thus, the modified equation to calculate Γ is given by eq. (12) as follows: 387 

 Γ = e
[Υ′(1− M′(Υ′− δ)

)]
(τ∗ −  τ0) +  τ0 (12) 
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By substituting the values obtained from eq. (4), (5) and (12) into eq. (3), we obtained the 388 

instantaneous ecosystem-scale Gi corresponding to MODIS Aqua noontime overpass. The intrinsic 389 

link between Gi estimates through MV2007-TI and SEB scheme in STIC1.2 is made through M, 390 

where the computation of M follows the procedure as described in Mallick et al. (2016, 2018a, b) 391 

and Bhattarai et al. (2018). (description in Appendix C).  392 

3.1.1.3 Estimating M 393 

In STIC1.2, an aggregated moisture availability (M) of canopy-soil complex is expressed as the 394 

ratio of the ‘vapor pressure difference’ between the aerodynamic roughness height of the canopy 395 

(i.e., source/sink height) and air to the ‘vapor pressure deficit’ between aerodynamic roughness 396 

height to the atmosphere: 397 

M =
(e0 − eA)

(e0
∗ − eA)

=
(e0 − eA)

κ(eS
∗ − eA)

=
s1(T0D − TD)

κs2(TS − TD)
 (13) 

Where e0 and e0
* are the actual and saturation vapor pressure at the source/sink height; eA is the 398 

atmospheric vapor pressure; eS
* is the saturation vapor pressure at the surface; T0D is dew point 399 

temperature at the source/sink height; TS is the LST; TD is the air dew point temperature; s1 and s2 400 

are the psychrometric slopes of the saturation vapor pressure and temperature between (T0D – TD) 401 

versus (e0 – eA) and (TS – TD) versus (eS
* - eA) relationship; and κ is the ratio between (e0

* - eA) 402 

and (eS
* - eA). To solve the eq. (13), estimation of T0D is necessary. An initial estimate of T0D [T0D 403 

= [(eS
* - eA) – s3TS + s1TD]/(s1 – s3)] and M were obtained following Venturini et al. (2008) where 404 

s1 and s3 were approximated in TD and TS, respectively. However, eq. (13) cannot be directly 405 

solved because there are two unknowns in one equation. However, since T0D also depends on LE 406 

(Mallick et al., 2016, 2018a), an iterative updation of T0D (and M) was carried out by expressing 407 

T0D as a function of LE [T0D = TD + (LE/cpgAs1)] which is described in detail by Mallick et al. 408 

(2016, 2018a) and Bhattarai et al. (2018). In the numerical iteration, s1 was not updated to avoid 409 

numerical instability and it was expressed as a function of TD. 410 

3.1.2 STIC-TI: Coupling modified MV2007-TI and STIC 1.2 411 

The initiation of the coupling between MV2007-TI and STIC1.2 was executed through linking Gi 412 

estimates from the modified MV2007-TI with M estimates from STIC1.2. Having the initial 413 
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estimates of M (through eq. 13), an initial estimation of Gi was made from eq. (2) where Sr in eq. 414 

11 was replaced with the initial estimates of M′. Given the initial estimates of Gi (eq. 2) and RNi 415 

(equations in Appendix B), initial estimation of the conductances, LEi and Hi were obtained. The 416 

process was then iterated by updating T0D [T0D = TD + (LE /cpgAs1)] and M in every time step 417 

(as mentioned in Mallick et al., 2016, 2018a), and re-estimating Gi (using eq. 3), net available 418 

energy (RNi– Gi), conductances, LEi and Hi, until stable estimates of LEi were obtained. The 419 

conceptual block diagram and algorithm flow of STIC-TI is shown in Fig. 3a and Fig 3b, 420 

respectively. 421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 
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(a) 

(b)

 

Figure 3: (a) Conceptual diagram of STIC-TI model showing different input variables and model 

outputs; (b) Algorithmic flow for estimating G and associated SEB fluxes through STIC-TI. 

Examples of iterative stabilization of Gi and LEi for Indian, Australian and US ecosystems of India 430 

are shown in Fig. 4. The iterative stabilization of Gi and LEi was obtained between 8-25 iterations 431 

for all sites. 432 
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Figure 4: Illustrative examples of iterative stabilization of STIC-TI Gi (yellow marker line) and LEi (grey 

marker line) in (a) IND-Jai, (b) AU-ASM, (c) US-Ton 

3.2 Sensitivity and statistical analysis  433 

The accuracy of STIC-TI heavily depends on the accuracy of TS, NDVI, and R due to the dual 434 

role of TS in estimating M and Gi, the role of NDVI in Gi, and the combined role of TS and R in 435 

estimating RNi. Therefore, one-dimensional sensitivity analysis was conducted to assess the 436 

impacts of uncertainty in TS, NDVI and R on Gi, Hi and LEi. The sensitivity was assessed by 437 

varying noon-time TS by ±0.5 K, ±1.5 K and ±1.5 K (keeping nighttime TS constant so that 438 

amplitude can vary automatically); varying NDVI by ±0.05; ±0.10, ±0.15; and varying albedo by 439 

±0.02, ±0.05, ±0.10, respectively. SEB fluxes were computed by using TS, NDVI, and R for three 440 

different periods of the year in all the eight ecosystems. Sensitivity analyses were conducted by 441 

increasing and decreasing systematically TS, NDVI, R from its central value while keeping the 442 

other variables and parameters constant. This procedure was selected because the fluxes and 443 
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intermediate outputs of the STIC-TI model reflect an integrated effect due to uncertainty in TS. In 444 

the first run, SEB fluxes were computed using in-situ TS measurements obtained from the flux 445 

tower outgoing longwave radiation measurements. Then TS was increased and decreased at 446 

constant interval and a new set of fluxes were estimated. In the similar way, R and NDVI were 447 

increased and decreased at constant intervals and new set of fluxes were computed. The sensitivity 448 

of STIC-TI was assessed by the equation 14. 449 

Sensitivity =  
Ei0 − EiM

Oi
 ∗ 100 (14) 

Ei0 is the estimated (original) model output and EiM is the estimated (modified) output obtained by 450 

changing the variable whose sensitivity is to be tested. Oi is actual measurements. Apart from the 451 

sensitivity analysis, the following set of statistical metrics were used to assess model performances. 452 

 𝑅2       = (
∑ (Ei−E̅) (Oi−O̅)n

i=1

√∑ (Ei−E̅)2n
i=1 √∑ (Oi−O̅)2n

i=1

)

2

 

 

(15) 

RMSE =√∑
(Ei−Oi)

n

2
n
i=1  

(16) 

BIAS    =  
∑ ( Ei−Oi)n

i=1

n
 (17) 

MAPD = 
100

n
∑ |

 Ei− Oi

 Oi
|n

i=1  

 

(18) 

  KGE =  1 −  √(𝑟 − 1)2 + (
σ𝐸

σ𝑜
− 1)

2

+ (
E̅

O̅
− 1)

2

 

(19) 

Where R2 is the coefficient of determination, RMSE is root-mean-square error, BIAS is the mean 453 

bias, MAPD is the mean absolute percent deviation, KGE is Kling-Gupta efficiency, n is the total 454 

number of data pairs, the bar indicates mean value of the measured variable and model estimates 455 

of the same variable. Ei and Oi are the model estimated and measured SEB fluxes, r is the Pearson’s 456 

correlation coefficient and O̅ is the average of measured values and E̅ is the average of estimated 457 

https://doi.org/10.5194/bg-2021-356
Preprint. Discussion started: 16 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 

23 

 

values and o is standard deviation of observation values and E is the standard deviation of 458 

estimated values. The KGE has been widely used for calibration and evaluation hydrological 459 

models in recent years and it combines the three components of Nash-Sutcliffe efficiency (NSE) 460 

of model errors (i.e. correlation, bias, ratio of variances or coefficients of variation) in a more 461 

balanced way. But it has not been widely used for analyzing the ET model performances. KGE = 1 462 

indicates perfect agreement between modelled estimates and observations. The performance of a 463 

model is considered ‘poor’ for KGE between 0 and 0.5 and models with negative KGE values is 464 

considered ‘not satisfactory’. 465 

4 Results 466 

4.1 Ecosystem- scale surface soil temperature amplitude (A) 467 

The scaling functions developed to estimate ecosystem-scale (1 km) surface soil temperature 468 

amplitude (A) from point-scale TSTA were used to estimate Gi. However, before the development 469 

of the scaling functions, analysis was carried out to investigate the relationship of soil temperature 470 

amplitude between the two different spatial scales. The scatterplot (Fig. 5a) of noon-night LST 471 

difference (Ts) versus TSTA for different albedo classes showed a linear increase in Ts with 472 

increasing TSTA. However, some divergence of data points within the cluster were also noticed 473 

which could be associated with different albedo (R) levels. Bivariate linear function was fitted 474 

between TSTA as predictand (Y) versus Ts (Tsd – Tsn) and R as predictors (X1 and X2, 475 

respectively). The function was found to be Y = 0.59X1 – 51.3X2 + 8.66 by combining the data 476 

of nine ecosystems (r = 0.86). The coefficients in the above expressions correspond to B1 (0.59), 477 

B2 (51.3), B3 (8.66) of eq. 5 in section 3.1.1.1. The estimated amplitude from this ecosystem-scale 478 

predictors and scaling functions was treated as ecosystem-scale surface soil temperature amplitude 479 

(A). 480 
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Figure 5. (a) Two-dimensional scatterplots between (Ts) versus TSTA at different αR levels 

over different ecosystems. Here TSTA in y-axis is the observed soil temperature amplitude that 

is used to develop the scaling function and delta Ts is noon-night LST difference of MODIS 

AQUA; (b) Validation of the ecosystem-scale estimates of A from the above functions over 

different ecosystems and for independent years. 

    

The validation of the ecosystem-scale estimates of A from the above functions over different 481 

ecosystems is shown in Fig. 5b with respect to TSTA for the independent datasets. The estimated A 482 
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was found to have MAPD of 21%, bias of -1.6 o C and R2 = 0.90 over different ecosystems. The 483 

temporal variation of estimated A and TSTA is shown in Fig D1 in Appendix D. 484 

4.2 Sensitivity analysis of STIC-TI Gi, LEi and Hi to land surface variables 485 

4.2.1 Sensitivity of Gi to land surface variables 486 

The average sensitivity of Gi to three land surface variables (TS, NDVI, R) by combining the 487 

estimates of wet and dry periods is shown in Fig. 6. Gi was found to be substantially sensitive to 488 

TS with error magnitude ranging from 2 – 18% due to TS uncertainties of ±0.5 – 2.5 K (Fig. 6a), 489 

with greater sensitivity to TS during the summer season as compared to other seasons. The median 490 

sensitivity of Gi due to ±5 – 10% uncertainty in R varied from 5 to 12% in all the ecosystems (Fig. 491 

6b). The uncertainties in NDVI revealed 2 to 15% error in Gi estimates (Fig. 6c), and no significant 492 

difference in the mean sensitivity due to NDVI uncertainties was noted between the ecosystems. 493 

The sensitivity of Gi decreased with increasing values of NDVI.  494 

4.2.2 Sensitivity of LEi and Hi to land surface variables 495 

Both LEi and Hi were sensitive to TS to the order of 2 – 29% (LEi) and 5 – 35% (Hi) for TS 496 

uncertainty of ±0.5 – 2.5 K from its mean values (Table 3). Interestingly, LEi was more sensitive 497 

to TS uncertainties as compared to Hi in the rainfed ecosystems. The highest mean sensitivity of 498 

LEi to TS was found in arid (IND-Jai: 2 – 28%), semi-arid (AU-ASM: 5 – 21%), tropical savanna 499 

(IND-Dha: 3 – 26%), savanna (US-Ton: 4-29%) and arid (US-Var: 3-26%) ecosystems. The mean 500 

sensitivity of Hi to TS was maximum in sub-humid (IND-Sam: 2 – 32%), semi-arid (IND-Naw: 2 501 

– 28%), savanna (AU-Ade: 8 – 17%) (Table 3). A greater sensitivity of the SEB fluxes due to R 502 

uncertainties was found than due to NDVI. The median sensitivity of LEi and Hi due to 10% 503 

uncertainty from mean R varied within 2 – 16% in all the ecosystems (Table 3). By contrast, 504 

errors in the two SEB fluxes were substantially low (2 – 13%) due to ±0.05 – 0.15 uncertainty 505 

from mean NDVI (Table 3).  506 
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Figure 6: Sensitivity of STIC-TI Gi due to uncertainties in TS (a), R (b), and NDVI (c) for eight 

flux tower sites in India and Australia. The uncertainties were introduced by taking the mean values 

of these variables during three different periods (summer, rainy and winter) of a year. Mean 

uncertainties of the three periods are presented in the figure. 
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Table 3: Sensitivity (in percent) of LEi and Hi due to TS, NDVI, and R uncertainties 507 

Study 

Sites 

Sensitivity of LEi and Hi to TS, NDVI and R 

(% range)  

TS 

uncertainty 

 (±0.5 – 2.5 K) 

R 

uncertainty 

 (±5 – 10%) 

NDVI 

uncertainty 

(±0.05 – 0.15) 

LEi Hi LEi Hi LEi Hi 

IND-Jai 2-28 1-6 3-14 2-13 2-8 2-6 

IND-Dha 3-26 2-8 2-12 3-12 3-10 3-9 

IND-Naw 1-20 2-28 2-10 3-10 2-7 2-6 

IND-Sam 1-16 5-32 4-13 6-11 2-5 2-7 

US-Ton 4-29 4-12 3-12 4-12 3-8 5-7 

US-Var 3-26 6-14 4-11 2-10 4-10 2-8 

AU-ASM 5-21 2-10 3-12 2-13 2-10 2-11 

AU-How 8-13 2-15 2-11 4-16 3-12 3-13 

AU-Ade 2-17 8-17 3-12 2-10 3-10 3-9 

 508 

4.3 Comparative evaluation of STIC-TI and contemporary Gi models 509 

The performances of STIC-TI and existing Gi models were evaluated and compared with respect 510 

to in-situ Gi measurements. The existing models reported by Moran et al. (1989), Bastiaanssen et 511 

al. (1998), Su (2002), and Boegh et al. (2004) have been considered for comparing with TI-based 512 

model. These four existing models are referred here as MOR89, BAS98, SU02 and BO04, 513 

respectively. While the models MOR89, SU02 and BO04 are based on linear regression between 514 

G versus NDVI, BAS98 is based on multivariate regression of G with NDVI, LST and R. The 515 

performance of the STIC-TI was substantially better as compared to MOR89, SU02 and BO04 516 

with respect to MAPD (19%), RMSE (22 Wm-2) and coefficient of determination (R2 = 0.8) when 517 

compared with in-situ measurements over one Indian, three Australian and two US flux tower sites 518 

(Table 4) and also comparable with BAS98 Gi model. The validation plot of retrieved noontime 519 

Gi from STIC-TI is shown in Fig. 7. 520 
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Figure 7: Validation of STIC-TI derived Gi estimates with respect to in-situ measurements in 

different ecosystems. The regression between the two sources of Gi is Gi (STIC-TI) = 0.90Gi 

(tower) -0.10. 

Table 4: A comparison of error statistics of Gi estimates from STIC-TI and existing Gi models 521 

over different ecosystems 522 

G models R2 RMSE (W m-2) MAPD (%) KGE 

STIC-TI  0.80 22 19 0.74 

MOR89 0.70 31 29 0.46 

BAS98 0.80 20 18 0.61 

SU02 0.80 30 26 0.54 

BO04 0.70 35 29 0.48 

The RMSE varied from 9 to 20 W m-2 with MAPD ranging from 12 to 21% across individual flux 523 

tower sites. High magnitude of Gi was predicted in the arid and semi-arid systems (120 – 240 W 524 

m-2) as compared to the humid systems (20 – 90 W m-2), which was in close correspondence with 525 

the observations. The model also captured the range of Gi that are generally found in different 526 

biomes (20 – 140 W m-2 for grasslands, 20 – 90 W m-2 for cropland) (Purdy et al., 2016). Due to 527 
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the paucity of Gi measurements, direct validation of Gi was only possible for 32 days (concurrent 528 

to MODIS overpass) at the IND-Dha site. Overall, STIC-TI tends to provide reasonable G 529 

estimates for the terrestrial ecosystems having soil temperature amplitude above 5ºC. 530 

4.4 Evaluation of STIC-TI LEi, Hi, and EF 531 

The modelled versus measured LEi and Hi showed good agreement in all the nine ecosystems with 532 

RMSE in LEi and Hi estimates to the order of 29 – 62 W m-2 and 26 – 61 W m-2, MAPD of  9 – 533 

31% and 20 – 36%, BIAS of -29 to 38 W m-2 and -44 to 32 W m-2 (Fig. 8a, b; Table 5) and high 534 

R2 of 0.8.  535 

 

  

Figure 8: (a) Validation of STIC-TI LEi estimates with respect to in-situ measurements in different 

ecosystems.; (b) Validation of STIC-TI Hi estimates with respect to in-situ measurements in 

different ecosystems. 

 536 

Table 5: Error statistics of STIC-TI LEi and Hi estimates with respect to EC measurements in different 537 

ecosystems of India, US, and Australia. 538 

 

Sites 

STIC- TI (LEi and Hi) 

R2 BIAS 

(W m-2) 

RMSE 

(W m-2) 

MAPD 

(%) 

KGE 

 

(a) (b)
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LEi Hi LEi Hi LEi Hi LEi Hi LEi Hi 

IND-Jai 0.87 0.85 -21 12 57 27 31 22 0.80 0.76 

       IND-Naw 0.89 0.85 19 -26 44 51 17 28 0.92 0.71 

IND-Dha 0.92 0.91 38 -44 43 35 27 25 0.71 0.64 

IND-Sam 0.85 0.81 12 -10 32 61 9 27 0.95 0.70 

US-Ton 0.86 0.88 -29 -32 53 34 25 17 0.85 0.91 

US-Var 0.84 0.79 -19 -28 49 39 27 20 0.82 0.89 

AU-ASM 0.91 0.89 -3 22 46 26 29 20 0.94 0.83 

AU-How 0.88 0.86 16 -25 42 27 17 21 0.89 0.85 

AU-Ade 0.86 0.85 21 15 29 53 28 36 0.77 0.80 

Arid ecosystems in India (IND-Jai), US (Ton and Var) and semi-arid ecosystem in Australia (AU-539 

ASM) revealed relatively high MAPD (31%, 25%, 27%, and 28%) (Table 5). In general, STIC-TI 540 

was able to produce the dominant convective heat fluxes with respect to the EC measurements as 541 

evident through low RMSE for Hi and high RMSE for LEi in the IND-Jai, US-Ton, US-Var, and 542 

AU-Ade where LEi is inherently low except few rainy days. A uniform distribution of data points 543 

around 1:1 validation line (Fig. 8a) indicated overall low BIAS in LEi estimates. However, 544 

modeled Hi was consistently lower than the observations (negative BIAS)  in the tropical savanna 545 

(IND-Dha and AU-How) and semi-arid (IND-Naw) ecosystems [(-44) – (-25) W m-2 and -26 W 546 

m-2) while a consistent positive BIAS was observed in the AU-ASM (semi-arid) and AU-Ade 547 

(savanna), US-Var (arid) (Fig. 8b; Table 5). This consequently led to overall low negative BIAS 548 

(-10 W m-2), relatively low R2 in Hi (R
2 = 0.8) as compared to the errors in LEi (BIAS = 15 W m-549 

2, R2 = 0.9). The regression between the modeled and tower measurements of LEi is LEi(STIC-TI) 550 
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= 0.98LEi(tower) – 0.266. The regression between the modeled and tower measurements of Hi is 551 

Hi (STIC-TI) = 0.93Hi(tower) + 4.90. The KGE statistics varied in the range of 0.71 – 0.95 for LEi 552 

and in the range of 0.64 –0.91 for Hi, respectively across all nine flux tower sites, thus revealed 553 

reasonably high efficiency of the model to capture the magnitude and variability of SEB fluxes. 554 

 

Figure 9: Relationship between KGE of STIC-TI (Gi and LEi) with Ts/fc in different terrestrial 

ecosystems. 

Further investigation was made on whether KGE for STIC-TI Gi and LEi follow any systematic 555 

pattern and the ratio TS and fc was used as proxy for surface heterogeneity and dryness. The plot 556 

of KGE of Gi and LEi with this ratio is shown in Fig. 9. KGE-Gi was found to show a systematic 557 

decrease with increase in Ts-fc ratio up to 40, after which it remained unchanged with increase 558 

in the ratio. Although KGE of LEi also decreased (20% reduction) with increase in Ts-fc ratio, 559 

KGE-LEi was found to increase beyond Ts-fc 40. This revealed that the model efficiency 560 

remained high (>0.8) within certain dryness limits (Ts-fc ratio <20 and >50) and the efficiency 561 

reduced moderately (within 0.7 – 0.8) for intermediate dryness.  562 

An independent evaluation of multi-temporal heat fluxes over two US flux sites for the years 2016-563 

2018 is shown in Fig. 10. STIC-TI Gi estimates showed close match with in-situ measurements 564 

with respect to intra and inter-annual variability in Gi followed by LEi and Hi. This further 565 
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demonstrates the merit of the coupled model for reproducing ecosystem-scale Gi estimates 566 

especially for shorter and open canopies. 567 

 

Figure 10 (a): Illustrative examples of temporal evolution of the STIC-TI derived versus observed 

SEB fluxes for three consecutive years from 2016 to 2018 in a grassland ecosystem in United States 

(e.g., US-Var). 
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Figure 10 (b): Illustrative examples of temporal evolution of the STIC-TI derived versus observed 

SEB fluxes for three consecutive years from 2016 to 2018 in a woody savanna ecosystem in the United 

States (e.g., US-Ton). 

Temporal behavior of STIC-TI and observed evaporative fraction (EF) (ratio of LE and RN – G) 568 

(Fig. 11a) along with observed monthly rainfall (P) distinctly captured the substantial temporal 569 

variability in EF during the dry-to-wet transition in the Indian study sites, which also corresponded 570 

to low (high)  and P. In IND-Naw and IND-Sam, a marked rise (>0.4) in STIC-TI EF was noted 571 

during day-of-the-year (DOY) 25 to 75 where wheat is grown under assured irrigation. The impact 572 

of irrigation is thus captured by the substantial increase in EF in the absence of P. In contrast, the 573 

rainfed grassland system (IND-Jai) showed peak EF (~0.8), which corresponded to south-west 574 

monsoon rainfall during June to September and a progressive decline in EF during the dry down 575 

period in October to April corresponding to post south-west monsoon phase. Some intermittent 576 

spikes in EF was also noted during dry-down phase in both STIC-TI and observations. This could 577 

be due to extra latent heat energy transported through micro-advection from surrounding irrigated 578 
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agricultural land through the ‘clothesline effect’ which frequently occurs in semi-arid and arid 579 

ecosystems. In addition to IND-Jai, the response of both modelled and measured EF to wet and 580 

dry spells was also noted during south-west monsoon period at all other flux tower sites of India. 581 

  

  

Figure 11a: Illustrative examples of temporal variation of STIC-TI derived EF with respect to measured 

EF and P in (a) IND-Naw, (b) IND-Jai, (c) IND-Sam, and (d) IND-Dha 

 

The temporal behavior of EF from STIC-TI and EC measurements along with measured  and P 582 

at the two OzFlux and AmeriFlux sites also revealed (Fig. 11b) close correspondence of STIC-TI 583 

with EC observations. Low EF (0.05 – 0.40) during the dry season around DOY 100 – 250 and 584 

high EF (>0.4) during the wet season (DOY 1 – 120 and 300 to 360) in AU-ASM, US-Ton and 585 

US-Var was observed. The analysis showed that STIC-TI EF can capture the annual variability of 586 

observed EF and its responses across different ecosystems during wet and dry seasons. The plots 587 

of STIC-TI EF versus measured  (in the inset of Fig. 11b) revealed triangular scatter close to 588 

right-angled triangle with positive slope of hypotenuse in three ecosystems AU-ASM, US-Var and 589 

US-Ton. This showed that in the water-controlled ecosystems, where distinct wet-dry seasons 590 
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exist, the positive EF- relationship is an outcome of the soil moisture controls on transpiration 591 

during the dry season. 592 

  

 
Figure 11b: Comparison of temporal variation of STIC-TI derived EF with respect to measured EF,  and P 

in (a) AU-ASM, (b) US-Var, (c) US-Ton. The scatterplots in the inset shows the relationship between STIC-

TI EF with respect to measured . 

  

5 Discussion 593 

5.1 Interaction of flux and internal SEB metrices 594 

From the section 4.1 we found relatively reduced sensitivity of Gi to Ts uncertainties. In any given 595 

condition, if an over(under) estimation of M due to noontime TS uncertainties (through eq. 13) 596 

leads to an over(under) estimation of , the effects of such over(under) estimation of  (due to 597 

noontime TS uncertainties) tend to be compensated by the under(over) estimation of amplitude A 598 

(in eq. 5) (Fig. 12d), ultimately leading to a reduction of the sensitivity of Gi to TS. While the 599 
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scatter between -M and - TS (Fig. 12a, b) revealed the sensitivity of Gi to TS in arid (IND-Jai) 600 

and tropical savannah (IND-Dha); which were due to the strong relationship between  and 601 

daytime TS (Fig. 12b); the scatter between Gi, , and A (Fig. 12c, d) revealed that the sensitivity 602 

of Gi to TS in semi-arid (IND-Naw) and sub-humid (IND-Sam) ecosystems were due to the strong 603 

association between Gi and A.  604 

 

  

     

Figure 12: Response plots among parameters of TI-based Gi model, such as (a)  vs. M, (b)  vs. noon-

time TS, (c) Gi vs. , and (d) Gi vs. A over different ecosystems. 

 

Concerning LEi and Hi, dual uncertainties could be propagated in both the fluxes through 605 

daytime TS (through M and Gi), leading to high sensitivity of these two SEB fluxes due to TS 606 

perturbations. The relatively high sensitivity of LEi to TS (as compared to Hi) in the non-607 

irrigated ecosystems could be due to partial compensation of gA/gS in both numerator and 608 

denominator of the PMEB equation for H (eq. C7 of Appendix C). A recent study (Fig.10 in 609 

Mallick et al., 2018a) showed high sensitivity of gS due to TS (1% change in TS led to 5.2–7.5% 610 
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change in gS) as compared to gA sensitivity to TS (1% change in TS led to 1.6–2% change in gA), 611 

suggesting that errors in gS due to TS uncertainty tend to be larger than errors in gA. Partial 612 

cancellation of the conductance errors in the numerator of eq. (C7 of Appendix C) might have 613 

resulted in compensation of Hi errors in the water-limited ecosystems. In this environment, the 614 

variability of LEi is mainly dominated by gA/gS, which makes LEi highly sensitive due to TS 615 

uncertainties. Combined uncertainty due to gA/gS in the denominator and gA in the numerator 616 

of eq. (C6 of Appendix C) resulted into greater sensitivity in LEi to TS in the arid and tropical 617 

savannah ecosystems (Mallick et al., 2015, 2018a; Winter & Eltahir, 2010). The very low 618 

sensitivity of LEi and Hi due to uncertainties in NDVI is because NDVI was not used in the 619 

conductance parameterizations and effects due to NDVI in STIC-TI was only propagated 620 

through Gi. The sensitivity of LEi and Hi to albedo was mainly due to the dependence of net 621 

radiation (RNi) on albedo, and any resultant uncertainty in RNi (due to albedo) tends to be 622 

reflected in the sensitivity of LEi and Hi to albedo. 623 

5.2 Possible sources of errors in SEB flux evaluation 624 

In STIC-TI, underestimation and overestimation errors in Gi in different ecosystems (Fig. 7) could 625 

originate due to the errors in MOD11A1 LST product. A host of studies previously reported Ts 626 

error of MOD11A1 LST product in the range of 2-3 K with a standard deviation of 0.009, which 627 

is mainly due to errors in surface emissivity correction (Duan et al., 2017; Wan, 2014; Lei et al., 628 

2018). In the present analysis, we found an overestimation error of MODIS TS in the range of 0.5 629 

– 1.5 K when compared with in-situ infrared temperature measurements at the tropical savanna 630 

site. As mentioned in section 3.1, a positive (negative) bias in TS would tend to an overestimation 631 

(underestimation) of amplitude (A) in eq. (5); underestimation (overestimation) of M in eq. (13), 632 

and consequent underestimation (overestimation) of  (eq. 12) and Gi, respectively. Furthermore, 633 

the standard deviation of NDVI surrounding the tower sites varied from 0.01 – 0.05 when 634 

compared to the ground measurements, which could be another source of error in the STIC-TI 635 

model. In addition, NDVI saturates at LAI > 3. However, STIC-TI provides direct estimates of 636 

ecosystem G and is independent of RN. The higher accuracies of TI-based thermal diffusion model 637 

as compared to RN dependent empirical G models were also reported by Purdy et al. (2016) at 638 

daily or longer time scales in cropland, grassland. All these G model estimates many a times differ 639 
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from in situ measurements because of the no accounting of leaf litter presence or layer on soil floor 640 

in the remote sensing-based G-model.  641 

The overestimation (underestimation) of LEi (Hi) is also due to the effects of spatial resolution of 642 

different input variables on these two SEB fluxes and conducted statistical evaluation with respect 643 

to the measured SEB fluxes. Eswar et al. (2017) demonstrated the need for spatial disaggregation 644 

models for monitoring LEi at field scale using contextual models by disaggregation of evaporative 645 

fraction () and downwelling shortwave radiation ratio (RG). Using different disaggregation 646 

models, they estimated LEi at 250m spatial resolution and reported RMSE of 30 – 32 W m-2 as 647 

compared to LEi obtained at 1000m spatial resolution with RMSE of 40 – 70 Wm-2 over different 648 

sites in India. Anderson et al. (2007) reviewed different validation experiments conducted in 649 

diverse agricultural landscapes (Anderson et al., 2004, 2005; Norman et al., 2003) and reported 650 

RMSE in LEi in the range of 35 – 40 W m-2 (15%) at 30 – 120 m disaggregated spatial resolution. 651 

Current analysis also brought out the need for noon-night thermal imaging with spatial resolution 652 

finer than 1000m to adequately capture the magnitude and variability of LEi in the terrestrial 653 

ecosystems especially agroecosystems where average field sizes are less (< 0.5 ha) and fragmented 654 

such as in India and other sub-continents.  655 

As seen in Fig. 8a and Table 5, there is a gross overestimation of LEi with respect to the tower 656 

observations. The consistent positive BIAS in STIC-TI LEi in five out of nine sites is presumably 657 

due to the overestimation of RNi (Figure B1 of Appendix B) and underestimation of Gi. Figure 7 658 

shows overestimation of Gi for three OzFlux sites and US sites and underestimation of Gi for Indian 659 

site with Gi (STIC-TI) = 0.90 Gi(tower) - 0.10 and overestimation of RNi at the ecosystem-scale, 660 

with RNi (STIC-TI) = 0.78RNi (tower) + 58.92 (Appendix-B2). This means a systematic 661 

overestimation of the net available energy (RNi – Gi) will be obvious in cases where STIC-TI shows 662 

underestimation of Gi, which consequently leads to an overestimation of retrieved LEi.  663 

5.3 Effects of SEB closure  664 

Using the unclosed SEB observations for Indian sites in absence of in-situ Gi observations also 665 

added to the consistent positive BIAS in the statistical evaluation of LEi. A widespread lack of 666 

energy balance closure to the order of 10 – 20% worldwide at most of the EC sites is reported in 667 

the literature (Stoy et al., 2013; Wilson et al., 2002), which implies a systematic underestimation 668 

(overestimation) of LEi(EC tower) (and/or Hi(EC tower)). Accommodating an average 15% 669 
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imbalance in LEi(EC tower) would tend to diminish the positive BIAS in STIC-TI. Therefore, the 670 

pooled gain (0.98) and positive BIAS between the STIC-TI and tower LEi is determined by the 671 

overestimation of (RNi – Gi), combined with the underestimation of measured LEi from the EC 672 

towers. An underestimation of Hi(negative BIAS) is associated with two reasons; (a) ignoring the 673 

two-sided aerodynamic conductance of the leaves (Jarvis and McNaughton, 1986; Monteith and 674 

Unsworth, 2013; Schymanski et al., 2017), which could lead to substantial underestimation of Hi, 675 

and (b) due to the complementary nature of the PMEB equation, if LEi is overestimated, Hi will 676 

be underestimated. In addition, frequent micro-advection fluxes alter measured in situ H and LE 677 

fluxes. But these advection conditions are not explicitly accounted in the current STIC-TI model. 678 

6 Summary and conclusions 679 

This study addressed one of the outstanding challenges in retrieving ground heat flux (G) and 680 

evaporation (ET) in open canopy, water-controlled and radiation-controlled ecosystems. It 681 

demonstrated coupling of a thermal inertia (TI)-based mechanistic G model with an analytical 682 

surface energy balance (SEB) model (Surface Temperature Initiated Closure, STIC) using 683 

satellite-based land surface temperature (Ts) and associated biophysical variables and has minimal 684 

independence on in-situ measurements. The model is called STIC-TI, and this is the first ever 685 

implementation of a coupled G-SEB model that does not require any empirical parameterization 686 

of aerodynamic and canopy-surface conductance. By linking TS with thermal inertia (Γ) and 687 

surface moisture availability (M), STIC-TI derives G through the harmonics equation between G 688 

and Γ, and subsequently coupled G with the SEB fluxes. For estimating Γ, this paper also 689 

developed scaling functions for ecosystem-scale surface soil temperature amplitude (A) through 690 

bivariate regression between the observed soil temperature versus remote sensing derived Ts and 691 

surface albedo. Independent validation of STIC-TI using measured flux data from nine terrestrial 692 

ecosystems in arid, semi-arid and sub-humid climate in India, USA (representing northern 693 

hemisphere) and Australia (representing southern hemisphere) led us to the following conclusions: 694 

(i) The retrieved Gi and associated SEB fluxes through STIC-TI were reasonably sensitive to 695 

uncertainties in TS and vegetation index. However, a compensation effect was evident due to 696 

the partial cancellation of overestimated TI and underestimated A in the harmonics equation 697 

of G. Both, latent and sensible heat fluxes (LE and H), were extremely sensitive to TS 698 
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uncertainties. While the maximum sensitivity of LE to TS was found in the arid and semi-arid 699 

ecosystems, the sensitivity of H to TS was maximum in the sub-humid ecosystems. 700 

(ii) Gi estimates through STIC-TI performed better as compared to most of the contemporary 701 

empirical G models. It showed lower mean absolute percent deviation (MAPD) of 19% and 702 

higher correlation coefficient (0.8) with respect to in-situ measurements for different 703 

ecosystems. Despite the error statistics, G from STIC-TI was comparable to the existing semi-704 

empirical G model of Bastiaanssen et al. (1998) (BAS98), this coupled model has certain 705 

advantages such as, (a) it provides direct estimates of G and is not dependent on net radiation 706 

estimates, (b) the ecosystem-scale surface soil temperature amplitude used in G model can 707 

advance our understanding on associated terrestrial ecosystem processes. 708 

(iii) Overall, the STIC-TI explained significant variability in the measured SEB fluxes with a 709 

MAPD of 19% for instantaneous G and 22 – 25% for instantaneous LE and H. The model 710 

efficiency (KGE) was greater than 0.7 for G and LE in all the nine ecosystems having 711 

contrasting aridity and canopy cover. Underestimation tendency of G in some ecosystems was 712 

primarily attributed to the inherent bias in MODIS TS product, NDVI saturation at higher LAI 713 

(>3) in conjunction with the spatial scale mismatch between single MODIS pixel and the 714 

footprint of G measurements. The consequent overestimation (underestimation) of LE (H) in 715 

some ecosystems was associated with the overestimation of the net available energy, use of 716 

‘unclosed’ SEB observation in the validation of LE and H, the spatial scale discrepancy 717 

between MODIS pixel versus eddy covariance measurement footprint, the complementary 718 

nature of the Penman Monteith Energy Balance equation (for H), and possibly due to ignoring 719 

the two-sided aerodynamic conductance by the leaves (for H). 720 

The requirement of few input variables in STIC-TI generates promise for surface-atmosphere 721 

exchange studies using readily available data from the current generation remote sensing satellites 722 

(e.g., MODIS, INSAT) that have noon-night TIR observations. Current findings also provide 723 

motivation in refining G simulation in the land surface models.  STIC-TI can be potentially used 724 

for distributed ET mapping using current and future 4th generation Indian Geostationary satellite 725 

observations from INSAT as well as future high spatial resolution (~ 60m) TIR observations with 726 

3-day revisit from polar orbiting platform (Lagouarde et al., 2018, 2019) through the planned Indo-727 

French space-borne mission, TRISHNA (Thermal infrared Imaging Satellite for High-resolution 728 

Natural Resource Assessment). This simple approach will also help in catering the need for a 729 
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reliable, space-time continuous ET datasets in data-poor regions like Indian sub-tropics, South-730 

East Asia and other parts of the world from thermal remote sensing observation. 731 
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Appendix A 1031 

Table A1: A list of symbols, their descriptions and units used in the present study 1032 

Attributes Symbol Description 

 

 

Temperature 

TA Air temperature (o C) 

TMax Maximum air temperature (o C) 

TMin Minimum air temperature (o C) 

TD Air dew-point temperature (o C) 

TSTA point-scale soil temperature amplitude 

Ts noon-night LST difference (o C) 

TST Soil temperature (o C) 

TS Land surface temperature (LST) (o C) 

 

 

Humidity, 

vapor 

pressures 

RH Relative humidity (%) 

eA Atmospheric vapor pressure at the level of TA measurement (hPa) 

eA
* Saturation vapor pressure at the level of TA measurement (hPa) 

eS
* Saturation vapor pressure at surface (hPa) 

DA Atmospheric vapor pressure deficit at the level of TA measurement 

(hPa) 

 

 

Radiation 

RG Downwelling shortwave radiation (or global radiation) (W m-2) 

RR Upwelling or reflected shortwave radiation (W m-2) 

RL Downwelling longwave radiation (W m-2) 

RL Upwelling longwave radiation (W m-2) 

τsw Atmospheric transmissivity for shortwave radiation (unitless) 
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R Broadband shortwave surface albedo (unitless) 

 

SEB 

components 

LEi Latent heat flux (W m-2); subscript ‘i’ signifies ‘instantaneous’ 

Hi Sensible heat flux (W m-2); subscript ‘i’ signifies ‘instantaneous’ 

Gi Ground heat flux (W m-2); subscript ‘i’ signifies ‘instantaneous’ 

RNi Net radiation (W m-2); subscript ‘i’ signifies ‘instantaneous’ 

 Net available energy (W m-2); i.e., RN– G 

 

 

 

 

 

 

 

 

 

 

 

MV2007 

model 

A Ecosystem-scale surface soil temperature amplitude (oC) 

TSd Daytime TS (
o C) 

TSn Nighttime TS (
o C) 

ω Angular frequency (rad s-1) 

ϕn
′  Phase shift of the nth soil surface temperature harmonic (rad) 

Δ Shape parameter (unitless) 

Sr Relative soil moisture saturation (m3 m-3) 

fs Sand fraction (unitless) 

θfc Soil water content at field capacity (m3 m-3) 

 θwp Soil water content at permanent wilting point (m3 m-3) 

θ* Soil porosity (cm3 cm-3) 

JS Summation of harmonic terms of soil surface temperature (K) 

´ Soil textural parameter (unitless) 

Γ Soil thermal inertia (J K-1 m-2 s-0.5) 

τ0 Thermal inertia of air-dry soil (J K-1 m-2 s-0.5) 

τ* Thermal inertia of saturated soil (J K-1 m-2 s-0.5) 
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t’ Time of satellite overpass (seconds) 

Δt Time offset between the canopy composite temperature and the 

below-canopy soil surface temperature (seconds) 

κ Total number of harmonics used (unitless) 

fc Vegetation fraction (unitless) 

 Volumetric soil moisture (cm cm-3) 

Clear-sky RNi 

model 

Rns Net shortwave radiation (W m-2) 

Rnl Net long wave radiation (W m-2) 

Gsc Solar constant (1367 W m-2) 

βe Sun elevation angle (0). 

s Infrared surface emissivity (unitless) 

a Atmospheric emissivity (unitless) 

           E Eccentricity correction factor due to variation in Sun-Earth distance 

(unitless) 

 

 

 

 

 

 

 

M Aggregated moisture availability (0-1) 

gA Aerodynamic conductance (m s-1) 

gS Canopy-surface conductance (m s-1) 

T0 Aerodynamic temperature (or source/sink height temperature) (oC) 

T0D Dewpoint temperature at the source/sink height (oC) 

 Evaporative fraction (unit less) 

e0 Vapor pressure at the source/sink height (hPa) 

e0
* Saturation vapor pressure at the source/sink height (hPa) 
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STIC-TI 

model 

D0 Vapor pressure deficit at source/sink height (hPa) 

s1 Psychrometric slope of vapor pressure and temperature between (T0D 

-TD) versus (e0 -eA) (h Pa K-1) 

s2 Psychrometric slope of vapor pressure and temperature between (TS-

TD) versus (es
*-eA) (h Pa K-1) 

s3 Psychrometric slope of vapor pressure and temperature between (T0D 

-TD) versus (es
*-eA). 

κ Ratio between (e0
* - eA) and (es

* - eA) (unitless) 

s Slope of saturation vapor pressure vs. temperature curve (h Pa K-1) 

 Priestley-Taylor coefficient (unitless) 

Ancillary 

meteorological 

variables 

U Wind speed at 8 m height (m s-1) 

u* Friction velocity (m s-1) 

 

 

 

Constants 

P Precipitation (mm d-1) 

 Psychrometric constant (h Pa k-1) 

cp Specific heat capacity of air at constant pressure (MJ kg-1 K-1) 

 Density of air (Kg m-3) 

 Stefan–Boltzmann constant (5.67 x 10 -8 Wm-2K-4) 

1033 

 1034 

 1035 

https://doi.org/10.5194/bg-2021-356
Preprint. Discussion started: 16 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 

55 

 

Table A2: Summary of instruments used, height or depth and period of measurements, measured 1036 

variables at nine EC flux tower sites 1037 

Type of primary instruments 

used for in situ data recording 

at flux tower sites 

Measurement Height/ Depth (m) at 

different sites 

Measured variables 

Net radiometer • 3m (IND-Naw, IND-Jai, IND-

Sam) 

• 15m (AU-Ade)  

• 12.2m (AU-ASM) 

• 23m (AU-How)2m (US-Ton, 

US-Var) 

Four radiation flux components: 

shortwave incoming (RG) and 

outgoing (RR); longwave incoming 

(RL) and outgoing (RL)  

EC assembly with IRGA 

(Infrared Gas Analyzer), three-

dimensional sonic anemometer, 

TC probe 

• 8m (IND-Naw; IND-Jai; IND-

Sam) 

• 4.5m (IND-Dha) 

• 15m (AU-Ade)  

• 11.6m(AU-ASM) 

• 23m (AU-How)  

• 2m (US-Ton, US-Var) 

High response wind vectors (u, v and 

w), sonic temperature, and CO2- water 

vapor mass at 10/20 Hz frequency 

Humidity and temperature probe 

 

• 8m (IND-Naw, IND-Jai, IND-

Sam) 

• 4.5m (IND-Dha) 

• 15m (AU-Ade), 11.6m (AU-

ASM) 

• 23m (AU-How), 70m (AU-

How) 

• 2m (US-Ton, US-Var) 

TA and RH 

Soil temperature probe 

 

• -0.1m (IND-Dha) 

• -0.15m (AU-Ade) 

• (-0.02, -0.06m) (AU- ASM) 

• -0.08m (AU- How) 

• -0.02m, -.0.04m, -0.08m, and -

0.16m (US-Ton, US-Var) 

TST 

Soil heat flux plates 

 

 

• Ground, 0.1 m (IND-Dha) 

• Ground, -0.15 m (AU-Ade) 

• Ground, -0.08 m (AU-ASM) 

• Ground, -0.15 m (AU-How) 

• -0.01m (US-Ton, US-Var) 

Soil heat flux (G) 

Appendix B 1038 

B1: Clear-sky instantaneous net radiation (RNi) model 1039 

Net radiation (RN) is defined as the difference between the incoming and outgoing radiation fluxes, 1040 

which includes both longwave and shortwave radiation at the surface of earth.  1041 
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Terrestrial RN has four components: downwelling and upwelling shortwave radiation (RG and RR), 1042 

downwelling and upwelling longwave radiation (RL and RL), respectively.  1043 

         RN  = (RG −  RR) + (RL↓  −  RL↑) (B1) 

Out of these four terms mentioned in eq.(B1), RG and RL are dependent on various factors such 1044 

as geographic location, season, cloudiness, aerosol loading, atmospheric water vapor content and 1045 

less on surface properties. On the other hand, the upwelling radiations in eq. (B1) strongly depends 1046 

on the surface properties such as surface reflectance and emittance, land surface temperature, and 1047 

soil water content (Zerefos and Bais, 2013). 1048 

Instantaneous net radiation (RNi) can be derived using eq. B2 as follows (Mallick et al., 2007):  1049 

        RNi = Rns −  Rnl (B2) 

         Rns = (1 − αR) RG (B3) 

        Rnl = RL↓  −  RL↑ (B4) 

Where, Rns is net shortwave radiation (W m-2), Rnl is net longwave radiation (W m-2).and αR is 1050 

the broadband surface albedo shortwave spectrum. 1051 

A WMO (World Meteorological Organization) shortwave radiation model (Cano et al.,1986) 1052 

calibrated over Indian conditions (Mallick et al., 2007, 2009) was used to compute RG using the 1053 

following equation: 1054 

RG =  τswGscE (sinβe)1.15 (B5) 

Where,sw is the is the global clear sky transmissivity for the shortwave radiation (0.7), Gsc is the 1055 

solar constant (1367 Wm-2), ε is the eccentricity correction factor due to variation in Sun-Earth 1056 

distance and βe is the sun elevation in degrees.  1057 

RL at any instance was calculated as follows: 1058 

RL↓  =  εa σ (273.14 + TA)4        (B6) 
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Where, σ is the Stefan–Boltzmann constant (5.67 x10-8 Wm-2K-4); TA is the air temperature (0C); 1059 

εa is the atmospheric emissivity. 1060 

Atmospheric emissivity ( εa ) was computed using the following equation (Bastiaanssen et 1061 

al.,1998):  1062 

εa  =  0.85 −  lnτsw
0.09

 (B7) 

RLat any particular instance was calculated as follows: 1063 

RL↑ =  εs σ(273.14 + Ts)4 (B8) 

Where, εs is the surface emissivity in thermal infrared (8 – 14 m) spectrum and TS is the land 1064 

surface temperature (0C).  1065 

B2: Evaluation of STIC-TI RNi
  1066 

Comparison of the clear-sky RNi estimates with respect to in situ measurements revealed RMSE in 1067 

RNi to the order of 27 – 72 W m-2, MAPD 8 –24%, BIAS (-67) – 50 W m-2, and R2 varying from 1068 

0.62– 0.90 across all the sites (Fig. B2, Table B2). Among the nine sites, a consistent 1069 

underestimation of RNi was noted in IND-Dha, US-Ton, and US-Var (with BIAS of -23 W m-2, -1070 

61 W m-2 and -67 W m-2), whereas substantial overestimation of RNi was found in IND-Sam, IND-1071 

Naw, and AU-ASM with a BIAS of 50 W m-2, 37 W m-2 and 43 W m-2, respectively (Table B2). 1072 

https://doi.org/10.5194/bg-2021-356
Preprint. Discussion started: 16 February 2022
c© Author(s) 2022. CC BY 4.0 License.



 

58 

 

 

Figure B2: Validation of STIC-TI derived RNi estimates with respect to in situ measurements in 

different ecosystems. The regression equation between modeled versus in-situ RNi is, RNi (STIC-

TI) = 0.78RNi (tower) +58.92. 

Table B2: Performance evaluation statistics of clear-sky RNi estimates in nine different 1073 

agroecosystems 1074 

Sites Error statistics of clear-sky RNi model 

estimates 
 

R2 BIAS 

(W m-2) 

RMSE 

(W m-2) 
 

MAPD 

(%) 

IND-Jai 0.81 -9 32 8 

IND-Naw 0.81 37 56 12 

IND-Dha 0.81 -23 42 9 

IND-Sam 0.64 50 67 15 

US-Ton 0.68 -61 69 21 

US-Var 0.62 -67 72 24 

Au-How 0.87 7 27 15 

AU-ASM 0.88 43 50 14 

AU-Ade 0.90 11 27 16 
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Appendix C 1075 

C1: Estimating SEB fluxes using STIC1.2 analytical model and thermal remote sensing data 1076 

STIC1.2 (Mallick et al., 2014, 2015a,b, 2016, 2018a) is a one-dimensional physically based SEB 1077 

model and is based on the integration of satellite LST observations into the Penman–Monteith 1078 

Energy Balance (PMEB) equation (Monteith, 1965). In STIC1.2, the vegetation–substrate 1079 

complex is considered as a single slab. Therefore, the aerodynamic conductances from individual 1080 

air-canopy and canopy-substrate components is regarded as an ‘effective’ aerodynamic 1081 

conductance (gA), and surface conductances from individual canopy (stomatal) and substrate 1082 

complexes is regarded as an ‘effective’ canopy-surface conductance (gS) which simultaneously 1083 

regulate the exchanges of sensible and latent heat fluxes (H and LE) between surface and 1084 

atmosphere. One of the fundamental assumptions in STIC1.2 is the first order dependence of these 1085 

two critical conductances on M through TS. Such an assumption enabled an integration of satellite 1086 

LST in the PMEB model (Mallick et al., 2016). The common expression for LE and H according 1087 

to the PMEB equation is as follows: 1088 

LE =  
sϕ +  ρcPg

A
DA

s +  γ (1 +  
g

A

g
S

)
 

 

 

(C6) 

H =  

γϕ (1 + 
g

A
g

S

) −  ρcPg
A

DA

s +  γ (1 +  
g

A
g

S

)
 

 

 

(C7) 

In the above equations, the two biophysical conductances (gA and gS) are unknown and the 1089 

STIC1.2 methodology is based on finding analytical solutions for the two unknown conductances 1090 

to directly estimate LE (Mallick et al., 2016, 2018a). The need for such analytical estimation of 1091 

these conductances is motivated by the fact that gA and gS can neither be measured at the canopy 1092 

nor at larger spatial scales, and there is no universally agreed appropriate model of gA and gS that 1093 

currently exists (Matheny et al., 2014; van Dijk et al., 2015). By integrating TS with standard SEB 1094 

theory and vegetation biophysical principles, STIC1.2 formulates multiple state equations in order 1095 
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to eliminate the need to use the empirical parameterizations of the gA and gS and also to bypass the 1096 

scaling uncertainties of the leaf-scale conductance functions to represent the canopy-scale 1097 

attributes. The state equations for the conductances are expressed as a function of those variables 1098 

that are mostly available as remote sensing observations and weather forecasting models. In the 1099 

state equations, a direct connection to TS is established by estimating M as a function of TS. The 1100 

information of M is subsequently used in the state equations of conductances, aerodynamic 1101 

variables (aerodynamic temperature, aerodynamic vapor pressure), and evaporative fraction, 1102 

which is eventually propagated into their analytical solutions. M is a unitless quantity, which 1103 

describes the relative wetness (or dryness) of a surface and also controls the transition from 1104 

potential to actual evaporation; which implies M→1 under saturated surface conditions and M→0 1105 

under extremely dry conditions. Therefore, M is critical for providing a constraint against which 1106 

the conductances are estimated. Since TS is extremely sensitive to the surface moisture variations, 1107 

it is extensively used for estimating M in a physical retrieval scheme (detail in Appendix A3 of 1108 

Bhattarai et al., 2018; Mallick et al., 2016, 2018a). It is hypothesized that linking M with the 1109 

conductances will simultaneously integrate the information of TS into the PMEB model. To 1110 

illustrate, we express the state equations by symbols, sv1= f {c1, c2, c3, v1, v2, v3, v4, sv3, sv5}; sv2 1111 

= f {v4, sv1, sv5, sv6}; sv3 = f {c3, v3, v4, sv4, sv5}; sv4 = f {c3, v3, sv1, sv2, sv7, sv8}. Here, f, sv, v, 1112 

and c denote the function, state variables, input variables (5 input variables; radiative and 1113 

meteorological), and constants (3 constants), respectively. Here sv1 to sv4 are gA, gS, aerodynamic 1114 

temperature (T0), evaporative fraction (), and sv8 is M. Given the estimates of M, net radiative 1115 

energy (RNi– Gi), TA, RH, the four state equations are solved simultaneously to derive analytical 1116 

solutions for the four state variables and to produce a surface energy balance “closure” that is 1117 

independent of empirical parameterizations for gA, gS, T0, and Λ. However, the analytical solutions 1118 

to the four state equations contain three accompanying unknown state variables (effective vapor 1119 

pressures at source/sink height, and Priestley-Taylor variable), and as a result there are four 1120 

equations with seven unknowns. Consequently, an iterative solution was found to determine the 1121 

three additional unknown variables as detailed in this section above and also described in Mallick 1122 

et al. (2016, 2018a) and Bhattarai et al. (2018). The state equations of STIC are given below. 1123 
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gA  =  
ϕ

ρcP [(T0 − TA) + (
e0 − eA

γ
)]

 
(C1) 

gS  =  gA

(e0 − eA)

(e0
∗ − e0)

 
(C2) 

T0  =  TA + (
e0 − eA

γ
) (

1 − Λ

Λ
) 

(C3) 

Λ =  
2αs

2s +  2γ +  γ
gA

gS
(1 + M)

 
(C4) 

Detailed derivations of these four state equations are given in Mallick et al. (2016). Given the 1124 

values of M, RN, G, TA, and RH or eA, the four state equations can be solved simultaneously to 1125 

derive analytical solutions for the four unobserved variables and to simultaneously produce a 1126 

‘closure’ of the PMEB model that is independent of empirical parameterizations for both gA and 1127 

gS. However, the analytical solutions to the four state equations contain three accompanying 1128 

unknowns; e0 (vapor pressure at the source/sink height), e0
* (saturation vapor pressure at the 1129 

source/sink height), and Priestley-Taylor coefficient (), and as a result there are four equations 1130 

with seven unknowns. Consequently, an iterative solution was needed to determine the three 1131 

unknown variables (as described in Appendix A2 in Mallick et al. 2016). Once the analytical 1132 

solutions of gA and gS are obtained, both variables are returned into eq. (13) to directly estimate 1133 

LE.  1134 

In STIC-TI, an initial value of  was assigned as 1.26; initial estimates of e0
* were obtained from 1135 

TS through temperature-saturation vapour pressure relationship, and initial estimates of e0 were 1136 

obtained from M as,  e0 = eA + M(e0
∗ − eA) . Initial T0D and M were estimated according to 1137 

Venturini et al. (2008) as described in section 3.2, and initial estimation of G was performed from 1138 

initial M using the equation sets eq. (2) – eq. (11). With the initial estimates of these variables; 1139 

first estimate of the conductances, T0, , H, and LE were obtained. The process was then iterated 1140 

by updating e0
*, D0, e0, T0D, M, and  (using eq. A9, A10, A11, A17, A16 and A15 in Mallick et 1141 

al., 2016), with the first estimates of gS, gA, T0, and LE, and re-computing G, , gS, gA, T0, , H, 1142 

and LE in the subsequent iterations with the previous estimates of e0
*, e0, T0D, M, and  until the 1143 
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convergence of LE was achieved. Stable values of G, conductances, LE, H, T0, e0
*, e0, T0D, M, and 1144 

 were obtained within ~25 iterations. The inputs needed for computation of LEi (eq.C6) are air 1145 

temperature (TA), land surface temperature (TS), relative humidity (RH), net radiation (RNi) and 1146 

soil heat flux (Gi).  1147 

Appendix D 1148 

The temporal variation of estimated A and TSTA is shown in Fig. D1. The annual variations of TSTA 1149 

in different ecosystem was found to be within the ranges of 1 - 4C. 1150 

1151 

Figure D1: Temporal variation of A and TSTA in (a) AU-ASM (2013), (b) US-Ton (2014), (c) US- 1152 

Var (2014). 1153 

 1154 

 1155 

 1156 

 1157 
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Appendix E 1158 

Table E1:  Soil textural properties and their values used in the present study (Murray and Verhoef, 1159 

2007; Minasny et al., 2011; Anderson et al., 2007) 1160 

Soil texture Water 

retention 

Shape 

parameter 

(δ) 

Field capacity  

(vol/vol)  

(%) 

𝛉𝐟𝐜 

Wilting point 

(vol/vol) 

(%) 

𝛉𝐰𝐩 

Sand 

fraction 

(fs) 

Saturated 

soil moisture 

(vol/vol)  

(%) 

θ* 

Sand 2.77 10 5 0.92 43 

Loamy Sand 2.39 12 5 0.82 41 

Sandy loam 2.27 18 8 0.58 41 

Loam 2.20 28 14 0.43 43 

Silty loam 2.22 31 11 0.17 45 

Sandy clay loam 2.17 27 17 0.58 39 

Clay loam 2.14 36 22 0.40 41 

Silty clay loam 2.14 38 22 0.10 43 

Sandy clay 2.11 36 25 0.52 38 

Silty clay 2.12 41 27 0.06 46 

Clay 2.10 42 30 0.22 38 

 1161 

 1162 

 1163 

 1164 

 1165 

 1166 
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