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Abstract. Waters impounded behind dams (i.e. reservoirs) are important sources of greenhouses gases, especially methane 

(CH4), but emission estimates are not well constrained due to high spatial and temporal variability, limitations in monitoring 

methods to characterize hot spot and hot moment emissions, and the limited number of studies that investigate diurnal, seasonal, 

and interannual patterns in emissions. In this study, we investigate the temporal patterns and biophysical drivers of CH4 20 

emissions from Acton Lake, a small eutrophic reservoir, using a combination of methods: eddy covariance monitoring, 

continuous warm-season ebullition measurements, spatial emission surveys, and measurements of key drivers of CH4 

production and emission. We used an artificial neural network to gap-fill the eddy covariance time series and to explore the 

relative importance of biophysical drivers on the inter-annual timescale. We combined spatial and temporal monitoring 

information to estimate annual whole-reservoir emissions. Acton Lake had cumulative areal emission rates of 45.6 ± 8.3 and 25 

51.4 ± 4.3 g CH4 m-2 in 2017 and 2018, respectively, or 109 ± 14 and 123 ± 10 Mg CH4 in 2017 and 2018 across the whole 2.4 

km2 area of the lake. The main difference between years was a period of elevated emissions lasting less than two weeks in the 

spring of 2018, which contributed 17% of the annual emissions in the shallow region of the reservoir. The spring burst coincided 

with a phytoplankton bloom, which was likely driven by favourable precipitation and temperature conditions in 2018 compared 

to 2017. Combining spatially extensive measurements with temporally continuous monitoring enabled us to quantify aspects 30 

of the spatial and temporal variability in CH4 emission. We found that the relationships between CH4 emissions and sediment 

T depended on location within the reservoir and observed a clear spatio-temporal offset in maximum CH4 emissions as a 

function of reservoir depth. These findings suggest a strong spatial pattern in CH4 biogeochemistry within this relatively small 

(2.4 km2) reservoir. In addressing the need for a better understanding of GHG emissions from reservoirs, there is a trade-off in 

intensive measurement of one water body versus short-term and/or spatially limited measurements in many water bodies.  The 35 

insights from multi-year, continuous, spatially extensive studies like this one can be used to inform both the study design and 

emission upscaling from spatially or temporally limited results, specifically the importance of trophic status and intra-reservoir 

variability in assumptions about upscaling CH4 emissions.    
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1 Introduction 

Reservoirs are a globally important source of methane (CH4) and other greenhouse gases (GHG) to the atmosphere, with recent 40 

estimates attributing 773 Tg carbon dioxide equivalents (CO2-e) per year to reservoir surface emissions, nearly 80% as CH4 

(Deemer et al., 2016). The dominance of CH4 in reservoir GHG budgets is due to the combination of gross CH4 emissions and 

methane’s large warming potential relative to CO2. Reservoir CH4 emissions have been estimated to be equivalent to roughly 

half of the global CH4 burden from rice cultivation (~1200 Tg CO2-e yr-1, Ciais et al., 2013). Inland waters (lakes, rivers, and 

reservoirs) can be hot spots for decomposition of organic matter, and respiration from these waters globally may offset the 45 

terrestrial carbon sink by up to 60% (Cole et al., 2007; Ciais et al., 2013). The carbon dynamics of reservoirs are of special 

interest for several reasons. Reservoirs generally receive more sediment input (hence organic C) from their watershed than 

comparable lakes, as they tend to be located lower in the landscape and have a larger ratio of catchment area to surface area 

(Hayes et al., 2017). Reservoirs also tend to drain watersheds with more agricultural or urban land use than the natural lake 

watersheds (Thornton et al., 1990). The distribution of lakes and reservoirs across the United States is such that in many parts 50 

of the country total lentic surface area is dominated by reservoirs. Furthermore, emissions from reservoirs are considered 

anthropogenic and thus should be included in national greenhouse gas (GHG) emission inventories reported to the United 

Nations (Lovelock et al., 2019).  

Emissions of GHGs from reservoirs are highly variable in space and time, making reservoir GHG budgets difficult to constrain. 

This is especially true for CH4, the production and emission pathways of which are highly dynamic. One key production 55 

pathway of CH4 in water bodies is methanogenesis in anoxic sediment. Some of this CH4 dissolves into the water column where 

it may be oxidized into CO2 by methanotrophs or may diffuse to the atmosphere. Methane may also accumulate as bubbles in 

the sediment until the buoyant force of the gas bubble overcomes the overlying static pressure. The rate of this CH4 bubbling, 

or ebullition, is affected by several biological and physical factors including carbon substrate availability, sediment temperature, 

oxygen availability, turbulence, and overlying pressure (Tuser et al., 2017). Thus, ebullition is highly variable in space and 60 

time (Wik et al., 2016). Another potentially important source of CH4 is production in oxic surface water, considered a “paradox” 

until recently (Schmidt and Conrad 1993; Grossart et al., 2011; Tang et al., 2014, 2016; DelSontro et al., 2018). The rate of 

diffusive flux from surface waters can be highly dynamic as it depends on the balance between production and emission 

(Hartmann et al., 2020).  

Although the body of knowledge on CH4 emissions from inland waters has grown considerably over the past decades, the high 65 

degree of spatial and temporal variability in emissions, coupled with limitations in monitoring methods, mean that many 

questions about reservoir emission behaviour remain. Recent studies have highlighted the importance of interannual patterns 

(Room et al., 2014), seasonal patterns (Yvon-Durocher et al., 2014), diurnal patterns (Podgrajsek et al., 2014; Deshmukh et al., 

2014), sub-daily pulse events (Zhang et al., 2021), lake-zone spatial patterns (Juutienen et al., 2009; DelSontro et al., 2011; 

Maeck et al., 2013; McClure et al., 2020), and the relative contributions of hot-spots (Wik et al., 2016; Beaulieu et al. 2016), 70 

hot-moments (Bastien et al., 2011; Demarty et al., 2011; Jammet et al., 2015; Beaulieu et al., 2018; Harrison et al., 2018), and 

food web dynamics (Bartosiewicz et al., 2021; Grasset et al., 2018)  in accurately characterizing lake and reservoir CH4 

emissions. Under-sampling in irregular systems leads to underestimation (Wik et al., 2016). The synthesis by Deemer et al. 

(2016) showed that reservoir GHG emission studies using spatially integrated methods reported higher FCH4 than studies using 
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survey methods. Despite the need to better capture the spatiotemporal dynamics of reservoir CH4 fluxes (FCH4) and its drivers, 75 

most monitoring studies to date have used survey methods that are often short-term, intermittent, and/or spatially limited.  

Use of micrometeorological methods such as eddy covariance (EC) to monitor reservoir FCH4 can address many of the 

monitoring challenges by providing pseudo-continuous, long-term, spatially integrated flux measurements. A low-power open-

path CH4 sensor capable of making measurements for EC has only been available since circa 2011 (McDermitt et al., 2011), 

and using micrometeorological techniques to measure fluxes over open water (vs. land) can be difficult due to siting, footprint, 80 

and boundary layer turbulence considerations (Kenny et al., 2017, Higgins et al., 2013, Sahlee et al., 2014). Thus, relatively 

few studies have used EC to characterize FCH4 over inland waters (Jammet et al., 2015, Jammet et al. 2017, Deshmukh et al., 

2014, Eugster et al., 2011, Schubert at al., 2012, Podgrajsek et al., 2014a, Podgrasek et al., 2014b, Beaulieu et al., 2018). Further 

highlighting the scarcity of studies using this technique, the recent FLUXNET-CH4 synthesis (Knox et al., 2019) of long-term 

(>1 year) EC monitoring of FCH4 had only two open water sites among the 60 included. To our knowledge, this study is only 85 

the second to report pseudo-continuous, multi-year FCH4 results over open-water, and the first to report long-term FCH4 over 

open-water in a temperate region, for a eutrophic system, and for a reservoir.   

This study reports the results of two years of pseudo-continuous (via EC and active funnel traps for ebullition), spatially 

extensive (via spatially-balanced CH4 emission surveys) measurements of FCH4 and key drivers of CH4 production and emission. 

We organize our findings around two questions that can inform both the design of future monitoring studies and emission 90 

upscaling from limited results: (1) How important can interannual and intra-lake variability be in a single reservoir, and what 

causes it? (2) What does this tell us about how limited monitoring resources can best be used to constrain reservoir methane 

emissions?   

2. Methods 

2.1 Site description 95 

Acton Lake is a small hypereutrophic reservoir located in southwestern Ohio (39.57 N, 84.74 W, 262 masl, Fig. 1a). The dam 

was constructed in 1956 and the reservoir and surrounding state park have been managed by the Ohio Department of Natural 

Resources since 1957. The reservoir’s surface area is 2.4 km2, it has a maximum depth of ~8 m, and the area near the dam 

undergoes thermal stratification in the summer. Although Acton Lake is immediately surrounded by a forested state park, land 

use in its watershed is >80% agricultural, with the majority used for intensive row cropping (Renwick et al., 2018). We used 100 

four main methods to monitor CH4 fluxes (FCH4) from Acton Lake during 2017 and 2018: (1) the EC technique, (2) continuous 

ebullition monitoring with active funnel traps, (3) bi-weekly chamber measurements of diffusive emissions, and (4) spatially 

extensive surveys. The locations of the EC tower sites, active funnel trap/bi-weekly chamber measurement sites, and spatially 

extensive survey sites are depicted in Fig. 1a; the cumulative footprint probability distribution of the two flux tower sites is 

shown in Fig. 1b. The EC instrumentation was sited in the shallow region of Acton Lake due to logistical constraints related to 105 

both tower installation and boat traffic in the reservoir. How the methods were used in this study is summarized in Table S1.  

We used auxiliary meteorological and limnological measurements from stream gauging stations, a weather station, and 

thermistor string maintained by the Miami University (Renwick et al. 2018; Andersen et al. 2020), the locations of which are 

also shown in Fig. 1a. 
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2.2 Eddy covariance flux measurements 110 

This site is registered as AmeriFlux site US-Act; information about the site as well as the flux data presented in this study are 

available online (https://ameriflux.lbl.gov/sites/siteinfo/US-Act). The EC instrumentation consisted of an ultrasonic 

anemometer to measure 3-D wind speed and direction (Model 81000, R.M. Young Company, Traverse City, MI, USA) and 

open path infrared gas analyzers (IRGAs) for measuring the number density of CH4 (LI-7700), and CO2 and water vapor (LI-

7500A, LiCor Biosciences, Lincoln, NE, USA). The EC data streams were recorded at 10-Hz by a data logger (LI-7550, LiCor 115 

Biosciences, Lincoln, NE, USA), which was also equipped with a temperature sensor and a pressure transducer. The EC system 

was deployed from a dock piling 20 m from the northwestern shore of Acton Lake from 1 February 2017 thru 14 April 2018 

(“EC S-1” in Fig. 1). The instruments were brought to the lab for calibration and maintenance on 15 April 2018, then redeployed 

on a tower installed into the reservoir sediment in the northeast corner of the reservoir on 5 May 2018 (“EC S-2” in Fig. 1). 

The system was shut down on 1 December 2018. Images of the EC system at each deployment location are included in the SI 120 

(Fig. S1). In addition to the EC setup, the flux tower was equipped with a net radiometer (NRLite2, Kipp and Zonen, Delft, 

The Netherlands), a cellular modem for remote communication (AirLink, Campbell Scientific, Logan, UT, USA), and a time-

lapse camera (WCT-00125 TimelapseCam, WingScapes, Calera, AL, USA). The time-lapse camera was used to determine 

periods of ice cover. The system was powered by solar panels and a battery bank regulated via a solar charge controller 

(SunSaver, Morningstar Corporation, Newtown, PA, USA). All components of the EC system were run on a 12V system until 125 

relocation to the aquatic tower, when the EC setup (LI-7700, LI-7500A, RMYoung, and LI-7500) was retrofitted to run on 

24V.   

The raw 10-Hz EC data was processed into 30-minute fluxes using the software EddyPro v. 6.2 (Licor Biosciences, Lincoln, 

NE, USA). We used measurements of water depth from the Miami University weather station to determine instrument height 

above water surface on an hourly timestep, integrated into the flux processing as a dynamic metadata file. Additional processing 130 

steps followed community standards and included filtering the 10 Hz CO2 measurements when CO2 signal strength was <70, 

double coordinate rotation, block averaging, time lag compensation using covariance maximization, WPL density correction 

(Webb et al., 1980), and correction for high-pass and low-pass filtering effects (Moncrieff et al., 2004; Moncrieff et al., 1997). 

The area contributing to the measured flux was characterized for both sites using the online two-dimensional flux-footprint 

prediction tool (Kljun et al., 2015). We used R for postprocessing, and the code is available on GitHub 135 

(https://github.com/USEPA/actonEC). The 30-minute fluxes were rejected when the period did not pass the tests for stationarity 

and developed turbulent conditions (QC level 2 per the integrated scale of Foken et al., 2004).  EC S-1 fluxes were further 

filtered for periods when winds were from the shore (between 195° and 330°); at EC S-2 we filtered for periods of low 

turbulence using a friction velocity (ustar) threshold of 0.07 m s-1, based on the site-specific relationship between ustar and fluxes 

of CH4 and CO2 (Aubinet et al., 2012). We did not use ustar filtering at EC-S1 because the temporal coverage was insufficient 140 

to determine a ustar threshold. We define “acceptable” data or “acceptance rate” as those data meeting the EC QA/QC 

requirements, while “data coverage” includes non-operability due to power or instrument failures. 

The overall EC FCH4 data acceptance rate for the two-year monitoring period (26 January 2017 – 13 November 2018) was 

31.3% (Fig. S2). In 2017, the data acceptance rate was lower, 23.4%, due to power issues and the need to filter for wind 

direction at the near shore EC S-1 site where the instrumentation was located for the whole year vs. 39.8% in 2018 when the 145 

instrumentation was relocated in the spring to the mid- reservoir EC S-2 site. The data coverage for the period of monitoring 

https://ameriflux.lbl.gov/sites/siteinfo/US-Act
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from EC S-2 (May thru November) was 52.8%. Re-siting removed the need to filter periods based on wind direction and 

coincided with an improvement to the battery system that reduced incidences of power failure. At EC S-1, non-operability of 

the LI7700 due to power loss or other issues caused the majority of data rejection (40.4% of total monitoring periods), followed 

by filtering for wind direction (28.1%), and quality control filtering (7.8%). At EC S-2, power loss caused the majority of gaps 150 

(36.3%), followed by quality control filtering (16.6%).  

2.3 Active funnel trap ebullition measurements 

The active funnel traps (AFT) were based on the design of Varadharajan et al. (2010) and have been previously described by 

Beaulieu et al. (2018). Briefly, they consisted of a 0.3 m2 funnel attached to a rigid tubing gas collection chamber equipped 

with a differential pressure sensor to monitor accumulated gas volume on a 5-minute timestep. We modified the Varadharajan 155 

design by incorporating siphons that auto-purge the collected bubble gas and refill the tubing volume with water. This 

modification keeps the AFTs from becoming filled with gas, allowing them to make useful measurements for longer periods 

of time. Trap gas samples were collected bi-weekly and analysed via a gas chromatograph equipped with a flame ionization 

detector (Bruker 450 GC, USA) to determine the composition of the bubble gas. The active trap data reduction followed the 

method described in Varadharajan et al. (2010) and Varadharajan and Hemond (2012). Circuit calibration to determine the 160 

relationship between voltage and height was performed pre- and post-trap deployment in the 2017 field season, and post-

deployment in the 2018 field season. The volume of gas in the trap is calculated as: 

AFTvol=(Circvolt*m+b)*π
AFTd

2

2

(1) 

where AFTvol is the volume of gas in the funnel trap, Circvolt is the voltage output from the differential pressure sensor, m and 

b are the sensor-specific laboratory calibration multiplier and offset coefficients, and AFTd is the diameter of the funnel tubing. 165 

We used a 12-point moving average (60 min) to smooth the gas volumes and minimize noise. Periods with known issues were 

filtered out of the dataset (e.g. power issues, trap drift from target location, etc.), as were large negative fluxes that reflected 

siphon purges. Following Varadharajan and Hemond (2012), we calculated fluxes on multiple time-bin widths (30-min, 1, 2, 

6, 12, 24, 48 hr) but used the 2-hr rolling timestep for calculating the flux used in our final analysis: 

FCH4eb
=

AFTvol[CH4]

(Tf-Ti)AF

 (2) 170 

where AFTvol is the volume of gas in the trap (l), [CH4] is the CH4 concentration in the bubble gas (mg CH4 l-1), Tf – Ti is the 

elapsed time (s), and AF is the cross-sectional area of the funnel (m2). The AFT data reduction was performed in R and the 

scripts are available online (https://github.com/USEPA/actonEC).  

The AFTs were deployed in late spring and retrieved in the fall each year. The shallow AFT (U-14) monitored ebullition from 

May 9 – October 3 in 2017, and from June 6 – December 11 in 2018. The deep AFT (U-12) monitored ebullition from May 10 175 

– October 30 in 2017, and from May 24 – November 9 2018.  

 

2.4 Chamber diffusion measurements 

Diffusive FCH4 was measured with a floating chamber biweekly at two sites during the field season. We used a rectangular, 

round-ended aluminum chamber with external polyvinyl chloride floats and a headspace fan, based on the CSIRO chamber 180 
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described in Zhao et al. (2015). An ultra-portable greenhouse gas analyzer (UGGA, PN: 915-0011, ABB, Los Gatos, CA) 

monitored the change in CH4 mixing ratio in the chamber headspace over the duration of the chamber deployment (> 1 - 5 

min), measuring at 1Hz and recording an averaged measurement every 5 s. We monitored the real-time UGGA time series to 

prevent ebullitive emissions from overwhelming the diffusive emission measurements. If a spike in CH4 concentration was 

detected, we re-set the chamber. The floating chamber data reduction method has been described in detail in Beaulieu et al. 185 

(2016). Briefly, we used the following equation to calculate diffusive fluxes (moles m-2 s-1): 

Fgas,D= 
dχgas

dt
(

V

A
) (

P

RT
)          (3) 

where dχgas/dt is the rate of change of the mixing ratio of CH4 in the chamber headspace (ppm s-1), V is the chamber volume 

(m3), A is the chamber surface area (m2), P is the pressure in the chamber headspace, R is the universal gas constant, and T is 

the temperature in the chamber headspace. The rate of change dχgas/dt for each chamber deployment was determined via fitting 190 

linear and non-linear models to the dataset and using Akaike information criterion (AIC) to choose the more appropriate model. 

Only models with an r2>0.9 were retained. Data analysis and reduction was performed using R, and the scripts are available 

online (https://github.com/USEPA/actonEC).   

Biweekly chamber monitoring was conducted from May 10 to December 11 in 2017, and from May 18 to October to December 

13 in 2018.  Note that the chamber monitoring began earlier and ended later than the AFT monitoring each year, due to technical 195 

issues with the AFTs.  

2.5 Water measurements 

Water temperature depth profiles were recorded continuously at two sites close to U-14 and U-12 (Fig. 1) using thermistors. 

At the shallow site (U-14) a string of seven thermistors (RBRsoloT, RBR Ltd., Ottowa, ON, Canada) were deployed at 0.1, 

0.25, 0.5, 0.75, 1, 1.5 m below the air-water interface and at the sediment-water interface. We used this temperature profile to 200 

characterize water column stability in the footprint of the EC flux measurements based on the Brunt-Vaisala buoyancy 

frequency using the R package rLakeAnalyzer (Winslow et al., 2019). The Brunt-Vaisala buoyancy frequency was used as to 

indicate water column stability. It represents the frequency at which a parcel of fluid will oscillate when displaced vertically, a 

measure of resistance to mixing.  A high oscillation frequency indicates strong resistance to mixing, whereas a low frequency 

indicates little resistance to mixing.  At the deep site (U-12), sondes measuring temperature (Pro ODO, YSI Incorporated, 205 

Yellow Springs, OH, USA) were deployed at 0.1, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, and 8 m below the air-water interface. Water 

temperature, specific conductivity, dissolved oxygen, pH, and chlorophyll a were measured biweekly with a YSI 

Multiparameter sonde at 0.1 and 1.5 m below surface at the shallow site (U-14), and 0.1, 1, 2, 3, 4, 5, 6, 7, and 8 m below 

surface at the deep site (U-12). Water samples for chlorophyll analysis were collected by Miami University near the reservoir 

inlet. Water samples were collected with an integrated tube sampler from the water surface to the euphotic zone depth. 210 

Chlorophyll samples were collected on 1.0 m glass fibre filters and frozen at -20°C in opaque containers until processed. They 

were extracted in 95% ethanol for 24 h and analysed with a TD-700 (Turner Designs, San Jose, CA, USA).  

Dissolved gas surface and profile samples were collected biweekly from both U-12 and U-14 using the headspace equilibration 

method. We collected water samples at depths of 0.1, 2, 4, 6, and 7 m at U-12 and at 0.1, 0.75, and 1.3 m at U-14. Using a 140-

ml plastic syringe with a 2-way stopcock, we added 25 ml of ultra-high-purity helium to a syringe, then added 115 ml of sample 215 

water and agitated all samples for 5 minutes. We then transferred the headspace gas to pre-evacuated 12-ml glass vials topped 
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with a silicone-coated Teflon septum stacked on top of a chlorobutyl septa (Labco Ltd., UK). The headspace gas samples were 

analysed using gas chromatography (see section 2.3) to determine the CH4 composition, and the dissolved CH4 concentrations 

were calculated using measured headspace composition and the temperature-specific Bunsen solubility coefficients (Yamamoto 

et al., 1976). Full documentation of the calculations is available at the National Ecological Observatory Network’s GitHub 220 

repository (https://github.com/NEONScience/NEON-dissolved-gas).  

 

2.6 Whole-reservoir surveys 

We conducted six surveys of Acton Lake over the summers of 2017 and 2018 to estimate whole-reservoir FCH4. The fifteen 

sample collection sites (Fig. 1, light blue circles), were determined using a generalized random tessellation survey (GRTS) 225 

design (Stevens and Olsen 2004; Olsen et al. 2012), a probability design that has been shown to reduce uncertainty relative to 

other designs (Beaulieu et al., 2016). At each site, we measured CH4 diffusion, CH4 ebullition, and surface water quality 

parameters. Survey measurements of diffusive FCH4 were conducted with floating chambers in the same manner as described 

in section 2.4. Survey measurements of ebullitive FCH4 were conducted with passive funnel traps (PFTs) deployed overnight 

(>15 hours). The PFTs are a simplified version of the AFTs described in section 2.3: they consist of a 0.3 m2 funnel attached 230 

to a section of tubing for gas collection, but do not have a pressure sensor or siphon. Upon retrieval, the total time of deployment 

and total volume of gas in the tubing were recorded, and three 25 mL samples of the gas were collected for gas composition 

analysis via gas chromatograph (see section 2.3). Ebullitive FCH4 from the PFTs was also calculated using Equation 2 (section 

2.3), but the trap volume was determined by direct measurement of the collected gas, and Tf – Ti is defined as the deployment 

period. Dissolved gas sample collection and depth profiles of water quality parameters were taken at one deep site (U-12) and 235 

one shallow site (U-14) during each whole-reservoir survey. The surveys were initiated on 10 July 2017, 31 August 2017, 4 

October 2017, 10 July 2018, 14 August 2018, and 20 September 2018, and concluded the following day.  

 

2.7 Gap-filling and upscaling 

We use the term “gap-filling” to refer to our method to determine values for missing observations in our measurement time 240 

series, while “upscaling” refers to the best estimate of whole-reservoir FCH4. For this analysis, we separated the year into 

different seasons, categorizing November thru March as “winter”, or the cold season, and May thru September as “summer”, 

or the warm season. We refer to April and October as the “shoulder” season. The spring burst period is defined as 24 May thru 

4 June. For the EC timeseries, we developed an artificial neural network (ANN) to gap-fill 30-minute FCH4 using predictor 

variables with biophysical links to CH4 production and emission: sediment temperature (sedT), air temperature, latent heat flux 245 

(LE), sensible heat (H), wind speed, ustar (friction velocity, a measure of turbulence), photosynthetically active radiation, 

overlying static pressure, and change in static pressure, where static pressure is the sum of overlying atmospheric and 

hydrostatic pressure. We also included indicators for the tower location, hour of day, and day of year as drivers. Gaps in the 

sedT, air temperature, wind speed, wind direction, and static pressure time series were filled using observations from a nearby 

weather station. Gaps in LE, H, and ustar were gap filled using the mean diurnal course function from the R package REddyProc 250 

(Wutzler et al., 2019) on the 30-minute timestep. We used k-means clustering to assign ten clusters before selecting the training, 

testing, and validation datasets. The cluster assignments allowed us to select subsets with probabilities proportional to the 

https://github.com/NEONScience/NEON-dissolved-gas
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clusters, ensuring that the clusters were not over- or underrepresented as a result of the splits. We employed a selective ensemble 

approach to optimize the ANN model performance, using the R package nnet (Venables and Ripley, 2020). Each ANN 

ensemble included models with 5-20 layers and 50 different starting weights, for a total of 800 model results. The top 100 255 

models were selected based on the testing R2 results, then the median CH4 value from the best 100 models was used as the 

predicted flux. To characterize both sampling and model uncertainty, we replicated this procedure with 20 resamplings of the 

data. For each half hourly FCH4 we calculated the median predicted value of the best 100 models in each of the 20 ensembles 

of 800 models (c.f. Knox et al., 2016).  Missing half hourly FCH4 values were gap filled using the median of the medians from 

the 20 ensembles. ANN modelling and gap-filling was performed in R and the scripts are available online (Barnett et al., 2021).  260 

We gap-filled short gaps in the AFT continuous datasets using linear interpolation and calculated annual emissions via summing 

the daily observations. We gap-filled the biweekly chamber measurements of diffusive FCH4 via linear interpolation. For periods 

at the start and end of the monitoring seasons with chamber measurements but no AFT measurements, we used the typical ratio 

between diffusive and ebullitive FCH4 to estimate total FCH4 for the site. We gap-filled the spatial survey measurements by 

interpolating between each of the three annual surveys. To estimate annual emission, we applied the FCH4 value determined by 265 

the first survey of the year to every day between 1 May and the first survey, and the FCH4 value determined by the last survey 

of the year out through 15 October. We assumed an FCH4 of zero between 15 October and 1 May for both the spatial survey 

dataset and the AFT plus chamber datasets.   

To upscale to whole-reservoir FCH4, we used a hybrid approach, combining results from EC, the deep-site (U-12) AFT, and the 

spatial surveys. We stratified Acton Lake into shallow (<3 m) and deep (≥3 m) areas and used reservoir bathymetry to determine 270 

the surface area for the shallow and deep portions: 0.8 km2 and 1.6 km2, respectively. The depth cut-off of 3 m roughly 

corresponds to the greatest depth of the EC footprint. We then used FCH4 measured by EC to characterize the shallow portion 

of the reservoir. For the deep portion, we calculated the ratio (reservoir ratio, or RR) between the measured FCH4 (ebullitive + 

diffusive) at the U-12 AFT (hereafter, deep AFT FCH4) and the mean of FCH4 measured at the other deep sites (U-01, U-04, U-

05, U-08, U-11, U-12, U-13, U-15, U-16, U-17, and U-18, see Fig. 1). We calculated this RR for each of the six spatial survey 275 

dates. To characterize FCH4 in the deep portion of the reservoir, we applied the RR from the first survey to the deep AFT FCH4 

continuous timeseries data collected before 10 July 2017, and likewise applied the RR from the last survey to the timeseries 

data collected after 20 September 2018. For the periods in-between, we used linear interpolation to produce a daily RR and 

applied that to the deep AFT FCH4 continuous timeseries. We weighted the cumulative shallow and deep CH4 areal emissions 

by the shallow and deep fraction of the reservoir to determine the whole-reservoir CH4 emissions. We refer to this estimate of 280 

whole- reservoir emissions as the “hybrid” upscaled estimate.  

2.8 Uncertainty Analysis 

We parameterized the uncertainty in the EC time series of FCH4 using three different measures: the random measurement error, 

the bias error of the gap-filled dataset, and the 95% confidence intervals of the gap-filled dataset. The random measurement 

error is calculated from the variance of the covariance (Finkelstein and Sims, 2001), and reflects instrument noise, variation in 285 

footprint over a given 30-minute flux integration period, and the stochastic nature of turbulence. As described in Jammet et al., 

(2017), the random error decreases with increasing dataset size and is negligible at the resolution of cumulative annual fluxes 

but can be substantial for individual flux measurements (Richardson et al., 2006; Moncrieff et al., 1996). The random error was 
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calculated as part of the EddyPro processing, and we report the summary statistics in section 3.2. Unlike random errors, 

systematic biases can accumulate to affect the cumulative seasonal or annual flux. Although the measurement bias cannot be 290 

quantified, we calculated the systematic bias in the annual fluxes due to gap-filling following Moffat et al. (2007) and Jammet 

et al. (2017): 

𝐵𝐸 =
1

𝑁
∑(𝑝𝑖 − 𝑜𝑖)      (5) 

where N is the number of values in the validation time series, p are the values predicted by the ANN, and o are the observed 

values in the validation time series. The bias error was multiplied by the total number of gap-filled values to obtain the total 295 

annual bias. We calculated the 95% confidence interval of the gap-filled dataset using the distribution of the 20 ANN medians 

extracted from the 20 resamplings, which consider both sample and model uncertainty (Knox et al., 2016).  

We used root-sum-squared error propagation of the error in AFTvol and [CH4] to characterize the uncertainty in ebullitive FCH4 

measured by the AFTs. Compared to error in AFTvol, the error contribution from other terms in Eq. 2 was negligible. As 

described in Varadharajan et al. (2010), we propagated the error in m, offset, and electronic noise through Eq. 1, adding a 2-ml 300 

dead volume error each time the AFTs flushed to account for gas that could be trapped in the fittings at the top of the collection 

chamber.  Our mean slope and slope error were similar to those reported in the Varadharajan methods paper (31 and 0.31, 

respectively, compared to 28 and 0.5); the mean (Vzero) and standard deviation (ΔVzero) of the offset terms we used were slightly 

larger: 0.51V and 0.071V for the shallow site, 0.41V and 0.045V for the deep site (compared to 0.15 and 0.015); our calculated 

electronic noise (ΔVout) was smaller (0.4 mV vs. 3 mV in Varadharajan), so we defaulted to their value. The standard deviation 305 

between the multiple trap gas samples was used as the uncertainty in [CH4]. This term was generally small compared to the 

uncertainty due to AFTvol error. The cumulative errors were propagated by summing in quadrature.  

The whole- reservoir surveys provide an estimate of FCH4 integrated across the entire reservoir surface area and a 95% 

confidence interval range (Beaulieu et al., 2016). Variance estimates calculated from GRTS incorporates spatial 

autocorrelation, if present, resulting in smaller uncertainty ranges than survey approaches that ignore spatial autocorrelation 310 

(Stevens and Olsen, 2003). The GRTS design and data reduction were executed in R using the spsurvey package (Kincaid et 

al., 2019). We propagated the cumulative uncertainties across 2017 and 2018 by taking the 95% confidence interval of each 

survey and summing them in quadrature. 

The uncertainty in the hybrid approach to the upscaled cumulative whole-reservoir emissions were also determined by error 

propagation, combining the uncertainty in the deep AFT measurements, the spatial surveys, and the EC measurements.  315 

 

2.9 Statistical and Quantitative Analysis 

For these analyses, we used the non-gap-filled measurement time series. We quantified the relationship between sediment 

temperature (sedT) and FCH4 using Q10 and breakpoint analyses. The concept of an “ecological Q10” (DelSontro et al., 2016) 

follows from the physiological exponential relationship between metabolic processes and temperature. In contrast to 320 

physiological Q10 values, ecological Q10, hereafter “ecoQ10” values are muddied by time-lags and competing rate enhancers 

and inhibitors (e.g. that temperature affects both methanogens and methanotrophs, Segers, 1998; Duc et al., 2010; Lofton et 

al., 2014). While the physiological Q10 value for methanogenesis converges around 4 (Yvon-Durocher et al., 2014), ecoQ10 
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values for methane fluxes have been reported to range from 1 – 35 (e.g. DelSontro et al., 2016; Wik et al., 2014; Duc et al., 

2010). We calculated the ecological Q10 (DelSontro et al., 2016) using the equation: 325 

𝑒𝑐𝑜𝑄10 = 1010𝑏 (6) 

where b is the slope of the regression between temperature and FCH4.  

We also used a two-dimensional Kolmogov-Smirnov test (2DKS, Garvey et al, 1998) to quantify the temperature breakpoint 

distinguishing winter conditions where FCH4 is near zero and unrelated to temperature from warm weather conditions where 

FCH4 is elevated and positively correlated with temperature. The 2DKS test is a non-parametric statistic that uses measures of 330 

disagreement to define the largest difference between cumulative distribution functions, that is, a threshold or breakpoint 

(Lopes et al., 2008). We applied the 2DKS test to each of the continuous FCH4 monitoring datasets: EC, shallow AFT, and 

deep AFT, each for 2017 and 2018 for a total of six 2DKS tests.  

We looked at diurnal patterns on monthly and daily timescales. For the monthly timescales we binned 30-minute periods and 

took the median. For daily timescales we adapted the methods used by Podgrajsek et al. (2014) to quantify “strong” diurnal 335 

patterns. For 24-hour periods with at least eight night-time and eight daytime non-gap filled 30-minute flux measurements, we 

compared the median of daytime FCH4 to night-time FCH4. The period was defined as having a strong diurnal pattern if 1) 1) the 

difference between daytime vs night time FCH4 median was >50 %, and 2) the contiguous points in the 30-minute times series 

were smooth, i.e. more similar than points separated in time. We determined smoothness using visual inspection.  

We compared the cumulative FCH4 measured from Acton Lake during each year of this study to output from the size-340 

productivity model (Del Sontro et. al, 2018). This model uses the following equation to predict total CH4: 

𝑙𝑜𝑔10(𝑡𝑜𝑡𝑎𝑙 𝐶𝐻4 + 1) = 0.778 ∗ 𝑙𝑜𝑔10(𝑐ℎ𝑙𝑎) + 0.940 (7) 

where total CH4 is in units of mg C m-2 d-1, and chla is in units of ug L-1.  

 

3. Results 345 

3.1 Temporal patterns in FCH4  

We observed a consistent pattern of elevated FCH4 during the warm season across all measurement methods (Fig. 2). In both 

monitoring years, the majority of cumulative total CH4 emissions (>85%) occurred in the five-months between May 1 and 

September 30, when air and sediment temperatures were warmer (Fig. 4 (a)), and latent heat fluxes were elevated (Fig. 4 (b)). 

We observed larger-magnitude CH4 emissions in 2018 relative to 2017 at Acton Lake across each observation type except for 350 

the deep site (Table 1). The EC and spatial survey results indicated similar warm-season mean fluxes in 2017: 9.73  0.67 and 

9.98  6.2 mg CH4 m-2 hr-1. Results from both methods indicated larger-magnitude mean FCH4 in 2018: 17.5  0.38 mg CH4 m-

2 hr-1 per the EC system and 13.0  6.6 mg CH4 m-2 hr-1 per the spatial surveys (Table 1). Both the shallow site results also 

indicated elevated FCH4 in 2018 relative to 2017, while the deep site results were effectively the same (Table 1). The lower-

magnitude mean FCH4 measured at the shallow site compared to the mean FCH4 measured by EC is likely due to the under-355 

representation of hot-spots (Wik et al., 2016). The wintertime FCH4 measured by EC indicate that during the winter months FCH4 

dropped by more than an order of magnitude to a baseline close to zero: between 1 Nov and 1 April FCH4 was 0.60 ± 0.69 mg 

CH4 m-2 hr-1. The surface of Acton Lake was frozen for several periods during the 2017-2018 winter: 27 Dec 2017-10 Jan 2018; 

13-21 Jan 2018; and 5-15 Feb 2018, during which FCH4 was 0.08 ± 0.46 mg CH4 m-2 hr-1.   
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The non-gap filled, quality filtered 30-minute FCH4 measurements had a mean random error (± SD) of 1.3 ± 1.9 and 1.8 ± 1.7 360 

mg CH4 m-2 hr-1 in 2017 and 2018, respectively or 15.5% and 13.7% of the mean annual fluxes. The fractional errors were 

larger in the winter months when FCH4 was small (mean winter random error: 23%) and smaller during the warmer months 

when FCH4 was larger (mean summer random error: 15%). Both the magnitudes and patterns in the random errors are similar 

to those observed by Jammet et al. (2017) in a subarctic aquatic ecosystem. Similarly, we found gap-filling our FCH4 time series 

with ANN worked well with a few exceptions. The median R2 value for the 20 extractions was 0.79, and the cumulative bias 365 

error was minimal: the 20 ANN extractions yielded a median bias of 0.25 (range of -3.7 to 3.5) g CH4 m-2, or up to 3.3% of 

cumulative emissions over the two-year monitoring period. The ANN establishes non-linear predictive power to each of the 

driver inputs, defined as a “Variable Importance Factor” (VIF) in terms of a percent importance to the predictive power of the 

model. The median VIFs from the 20 ANN extractions are plotted in Fig 3; a consistently high ranking across runs indicates a 

strong relationship with FCH4. The biophysical drivers with the highest variable importance were static pressure (the sum of 370 

water pressure and air pressure), change in static pressure, and sediment temperature.   

The most substantial difference between the two monitoring years is the period of elevated emissions in late May to early June 

observed by the EC monitoring in 2018 but not 2017 (hereafter “spring burst”). We define the spring burst as the period from 

24 May thru 4 June, where the daily average FCH4 observed by EC was ≥ 25 mg CH4 m-2 hr-1. Maximum FCH4 of 62.0 mg CH4 

m-2 hr-1 occurred on 29 May 2018. While the 2017 EC monitoring does indicate a small burst in FCH4 of 20.4 mg CH4 m-2 hr-1 375 

on 5 June, overall FCH4 was much smaller: mean FCH4 for 24 May - 4 June 2017 was 3.6 ± 1.8 mg CH4 m-2 hr-1. Although the 

AFT at the shallow site was not operational during the spring burst, diffusive FCH4 measurements indicate that FCH4 was elevated 

at that site compared to the deep site. Although none of the spatial surveys coincided with the spring burst period, the deep site 

monitoring indicates that the spring burst did not extend to the deeper parts of the reservoir. The cumulative CH4 emission over 

the 2018 twelve-day spring burst period was 10.8 g CH4 m-2 which is 15% of the cumulative annual emissions measured by 380 

EC in 2018 (Table 1), and which accounts for 59% of the difference in the EC cumulative annual emissions between 2017 and 

2018. 

The differences between the 2017 and 2018 monitoring years continues past the early summer (Fig. 2, Fig. 4). During 2017, 

FCH4 increased to a maximum in late summer, then declined back to the winter baseline. Maximum emissions at the deep site 

in 2017 lagged and were dampened compared to the shallow site. In contrast, the 2018 summer and fall in the shallow portion 385 

of the reservoir (EC and shallow site) were characterized by episodic emission pulses and declines before tapering down to the 

winter baseline. The deep site emissions were in phase with the shallow site but did not have the same pulses. There was a late 

season pulse at the deep site in 2018 that coincided with reservoir turnover (Fig. 4(g)), and a drop in dissolved CH4 below the 

thermocline at the deep site (Fig. S3).  

We used the EC measurements of FCH4 to look for diurnal patterns in emissions. We found that Acton Lake did not have a clear 390 

over-arching diurnal pattern when aggregated over monthly timescales, (Fig. S4), but out of the 168 days with adequate data 

coverage for diurnal analysis, 18.5% (31 days) displayed strong diurnal patterns: sixteen with elevated daytime emissions and 

fifteen with elevated nocturnal emissions. Very few of these strong diurnal pattern days were contiguous: there were only four 

instances of strong diurnal patterns persisting for two or more consecutive days. The periods with strong diurnal patters when 

FCH4 peaked during the day were correlated with latent heat flux (Fig. S5, Fig. S6); while periods when FCH4 peaked at night 395 

were correlated with air pressure (Fig. S5, Fig. S6).  While we looked for evidence of synoptic patterns in FCH4 due to changes 
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in overlying pressure from frontal systems (c.f. Liu et al., 2016), and due to underwater turbulence (Fig. S7), we did not see 

evidence of impact on FCH4 from these drivers during the study period.  

3.2: Cumulative FCH4  

There are notable differences in the cumulative annual areal emissions across methods and years (Table 1, Fig. 5). The impact 400 

of the spring burst is evident in the interannual difference between the EC cumulative emissions, which were 40.7 ± 5.88 and 

71.4 ± 4.2 g CH4 m-2 in 2017 and 2018, respectively. The cumulative areal emission measured by EC from 1 October 2017 

through 1 May 2018 was 6.66 ± 3.1 g CH4 m-2, on the same order as the uncertainty range in the annual values. As follows 

from the patterns in the mean fluxes discussed above, the results from the spatial surveys and the shallow trap also indicate 

elevated cumulative annual emissions in 2018 compared to 2017, while the results from the deep site indicate similar emissions 405 

over both years. The implications of the spring burst for whole-reservoir upscaled total annual CH4 emissions is discussed 

below, but the best estimate of reservoir-wide cumulative annual areal emissions from the hybrid approach yields 45.6 ± 8.3 

and 51.4 ± 4.3 g CH4 m-2 for 2017 and 2018, respectively (Fig. 5).  Scaling up to the 2.4 km2 area of Acton Lake, the hybrid 

approach indicates that this reservoir was a source of   109 ± 14 and 122 ± 10 Mg CH4 to the atmosphere in 2017 and 2018, 

respectively.  410 

3.3: Spatial patterns in FCH4 

The results from the six spatial surveys indicate an inconsistent spatial pattern in FCH4 that differs from previous findings on 

CH4 emissions from temperate, eutrophic reservoirs which has shown that the river – reservoir transition zone near the tributary 

inlets tends to be a hot spot for emissions compared to the lacustrine zone (Beaulieu et al., 2014; Beaulieu et al., 2016; DelSontro 

et al., 2011; Tuser et al., 2017). The survey results from Acton Lake indicate relatively similar rates of FCH4 across most of the 415 

reservoir surface area (Fig. 6), and a weak but significant (n=90, R2 = 0.1, p < 0.005) positive relationship between ebullition 

and reservoir depth (Fig. S8).  

At the whole- reservoir scale, ebullition was a dominant emission pathway for CH4 relative to diffusion, accounting for 82-

94% of total FCH4. However, at certain sites diffusive FCH4 contributed a larger proportion of the total flux (Fig. S9). The four 

sites with mean ebullitive to total FCH4 ratios less than 0.8 are also the four shallowest sites (see Fig. 1): U-09, U-14, U-07, and 420 

U-06, with mean observed depths of 1, 1.3, 1.5, and 2 m respectively. This pattern from the spatial surveys is also reflected in 

the results from the more frequent measurements made at the shallow and deep site: ebullition accounted for 58% of the total 

FCH4 at the shallow site in both 2017 and 2018, while ebullition accounted for 86% and 88% of total FCH4 at the deep site in 

2017 and 2018, respectively. Emission behaviour at sites U-09 and U-06 was substantially different than at other sites: these 

two sites had consistently low FCH4 and tend to have higher rates of CH4 diffusion than ebullition. Much of this behaviour is 425 

likely explained by the proximity of these sites to Acton Lake’s swimming beach, which has a sandy substrate that likely 

inhibits methanogenesis at these sites. These sites were included as part of the random GRTS sampling design.  
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4. Discussion 

4.1 Comparison with other systems and methods 

The hybrid upscaling approach we used in this study leverages the best available information from our measurements to 430 

characterize both the spatial and temporal variability of Acton Lake: EC monitoring for the shallow portion of the reservoir, 

and the continuous deep site monitoring scaled by the spatial survey site measurements for the deep portion of the reservoir. If 

we used the EC monitoring results alone to upscale to whole-reservoir emissions, that would assume the spring burst pattern 

affected the whole reservoir (Fig. 5). However, we know the spring burst did not affect the deep site (Fig. 2). Thus, a key 

uncertainty around this upscaling method is estimating what portion of the reservoir was affected by the spring burst of 435 

emissions in 2018. The cumulative FCH4 measured by EC was 77% greater in 2018 than 2017, compared to a difference of only 

11% per the hybrid approach. Adding one or more AFT sites along the depth gradient of the reservoir would be one way to 

decrease uncertainty in the extent of the spring burst and improve confidence in upscaled FCH4 estimates.  

Comparing cumulative annual areal emissions from the hybrid upscaling approach (45.6 ± 8.3 and 51.4 ± 4.3 g CH4 m-2 for 

2017 and 2018, respectively) to other reservoir CH4 emission rates reported in the literature is not straightforward due to 440 

differences in monitoring methods and temporal coverage. One important reason earlier studies of reservoir FCH4 may be biased 

low is that they only measured CH4 diffusion: Deemer at al. (2016) found that the mean FCH4 reported in studies measuring 

ebullition and diffusion was over double of diffusion-only FCH4 studies. Another potentially important source of bias is temporal 

coverage. Most studies that report FCH4 from inland waters monitor during the warm season, with less than six months of 

measurements (cf. Deemer et al., 2016; DelSontro et al., 2018 Bastviken et al., 2011), and the mean FCH4 value is then 445 

extrapolated to annual total emissions. However, we measured very low (on the same order as the warm-season uncertainty) 

wintertime FCH4 in this study. On the other hand, the spring burst phenomenon we observed demonstrates the importance of 

continuous monitoring of mid-latitude eutrophic reservoirs during the full warm season to capture hot-moments of FCH4. A 

related consideration is a method’s ability to capture spatial and temporal variability of FCH4 during the study period. Deemer 

et al. (2016) noted that studies using the eddy covariance method reported substantially higher values of FCH: ~92.5 g CH4 m-2 450 

yr-1 (Deshmukh et al., 2014) and ~160 g CH4 m-2 yr-1 (Eugster et al., 2011), which are on the same order as the Acton Lake 

cumulative annual emissions (Table 1). The two open-water sites included in the CH4 EC meta-analysis by Knox et al., (2019) 

were natural lakes in temperate regions with cumulative annual emissions of ~15 g CH4 m-2 yr-1. This difference in FCH4 speaks 

to the need for building a representative dataset across both methods and ecoregions.  

Nevertheless, Acton Lake’s annual FCH4 is relatively high compared to other reservoirs. It falls in the 4th quintile (>60%) of the 455 

reservoir emission rates that included ebullition reported in Deemer et al., (2016); the warm season FCH4 fall in the upper 

quintile (>80%) of those reservoirs. The warm season FCH4 also falls into the upper quartile (>75%) of the 32 temperate 

reservoirs surveyed by Beaulieu et al. (2020). This result strengthens the finding that midlatitude, eutrophic reservoirs in the 

Midwest US can support high CH4 emission rates (cf. Beaulieu at al., 2014, 2016) than would be predicted by age and latitude 

alone (Barros et al., 2012). The high annual FCH4 also supports the emerging body of knowledge around the importance of 460 

reservoir productivity as a key indicator for FCH4 (cf. Deemer et al., 2016; West et al., 2012; DelSontro et al., 2018b). 
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4.2 Implications for upscaling 

The key question in upscaling any set of measurements to characterize an ecosystem is “what is representative of reality?”. 465 

This study leveraged a combination of continuous and spatially extensive monitoring methods to investigate the spatial and 

temporal variability in a reservoir. The results from the six spatial surveys indicate an inconsistent spatial pattern in FCH4 that 

differs from previous findings on CH4 emissions from temperate, eutrophic reservoirs which has shown that the river – reservoir 

transition zone near the tributary inlets tends to be a hot spot for emissions compared to the lacustrine zone (Beaulieu et al., 

2014; Beaulieu et al., 2016; DelSontro et al., 2011; Tuser et al., 2017). The spring burst of elevated emissions that we observed 470 

in 2018 but not 2017, and in the shallow portion of the reservoir but not at the deep site, is the largest contributor to the spatial 

and temporal variability in this study. In this section we will analyse the spring burst and factors that could have contributed to 

it. Other patterns in intra-reservoir spatial and temporal variability linked to sediment T and other biophysical drivers are also 

discussed.  

4.2.1 Spring burst 475 

Differences in phytoplankton populations and sediment temperature, partially driven by precipitation differences, provide 

insight into why the spring burst of emissions occurred 1) in 2018 but not 2017, and 2) in the littoral area of the reservoir but 

not the deeper areas. Chlorophyll a (chla) levels measured a few days before the spring burst period show elevated levels in the 

shallow portion of the reservoir in 2018 compared to 2017, while levels near the outflow were similar between the two years 

(Fig. 7 (a)). This increase in chla levels coincided with an increase in shallow sed T to 27°C, (Fig. 7 (b)). These differences in 480 

chla and sedT near the inflow can be tied to differences in precipitation between the two years: spring of 2017 was relatively 

wet, with 31.0 cm of rainfall and 20.9 × 106 m3 of stream inflow in May (Fig. 4 (c), (d)) which drove substantial fluctuations 

in reservoir water level (Fig. 4 (e)). These rain events also led to a decrease in sedT from 22.5 to 18°C prior to the onset of the 

spring burst timeframe (Fig. 7 (b)) due to the inflow of cooler stream water and the cooling of ambient air temperature. In 

contrast, May of 2018 was relatively dry, with 12.3 cm of rain, 9.45 × 106 m3 of stream inflow (Fig. 4 (c), (d)), and stable 485 

reservoir water levels (Fig. 4 (e)). The phytoplankton bloom in the shallow portion of the reservoir leading up to the spring 

burst period was likely catalyzed by the conducive water temperature, turbidity, and water level stability. Elevated levels of 

dissolved ammonium (NH4), total phosphrous (TP), soluble reactive phosphrous (SRP), and particulate organic carbon (POC) 

near the inflow during the 2018 spring burst support that the conditions in the littoral area in 2018 were different than those in 

2017, and that this interannual difference did not occur in the deep portion of the reservoir (Table 2).  490 

There are at least two established mechanistic connections between phytoplankton blooms and enhanced CH4 production and 

emission, and either or both could have driven the spring burst observed in this study. One mechanistic connection between 

autochthonous organic carbon (autoOC, i.e. phytoplankton-derived) and FCH4 is the stimulation of methanogenesis from the 

input of this labile C source as the phytoplankton die and settle to the sediment. Several lab studies have demonstrated that the 

addition of autoOC can lead to enhanced CH4 production rates (Schwartz et al., 2008; West et al. 2012, 2015; Grasset et al., 495 

2018). A recent study using in-situ measurements found that heatwave-induced cyanobacterial blooms and subsequent input of 

autoOC to the sediment could lead to pulses of CH4 emissions up to an order of magnitude larger than baseline levels 

(Bartosiewicz et al., 2021). The 2018 crash in phytoplankton that coincided with the spring burst (as indicated by chla 

measurements, Fig. 7 (a)) evidences a large input of autoOC to the sediment during the spring burst.  A second possible 
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mechanistic connection is production of CH4 by phytoplankton in the oxic surface water. A recent study by Hartmann et al. 500 

(2020) combined in-situ measurements of phytoplankton communities, CH4, and CH4 isotopes with lab incubations and 

demonstrated that all major phytoplankton classes could produce CH4 under oxic conditions. Phytoplankton CH4 production in 

the surface mixed layer super-saturates the upper water column with CH4 and leads to enhanced diffusive emissions, and 

phytoplankton biomass has been found to be the primary driver of diffusive FCH4 in some reservoir systems (McClure et al., 

2020). Strong diurnal patterns in FCH4 surrounding the spring burst correlated with latent heat flux (LE), an indicator of warm, 505 

windy, convective conditions of enhanced air-water gas exchange (Fig. S5, S6). This suggests that during the spring burst the 

surface waters were super-saturated with CH4 and diffusive emissions were the dominant pathway during that time. Including 

measures of phytoplankton CH4 production in the surface mixed layer in future studies would be helpful in differentiating 

which production pathway led to elevated dissolved CH4.  

The difference in hydrologic regimes and subsequent availability of autoOC versus allochthonous OC (alloOC, i.e. particulate 510 

or dissolved C derived from terrestrial plant tissue) may also shed light on interannual differences beyond the spring burst. The 

lab study by Grasset et al. (2018) found that while additions of autoOC led to pulses of FCH4, alloOC took longer to decompose 

and additions led to more gradual but sustained FCH4. Thus, the wet spring of 2017 may have loaded the reservoir with slow-

burning alloOC, which could partially explain the smaller magnitude of FCH4 pulses in 2017 compared to 2018 (Fig. 2).  

The impact, or lack thereof, of the spring burst on reservoir-wide cumulative FCH4 has implications for the value of higher-515 

resolution measurements. This is analogous to the question of whether the increased complexity of process-based models 

improves prediction over empirical models (cf. Adams et al., 2013). While the EC monitoring results almost doubled from 

2017 to 2018, the hybrid upscaled estimate had only an 11% difference (Table 1, Fig. 5). Furthermore, the cumulative FCH4 

determined via the lake-wide surveys was closer to the hybrid upscaled estimate than the EC results in 2018 (Fig. 5). Using the 

recent size-productivity model (Del Sontro et al., 2018) to predict FCH4 at Acton Lake based on mean annual chla levels (Eq. 7, 520 

Fig 7) yields estimates of 11.1 and 10.3 mg CH4 m-2 hr-1 for 2017 and 2018, respectively. These values are in the same range 

as the warm season mean fluxes determined via the hybrid approach for Acton Lake (Table 1). However, the model results 

contrast with measured results in terms of which year had higher FCH4. Furthermore, the model results would over-estimate 

cumulative annual FCH4 for Acton Lake as they do not take low wintertime emissions into account.  

Sub-annual climatic patterns and productivity dynamics may become more important in understanding and predicting reservoir 525 

FCH4. Recent research demonstrates how warmer springs have increased the frequency and intensity of cyanobacterial blooms 

in midwestern US reservoirs over the past two decades (Smucker et al., 2021), and continued warming will likely intensify this 

phenomenon. There is also a burgeoning body of knowledge that points to the importance of phytoplankton ecology on lake 

and reservoir CH4 production, in terms of both the amount (Hartman et al., 2020; McClure et al., 2020; Zhang et al., 2021) and 

type (Bartosiewicz et al., 2021). Furthermore, Thus, the underlying factors that led to the 2018 spring burst at Acton Lake may 530 

be more common in the future and have a greater effect on the reservoir CH4 budget.    

 

4.2.2 Additional intra-lake variability:  

Beyond the spring burst, we observed additional patterns of intra-lake spatiotemporal variability in FCH4 related to sediment 

temperature (sedT). Temperature is an important control on metabolic processes such as methanogenesis, but other signals can 535 
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complicate the relationship between temperature and FCH4 at the scale of ecosystem fluxes. Nevertheless, sedT emerged as a 

key predictor of FCH4 in this study. The ANN model used to gap-fill the EC monitoring ranked sedT as one of the most important 

biophysical predictors of FCH4 along with absolute static pressure, change in static pressure, and latent heat flux (Fig. 3). A 

strong indication of the intra-lake patterns in drivers and emissions is that maximum ebullitive FCH4 observed by the AFTs 

coincided with maximum sedT at both the shallow (U-14) and deep (U-12) monitoring sites in 2017 (Fig. 8). This maximum 540 

occurs in early August at U-14 versus mid-September at U-12, a phase-shift that reflects the time delay in heat transfer to the 

deeper sediment. This phase shift could also (speculatively) have been affected by the time delay in nutrient and OC transfer 

from the inlets. This pattern was not as pronounced in 2018 (Fig. S10), perhaps due to differences in the precipitation regime 

that affected reservoir metabolism. 

We used ecoQ10 and 2DKS threshold analysis to further investigate the role of sediment temperature on regulating FCH4 in 545 

both the deep and shallow portions of Acton Lake. Both of these quantitative analyses of the relationship between FCH4 and 

SedT yielded statistically significant results (Table 3), and each monitoring method had consistent ecoQ10 values and 2DKS 

threshold temperatures across the two study years (Table 3, Fig S11). The EC method had a much lower ecoQ10 value than the 

AFT sites, the latter of which were comparable to maximum ecoQ10 values reported in other studies (DelSontro et al., 2016). 

The relatively low ecoQ10 value for the EC method may be due to different T response of ebullitive vs. diffusive emission 550 

pathways, or to a spatial mis-match between the measured sedT and the EC flux footprint. For these reasons, we focus on the 

AFT sites in interpreting the ecoQ10 and threshold temperature results in terms of intra-lake spatial variability. The ecoQ10 

values indicate a stronger relationship between sedT and ebullitive FCH4 at the shallow site than the deep site. Despite a greater 

ecoQ10 value, ebullitive FCH4 at the shallow site didn’t respond to warming in the spring until water temperatures reached a 

threshold of ~22.5 oC, whereas ebullitive FCH4 at the deep site responded to warming at a much lower temperature threshold 555 

(13 – 18 oC, Table 3).  Furthermore, mean ebullitive FCH4 was very similar between the two sites (Table 1), despite a 6-degree 

difference in maximum sediment temperature.  These patterns suggest that methanogens at the deep site may be better adapted 

to the consistently cooler conditions found in the hypolimnion of Acton Lake, which has important implications for predictive 

models employing ecoQ10 or threshold values to parameterize FCH4 as a function of sedT.  Alternatively, the differences in 

temperature sensitivity between the deep and shallow site may reflect differences in substrate quality and/or quantity related to 560 

spatial patterns in sedimentation and productivity (Berberich et al. 2019).  Regardless of the underlying mechanism, these 

patterns illustrate strong spatial patterning in CH4 biogeochemistry within this 2.4 km2 reservoir.  

5. Conclusions 

In this study we investigated temporal patterns and biophysical drivers of CH4 fluxes from a eutrophic temperate reservoir 

using multiple methods including eddy covariance. Sediment temperature and the overlying static pressure were the most 565 

important biophysical drivers of FCH4 per the ANN model results. Water chemistry and chla measurements indicate that the 

spring burst of elevated FCH4 coincided with a phytoplankton bloom. Comparing the two observation years indicated that the 

climatic conditions of precipitation and temperature were more conducive to a phytoplankton bloom in 2018 than 2017. In 

contrast to previous studies, we saw a weak positive correlation between FCH4 and reservoir depth, we did not find a strong 

relationship between FCH4 and underwater turbulence, nor did we observe consistent diurnal patterns in FCH4.  570 
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We found that Acton Lake had cumulative annual CH4 areal emissions of 45.6 ± 8.3 and 51.4 ± 4.3 g CH4 m-2 in 2017 and 

2018, respectively. These levels of emissions place Acton Lake in the upper quartile of emission rates reported from reservoirs 

(Deemer et al., 2016), further supporting the concept that highly productive mid-latitude reservoirs can have higher magnitude 

CH4 emission rates than would be predicted by age and latitude alone (Del Sontro et al., 2018). A spring burst of FCH4 observed 

over a two-week period in 2018 but not 2017 accounted for 59% of the difference in cumulative emissions between years. This 575 

difference between consecutive years highlights the importance of multi-year studies (c.f. Room et al., 2014), and the 

importance of characterizing temporal variability in open water systems, which Williamson et al. (2020) illustrated exceeded 

spatial variability for several physical, chemical, and biological metrics. 

The EC technique holds much promise for improving our understanding of the biophysical drivers of gaseous fluxes, with a 

few caveats. In addition to the pseudo-continuous temporal coverage, the EC measurement footprint encompasses a much 580 

larger area than traditional gas flux measurement techniques (e.g. dissolved gas sampling, chambers, inverted funnel traps), 

increasing the likelihood of integrating fluxes over a distribution of hot spots. However, care must be taken in the siting, quality 

control, and interpretation of results. The authors reemphasize the recommendation given by Vesala et al., (2012): for best 

results, close collaboration is needed between biometeorologists and limnologists, to understand what is going on both above 

and below the water. For future studies of reservoir FCH4 using EC, we recommend siting the monitoring tower in the area of 585 

the reservoir with the highest variability in CH4 emissions, likely near the inlet, and setting up multiple AFTs across the reach 

of the reservoir to constrain spatial patterns. Future studies that incorporate more direct measurements of phytoplankton 

dynamics would also be useful to improve our understanding of drivers of CH4 production and emission that may be more 

common with future warmer springs and extremes in precipitation patterns.  

The EC results in this study further our understanding of the interaction between precipitation, sediment temperature, algal 590 

productivity levels, and FCH4. This study adds to our understanding of open water flux processes at appropriate spatial and 

temporal scales, while highlighting a way to present and compare EC and whole- reservoir survey data in appropriate contexts.  

 

Code and Data Availability 

The datasets and R code used for the analysis in this study are available on Zenodo. The raw data and R code are available 595 

under: R Code for: Temporal patterns and biophysical controls on methane emissions from a small eutrophic reservoir: insights 

from two years of eddy covariance monitoring, doi: 10.5281/zenodo.4540271; and supplemental ANN resampling data is 

available under: Artificial Neural Network (ANN) Resampling Results for Gap Filling Eddy Covariance Data, doi: 

10.5281/zenodo.4540271.  
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Table 1: Seasonal methane fluxes reported as mean fluxes and cumulative areal emissions from Acton Lake 

characterized by different measurement techniques. The eddy covariance method measures total (diffusive + ebullitive 

+ other) fluxes. 

 5 

 

  

 
1“Warm Season” is defined as 1 May - 30 September 

Observation Type 

Warm Season1  Mean Flux 
(mg CH4 m-2 hr-1) 

Cumulative Annual 
Emissions 
(g CH4 m-2) 

Diffusive Ebullitive Total Total 

20
17

 

Eddy Covariance -- -- 9.73 ± 0.67 40.7 ± 5.9 

Shallow Site 3.2 4.47 ± 0.63 7.67 ± 0.63 29.3 ± 2.2 

Deep Site 0.89 5.76 ± 0.54 6.67 ± 0.54 29.0 ± 2.0 

Lake Surveys 1.28 ± 0.52 8.71 ± 6.1 9.98 ± 6.2 37.4 ± 5.6 

Hybrid Upscaled -- -- 10.3 ± 1.9 45.6 ± 8.3 

20
18

 

Eddy Covariance -- -- 17.5 ± 0.38 71.4 ± 4.2 

Shallow Site 3.55 5.68 ± 0.11 9.74 ± 0.11 41.9 ± 0.36 

Deep Site 0.96 6.65 ± 0.05 7.57 ± 0.05 30.8 ± 0.25 

Lake Surveys 1.87 ± 1.2 11.1 ± 6.1 13.0 ± 6.6 49.2 ± 3.7 

Hybrid Upscaled -- -- 12.9 ± 0.96 51.4 ± 4.3 
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Table 2: Dissolved nutrient and carbon data for the inflow and outflow during the study period, reported as the mean 

of weekly samples taken between April and October, and as the value measured for the week of the 2018 spring burst 

(May 24 – June 4). Dissolved nutrient data includes total nitrogen (TN), ammonium (NH4), nitrate (NO3), total 

phosphorus (TP), and soluable reactive phosphorus (SRP). Dissolved carbon was measured as particulate organic 5 

carbon (POC).  

Analyte (units) 

2017 2018 

Mean Spring Burst Mean Spring Burst 

Inflow Outflow Inflow Outflow Inflow Outflow Inflow Outflow 

TN (mg N L-1) 5.69 5.30 8.27 8.12 2.05 1.78 3.39 3.03 

NH4 (mg N L-1) 0.05 0.07 0.02 0.02 0.05 0.05 0.17 0.07 

NO3 (mg N L-1) 0.97 0.89 1.69 1.62 0.25 0.22 0.47 0.43 

TP (µg P L-1) 115 99.9 98.6 76.6 141 80.4 254 110 

SRP (µg L-1) 20.2 24.4 2.66 5.35 11.5 9.69 15.7 2.81 

POC (mg L-1) 3.53 2.69 3.42 2.96 4.09 2.74 4.48 3.06 

 

 

 

 10 

 

Table 3: Summary statistics describing the relationship between FCH4 and sediment temperature per the ecoQ10 analysis 

and the two-dimensional Kolmogov-Smirnov test (2DKS) threshold analysis. All  

 

 15 

  Eddy Covariance AFT Shallow AFT Deep 

ecoQ10 

2017 value 6.96 35.1 30.4 

2017 R2  0.85 0.48 0.60 

2018 value 5.64 35.8 30.7 

2018 R2 0.83 0.85 0.38 

Threshold 

(2DKS) 

2017 sedT threshold 14.1 22.2 17.9 

2017 test statistic 0.226 0.166 0.204 

2018 sedT threshold 17.4 23.0 13.3 

2018 test statistic 0.234 0.190 0.138 
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Figure 1: Map of Acton Lake (a), showing the location of multiple monitoring methods: eddy covariance flux tower 

sites (red circles), active funnel traps and bi-weekly chamber measurements (dark blue squares), and spatially 

extensive survey sites (light blue circles), and the weather station and thermistors operated by Miami University 10 

(purple triangles). The lake contour lines represent ~ 1m depth increments. Inset image shows the location of Acton 

Lake in southwest Ohio. The Google Earth image (b) shows the 80% cumulative footprint probability distribution at 

each eddy covariance flux tower site at 10% intervals 
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Figure 2: Time series of FCH4 monitored via multiple methods: eddy covariance (violet), the sum of the shallow AFT 

and interpolated chamber measurements (blue, site U-14), the sum of the deep AFT and interpolated chamber 

measurements (green, site U-12), and via the spatially integrated lake-wide surveys (yellow). The error bars for the 5 
lake surveys indicate the 95% confidence interval of the mean. Error margins for the other measurements are omitted 

for figure legibility. The spring burst period was 24 May - 4 June 2018. 
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Figure 3: Median variable importance ranking for the drivers of the artificial neural network gap-filling model in terms 

of percent importance to the predictive power of the model. This ranking if based both on intra-model variability (i.e. 

the effect of model architecture and random seed selection) and on inter-model variability (i.e. the effect of data selection 

for the training, testing, and validation datasets). DOY = day of year; Delta static P is change in overlying static pressure; 5 

Sed T is sediment temperature, LE is latent heat flux; Static P is static pressure; Wind Dir is wind direction; H is 

sensible heat flux; u Star is friction velocity; PAR is photosynthetically active radiation; HOD is hour of day.
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Figure 4:  Meteorological and limnological conditions over the study period: (a) daily mean of air (red) and sediment 

(black) temperature; (b) daily mean latent and sensible heat fluxes (LE, black, and H, red, respectively); (c) daily 

cumulative precipitation (mm); (d) stream inflow (m3 s-1); (e) water depth in the footprint of the flux tower (m); (f) 

Brunt Väisälä frequency, a measure of water column mixing potential (s-1); and (g) the water temperature profile at 5 

the deep site (U-12). Grey bars indicate the time frame of the 2018 spring burst of CH4 emissions.  
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Figure 5: Cumulative areal emissions in 2017 and 2018 from EC, sum of AFT and chamber, spatial survey monitoring, 

and hybrid upscaling results (g CH4 m
-2). Vertical lines intersecting the Lake Survey trace represent the 95% confidence 

interval of the lake-wide FCH4 estimate. 5 
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Figure 6: Total (ebullitive + diffusive) FCH4 measured during mid-summer, late-summer, and fall spatial surveys at 

Acton Lake during 2017 (top row) and 2018 (bottom row).  Dots indicate magnitude of FCH4 per the z-axis scale and 

vertical black lines connect red dots to their corresponding sampling location. Dot color indicates whether a sampling 

site is in the shallow (< 3 m, lavender) or deep (> 3 m, royal purple) area of the reservoir.  5 
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Figure 7: Daily air and sediment temperature (a, left) and chlorophyll a (an indicator for algal biomass, b, right) in 2017 

and 2018. The grey bar indicates the spring burst period of elevated FCH4 in 2018, likely supported by elevated sediment 

temperature and algal biomass levels that year.
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Figure 8: Time series of sedT and ebullition in 2017 at the shallow (green solid line) and deep (blue dashed 

line) sites. The light grey bar highlights the period of maximum ebullition and sedT at the shallow site; the 

dark grey bar highlights the corresponding period at the deep site.  

 

 


