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Abstract. Vegetation conditions can be monitored on a global scale using remote sensing observations in various wavelength

domains. In the microwave domain, data from various spaceborne microwave missions are available from the late 1970s on-

wards. From these observations, vegetation optical depth (VOD) can be estimated, which is an indicator of the total canopy wa-

ter content and hence of above-ground biomass and its moisture state. Observations of VOD anomalies would thus complement

indicators based on visible and near-infrared observations, which are primarily an indicator of an ecosystem’s photosynthetic5

activity.

Reliable long-term vegetation state monitoring needs to account for the varying number of available observations over time

caused by changes in the satellite constellation. To overcome this, we introduce the Standardized Vegetation Optical Depth

Index (SVODI), which is created by combining VOD estimates from multiple passive microwave sensors and frequencies.

Different frequencies are sensitive to different parts of the vegetation canopy. Thus, combining them into a single index makes10

this index sensitive to deviations in any of the vegetation parts represented. SSM/I, TMI, AMSR-E, WindSat and AMSR2-

derived C-, X- and Ku-band VOD are merged in a probabilistic manner resulting in a vegetation condition index spanning from

1987 to the present.

SVODI shows similar temporal patterns as the well-established optical vegetation health index (VHI) derived from optical

and thermal data. In regions where water availability is the main control of vegetation growth, SVODI also shows similar15

temporal patterns as the meteorological drought index scPDSI and soil moisture anomalies from ERA-land. Temporal SVODI

patterns relate to the climate oscillation indices SOI and DMI in the relevant regions. It is further shown that anomalies occur

in VHI and soil moisture anomalies before they occur in SVODI.

The results demonstrate both the potential of VOD to monitor the vegetation condition supplementing existing optical indices.

It comes with the advantages and disadvantages inherent to passive microwave remote sensing, such as being less susceptible20

to cloud coverage and solar illumination but at the cost of a lower spatial resolution. The index generation is not specific to

VOD and could therefore find applications in other fields.

The SVODI products (Moesinger et al., 2022) are open-access under Attribution 4.0 International and available at Zenodo,

https://doi.org/10.5281/zenodo.7114654
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1 Introduction25

Monitoring vegetation conditions by remote sensing is important for a variety of purposes, such as agricultural yield prediction

(Petersen, 2018; Crocetti et al., 2020), forestry (Pause et al., 2016), fire ecology (Szpakowski and Jensen, 2019), and to track

long-term ecosystem changes (Vogelmann et al., 2012). On a global scale, observing vegetation conditions from space allows

for cost-effective, long-term, and spatially consistent analyses.

30

Numerous variables and metrics have been developed to monitor vegetation conditions from space-borne observations. Some

use the spectral or radiometric information directly to create a feature related to the vegetation. This includes features such as

the Normalized Difference Vegetation Index (NDVI), which is widely used as a measure of live green vegetation (Huang et al.,

2021; Tucker et al., 2005), or the cross-polarization ratio (CR) which is related to polarization changes of active microwaves

caused by vegetation structure and moisture content (Vreugdenhil et al., 2020).35

Often, radiometric information is translated into biogeophysical or -chemical variables such as the Leaf Area Index (LAI) or

the fraction of absorbed photosynthetic radiation (Dorigo et al., 2007). An ecosystem’s condition can also be observed through

its response to stress, e.g., by measuring changes in land surface temperature (Kogan, 1990) or evaporation (Martens et al.,

2017).

All these features have in common that they show some aspect of the vegetation at a given time and location.40

To assess whether the state of the vegetation is unusual at a given time and location, it is usually compared against the

expected value at that time of year, derived from long-term observations. There there are multiple ways to do this. The most

straightforward way is to calculate anomalies by subtracting the multiyear seasonal average from the observation. This allows

one to directly see whether an observation is higher or lower than usual. The drawback of such raw anomalies is that their45

magnitude depends on the average conditions at a given location. Therefore, the anomalies between different locations cannot

be compared against each other and it requires expert-knowledge to know whether an anomaly of a certain magnitude is a very

strong outlier or a minor deviation (Katz and Glantz, 1986).

This can be solved by expressing the vegetation condition as an index. While anomalies show deviations as absolute differences

to some mean, indices show the likelihood of observing a deviation of a certain magnitude. Indices are easier to interpret, as50

they follow a well-defined distribution which allows one to discern quickly whether a value is relatively high or low. Some

well-known example indices are the Vegetation Condition Index (VCI, computed from NDVI, (Kogan, 1990, 1997, 2001)), the

Temperature Condition Index (TCI, computed from observations in the thermal domain (Kogan, 1990, 1997, 2001)), and the

Standardized Precipitation Index (SPI, from precipitation estimates(Thomas B. McKee and Kleist, 1993)).

55

Over the past four decades, various platforms carrying multi-frequency microwave radiometers have been orbiting the earth.

From these observations it is possible to derive the Vegetation Optical Depth (VOD), which describes the attenuation of mi-

crowave radiation by vegetation (Jackson and Schmugge, 1991; Meesters et al., 2005). The higher the vegetation water content
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and the shorter the wavelength, the more the vegetation attenuates the radiation (Jackson and Schmugge, 1991; Owe et al.,

2008). Each frequency band is sensitive to slightly different parts of the vegetation, with short-wavelengths such as measured60

by the Ku-band being mostly related to the canopy top and leaves, while longer wavelengths are also sensitive to the woody

vegetation parts (Owe et al., 2008; Rodríguez-Pérez et al., 2018). Compared to indices derived from optical data, VOD satu-

rates less quickly for dense canopies and is therefore more sensitive to fluctuations in densely vegetated areas (Liu et al., 2015;

Frappart et al., 2020). Among many other things, VOD has been used to analyze the vegetation’s response to droughts in the

Amazonian tropics (Liu et al., 2018) and in the Pannonian Basin (Crocetti et al., 2020), to determine deforestation in the tropics65

(van Marle et al., 2015), and estimate Gross Primary Production (Teubner et al., 2019).

Long-term VOD datasets, such as VODCA (Moesinger et al., 2020) or the dataset presented by (Liu et al., 2015), allow for

monitoring vegetation conditions over decadal timescales. It might seem trivial to create an index from any of these datasets by

calculating the seasonal anomalies and standardizing them. However, these datasets are based on averaging all available VOD

values from different sensors. This causes the merged data to be heteroscedastic, where periods with fewer observations are70

noisier than periods with more observations due to the law of large numbers. The noise level of the sensors used also differ

over time, where newer sensors generally are less noisy. High noise levels increase the probability of a value to be extreme, and

therefore extreme values are more likely to occur in periods with few observations or noisy sensors. This hampers comparisons

of extreme events over longer time periods.

75

To solve this issue, the Standardized VOD Index (SVODI) is proposed, which uses a probabilistic merging method to gener-

ate a long-term dataset for global vegetation condition monitoring based on VOD. After a technical evaluation, its relationship

to other vegetation-related indices is explored. This assures that SVODI behaves reasonably in the case of an event affecting

the vegetation and to give insight into how it differs from the currently used indices for vegetation condition monitoring.

2 Data80

2.1 Vegetation Optical Depth data sets

2.1.1 The land-parameter retrieval model (LPRM)

VOD estimates from various microwave radiometers and frequencies have been obtained with LPRM v6.0 (van der Schalie

et al., 2017; Owe et al., 2008; Meesters et al., 2005), which is a forward radiative transfer model based on the work of Mo

et al. (1982). It simulates the top-of-atmosphere brightness temperature for a wide range of surface conditions. It retrieves soil85

moisture and VOD analytically using polarized microwave data and Ka-band surface temperature estimations (Holmes et al.,

2009) without relying on external information on the vegetation. LPRM assumes a thermal equilibrium between the surface and

vegetation (Owe et al., 2008). Due to uneven solar heating during the day, daytime LPRM retrievals are still very experimental

with an unknown error magnitude. In line with other studies using LPRM data (Dorigo et al., 2017; Moesinger et al., 2020)
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therefore only nighttime VOD observations are used.90

2.1.2 Sensor specifications

For this study, the exact same data as for VODCA (Moesinger et al., 2020) are used, namely VOD data derived from the

radiometers SSM/I, TMI, AMSR-E, WindSat and AMSR2. An overview of the specifications can be found in table 1. All

sensors but TMI have a sun-synchronous circular orbit, resulting in global coverage.95

SSMI, The Special Sensor Microwave Imager, F08, F11 and F13 onboard DMSP satellites are used for a total time span of

1987 to 2015. VOD retrieved from Ku-band with a resolution of 69× 43 km is used (Wentz, 1997).

TMI, the TRMM Microwave Imager onboard TRMM, is used from 1997 to 2015. The VOD retrieved from X- and Ku-band

are used. Flying in a non-near-polar orbit, it only covered the area 35 degrees N/S until 2001, when a boost in altitude increased100

it to about 37 degrees N/S. This also decreased the spatial resolution of X-band from 63×37 km to 72×43 km and of Ku-band

from 30× 18 km to 35× 21 km (Kummerow et al., 1998).

AMSR-E, the Advanced Microwave Scanning Radiometer onboard Aqua, is used from 2002 to 2011. The VOD retrieved

from C-, X-, and Ku-band are used which have a spatial footprint of 75×43 km, 51×29 km and 27×16 km respectively. Only105

the descending overpass is used, which passes the equator 1:30 AM (Knowles et al., 2006; Kawanishi et al., 2003)

WindSat onboard Coriolis observes X- and Ku-band with a spatial resolution of 39× 71 km, 25× 38 km and 16× 27 km

respectively and the retrieved VOD values from 2003 to 2012 are used (Gaiser et al., 2004). WindSat is still in orbit and func-

tional, but no access to data past 2012 was given.110

AMSR2, the Advanced Microwave Scanning Radiometer 2 onboard GCOM-W1, is used from June 2012 onwards. It is the

follow-up to AMSR-E and as such is very similar, but with slightly higher spatial resolution of 62× 35 km, 42× 24 km and

22× 14 for the C-, X-, and Ku-band respectively. Another improvement is the addition of a second C-band (7.3 Ghz) that

can be used in case Radio-Frequency Interference (RFI) is affecting the primary C-band (6.9 GHz) (Meier et al., 2018). For115

C- and X-band, all retrieved daytime VOD is used. For Ku-band, preliminary analysis revealed that the VOD retrievals after

2017-08-01 abruptly drop globally, possible due to a calibration issue. While the exact reason is not known, the data is deemed

unreliable and not used after that date.

2.2 Auxiliary data120

Multiple auxiliary datasets are used to evaluate SVODI. Most of these datasets do not follow a standard normal distribution,

either by design or because the pre-processing (regridding and temporal resampling) changed their distribution. To facilitate
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the comparison of all datasets, they are standardized using a basic Z-score normalization:

xstandardized =
(x−µx)

σx
(1)

where xstandardized is the standardized data, x is the original data and µx and σx are its mean and standard deviation, respec-125

tively. This ensures that all data sets for the comparison have a mean of 0 and a standard deviation of 1.

2.2.1 Vegetation Health Index, Vegetation Condition Index, and Temperature Condition Index

The Vegetation Health Index (VHI) (Kogan, 1990, 1997, 2001) is derived from optical and thermal observations. The general

concept is to combine water and temperature stress indices into a combined vegetation health index (Kogan, 2001). As such,

the VHI is a weighted average of the Vegetation Condition Index (VCI) and Temperature Condition Index (TCI),130

V HI = αV CI +(1−α)TCI (2)

where the weight α is traditionally set to 0.5 (Kogan, 1997). The VCI is derived from NDVI, and as such contains information

about the greenness of the vegetation:

V CI = 100 · NDV I −NDV Imin

NDV Imax−NDV Imin
(3)

where NDV I , NDV Imin and NDV Imax are the smoothed weekly NDVI, its multiyear minimum and maximum NDVI,135

respectively. The VCI was used successfully for drought monitoring and assessing vegetation conditions (Kogan, 1997) and in

the VHI is assumed to account for water stress.

The TCI is defined similarly, but based on land surface temperature (LST),

TCI = 100 · LSTmax−LST
LSTmax−LSTmin

(4)

where LST , LSTmin and LSTmax are the smoothed weekly land surface temperature, its multiyear minimum, and its mul-140

tiyear maximum, respectively. The TCI increased the accuracy of drought monitoring by accounting for temperature stress

and was used to analyze the role of temperature in droughts (Kogan, 1997). By combining it with the VCI both water and

temperature stress are accounted for.

VHI, VCI and TCI derived from AVHRR NDVI (Tucker et al., 2005) and the thermal channel 4, respectively, are used. The145

data are available at https://www.star.nesdis.noaa.gov. They are downsampled from the original 4 km resolution to match our

quarter degree grid, and standardized using equation 1. The data start in 1981, but only values after 1987, the start date of

SVODI, are used in this study.

An alternative to AVHRR data might the newer MODIS data. However, the long-term availability of AVHRR allows for150

comparisons over the whole duration of SVODI, while MODIS is only available after 2000. Additionally, neither MODIS’s

higher spectral resolution (not relevant for VCI calculation) nor its higher spatial resolution (AVHRR resolution is already
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much higher than our quarter degree grid) are of any benefit in our application. Further AVHRR and MODIS NDVI correlate

very strongly with each other (Bédard et al., 2006; Gallo et al., 2005; Zeng et al., 2013) reinforcing that the results (in the

overlapping periods) would not change much by using MODIS instead of AVHRR. Overall therefore AVHRR is more suitable155

for this study.

2.2.2 Self-calibrating Palmer Drought Severity Index

The self-calibrating Palmer Drought Severity Index (scPDSI) (Wells et al., 2004; Van Der Schrier et al., 2013; Aldred et al.,

2021) is a widely used index to track meteorological, agricultural, and hydrological aspects of drought. It is used to analyse the160

relation between SVODI and meteorological droughts. One of the main drawbacks of the original PDSI (Palmer, 1965) was

its lack of spatial comparability due to fixed weights and factors, which was remedied in the scPDSI by adjusting them to the

local climate. The scPDSI models the soil moisture using bucket model involving evaporation, recharge, runoff, loss and their

complementary potential values. This gives a measure of how extreme the water conditions are at a certain time and place,

which is useful for monitoring water stress. The scPDSI data is available at https://crudata.uea.ac.uk/cru/data/drought/.165

2.2.3 ERA5-Land

ERA5-Land is a reanalysis of the global atmosphere, land surface and ocean waves since 1950 (Muñoz-Sabater et al., 2021;

Hersbach et al., 2020). ERA5-Land models a plethora of land variables on a sub-daily temporal resolution. Of interest for our

study is the modeled soil moisture at different depths, which is used assess the relation between SVODI and soil moisture at170

different depths (section 4.2.2). ERA5-Land is available from the Climate Data Store at https://doi.org/10.24381/cds.e2161bac

2.2.4 SOI and DMI

The Southern Oscillation Index (SOI) (Allan et al., 1991; Allan, 1998) and Dipole Mode Index (DMI) (Saji et al., 1999; Saji

and Yamagata, 2003) are useful to monitor large-scale climate oscillations in the tropics. The SOI is derived from the sea-level

atmospheric pressure difference between Tahiti and Darwin, while the DMI is calculated from the difference in sea surface175

temperature anomaly between the west and south-eastern tropical Indian Ocean. Among other things, both of them are are

linked to precipitation anomalies in Australia and North-Eastern Africa, regions where the vegetation is water-limited and

where they are therefore also expected to be linked to the vegetation condition (Hashimoto et al., 2019; Martens et al., 2018).

Both are available at NOAA, at https://psl.noaa.gov/gcos_wgsp/Timeseries/SOI and https://psl.noaa.gov/gcos_wgsp/Timeseries/180

DMI, respectively.
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3 Methods

3.1 SVODI calculation

SVODI is computed from C-, X- and Ku-band VOD from multiple sensors. It is assumed that all sensors and bands are equally

fit as an indicator of the vegetation condition but show different aspects of it. Ku-band is mostly sensitive to surface canopy185

leaves, while longer wavelengths also are affected by the woody part (Owe et al., 2008; Rodríguez-Pérez et al., 2018). Still,

the seasonal VOD anomalies of the three bands correlate strongly with each other (figure 1) as established in previous studies

(Moesinger et al., 2020), which suggests that they behave similarly in case of a vegetation disturbance. To maximize the

information contained in a microwave-based vegetation condition index, it makes sense to combine the information contained

in all bands. Also, the high number of observations per day available due to the many sensors and bands is expected to yield190

an index robust to noise. Additionally, none of the bands span the whole time period (VOD-C 2002 to present, VOD-X 1997

to present, VOD-Ku 1987 to 2017), so by merging them the longest possible time span is achieved.

L-band VOD is notably absent from the list of used frequencies. It has very different temporal characteristics than the other

bands due to it being mostly sensitive to slow structural changes of the vegetation (Konings et al., 2021), while SVODI is only

concerned with short-term fluctuations. Therefore L-band VOD is not used.195

3.1.1 Theory

Previous multi-variate indices (Hao and AghaKouchak, 2013; Guo et al., 2019) have been constructed by first fitting a multivari-

ate distribution with cumulative joint probability P (X1 ≤ x1, ...,Xn ≤ xn) = pcombined to n individual indexesXi, i ∈ 1, ...,n.

Then, the pcombined of each observation (x1, ...,xn) is transformed to the index by applying the standard normal percent point

function (PPF, the inverse of the cumulative distribution function) to it.200

But there is an issue with this approach: pcombined is not uniformly distributed between 0 and 1. Instead, it has a bias towards

low values. This is illustrated for a theoretical bi-variate case with a gaussian copula in figure 2: If some x1, x2 pairs are drawn

and p is calculated for them, the distribution of pcombined is clearly not uniformly distributed. This causes the final index to

have a negative bias. For example, consider the case x1 = x2 = 0, marked with red lines in figure 2. Instinctively, since both

input indexes show usual conditions, one would expect that the merged index should also show usual conditions. However,205

as seen in the figure, P (X1 ≤ 0,X2 ≤ 0)< 0.50, and therefore PPF (pcombined)< 0. Therefore, even if all input indices are

0, the merged index will be negative. For a higher number of concurrent indices used as input, this effect is even stronger. In

general, this would lead to an index with much more extreme negative events than positive ones (figure 2, right).

The negative bias of multi-variate indices computed as above makes the index hard to interpret, as the resulting index is no210

longer normally distributed. Also, in case the individual indexes have data gaps, the expected mean depends on the available

input indexes, leading to a higher expected value for periods where fewer sensors are available than for periods with more sen-

sors available. This issue is solved by scaling pcombined to a uniform distribution whose properties do not change depending

on the number of available input indexes. Therefore SVODI has no bias and can also be calculated if not all input data sets are
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available.215

3.1.2 Implementation

After some basic preprocessing (temporal resampling of swath data to daily values, masking invalid values, same as in

(Moesinger et al., 2020)), the VOD values of each sensor and band, V ODs,b are transformed independently into standard

normally distributed indexes using the following workflow, which is independently applied for each band:220

Long-term VOD changes are related to biomass changes (Frappart et al., 2020). The input datasets are therefore linearly de-

trended causing anomalies to correspond to deviations in vegetation condition and not to long-term structural changes. Linear

detrending might not be sufficient in areas experiencing rapid vegetation changes over a short time, such as deforestation, and

climatologically unexpected biomass fluctuations, such as out-of-season harvests, as both of those cases would be registered by225

SVODI. However, a mitigating factor in both cases is the low spatial resolution of SVODI which causes only very large-scale

events to be registered. The main reason for using linear regression is that it simplicity guarantees that no deviations of interest

are removed.

Then, all VOD values of the respective band, V ODb are scaled to the values of corresponding AMSR-E band to correct for230

bias between the different V ODb using improved piece-wise linear CDF matching as described in Moesinger et al. (2020).

AMSR-E is used as reference because of it’s high-quality observations, global availability and temporal overlap with most

other sensors, a combination of features none of the other sensors possess. In detail, SSMI, TMI and WindSat are matched to

AMSR-E using temporally overlapping observations. AMSR2 does not have a temporal overlap with AMSRE, and therefore a

direct matching using overlapping observations is not possible. Instead, between 37 degrees North/South AMSR2 is matched to235

TMI observations that were first scaled to AMSR-E. Beyond 37 degrees North/South, AMSR2 is directly matched to AMSR-E

using the last two years of AMSR-E and first two years of AMSR2 to determine the scaling parameters.

The scaled VOD values are standardized in the following way: For a day of the year (DOYi, i ∈ 1,2, ...,366), all V ODb

from 2002-07 to 2017-06 that are less than 16 days apart from DOYi are used to build an empirical distribution. This window240

size of 31 days was empirically chosen as a compromise between having enough values to build stable scaling parameters and

the values not being biased in respect to the window center due to the progressing seasonal VOD signal. The period July 2002

- June 2017 is chosen because all three frequency bands have observations during this period. Then, CDF scaling parameters

are calculated to transform the empirical distribution to a N(0,1) distribution. Using these parameters, the V ODb at DOYi

are scaled. This is repeated for all DOYs and done independently for each band, resulting in individual indexes Xs,b for each245

V ODs,b.

The indexes of the individual sensors and bands, Xs,b, are then joined by constructing a multivariate normal distribution

with a zero mean. As discussed before, if P (X1 ≤ x1, ...,Xn ≤ xn) = pcombined, then pcombined is not uniformly distributed
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but is biased towards low values. Therefore, pcombined is scaled to a uniform distribution. Technically this is done by draw-

ing random samples from P and constructing an empirical CDF CDFP from them. pcombined is then scaled to uniform by250

CDFP (pcombined). The PPF is then applied to the scaled pcombined resulting in a normally distributed index. The scaling of

pcombined is numerically slightly unstable and can lead in very rare cases to extremely low SVODI values. Due to the comput-

ers limited precision, these SVODI values always have the exact same value, i.e. -8.14. Therefore, observations where SVODI

is lower than -8 are removed.

Since pcombined is always scaled to uniform, the number of available indices at a given time and location does not affect the255

distribution of SVODI and a continuous index starting in 1987 to the present is generated. A flag indicates for each SVODI

value which sensors and bands contributed to the final value.

3.2 Evaluation methods

SVODI describes the vegetation condition with regard to abnormal vegetation water content. There is no absolute reference to

compare SVODI to and therefore it is evaluated by comparing it to other, well-established vegetation indicators. This is mostly260

done by basic correlation analysis, but also by studying temporal shifts and the evolution of extreme values over time. The

latter is explained in more detail below.

3.2.1 Temporal shift determination

Is it of interest whether events can be seen first in the microwave or optical domain and how large their temporal difference is

for a variety of applications, such as drought prediction. For this purpose the temporal shifts between SVODI, and VHI and soil265

moisture anomalies are determined by finding the temporal lag at which a data set pair correlates the strongest. This is done

by grid search, calculating the correlation coefficient for every shift within a +- 8 week window and selecting for each location

the shift with the highest correlation. 8 weeks was chosen because the shifts were found to be almost always less than that,

even when searching in a larger window. Then, all results are filtered for unreliable results: All locations where the correlation

as a function of temporal shift exhibits multiple local maxima, detected by counting the number of sign changes of the first270

derivative, or where the maximum correlation coefficient is less than zero, are masked out.

3.2.2 Extreme values over time

The plots showing the frequency of extreme values over time are inspired by the plots in Van Der Schrier et al. (2013). With

these plots it is possible to visualize whether the temporal abundance of extreme values is similar for the different data sets.

For visualization, the data are first standardized to N(0,1) using equation 1. E.g. VHI, TCI and VCI are originally scaled from275

0 to 100, and even the N(0,1) distributed indices (e.g. SVODI) are sometimes temporally downsampled, which leads to a

reduced variance and therefore requires re-standardization. The percentage of extreme values is then calculated as follows: For

a geographical region, for each time step, all pixels with a value greater 1 or 2, respectively, are counted and divided by the

total available data points available for that time step.
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4 Results and Discussion280

4.1 Technical analysis

4.1.1 Illustration of the methods by means of an example time series

Figure 3 shows the creation of SVODI at various steps for an exemplary location. The original series have a visible bias between

values of the same band (a), which is corrected with the CDF-matching (b). Note that the scaling is done individually for each

frequency band and not to a common reference used for all together. E.g., AMSR2, Windsat, and TMI Ku observations are285

matched to AMSR-E-Ku, etc. Then, an index is created for each sensor and band and the multiple indices are finally merged

into SVODI (c). The prior distribution of SVODI is unaffected by the number of observations available at a certain date as

the number of available observations varies from 2 to 8 (d), but the SVODI time series shows no breaks between periods with

different sensor availability.

4.1.2 Extreme values over time290

Prior to the SVODI calculation, all datasets are detrended. On a global scale it is therefore expected that the percentage of

extreme SVODI values, both positive and negative, is more or less constant over time. Indeed, there seems to be no drastic

systematic increase or decrease of the percentage of pixels with |SVODI| greater 1 or 2 (figure 4a). This indicates that even

though the number of sensors contributing to SVODI changes over time, this does not lead to massively more or fewer extreme

events in a given time period. In contrast, figure 4b shows the percentage of extreme values if SVODI were generated by simply295

averaging the individual indices per band and sensor, and standardizing the average again. In this case, the periods with few

sensors (pre-2002, after 2017) are much more likely to be extreme than the periods with more sensors. This shows that our

probabilistic merging method is necessary to compare the frequency of extreme events across different periods.

4.1.3 Impact of the number of input datasets on SVODI

If, compared to a simple VODCA standardization, the number of input sensors were to have no effect on the SVODI distribu-300

tion, then this should be standard normally distributed, irrespective of the number of input sensors. Figure 5 (left) shows the

quantiles of SVODI with respect to the quantiles of a standard normal distribution for different numbers of input sensors. Note

that this figure is based on random 20% of all data as the whole dataset is too large to be loaded at once. Also, each SVODI

value can only be part of one group. Hence, each group distribution is computed from values from different dates.

305

Generally, SVODI is normally distributed regardless of the number of input sensors used for its computation. Only for ex-

tremely low values a small difference is observed. Very low values that are also the result of many sensors have a slight positive

bias while for very high values this discrepancy does not occur. The cause for this problem is not fully understood, but it is

assumed to be related to numerical instability of very low values, as p for days with many observations can become very low.

As a simplified numerical example, if a SVODI value is the result of 8 individual uncorrelated indices, and all of them are310
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0 (indicating average vegetation conditions for all sensors), then the resulting p is CDF (0)8 = 0.58 = 0,004. This very low

value has then to be scaled back to 0.5, and therefore even minor deviations in p can lead to a substantially different pscaled.

This example shows that the computation can involve very low values and can therefore become unstable.

Figure 5 (right) shows the quantiles if not our probabilistic merging method was used, but the simple mean of each individual315

index and standardize the result. It shows that the values of this aggregate index would strongly depend on the number of input

observations, as it is much more likely to be extreme if only few input observations are available. This shows that SVODI’s

dependency on the number of observations is almost removed and a lot lower than if one were to use a simple standardization.

4.1.4 Quality change over time320

Of interest is whether the quality of SVODI changes over time. There exists no ground-based validation data for VOD, therefore

a direct validation with some reference data is not possible. Instead, the spatial correlation to VHI over time is used as an

indicator whether SVODI is performing differently during different periods. For each time step, the correlation between the

global SVODI and VHI images is calculated. If the signal-to-noise ratio of any of the two data sets would change, so would

the correlation between them.325

The spatial correlation varies quite strongly over time (figure 6a). This variance is likely due to the varying number of events

over time. There is a statistically significant positive trend. This is expected, as more and better sensors are progressively

becoming available in later years for both SVODI and VHI, resulting in higher quality data for both. In the future, as more

advanced sensors are launched into orbit, the two datasets are expected to further converge.

There is no apparent seasonal dependency of the correlation (figure 6b), indicating that the increase in correlation is not an330

artifact of long-term seasonal surface changes.

4.2 Data analysis

4.2.1 Comparison of SVODI and VHI

SVODI is compared to VCI, TCI and their composite, the VHI to explore their similarities and differences. By comparing

SVODI to all three it is possible to evaluate how it relates to the impact of stress on either vegetation "greenness" (VCI),335

temperature (TCI) or a combination of both (VHI).

VCI and SVODI correlate quite strongly, especially in semi-arid climates (figure 7a). This is line with previous studies

comparing VOD anomalies with LAI, which is also derived from optical data (Moesinger et al., 2020; Jones et al., 2011). The

pattern is at least partially due to the more distinct inter- and intra-annual variability of vegetation activity in semi-arid regions.340

Vegetation in semi-arid regions is highly susceptible to increased or decreased precipitation, and as such they experience
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stronger anomalies than regions where water is abundant, leading to a higher signal to noise ratio. This then leads to higher

correlations between the two indices.

TCI and SVODI correlate positively in semi-arid regions (figure 7c) because high temperatures lead to unfavourable vege-

tation conditions and vice versa for low temperatures. Likewise they correlate negatively in cold regions where positive tem-345

perature anomalies lead to favourable vegetation conditions and vice versa for low temperature anomalies. (Papagiannopoulou

et al., 2017). SVODI correlates more strongly with VCI than with TCI. This makes sense, as both SVODI and VCI represent

changes in biogeophysical properties of the canopy as a result of anomalous environmental conditions, whereas TCI mirrors a

cause of these changes.

350

Since VHI is the average of TCI and VCI, SVODI also correlates more strongly with VCI than with the VHI (figure 7e),

especially in cold regions.

Anomalies generally occur first in TCI followed by VCI and SVODI (figure 7b, d, f), which is expected as there is a causal

relationship between prolonged high temperatures in semi-arid regions and a subsequent reduction in vegetation health, and

vice versa for low temperatures. VCI generally leading SVODI indicates that changes in greenness occur before changes in355

vegetation water content. This is to be expected, as reduced photosynthesis is one of the first responses of plants to heat stress,

in part due to decay of photosynthetic pigments (Larcher, 2000; Zhao et al., 2020). The plant water content drops more slowly,

as plants are able to regulate the rate of transpiration and respiration to balance water loss under transient or mild heat stress

(Zhao et al., 2020).

4.2.2 Relation between SVODI and soil moisture at different depths360

Correlations between between SVODI and soil moisture anomalies at various depths were calculated to determine the con-

nection between the different depths and the vegetation condition. SVODI and upper level soil moisture anomalies (0 - 7 cm

and 7 - 28) correlate strongest with each other in areas where vegetation growth is limited by water availability (figure 8a, c).

This is in line with a previous study comparing soil moisture to VOD anomalies (Konings et al., 2021). In areas where vege-

tation growth is limited by temperature (e.g., see Hashimoto et al. (2019); Papagiannopoulou et al. (2017)), there is generally365

a negative correlation between SVODI and soil moisture at all levels. This makes sense, as increased precipitation, increased

soil moisture and increased cloud coverage and therefore lower temperatures are all linked to each other in these regions.

Additionally, increased soil moisture leads to decreased LST by controlling the partitioning between sensible and latent heat

fluxes (Jin Huang and Van Den Dool, 1993). The lower LST then leads to less favourable vegetation conditions in cold regions.

This can be also seen if the mean correlation per land cover and depth is considered (figure 9a). In land cover types that are370

generally found in cold regions, such as needleleaf forests, surface soil moisture anomalies correlate negatively with SVODI

and slightly positively with temperature anomalies. The opposite is the case for land cover types generally found in warmer

climates (broadleaf forests, shrubs), where more water and lower temperatures lead to more favourable vegetation conditions.

Roughly the same pattern is also visible if the analysis is repeated for each season separately (DJF/MAM/JJA/SON1), but the

1December, January, February, ...
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pattern shifts with the seasons (results not shown). E.g. in Europe, SVODI correlates negatively with soil moisture in DJF due375

to the temperature being the limiting factor, but positively in JJA when water is the limiting factor.

Correlation coefficients between SVODI and soil moisture anomalies decrease with increasing depth when no lag optimi-

sation is done (figure 9a). However, by optimising the lag the highest correlation coefficients are obtained for 7-28 cm and

28-100 cm soil moisture (figure 9b), even though overall the differences are very small. This agrees with a study showing 7-28380

cm to be the most relevant water reservoir for vegetation productivity, particularly in semi-arid regions (Li et al., 2021). The

optimised correlation coefficients are highest for land cover types typically found in in arid regions, such as sparse vegetation

and shrubs, while they are lowest in needle-leaf forests, which are more often found in regions where temperature is usually

more limiting than water.

There is a clear relationship between soil depth and temporal shift (figure 9c), with soil moisture anomalies in layer 3385

generally preceding SVODI, and soil moisture anomalies in layer 4 generally following SVODI. This is mostly likely due to

bottom level soil moisture levels lagging behind the top ones, which makes sense if moisture is modeled as a "bucket" model

where the top layers are filled and depleted first before the lower layers.

4.2.3 Sensitivity of SVODI to Australian interannual precipitation variability

The Australian summers of 2010 and 2019 were marked by exceptionally high and low precipitation (figure 10c and e), respec-390

tively. 2019 was also exceptionally hot and widespread wildfires occurred (Dunn et al., 2020). As the Australian vegetation is

strongly limited by water availability, one would expect that the vegetation moisture content in these years react similarly. In-

deed, the SVODI of 2010 and 2019 was exceptionally high/low, respectively (Figure 10a) and the spatial patterns of SVODI and

precipitation anomalies are very similar in these periods (Figure 10b and d). This illustrates that SVODI in this water-limited

region behaves as expected and is useful to monitor the state of the vegetation.395

4.2.4 Effects of drought on vegetation in the Amazon

In the Amazonian rainforest, the extreme values of SVODI, VHI and scPDSI do not agree with each other (figure 11, left

column). SVODI seems to have more high-frequency variability but less low-frequency variablility than VHI and scPDSI.

One possible explanation might be the originally higher spatial resolution of the VHI and scPDSI products, which, after

downsampling to to the spatial resolution of SVODI, lead to very low noise levels in these products. Another possibility is that400

SVODI reacts quicker to surface changes than the other two indices.

The effects of droughts in the Amazon forest is a highly discussed topic and very challenging (Samanta et al., 2012). Highly-

discussed droughts occurred in 2005, 2010 and 2015 (Panisset et al., 2018; Liu et al., 2018; Lewis et al., 2011; Samanta

et al., 2010; Janssen et al., 2021). Some studies argue that the tropical vegetation is light-limited, and as such a decrease in

precipitation, which corresponds to a decrease in cloud cover, leads to a greening during droughts (Huete et al., 2006; Saleska405

et al., 2007). Others argue that the greening is due to artefacts from atmospheric effects and changing sun-sensor geometry
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(Samanta et al., 2010; Morton et al., 2014). Our results do not give a definitive answer to this discussion, as the patterns are

very ambiguous.

4.2.5 Climate oscillation relations to SVODI

The correlation between SVODI, VHI and scPDSI to the Southern Oscillation Index (SOI) (figure 12, left column) and Dipole410

Mode Index (DMI) (figure 12, right column) are calculated to study how global vegetation is affected by tropical climate os-

cillations.

SVODI and VHI correlations show a similar pattern. The highest correlation coefficients to SOI are found in eastern Australia,

where vegetation is heavily influenced by the El Nino-Southern Oscillation (ENSO) (Liu et al., 2009; Miralles et al., 2014),

with high SOI values being linked to increased precipitation. While the scPDSI also agrees with VHI and scPDSI in Australia,415

it also has a high positive correlation in northern South America and a negative correlation in southern North America and

western Asia.

The correlations between SVODI and VHI and DMI are similar and show the greatest magnitude in southern Australia while

in most other regions they are close to zero. Correlations between scPDSI and DMI show a more distinguished spatial pattern,420

including strong positive correlations in northwestern Russia. In this regions, vegetation growth is limited by temperature and

not precipitation and for this reason no corresponding patterns can be found in the SVODI or VHI plots.

5 Conclusions

SVODI is a microwave-based vegetation condition index that shows similar patterns as existing optical indices and follows soil

moisture in semi-arid regions. It extends the current range of available remote sensing data sets that allow to observe anomalous425

vegetation states, and increases our understanding of global vegetation dynamics. SVODI patterns are reasonable compared to

patterns of VHI, TCI, VCI and soil moisture, but anomalies occur later, which might be an issue for near-real-time applications.

With the exception of extreme low values, the proposed index generation method works well at combining different indices.

The merging method itself is not limited to VOD and can potentially be applied to combine arbitrary normally-distributed

indices. Therefore, this method might find applications in various disciplines. Further efforts will focus on increased numerical430

stability of the calculations and updating SVODI with more recent observations.

Data availability. The SVODI products (Moesinger et al., 2022) are open-access under Attribution 4.0 International and available at Zenodo,

https://doi.org/10.5281/zenodo.7114654
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(a) C vs. X

(b) C vs. Ku

(c) X vs. Ku

Figure 1. Exemplary correlation coefficients between C-, X- and Ku-VOD anomalies of AMSR-E, derived with the LPRM Model (section

2.1.1). Similar results are obtained for other sensors (not shown).
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Figure 2. Bi-variate example of a probabilistic multivariate index as in Hao and AghaKouchak (2013); Guo et al. (2019) without scaling of

p where X1,X2 ∼N(0,1) and the covariance between them is 0.5. PDF (left), distribution of the CDF of samples from it (middle) and the

resulting distribution of the index (right). The red lines mark an example case where x1 = x2 = 0 at different processing steps.
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Figure 3. Temporal subset of an example time series at different processing stages in Western Australia, 24.9S, 125.625E, located in the

Gibson Desert Nature Reserve. The vegetation is shrubland with sparse trees. a) Original VOD time series. b) The same VOD-series after

bias correction. Note that only the bias within each band is corrected and not to a common reference for all bands. c) The indexes created

from each sensor and band as well as SVODI. d) The number of observations contributing to a SVODI value for each day.

24



(a) (b)

Figure 4. Fraction of pixels being extreme of SVODI (a) and non-probabilistic merge of indices (b) over time.
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Figure 5. QQ-plots for different number of input observations. E.g. "3" shows the quantiles of all SVODI values where three input indexes

contributed. "Any" shows the quantiles for any number of observations. N(0,1), the diagonal, shows theoretical normal distribution for

comparison. Left shows the quantile-quantile plot of SVODI, right shows for comparison the quantiles of an index generated by simple

averaging.
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(a) (b)

Figure 6. Spatial correlation coefficient of SVODI vs VHI over time (a) and per season (b), based on weekly data.
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(a) SVODI vs VCI correlation
coefficient

(b) Temporal shift between
SVODI and VCI events

(c) SVODI vs TCI correlation
coefficient

(d) Temporal shift between
SVODI and TCI events

(e) SVODI vs VHI correlation
coefficient

(f) Temporal shift between
SVODI and VHI events

(g) Correlation coefficient Temporal shift [weeks]

Figure 7. Correlation coefficient without temporal shift between SVODI and VCI (a), TCI (c) and VHI (e), respectively and the temporal

shift at which a maximum correlation is obtained (b, d, f). All results are based on weekly means, positive (green) values in the shift plots

indicate that anomalies are visible in VCI/TCI/VHI before SVODI. 28



(a) 0 - 7 cm correlation (b) 0 - 7 cm shift

(c) 7 - 28 cm correlation (d) 7 - 28 cm shift

Figure 8. Correlation (left column) and temporal shift (right column) between SVODI and soil moisture anomalies from ERA5, based on

weekly data. Positive (green) values in the shift plots indicate that anomalies are earlier visible in soil moisture than in SVODI. (first part)

29



(a) 28 - 100 cm correlation (b) 28 - 100 cm shift

(c) 100 - 289 cm correlation (d) 100 - 289 cm shift

Correlation coefficient Temporal shift [weeks]

Figure 8. Correlation (left column) and temporal shift (right column) between SVODI and soil moisture anomalies from ERA5, based on

weekly data. Positive (green) values in the shift plots indicate that anomalies are earlier visible in soil moisture than in SVODI. (last part)
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(a) Corr. coeffs. between SVODI
and SM at different depths

(b) Corr. coeffs. between SVODI
and SM at different depths maximized

by shifting

(c) Temporal lag [weeks] between
SVODI and SM at different depths

Figure 9. Mean correlation coefficient if no temporal shifting is done (a), maximum correlation obtained by temporal shifting (b) and the

corresponding temporal shift in weeks between SVODI and soil moisture anomalies (c) at different ERA5 depths. The depths are: swvl1 0-7

cm, swvl2 7-28 cm, swvl3 28-100 cm, swvl4 100-289 cm. (a) also shows the correlation with the surface soil temperature, stl1.
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(a) SVODI extreme values over time and SOI

(b) SVODI 2010-11 (c) Precipitation
2010-11

(d) SVODI 2019-12 (e) Precipitation
2019-12

Figure 10. Percentage area of SVODI greater/smaller than 1/-1 and 2/-2 respectively for central Australia together with the SOI (top), SVODI

(left) and standardized precipitation anomalies (right) for 2010-11 and 2019-12.
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(a) SVODI

(b) Standardized VHI

(c) scPDSI

Figure 11. Percentage area of SVODI (a), standardized VHI (b) and scPDSI (c) greater/smaller than 1/-1 and 2/-2 respectively over time for

the Northern South America AR6 region(Iturbide et al., 2020). All datasets are downsampled to the monthly resolution of scPDSI.
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(a) SVODI vs. SOI (b) SVODI vs. DMI

(c) VHI vs. SOI (d) VHI vs. DMI

(e) scPDSI vs. SOI (f) scPDSI vs. DMI

Correlation coefficient

Figure 12. Correlation coefficients between SVODI, VHI and scPDSI (top to bottom) vs. SOI (left column) and DMI (right column)
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