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Abstract. The summertime low-oxygen conditions in the Pearl River Estuary (PRE) have experienced a significant expansion
in spatial extent associated with notable deoxygenation in recent decades. Nevertheless, there is still a lack of quantitative
understanding of the long-term trends and interannual variabilities in oxygen conditions in the PRE as well as the driving
factors. Therefore, the long-term deoxygenation in a subregion of the PRE (the coastal waters off Hong Kong) was
comprehensively investigated in this study using monthly observations during 1994-2018. To evaluate the changes in scope
and intensity of oxygen conditions, an indicator (defined as the Low-oxygen Index, LOI) that integrates several metrics related
to low-oxygen conditions was introduced as the result of a principal component analysis (PCA). Moreover, primary physical
and biogeochemical factors controlling the interannual variabilities and long-term trends in oxygen conditions were discerned,
and their relative contributions were quantified by the multiple regression analysis. Results showed that the regression models
explained over 60% of the interannual variations in LOI. Both the wind speeds and concentrations of dissolved inorganic
nitrogen (DIN) played a significant role in determining the interannual variations (by 39% and 49%, respectively) and long-
term trends (by 39% and 56%, respectively) in LOI. Due to the increasing nutrient loads and alterations in physical conditions
(e.g. the long-term decreasing trend in wind speeds), coastal eutrophication was exaggerated and massive marine-sourced
organic matter was subsequently produced, thereby resulting in an expansion of intensified low-oxygen conditions. The
deteriorating eutrophication has also driven a shift in the dominant source of organic matter from terrestrial inputs to in situ
primary production, which has probably led to an earlier onset of hypoxia in summer. In summary, the Hong Kong waters
have undergone considerable deterioration of low-oxygen conditions driven by substantial changes in anthropogenic
eutrophication and external physical factors.
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1. Introduction

Dissolved oxygen (DO) plays a vital role in maintaining the good functioning of aquatic ecosystems. Hypoxia (DO < 2
mg/L) could lead to a marked reduction in habitat for aquatic organisms (Ludsin et al., 2009) and imposes detrimental effects
on ecosystem community structure and energy flow (Diaz and Rosenberg, 2008). In recent decades, long-term exacerbation
on hypoxia in terms of its spatial extent and intensity has been documented in estuaries and coastal waters worldwide, including
the Baltic Sea (Conley et al., 2011; Meier et al., 2019), the northern Gulf of Mexico (Obenour et al., 2013; Laurent and Fennel,
2019), Chesapeake Bay (L.i et al., 2016; Ni et al., 2020), the Yangtze River Estuary (Zhu et al., 2011; Zhang et al., 2021), and
the Pearl River Estuary (Li et al., 2020; Hu et al., 2021). In addition, changes in the phenology of hypoxia were also reported.
For example, in Chesapeake Bay, hypoxic volume has shown a significant increase in early summer but a slight decrease in
late summer since 1985 (Murphy et al., 2011; Testa et al., 2018) . Zhou (2014) also found that the timing of maximum hypoxic
volume in Chesapeake Bay was advanced from late July to early July during 1985-2010.

A great number of studies have indicated that the exacerbation of hypoxia in coastal systems was closely related to human
activities, such as urbanization and industrialization (Breitburg et al., 2018). Due to the anthropogenic influence, massive
organic matter and nutrients were discharged into estuaries and coastal waters. Terrestrial organic matter could lead to intense
microbial respiration (Rabalais et al., 2010) and excessive nutrient inputs could further stimulate the growth of phytoplankton
and exacerbate eutrophication, with a dramatic increase in oxygen demand from marine-sourced organic matter (Fennel and
Testa, 2018). Meanwhile, physical processes such as stratification (Rabalais et al., 1991), convergence and migration of water
masses (Li et al., 2021), and upwelling (Feng et al., 2014) could regulate the spatial extent and intensity of hypoxia as well.
These processes are closely linked to wind forcing and freshwater discharge (Feng et al., 2012; Yu et al., 2015). In general,
the physical and biogeochemical processes exert joint impacts on the generation and development of hypoxia, but different
mechanisms may predominate in different systems due to their distinctive natural conditions (e.g. topography) and pressure
from anthropogenic pollution. Ni (2020) quantified the contributions of estuary warming, sea level rise, and nutrient load
reduction to the long-term changes in hypoxia in Chesapeake Bay through numerical simulation experiments, suggesting that
warming was the dominant factor. Forrest (2011) investigated the effects of various processes on the interannual variations of
hypoxia in the northern Gulf of Mexico by statistical methods and pointed out that the east-west winds and nutrient loads each
accounted for a considerable contribution. While in the Yangtze River Estuary, studies showed that vertical density
stratification, which was heavily influenced by a combination of freshwater inputs, various water masses, and winds, was the
key factor controlling the interannual changes in hypoxia (Chi et al., 2020).

With the rapid socioeconomic development, the Pearl River Estuary (PRE) has received a large amount of pollutants and
nutrients, resulting in a series of environmental problems, including eutrophication, red tide, and hypoxia (Dai et al., 2008; Li
et al., 2020). Since the 1980s, low-oxygen (DO < 4 mg/L) and hypoxic conditions have been reported in the upper reach of
Lingdingyang Bay (Li et al., 2020; Cui et al., 2018; Hu et al., 2021), Modaomen Bay, Huangmaohai Bay (Su et al., 2017; Shi
et al., 2019; Wang et al., 2017; Zhang and Li, 2010) and coastal waters adjacent to Hong Kong (Yin et al., 2004; Su et al.,
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2017; Shi et al., 2019). Previous studies have shown that hypoxia in the PRE typically occurred in the bottom waters during
summer (Yin et al., 2004), driven by strong stratification and sediment oxygen consumption (Zhang and Li, 2010; Wang et al.,
2017). Due to relatively shallow topography, short water residence time (Rabouille et al., 2008) and short maintenance of
stratification (Luo et al., 2009; Lu et al., 2018) hypoxia in the PRE appeared to be episodic and localized (Rabouille et al.,
2008). However, this long-standing point of view has been challenged by recent observations showing the emergence of large
low-oxygen and hypoxic extents. The area affected by low oxygen in the bottom waters of the PRE was estimated to be around
1,000 km?in 2010 (Wen et al., 2020) and ~1,500 km? in 2015 (Li et al., 2018). With the increasing availability of observations,
an apparent expansion of hypoxia with large interannual variations has been revealed from the data during 1976-2017 (Hu et
al., 2021). Nevertheless, due to the scarcity of observations in both time and space and significant differences in sampling
periods and locations (sometimes the water quality measurement methods as well) between available datasets, a clear
understanding of the long-term trend and interannual changes in hypoxia in the PRE as well as the associated drivers is still
lacking, especially from a quantitative perspective.

In this study, we utilize observational oxygen and related data collected by the Hong Kong Environmental Protection
Department (HKEPD) at certain coastal sites off Hong Kong (see details in section 2.1 below), which have significant merits
in terms of temporal coverage (~30 years) and consistency of sampling locations, to perform a gquantitative analysis on the
long-term oxygen changes (trend and interannual variability) in the region. Moreover, we also aim to discern the key factors
controlling the interannual variability and long-term trends in the low-oxygen conditions and to quantify the relative
contribution of each primary factor using multiple regression models (Murphy et al., 2011; Forrest et al., 2011; Wang et al.,
2021). It is important to note that the HKEPD data with good spatiotemporal continuity allowed us to better estimate the long-
term deoxygenation in the coastal waters off Hong Kong, which was close to a hotspot area of low-oxygen conditions in the
eastern PRE (Hu et al., 2021) and subject to frequent occurrences of low-oxygen and hypoxic events as well (Yin et al., 2004;
Su et al., 2017; Shi et al., 2019). In addition, previous studies have showed that the dominant deoxygenation mechanisms
varied between subregions in the PRE; for instance, the low-oxygen conditions in Modaomen Bay were primarily determined
by terrestrial pollutant inputs (Li et al., 2020; Wang et al., 2017; Wang et al., 2018), whereas those in the coastal waters off
Hong Kong were largely controlled by the joint effect of physical processes (e.g. convergence of water masses (Li et al., 2021))
and eutrophication (Qian et al., 2018). Therefore, the extensive investigation on deoxygenation performed here for the Hong

Kong waters is a significant supplement to the understanding of low-oxygen conditions for the whole PRE.

2. Materials and methods
2.1 Data sources

Monthly monitoring data from the HKEPD at 10 stations (Figure 1) in the coastal waters off Hong Kong (113.8~114.5°
E, 22.1~22.6° N) was chosen for formal analysis. Specifically, the data in use include vertical profiles of DO, temperature,
salinity, dissolved inorganic nitrogen (DIN), and chlorophyll a (Chl @) concentrations measured in the water columns during
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1994-2018 as well as total organic carbon (TOC) and total nitrogen (TN) measured in the sediments during 1998-2018. The
survey stations can be divided into three subregions: (1) the northwestern subregion, including stations NM5 (with water depth
of 20 m), NM6 (5 m), and NM8 (8 m); (2) the southern subregion, including stations SM20 (7 m), SM17 (12 m), SM18 (21
m), and SM19 (24m); and (3) the eastern subregion, including stations MM8 (31 m), MM13 (28 m), and MM14 (25 m). Water
samples were collected from the surface (1 m below the sea surface), middle (half of the depth at each station), and bottom (1
m above the sediments) layers, respectively. Details on the sampling procedures and measurements were described in Xu et al
(2010).

In addition, the monthly data of wind speeds and directions used for analysis were estimated using the daily wind
observations during 1994-2018 provided by the Waglan Island automatic weather station (Figure 1) of the Hong Kong
Observatory. It should be noted that the duration of southwestern winds was defined as the number of its occurrence in days
during summer. As for the freshwater inputs from the Pearl River, the monthly data during 1994-2018 were calculated using
the discharge data obtained from three major hydrological stations (i.e. Gaoyao, Shijiao, and Boluo) of the Pearl River Water

Resources Commission of the Ministry of Water Resources.

2.2 Statistical methods

Several metrics, including the cross-sectional area and the layer thickness of low oxygen (DO < 4 mg/L), oxygen
deficiency (DO < 3 mg/L) and hypoxia (DO < 2 mg/L) as well as the mean and minimum DO concentrations in the bottom
waters, were used to depict the oxygen conditions in the region. Firstly, the observed DO profiles were interpolated by
“Natural-Neighbor” method through MATLAB along the three subregions with a grid resolution of 600 m (distance) <0.3 m
(depth). The total areas of DO below 4 mg/L, 3 mg/L, and 2 mg/L were then calculated as the cross-sectional areas of low
oxygen, oxygen deficiency, and hypoxia, respectively. The associated layer thickness was defined as the averaged thickness
of the grids with DO below the corresponding levels (i.e. 4 mg/L, 3 mg/L, and 2 mg/L). Regarding the island between stations
NM8 and SM20, the spatial interpolations were performed directly with all the observed data and then the areas covered by
the island were masked out roughly based on its size (Figures 2, 3, Al), as the topographic data of the island was not available.
Such a treatment has little influence on the estimation of vertical low-oxygen areas because low-oxygen conditions were
seldom found in stations NM8 and SM20. Moreover, the same treatment procedure was applied to the data in each month of
25 years to generate an interpolation set for every month, making it consistent when investigating the interannual variations in
low-oxygen conditions.

In order to investigate the main variation (interannual changes) of oxygen conditions, we have introduced an indicator
integrating the above metrics (except the hypoxic area and thickness, Table Al) through the PCA (principal component
analysis) technique, which can reduce the dimensionality of a dataset to make it more interpretable with minimum information
loss (Cadima et al., 2016). The two metrics related to hypoxia were excluded from PCA because the occurrence of hypoxia
was relatively rare and its interannual variation was not as significant as that of low oxygen and oxygen deficiency. The results

of PCA analysis (Table A2) showed that the first component explained most of variance (86.40%) for the six input variables,
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while the remaining components explained less variance (13.60%). The first component was highly correlated with the
interannual variations of the cross-sectional areas (with a correlation coefficient r of 0.96, p < 0.01) and the thickness (r = 0.96,
p < 0.01) of low oxygen as well as the bottom DO concentrations (r = -0.90, p < 0.01), and it was thereafter referred as Low-
oxygen Index (LOI, Equ. 1) to describe the interannual severity of low-oxygen conditions comprehensively.

LOI = —0.40 X DOppean — 0.39 X DOpyip, + 0.42 X Area, + 0.41 X Areas + 0.42 X Thickness, + 0.41 X Thickness; (1)
where DOmean and DOmin represent the mean and the minimum DO concentrations in the bottom waters, respectively; Areas
(Areas) and Thicknesss (Thicknesss) represent the cross-sectional area and the thickness of low oxygen (oxygen deficiency),
respectively.

As the low-oxygen conditions within Hong Kong waters were jointly affected by physical and biogeochemical processes,
we attempted to quantify the relative contributions of multiple relevant factors including wind, freshwater, water temperature,
and nutrients to interannual variability and long-term trends of the oxygen conditions through multiple regression. As for the
selection of the wind variable in use, the daily wind data were processed into monthly average wind speed (WS), southwestern
wind duration (SWWD), southwestern wind cumulative stress (SWCS), and southeastern wind cumulative stress (SECS) in
summer (June-August) to examine the effect of wind speed and direction (Figure A2). Then, a suite of multiple regressions
was carried out to fit the LOI for each wind-related variable. As shown in Table A3, the fitting effect of LOI was better when
using WS, which also has the highest correlation with LOI among the wind-related variables, revealing that WS explained the
most interannual variation of LOI among the wind-related factors. Therefore, WS was eventually adopted to be the wind-
related input variable in the multiple regression with freshwater discharge (flow), the monthly spatial-average of bottom
temperature (T), and surface DIN in the summer. The resulting regression coefficients were then standardized by multiplying
the ratio between the standard deviation of each input variable (e.g. WS) and the standard deviation of LOI to evaluate their

interannual contributions (Equ. 2).

SD;

CStl' = Ci X (2)

Where Cst; and C; represent the regression coefficients of WS, flow, T, and DIN after and before standardization, respectively;

SDLor

SD; represent the standard deviation of WS, flow, T, and DIN; SD, o represents the standard deviation of LOI.

In addition, the dataset was randomly split into a training dataset (70%) and a testing dataset (30%) in order to provide a
more robust data fitting with estimates on the uncertainties arising from different data selections. Consequently, over 480,700
combinations of training and testing datasets were generated randomly from this splitting process and were used to build up a
variety of regression models. Coefficient of determination (R?) was used to measure the fitting effect in training and testing
datasets. Of all the established models, the fitting effect of training datasets (e.g. R%in) and coefficients of the four variables
were similar, but the predictive skills in testing dataset (e.g. R%est) Varied in a large range (Figure A3, Table A4). Besides,
larger standard deviation occurred in coefficients in cases with worse testing effects. To provide a more robust estimation for
the fitting, only those with R? over or equal to 0.6 both for the training and testing datasets were selected to quantify the impact

of each input variable according to their regression coefficients on average (Figure A4). Furthermore, based on the selected
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models (with R > 0.6 for both datasets), we also set up four sensitive experiments in which the long-term trend of each input
variable was removed and only interannual fluctuations were retained. The LOI was then re-calculated in each scenario and

its change relative to the original LOI was used to assess the impact of each variable to the long-term oxygen trend.

3. Result
3.1 Seasonal and interannual variabilities in water quality variables in the coastal waters off Hong Kong
3.1.1 Hydrological and eutrophication parameters

Significant seasonal variations could be found for the hydrologic settings (Figure 2). In winter (December-February),
temperature generally exhibited low levels, with climatological mean values of 18.62 <C and 18.54 <C during 1994-2018 in
the surface (Figure 2a) and the bottom waters (Figure 2b), respectively; salinity reached high values due to the invasion of
shelf saline waters, with means of 32.05 PSU at the surface (Figure 2c) and 32.44 PSU at the bottom (Figure 2d). Small
differences of temperature and salinity between the surface and the bottom layers in winter indicated that the water column
was well mixed (with mean vertical density differences of 0.33 kg/m?; Figure 2e). By comparison, temperature and salinity in
summer (June-August) showed larger vertical gradients and interannual variability. The summertime temperature fluctuated
between 28.21+1.19 T (i.e. climatological meanzone standard deviation) at the surface, which was markedly higher than that
at the bottom (24.93+2.14 <C). As affected by massive freshwater inputs from the Pearl River, salinity in summer was much
lower than that in winter and displayed pronounced vertical differences with 22.8647.53 PSU at the surface and 30.9045.26
PSU at the bottom, respectively. Consequently, strong water stratification prevailed in summer, where the vertical density
differences (Ap) fluctuated between 7.2644.54 kg/m? (Figure 2e).

DIN and Chl a are two important parameters related to eutrophication and they both showed remarkable changes over
time (Figure 3a-d). In winter, the concentrations of DIN and Chl a were generally low, with climatological means of 0.19 mg/L
(surface) and 0.16 mg/L (bottom) for DIN and means of 2.45 pg/L (surface) and 2.04 pug/L (bottom) for Chl a. While in summer,
DIN and Chl a reached comparatively high levels with significant interannual variability. Overall, the DIN concentrations
fluctuated between 0.564).50 mg/L at the surface (Figure 3a), which was higher that at the bottom (0.2840.34 mg/L; Figure
3b). Chl a also showed considerable vertical differences with 8.5649.30 pg/L at the surface (Figure 3c) and 2.4644.13 pg/L at
the bottom (Figure 3d).

In terms of spatial distributions, distinct differences were observed for the hydrological and eutrophication parameters
among the three subregions investigated. Due to the profound influence of river discharges, temperature/salinity in the
northwestern subregion (NM5-NMB8, closer to the river outlets) was noticeably higher/lower when compared to the other two
(Figure 2a-d), varying by 28.61+1.09 <C/14.6346.23 PSU at the surface in summer. Meanwhile, the DIN concentration in the
northwestern subregion was the highest (Figure 3a-b), reaching up to 1.1740.40 mg/L at the surface. On the contrary, the

eastern subregion (MM8-MM14), which was farthest to the river outlets and more heavily affected by the shelf water, had the
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lowest temperature (27.85%1.27 <C), highest salinity (29.2243.10 PSU) and lowest DIN concentration (0.1440.13 mg/L) in
the surface waters. As for Chl a (Figure 3c-d), the highest level appeared in the southern subregion (SM17-SM20, with
10.1948.86 pg/L at the surface in summer), while the lowest one was found at the northwestern subregion (with 6.82410.67

ug/L at the surface).

3.1.2 Dissolved oxygen and low-oxygen conditions

DO concentrations exhibited significant seasonal and interannual variations in both layers (Figure 3e-f). The DO
concentrations maintained at higher levels during winter (with 7.0730.99 mg/L and 7.2740.87 mg/L in the surface and the
bottom waters over 1994-2018, respectively) and dropped to a level of 6.91+1.71 mg/L at the surface and 4.42+1.37 mg/L at
the bottom in summer. Statistic results showed that low-oxygen events mainly appeared in the bottom waters of summer, which
had much higher occurrences of DO < 4 mg/L and DO < 2 mg/L compared to other seasons and other layers (Figure A5). In
addition, the summertime DO minimum at the bottom (Figure 4a) fluctuated between 2.2840.89 mg/L, further indicating the
water quality deterioration with severe oxygen deficits in the Hong Kong waters. Among the three subregions, the northwestern
and the southern ones had relatively lower bottom DO levels (with 4.56+1.56 mg/L and 4.14+1.45 mg/L, respectively) and
considerably higher occurrences of low-oxygen conditions (with 38.76% and 49.32%, respectively) compared to the eastern
subregion (with DO of 4.6840.93 mg/L and occurrence of 17.24%; Figure A5).

In addition to the DO levels, we also investigated the interannual changes in the summertime low-oxygen conditions in
terms of areal extents (vertical profiles), thickness, and the LOI as defined in section 2.2 (Figure 4). Significant interannual
fluctuations were found for all these metrics; for example, the area and thickness affected by low oxygen fluctuated between
(3.35+2.38)=10° m? and 5.66+4.01 m, respectively, while those for oxygen deficiency were (7.1348.37)<10* m? and 1.20+

1.41 m. Low-oxygen and hypoxic conditions were more severe in the years such as 2007, 2011, and 2017, as indicated by the
high LOI values. In particular, the year 2011 had the largest low-oxygen area (~7.66>10°m?) and the lowest DO concentration
(~0.40 mg/L) over the past 25 years, thus possessing the highest LOI; it could be observed that the low-oxygen waters almost
occupied the entire middle-to-bottom layers across all the sites during this period (Figure Al). On the other hand, hypoxic
conditions were absent in some years (e.g. 2004, 2006, and 2018), where the water column resided in a comparatively well-

oxygenated status (Figure Al); the corresponding LOI in these hypoxia-relief years fell to large negative values (Figure 4d).

3.2 Long-term trends of low-oxygen conditions in the coastal waters off Hong Kong

Despite the large DO fluctuations by years, a clear deoxygenation trend could be observed in summer over the past 25
years, showing a long-term decline in the DO concentrations associated with increases in the areas and occurrences affected
by low oxygen (Figure 4). More specifically, before 2000 the spatially-averaged DO concentrations in the bottom waters
exceeded 4 mg/L and low-oxygen conditions were seldom observed (Figure 4a), while the DO minimums were all above 2

mg/L (i.e. no hypoxic events occurred). However, since 2000 the occurrences of low oxygen and hypoxia have become more
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frequent, with a significant growth in the LOI and its related metrics, confirming the exacerbation of low-oxygen conditions
in the Hong Kong waters.

To further quantify the intensity of long-term deoxygenation in summer, linear regressions were performed for the DO
concentrations in different layers and in different subregions and also for the areal extents of low-oxygen conditions during
1994-2018 (Figure 5). As shown, apparent declining trends were found for the DO series both at the surface (although not
significant, Figure 5a) and the bottom (Figure 5b). For the bottom waters, the averaged DO concentrations displayed a
decreasing pattern with a rate of 0.03 mg/L per year (equivalent to approximately 0.7% of the climatological DO mean at the
bottom), while the DO minimums showed a more significant decline with a rate of 0.08 mg/L per year (~3.5% of the
climatological mean of the bottom DO minimums). It was also noted that the intensity of deoxygenation varied between
subregions (Figure 5c-h). As for the bottom DO concentrations, the most significant decrease was found in the eastern
subregion (with a deoxygenation rate of 0.05 mg/L per year, Figure 5h), while the most significant decline in the DO minimum
appeared in the southern subregion (with a rate of 0.08 mg/L per year, Figure 5f). Likewise, significant increasing trends were
also found for the areas of low oxygen and oxygen deficiency (Figure 5i-j), showing an annual growth rate at 1.95>10*m?and
4.75x10° m?, respectively. Regarding the changes in LOI, it had a growth rate of 0.20 per year, which corresponds to an
increasing rate of 1.9910*m? in the low-oxygen area and a declining rate of 0.07 mg/L in the DO minimum.

Furthermore, the long-term oxygen changes varied between different months of the summer season as well (Figure 6). It
could be seen that the decreasing magnitude of the averaged DO concentration was close to each other for all the summer
months, while the decline in the DO minimum was most pronounced in July (with a decreasing rate of 0.10 mg/L per year,
Figure 6¢), followed by that in August (0.06 mg/L per year, Figure 6e). In fact, the long-term changes in the DO minimum had
different patterns in July and August. As for July, the DO minimum generally showed a consecutive decrease over the past 25
years (Figure 6d). While in August, the DO minimum experienced a rapid decline with a rate of 0.14 mg/L per year during
1994-2011, which was higher than that in July during the same period (0.11 mg/L per year), but subsequently undertook a
recovery from the hypoxic conditions since 2012 (Figure 6f). Along with such distinctive intra-seasonal patterns, an interesting
phenomenon was also noticed: hypoxic events were present mostly in August prior to 2012 (e.g. in 2007 and 2010-2011; no
hypoxia was found in July during the same period) but only in July instead since 2012 (e.g. in 2014 and 2016-2017), as shown
in Figure 6. This finding implied a potential shift in the onset of hypoxia generation from August to July, i.e. an earlier timing
for the arrival of the summertime hypoxia. Accordingly, distinct changes were found for the areas affected by hypoxia in the

two periods around 2012. The hypoxic area estimated in July increased from zero during 1994-2011 to (5.4248.77)>10° m?
during 2012-2018, whereas the hypoxic area in August decreased from (0.89+42.82)>10*m2to zero.
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4. Discussion
4.1 Primary factors controlling the interannual variabilities in low-oxygen conditions

As shown above, significant interannual variabilities were observed in the spatial extent (e.g. cross-sectional area) and
intensity of oxygen conditions (e.g. the mean bottom DO concentrations). Such variabilities were largely influenced by
multiple physical and biogeochemical factors, including wind forcing, freshwater discharge, water temperature and nutrient
loads. These processes jointly act to affect density stratification (Yu et al., 2015), water residence time (Li et al., 2021) and
temporal and spatial distributions of eutrophication parameters (Cui et al., 2018). As described in section 2.2, four important
influential factors (i.e. WS, flow, T, and DIN) were used to predict the interannual variations in LOI by the multiple regression
models, in which there have been 56,010 cases (~12% of the total, Figure 7) with R > 0.6 both in the training dataset (mean
R? of 0.64) and the testing dataset (mean R? of 0.70). The standardized coefficients (meandstandard deviation) for these well-
performing regression cases were given as follows:

LOI = —(0.39 + 0.12) x WS — (0.14 + 0.12) x flow — (0.11 + 0.08) x T + (0.49 + 0.12) x DIN (3)

As denoted by the regression coefficients, wind forcing has exerted a significant impact on the interannual changes in
LOI, with a relative contribution of 39%=+12% to the LOI variability explained. Its importance could also be evidenced by the
significant negative correlation between WS and LOI (r =-0.67, p < 0.01, Figure 8), suggesting that calm winds were beneficial
to low-oxygen conditions. In most cases (e.g. in Modaomen Bay in the PRE and the northern Gulf of Mexico), strong winds
could break down stratification in the water column (Rabalais et al., 1991; Feng et al., 2012), which was conducive to water
mixing and atmospheric reoxygenation (Rabalais et al., 1991). However, the weak correlation between WS and Ap (Figure 8)
indicated that the wind forcing may control hypoxia through other alternative mechanisms. Actually, weak winds in
combination with flow convergence induced by wind-driven circulation could contribute to long water residence time and
nutrient accumulation in the eastern PRE and thus favored the phytoplankton blooms (Li et al., 2021). This could be supported
by the significant negative correlation between WS and Chl a (r =-0.62, p < 0.01). In contrast, the wind direction showed less
significant effect on the interannual variability in low-oxygen conditions, as suggested by the comparatively poor performance
in the LOI fitting and the weaker correlations of the wind direction-related variables with LOI (Table A3). It was noted that
the monthly average wind direction in summer were generally southerly with small changes (mostly varying between 150<
and 200< Figure A2). Overall, our results indicated that the wind speed played a more important role in regulating the low-
oxygen conditions in the coastal waters off Hong Kong from an interannual perspective, although the wind direction could
significantly influence the short-term generation and development of low-oxygen conditions by modulating the Pearl River
plume and material fluxes (Yin et al., 2004; Li et al., 2021). With respect to the DIN concentrations, it played a vital role in
determining the interannual variabilities of the oxygen conditions, with a contribution up to 49%=12%. It has been widely
recognized that eutrophication stimulated by anthropogenic nutrient inputs could provide a large quantity of depositing detritus
and subsequently led to substantial oxygen depletion and occurrence of low-oxygen events (Rabalais et al., 2010; Fennel and
Testa, 2018); for example, in the northern Gulf of Mexico (Feng et al., 2012; Forrest et al., 2011) and Chesapeake Bay (Wang
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et al., 2015), the interannual hypoxic areas in summer were directly regulated by the nutrient levels. Similar situation was
found in the PRE (Li et al., 2020) and Hong Kong waters, as confirmed by the significant positive correlation between DIN
and LOI (r = 0.65, p < 0.01). Collectively, DIN and WS were identified as the two key factors controlling the interannual
changes in low-oxygen conditions.

Compared to WS and DIN, the freshwater discharges (flow) had a much smaller contribution (~14%=+12%) to the
variations in LOI. Generally speaking, large freshwater inputs tend to enhance the intensity of water stratification and facilitate
the generation of hypoxia (Rabalais et al., 1991). However, we found a negative correlation between flow and LOI (r = -0.45,
p < 0.05, Figure 8), implying that the effect of freshwater discharges on low-oxygen conditions might involve more complex
mechanisms and act through indirect pathways. Due to its long distance from the river outlets of the Pearl River, the coastal
waters off Hong Kong were relatively less influenced by terrestrial inputs (Yu et al., 2020) and the effect of freshwater
discharge and its carrying organic matter in this area was not as significant as that in other subregions (e.g. the upper reach of
Lingdingyang Bay and the western PRE). Nevertheless, freshwater discharge in combination with the wind-driven circulation
could significantly affect the water residence time (Sun et al., 2014) and nutrients accumulation in the Hong Kong waters (Li
et al., 2021). Specifically, the weakened discharge could prolong the retention of nutrients and thereby stimulate local
productions of organic matter in the region (Li et al., 2021), which ultimately promoted oxygen depletion. Regarding the water
temperature, previous studies have showed that it could exert significant influence on coastal hypoxia largely by regulating
water stratification intensity, oxygen solubility, and microbial respiration rate (Breitburg et al., 2018). However, our results
showed that the contribution of water temperature (T) to the LOI changes (~11%28%) was not significant in the Hong Kong
waters, as revealed by its weak correlation with LOI as well. Given the fact that the Hong Kong waters are a region heavily
affected by human activities, the effect of temperature (e.g. global warming) might be more significant in the region with larger
geography scale. Overall, the role of temperature and freshwater discharges in regulating the interannual oxygen variability in

the Hong Kong waters appeared to be secondary.

4.2 Drivers of the long-term deoxygenation trend

The data over the past 25 years showed that the coastal waters off Hong Kong has experienced a notable long-term oxygen
decline, especially for the DO minimum in the bottom waters. Based on the observed deoxygenation rate, the bottom DO
minimum was expected to decrease by approximately 15%-70% in 5-20 years (reaching a level of 0.4-1.6 mg/L) compared to
the climatological mean of 1994-2018. The impacts of influential factors on the long-term deoxygenation trend were then
evaluated using the regression models mentioned in section 4.1 and quantified by the relative changes of LOI in the sensitive
experiments (see details in section 2.2) compared to the original one. It was noted that WS exhibited a decreasing trend of 0.03
m/s per year (p < 0.05, Figure 9a) within the coastal regions off Hong Kong over the past 25 years, while similar situation was
also found in the Pearl River Basin (Zhang et al., 2019) and the northern South China Sea (Gao et al., 2020) due to the long-
term climate changes (Xu et al., 2006; Zhang et al., 2009; Chen et al., 2020). Meanwhile, DIN showed an increasing trend
with a rate of 0.01 mg/L per year (p < 0.01, Figure 9¢e). The growth in DIN and decline in WS have led to a 56%=10% and
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39%=+14% increase in LOI (Table 1), respectively, indicating that DIN and WS were the main driving factors for the long-term
deoxygenation. On the other hand, significant long-term trends were also found for the freshwater discharges (with a decreasing
rate of 4.19>102 m3/s per year, Figure 9b) and water temperature (with an increasing rate of 0.06 <C per year, Figure 9d), but
their impacts were relatively small, resulting in a 16%=+14% increase and 11%=9% decrease in LOI, respectively.

Despite the different influences of the factors mentioned above, they were likely to impose synergetic impacts on the low-
oxygen conditions by aggravating eutrophication as discussed earlier; it could be observed that the long-term growth in Chl a
(with a rate of 0.15 pg/L per year, Figure 9f) matched well with the increase in LOI. Specifically, the significant increase in
phytoplankton biomass was primarily due to the combined effects of more stable water-column condition and longer residence
time facilitated by the weaken wind forcing and river discharges, higher nutrient levels, and lower water turbidity (Figure 99)
in recent years. Consequently, the elevated organic matter through phytoplankton primary production would lead to strong
oxygen consumption, thereby contributing to an expansion of low-oxygen conditions in terms of areal extent and intensity.

Moreover, with massive algal fragments provided by primary production, the composition of organic matter in the coastal
waters off Hong Kong has probably changed and would cause substantial changes in the timing of hypoxia generation. As
noted in section 3.2, the onset of hypoxia was observed to shift from August to July around 2012. To explore this issue, we
first used the ratio of TOC to TN measured in the sediments to estimate the main source of organic matter, with values of 14-
30 pointing to a terrestrial source and values of 4-10 indicating a marine source from in-situ production (Bordovskiy, 1965;
Meyers and Ishiwatari, 1993). It is clear that the TOC:TN showed a significant decreasing trend and was mostly below 10
since 2012 (Figure 9h). This implied a shift in the dominant source of organic matter from terrestrial inputs to local production
(marine-sourced). As such, oxygen consumption became faster because the marine-sourced organic matter was fresher and
more active (Raymond and Bauer, 2001) and therefore the time required to reach hypoxia would be shortened. Furthermore,
changes in the physical conditions provided sufficient time for more thorough decomposition of organic matter in July, which
left less organic matter for August and thus weakened the deoxygenation therein.

Similarly, the long-term oxygen changes in terms of the areal extents and arrival timing of hypoxia have also been found
in other coastal systems. For example, in Chesapeake Bay, sea level rise and elevated freshwater discharges would lead to an
approximately 10%-30% increase in hypoxic volume between the late 20" and the mid-21% centuries (Ni et al., 2019), while
the increase in water temperature would cause hypoxia to develop 5-10 days earlier in ~30 years (Ni et al., 2020). In the
northern Gulf of Mexico, the growth in riverine nutrient inputs would result in an increase in the frequency of hypoxia
occurrence by 37% (Justi¢ et al., 2003). While in the Hong Kong waters, low-oxygen conditions would develop into hypoxic
conditions in two decades with larger areal extent and earlier arrival ascribed to the ongoing alterations in physical conditions
and nutrients as mentioned earlier. This inference was based on the assumption that the external factors (e.g. wind speed, DIN,
discharges) would change at the same rates as those in the past 25 years. Although the real situation would be more complicated
and compounded by factors such as the implementation of management and non-linear changes in climatic factors, our findings

still served as an alarming signal that changes in wind and freshwater discharges could cancel out potential benefits of nutrient
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management. To this end, it is of great importance to conduct long-term and more intensive control on nutrient inputs in order

to mitigate the low-oxygen conditions in the region.

5. Conclusion

We have comprehensively investigated the spatiotemporal characteristics of DO and various related water quality
variables in the coastal waters off Hong Kong and found that low-oxygen conditions occurred mostly in the bottom waters of
summer, with significant interannual variability and an apparent deoxygenation trend over the past 25 years. We have also
quantified the contribution of each primary factor by statistic methods and found that the increasing DIN levels and the
decreasing wind speeds, both of which would eventually lead to the intensification of eutrophication, contributed most to the
interannual variations and long-term trend in LOI. Therefore, more marine-sourced organic matter was produced by the
elevated primary production, leading to an exacerbation in low-oxygen conditions with larger areal extents as well as a potential
earlier onset of the summertime hypoxia. By comparison, the freshwater inputs and water temperature had relatively small
impacts on the long-term changes in LOI. To sum up, this study has shown that oxygen conditions in the coastal waters off
Hong Kong have been deteriorating under the interactions of altered physical forcing (e.g. winds) and aggravated
eutrophication and it would develop into a severe hypoxic state within the next two decades. Lastly, given the significant intra-
seasonal variability in low-oxygen conditions during summer, it is of great importance to conduct more cruise surveys to
collect estuary-wide observations on a longer time scale in order to fully capture the generation and development of hypoxia

and to confirm the change in the timing of its arrival.
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Table 1 Long-term trends in the fitted LOI on average for the selected regression cases with R?> 0.6 (baseline) and for the sensitive
experiments with respect to the effects of wind speeds (b), freshwater discharges (c), water temperature (d), and surface DIN
concentrations (e).

Cases Mean trend of LOI (yr'") Changes relative to baseline
(meanstd)

(a) baseline 0.15

(b) WS- detrended 0.10 -(39%+14%)

(c) flow-detrended 0.13 -(16%=+14%)

(d) T-detrended 0.17 +(11%+9%)

(e) DIN-detrended 0.07 -(56%=+10%)
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Figure 1. (a) Map of the Pearl River Estuary (PRE) and monitoring stations in the coastal waters off Hong Kong. Note that the blue,
535 red, green dots represent stations in the northwestern, southern, eastern subregions of Hong Kong, respectively. The red triangle

denotes the location of Waglan Island automatic weather station and the purple dots indicate the location of cities in the Guangdong-

Hong Kong-Macao Greater Bay Area. (b) Four subgraphs showing the vertical distributions of mean DO concentrations in winter
(Dec, Jan, Feb), spring (Mar, Apr, May), summer (Jun, Jul, Aug) and autumn (Sep, Oct, Nov) during 1994-2018.
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Figure 2. Spatiotemporal distribution of temperature (a-b), salinity (c-d) in the surface and bottom waters, and vertical density
differences (e) during 1994-2018. Note that the stations investigated are denoted by the black dots on the right of the figure. The blue
triangles point at each December over 25 years, while the red ones point at July.
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19

2015

2018

MM14

MMS§
SM18

¢ SM20

NM8§
NMS

& MMI14

Chla (pg/L) DIN (mg/L) DIN (mg/L)

Chla (ng/L)



550

« DO .. e DO
Q ID T I( ) T T T T T T T T T T T T T T T T T T T
=] - a -
z 8
= 6f, . o i
s 4 _.__=__'__._____l__.__l__.__u_____l__.__l_.l__.__‘.__-____l_.l__'__.__..__'_
2 b ___C_ S_ % _a_ e ___ 8 & ___ e 8 ___ o« _o___ o ___"" i
2 » v s e
g D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 L ] 1 1 , 1 1 1 |
1994 1997 2000 2003 2006 2009 2012 2015 2018
©10° B DO<4mg/L I DO<3mg/L [ DO<2mg/L
[T o e o e T T T T T T T T T T T T T T T T T 1
- (b)
é 10| 1
«
g st .
<
1994 1997 2000 2003 2006 2009 2012 2015 2018
N DO<4mg/L I DO<3mg/L [ DO<2mg/L
_ T T T T T T T T T T T T T T T T T T T T T T T T
Enl © -
g
St ]
2
=
=0
1994 1997 2000 2003 2006 2009 2012 2015 2018
6T T T T T T
(d)
21tk 4
3
&
- 1

2006
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Figure 5. Long-term trends of the mean and minimum values of observed DO at the surface and bottom waters in three summer
months for all the stations (a-b) and for the northwestern (c-d), southern (e-f), and eastern (g-h) subregions, and long-term trends
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Figure 7. Combined fitting results of the regression models with R? > 0.6 both in the training dataset and the testing dataset. Note
that the red hollow dots denote the LOI estimated based on observational data, while the blue solid dots and the grey patch represent
the mean values and ranges of the fitted LOI in the selected regression cases, respectively.
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Figure 8. Pearson correlation coefficients (r) among the wind speeds (WS), freshwater discharges (flow), vertical density differences
(Ap), bottom temperature (T), surface DIN concentrations (DIN), surface Chl a concentrations (Chl a), and LOI. Note that the color
of dots show the correlation coefficients, and the symbols * and ** represents the significant level at p < 0.05 and p < 0.01, respectively.

24



Trend=-0.03; p<0.05 Trend=0.01; p=<0.01

4@ (e) =
o L.L. . L é
E6 TeTe— :_.__.__ _* . 11 g
w2 e® [ e * L] =
I . Py (X% e =
= 5 *Te *® [ .—.r'.'_.'."'.'o"' e L -
Z

-------------------- - T Il

1994 1997 2000 2003 2006 2009 2012 2015 2018 1994 1997 2000 2003 2006 2009 2012 2015 2018

A= 10* Trend=-418.50; p<0.01 Trend=0.15; p<0.05 30 =

oy T T ey T T T T =)

= ) () E}
g LX) * et
= 2 :-."_ ry — e p? . — * ) - 15 2
z . v v ' — «2 . %
S L o * ) ._’—-.—-.-’-.'r'""._ == T, 4 E"
[¥]

0 0
1994 1997 2000 2003 2006 2009 2012 2015 2018 1994 1997 2000 2003 2006 2009 2012 2015 2018
_ Trend=-0.12:p<0.01 Trend=-0.06; p=0.65

Y — " e e e 305
| @ (® . E
o0 = =
= g . il oo 115 %
R . . =
o '-.Lo."_"l" B Trseent 2 N Y Wl &
o : 2 teeet * ¢ vl bl N
1994 1997 2000 2003 2006 2009 2012 2015 2018 1994 1997 2000 2003 2006 2009 2012 2015 2018 &
=0.05: p< T =-0.33; p=<0.01
29 & Trend=0.05; p<0.01 W rend=-0.33; p=0. 40
2 1 ‘ 30 7
- . e
s 2548 —0.’..-.—.-.—.-.—07"1'01' e Py F i L] 20 8
= A= ¢z -~ e
F’E ..-‘ e -.F.-.-.—..-.-’..'IOF

—— ——0
1994 1997 2000 2003 2006 2009 2012 2015 2018 19982000 2003 2006 2009 2012 2015 2018

Figure 9. Long-term trends of the wind speeds (a), freshwater discharges (b), density differences (c), bottom temperature (d), surface

DIN (e), surface Chl a (f), surface turbidity (g), and TOC/TN measured in the sediments (h) in summer during 1998-2018. Note that

the black dots represent the spatial-average values of each variable and the grey patches represent the range of each variable
580 observed in the 10 stations.
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Appendix

Table Al. Description of variables in the Principal Component Analysis (PCA)

Variables in PCA Description

DOmean Spatial average value of DO concentrations in bottom of each year during 1994-2018
DOmin Spatial minimum value of DO concentrations in bottom of each year during 1994-2018
Areas Cross-sectional area of low-oxygen (DO<4 mg/L) of each year during 1994-2018

Areas Cross-sectional area of oxygen-deficiency (DO<3 mg/L) of each year during 1994-2018
Thickness4 Cross-sectional thickness of low-oxygen of each year during 1994-2018

Thicknesss Cross-sectional thickness of oxygen-deficiency of each year during 1994-2018

Low-oxygen Index (LOI)

First principal component of PCA dimension (86.40% of variation) for measuring interannual
variations in scope and intensity of oxygen conditions
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Table A2. Total variance explained and the feature matrix of the first component in the PCA

Component Eigenvalues Variance Accumulative Feature matrix Proportion
explained (%) variance
explained (%)

1 5.184 86.404 86.404 DOmean -0.903

2 0.382 6.370 92.774 DOmin -0.880

3 0.285 4.745 97.519 Areas 0.960

4 0.149 2.481 100.000 Areas 0.935

5 -1.079x10°1¢ -1.798x10713 100.000 Thicknessa4 0.960

6 -4.472x10°1 -7.454x10°1 100.000 Thicknesss 0.935
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Table A3. Coefficients of determination (R?) for average wind speed (WS), southwestern wind duration (SWWD), southwestern
wind cumulative stress (SWCS), southeastern wind cumulative stress (SECS) in fitting LOI; Pearson correlation coefficient of WS,
SWWD, SWCS, and SECS with LOI. Note that the symbols * and ** represents the significant level at p < 0.05 and p < 0.01,

respectively.

R? of fitting LOI Correlation with LOI
WS+flow+T+DIN 0.61 WS -0.67**
SWWD+flow-+T+DIN 0.55 SWWD 0.48*
SWCS+flow+T+DIN 0.55 SWCS -0.33
SECS+flow+T+DIN 0.57 SECS 0.25
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Table A4. Regression coefficients of wind speed (WS), freshwater discharge (flow), bottom temperature (T) and surface DIN (DIN)
of different sample datasets (Mean=Std); R and Pearson correlation coefficient (r) of training and testing dataset in different sample
datasets (Mean#Std)

Fitting cases Sample size Coefficient of Coefficient of Coefficient of Coefficient of
WS flow T DIN
R2%1in>0.6 & R%es>0.6 56010 -0.39+0.12 -0.14+0.12 -0.11£0.08 0.49+0.12
R21ain<0.6 or R%¢<0.6 424690 -0.37+0.14 -0.17+0.17 -0.12+0.11 0.44+0.15
Total samples 480700 -0.37+0.14 -0.16+0.16 -0.12+0.11 0.45+0.14
p value Rtrain Rest T'train Ttest
R2%1in>0.6 & R%es>0.6 0.008+0.003 0.64+0.08 0.70+0.08 0.80+0.02 0.83£0.05
R21ain<0.6 or R%¢<0.6 0.012+0.014 0.64+0.24 0.45+0.24 0.80+0.05 0.63+0.24
Total samples 0.011+0.013 0.64+0.24 0.48+0.24 0.80+0.05 0.65+0.24
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Figure Al. Vertical distributions of average DO of all summer cruises (three months). Note that the mean values and standard
deviations of bottom-water DO were also shown at the top of each subplot.
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Figure A2. Average wind speed (WS), southwestern wind duration (SWWD), southwestern wind cumulative stress (SWCS),

southeastern wind cumulative stress (SECS), average wind direction (WD) in summer, and their long-term trends during 1994-2018.

Note that the negative values of SWCS and SECS represent southwestern and southeastern wind, respectively. The trends and
610 significant p values were shown in the title of each subgraph.
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7[994 1997 2000 2003 2006 2009 2012 2015 2018
R? <0.60orR. <0.6 424690 samples
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R. . =0.64,R’ =0.48 480700 total samples

train

-9
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Figure A3. Combined fitting results of the regression models with different combinations of training and testing datasets. R2 in (a)
were greater than or equal to 0.6 both in training and testing datasets. R2 in (b) were less than 0.6 both in training and testing
datasets. Fitting results of total samples were in (c). Note that the red hollow dots denote the LOI estimated based on observational
data, while the blue solid dots and the gray patch represent the mean values and ranges of the fitted LOI in the selected regression

cases, respectively.
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Figure A4. Flowchart describing the fitting of LOI and the cases sampling used for analysis.
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625 Figure A5. Frequencies of occurrence of low-oxygen and hypoxic events in four seasons at the surface, middle, and bottom layer.
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