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�is paper investigates trends in global leaf area index (LAI) and a�ributes them to drivers (climate, CO2, land
use change) based on factorial simulations with a set of DGVMs and a fully coupled Earth System Model. �is is
basically a revisiting of a study published earlier (Zhu et al., 2016) that applied the same approach (model-based
a�ribution of drivers) and used the same LAI product (GIMMS3g, based on data from the AVHRR mission; Zhu
et al. also used GLOMAP and GLASS to obtain more robust results). Winkler et al. reach conclusions that have
potentially high relevance for our understanding of global vegetation dynamics in response to climate change
and (in particular) to CO2. E�ects of rising CO2 remain a major uncertainty in Earth System Model projections,
owing to challenges in observing and a�ributing e�ects. Hence, deriving new insights from available observational
records is needed.
�e paper by Winkler et al. is well wri�en and display items are of high quality. �e fact that their conclusions
directly challenge �ndings by Zhu et al. (2016) although relying on largely the same method and data, caught
my a�ention. Winkler et al. write in their abstract (”Our results do not support previously published accounts of
dominant global- scale e�ects of CO2 fertilization.”, l. 16) and in their conclusions (”A cause-and-e�ect relationship
between CO2 fertilization and greening of other biomes could not be established. �is �nding questions the study
by Zhu et al. (2016) that identi�ed CO2 fertilization as the most dominant driver of the Earth’s greening trend.”,
l. 722), and in the Key Points (”Most models underestimate the observed vegetation browning, which could be due
to an excessive CO2 fertilization e�ect in the models.”)
Strong conclusions require strong evidence. However, I have several strong concerns with how these conclusions
were reached. In my view, the evidence presented here does not support this main conclusion (represented by the
three citations I refer to above). Although I’m convinced that the analysis itself is diligently carried out and I
consider that the paper o�ers a valuable discussion of the wide and relatively recent literature on the topic, I am
concerned that the main conclusion will not meaningfully contribute to advancing the �eld.

We thank the referee for her/his detailed and constructive review of our manuscript. We appre-
ciate that the referee �nds the subject ma�er of our study highly relevant but we also note the
referee’s main concerns about one of the key conclusions, i.e. a possibly overestimated CO2 fer-
tilization e�ect in terrestrial biosphere models. �e revised manuscript will address this speci�c
point in more detail as well as the other referee comments.

[I’ve reviewed the same manuscript before. As far as I can see (main conclusions are unchanged, �gures are
identical), the mansucript version under review at here is identical to the earlier version I have reviewed. �erefore,
I am posting my previous report here again.]

We acknowledge that the referee already reviewed our manuscript for another journal. �ere the
opportunity to address the referee’s comments was not given, so we are glad to do so now. Some
of the referee’s comments seem to be outdated though as they have been already addressed in the
manuscript, e.g., the referee states ”Winkler et al. rely on a single LAI product to derive trends.
[…]” (Comment 1.1) , yet we have already included analyses comparing a total of �ve di�erent
datasets (see Figure R1-1). More details can be found in our individual responses below.

1 General Comments

1.1 Winkler et al. rely on a single LAI product to derive trends. Yet, several papers have documented inconsis-
tencies between greening and browning trends between satellite data products. In particular, the product used
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here (LAI3g) is based on data from the AVHRR mission. It has been reported that respective data is a�ected by
orbital dri� of the satellite (Tian et al., 2015) and sensor degradation Piao et al. (2019).�e MODIS Collection 6
does not support the AVHRR-derived browning trends in several regions (see also Chen et al. (2019)). �is a�ects
in particular North American boreal forests. […]

We thank the referee for this comment and for emphasizing the limitations of AVHRR-based
datasets. �e current version of the manuscript addresses this issue in the introductory section:

”To assess observed changes in vegetation over climatic time scales, we make use of a 37-year record
of leaf area index (LAI) satellite observations (1982–2017, GIMMS LAI3g, Section 2.1). �e GIMMS
LAI3g product is based on the Advanced Very High Resolution Radiometer (AVHRR) sensors, for which
there are a number of shortcomings (no on-board calibration, no correction of orbit loss, minimal cor-
rection for atmospheric contamination and limited cloud screening; Section 2.1; Zhu et al., 2013; Chen
et al., 2019). To address these shortcomings, we also analyze a total of �ve di�erent remote
sensing products that pursue di�erent strategies for dealing with the issues associated
with AVHRR data (Section 2.1). Due to some inexplicable variations in these datasets (Forzieri
et al., 2017) we concentrate on GIMMS LAI3g in our analysis, which is used in most published papers”
(LL59-68).

Additionally, we go into details describing how these technical issues are addressed in the latest
versions of GIMMS LAI3gV1 and NDVI in the methods section:

”�e complete time series of LAI3gV1 was generated using an arti�cial neural network trained on
data of the overlap period of the Collection 6 Terra Moderate-Resolution Imaging Spectroradiometer
(MODIS) LAI dataset (2000-2017) and and the latest version (third generation) of the Global Inventory
Modeling andMapping Studies group (GIMMS) Advanced Very High Resolution Radiometer (AVHRR)
normalized di�erence vegetation index (NDVI) data (NDVI3g). The la�er have been corrected for
sensor degradation, inter-sensor di�erences, cloud cover, observational geometry e�ects
due to satellite dri�, Rayleigh sca�ering and stratospheric volcanic aerosols (Pinzon and
Tucker, 2014).” (LL96-102).

Most of the other AVHRR-based data products analyzed here also rely on MODIS time series,
among other measures, to correct for the limitations of the AVHRR sensor mentioned above.
As described by the referee, MODIS and AVHRR diverge in their estimates of LAI trends in some
regions. We already cite and discuss the study by Chen et al. (2019) who examined the di�erences
between MODIS and AVHRR-based estimates in more detail. Chen et al. (2019) show that the
greening trends in the MODIS record correspond well to regions with intensive land
use changes. In this study, we focus on long-term climatic and physiological e�ects
and mask regions with intensive agricultural activities, thus do not address land use
changes. �e MODIS time series is still too short to assess long-term changes in the Earth system
associated with climate and rising CO2. AVHRR, on the other hand, now spans nearly 40 years,
making it one of the few resources we have to examine long-term land surface changes over
time. In contrast, the MODIS record alone cannot provide any information on the state of the
vegetation in the 1980s and 1990s. Overall, we agree with the referee that the AVHRR record has
important shortcomings that need to be addressed and discussed. We will place more emphasis
on these points in the revised version of the manuscript.

1.2 […] �e AVHRR-based browning seen in this region combined with the apparent failure of models to capture
the same trends has been used by Winkler et al. (with a largely over- stretched logic) to argue that CO2 e�ects
were inappropriately represented in models (”�us, it is important to focus model development not only on a be�er
representation of disturbances such as droughts and wild�res, but also on revising the implementation of processes
associated with the physiological e�ect of CO2, which currently o�sets browning induced by climatic changes.”,
l., 744). �is is non-sense both in view of the known lack of robustness of apparent browning trends, and in in the
logic of the argument itself. �e failure of models to capture a browning trend may also be due to insu�ciently
sensitive responses to climatic drivers; and in this case (North America) is most likely due to inappropriate repre-
sentations of disturbance in models Anderegg et al. (2020)).
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We thank the referee for his/her comment on the logic of the argument, however, we disagree that
the argument is ’non-sense’. Our argument has two parts as they are stated in the sentence which
is quoted by the referee. First, we argue that the underestimation of historic browning trends in
the models could be rooted in the mis- or underrepresentation of ”disturbances such as droughts
and wild�res” in the models. �e referee suggests the very same in his/her comment: ”�e failure
of models to capture a browning trend may also be due to insu�ciently sensitive responses to climatic
drivers; and in this case (North America) is most likely due to inappropriate representations of distur-
bance in models”. So, we are in agreement here. �us, the referee only disagrees with the second
part of our argument, which proposes an alternative explanation of why models fail to reproduce
vegetation browning: the current implementation of CO2 fertilization e�ect in the models could
o�set the browning induced by climatic changes. We base this statement on our analysis of the
factorial simulations of the MPI-ESM as well as the TRENDYv7 models, which simulate changes
in LAI with and without certain factors such as CO2 fertilization and climate change (Please refer
to 2.3 Max-Planck-Institute Earth SystemModel, 2.4 Land surface models: TRENDYv7 and 2.7 Causal
Counterfactual �eory for details). We �nd that for global estimates (Fig. 3) and especially for the
tropical estimates (Fig. S5), the models reproduce observed decreasing LAI trends only when the
CO2 fertilization e�ect is being absent, as we explain in the manuscript:

”TRENDYv7 models show strongly opposing responses of LAI to the di�erent e�ects of CO2: LAI de-
creases when the physiological e�ect is omi�ed, but increases when the radiative e�ect is omi�ed.
MPI-ESM shows qualitatively the same responses, but less pronounced (Figure S5). For the second half
of the satellite record, the observed trend switches sign to a strong negative trend (∼ -1.4 % decade−1).
�e models reproduce this tendency, but the multi-model average of the TRENDYv7 ensemble is still
positive. During the same time period, the opposing reactions to CO2 in the factorial runs are more
strongly marked (Figure S5). These results suggest that browning caused by CO2-induced cli-
mate change is compensated by greening a�liated with the CO2 fertilization e�ect at the
biome level. Based on these �ndings, we hypothesize that the physiological e�ect of CO2 is strong
in models and outbalances the negative e�ect of climate change in the tropical forests (Kolby Smith
et al., 2016).” (LL457-465)

�e overarching argument we make, then, is that the failure of models to reproduce vegetation
browning may be related to either insu�ciently sensitive responses to climate drivers, overly
sensitive responses to CO2 fertilization, or both. Based on the results presented, this argument
makes perfect sense.

1.3 One aspect that distinguishes the study by Winkler et al., from that of Zhu et al. (2016) is their probabilistic
driver a�ribution. As the authors write, the method has been adopted from Pearl (2009) and Marotzke (2019)
who applied it to a�ribute drivers of near-term climate change. However, I consider that the application of this
method to investigate drivers of vegetation change is ill-conceived. �e usefulness of probabilistic a�ributions is
evident when dealing with systems that are characterized by a substantial inherent stochasticity (deterministi-
cally chaotic systems). In such cases, simulated variations are not necessarily forced, by may result from unforced
internal variability. �is is not the case for vegetation dynamics, where the (simulated) internal unforced vari-
ability is typically zero (except for some models, e.g., LPJ-GUESS, that simulate stochastic gap formation, or some
relatively small internal variability arising from stand dynamics - which are actually not simulated explicitly at
the individual/cohort level in TRENDY models). �is actually facilitates driver a�ibution. All simulated trends
are uniquely a�ributable to drivers using factorial analyses. As a consequence of relying on a probabilistic a�ri-
bution, Winkler et al., �nd, e.g., no clear a�ribution in some semi-arid regions (Africa, South America, AUS) (l.
680-690) due to high interannual variability of green vegetation cover. As I read the paper by Winkler et al., such
�ndings underlie their conclusions (e.g., ”We �nd that CO2 fertilization is an important driver of greening in some
biomes, but not dominant globally as suggested previously”, l. 126). I would argue that the �ndings by Winkler
et al., do not provide new insights that allow for a revision of �ndings by earlier studies (e.g., Zhu et al. (2016)),
but rather fail to identify drivers (including CO2 e�ects) due to their application of an inappropriate a�ribution
method. In most other biomes, a�ributions made here are largely identical with a�ributions made by Zhu et al.
(2016) and also summarised by Piao et al. (2019).
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We thank the referee for his/her critical view of the method Causal Couterfactual �eory, which
we will address in three statements. First, we do not agree that its application is ill-conceived
for long-term changes in the Earth system. �e referee is right, that this method originates from
a�ribution studies of extreme events, e.g. Hannart et al. (2016). Hannart and Naveau (2018)
in ”Probabilities of Causation of Climate Changes” adapted the method to causal a�ribution of
long-term changes. �ey successfully applied it to causal a�ribution of long-term changes in
global surface air temperature, i.e., tested whether the warming trend can be causally linked
to increasing CO2. We adapted their approach to the driver a�ribution problem of long-term
vegetation trends and tested whether they can be causally linked to CO2 or climatic changes. In
our approach, we follow the reasoning as explained in Hannart and Naveau (2018):

”The proposed approach is anchored into causal counterfactual theory (Pearl 2009), which
was introduced recently, and in fact partly used already, in the context of extreme weather event
a�ribution (EA). We argue that these concepts are also relevant to, and can be straightforwardly
extended to, the context of detection and a�ribution of long-term trends associated with
climate change (D&A)” (Abstract Hannart and Naveau, 2018).

Second, it is unclear what the referee means with the statement that land surface models’ ”in-
ternal unforced variability is typically zero”. It is true that variability in the atmospheric forcing
translates into variability in land surface models. However, there are also several ways, besides
the stochastic forest gap modeling proposed by the referee, that coupled processes in land surface
models can lead to internal variability. �ere a various feedback loops connecting, for example,
processes controlling dynamic vegetation (competition among plant types), biomass accumula-
tion, �re events, nitrogen limitation, soil moisture e�ects, which can result into temporal and
spatial variability. But more importantly, the term variability here refers to a more broader con-
cept of variability, including inter-model variability. To estimate uncertainty / variability in this
causal framework we again follow and adapt the approach by Hannart and Naveau (2018) who
argue that the overall uncertainty estimates comprises various components, such as climate vari-
ability, inter-model variability, and variability in observations (Please read Section ”2.7 Causal
Counterfactual �eory”: ”[…] the overall uncertainty […] is estimated based on all simulations,
comprising factual, counterfactual, and centuries-long unforced (pre-industrial) model runs”). �e
intent behind robustly estimating an overall uncertainty is to evaluate the probability of occur-
rence and magnitude of greening/browning trends over ∼ 40-year periods across models and
between forced versus unforced systems. By the way, estimation of uncertainty/variability in
detection & a�ribution studies is also a key element in the Optimal Fingerprinting method (e.g.,
Zhu et al.).

�ird, the referee argues that the causal approach to driver a�ribution of vegetation changes, we
present here, does not provide new insights compared to a�ribution studies that use the conven-
tional Optimal Fingerprinting approach, e.g. in Zhu et al. (2016). As discussed in the manuscript,
the Causal Couterfactual �eory-based a�ribution framework addresses the shortcomings of Op-
timal Fingerprinting, which mainly relate to the fact that it views observed changes as linear com-
binations of individual forced signals, is prone to statistical over��ing, and assumes that linear
correlation re�ects causality (Hannart and Naveau, 2018). For example, a strong correlation be-
tween globally increasing CO2 and the greening signal suggests that CO2 is the driver, but this is
not necessarily the case. �e probabilistic causality approach overcomes these issues and allows
us to test whether long-term greening/browning trends are due to the e�ects of rising CO2 in a
probabilistic framework that combines necessary and su�cient causality. �us, our a�ribution
study and its results are a signi�cant advance over the traditional method. In addition, our at-
tribution study also analyzes a much more recent generation of land surface models (Zhu et. al:
TRENDYv3) and an observational dataset that spans an additional decade (Zhu et. al: 1982-2009).

1.4 I regret that I cannot o�er a more positive assessment of this manuscript. However, my review should not
discourage authors to use their results for a revised manuscript, where more a�ention is paid to assessing robust-
ness of greening/browning signals in the context of multiple satellite products, and where caution is applied when
reaching conclusions based on absence of evidence following the a�ribution method (”Causal Counterfactual �e-
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ory”) applied here, and claiming evidence for an overestimated CO2 e�ect in the current generation of terrestrial
biosphere models.

We thank the referee for his/her critical comments and the encouragement to work on a revision
of the manuscript. All the comments will be addressed in the next version.
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Figure R1- 1: Five di�erent remote sensing datasets displaying the development of the natural vege-
tation over the last four decades. a Time series of changes in LAI relative to the average state from 1982–
1984 as depicted in three di�erent datasets (green: GLOBMAP-LAI, red: GLASS-LAI, and purple: GIMMS-LAI;
see Materials and Methods section of the main paper for further details). �e solid straight line represents
the best linear �t for the entire period (1982–2017/2018), the dashed line represents the best linear �t for the
second half of the period (2000–2017/2018). b as in a but for the dataset LTDR-NDVI (blue; see Materials and
Methods section of the main paper for further details). c as in a but for the dataset NCEI-FAPAR (orange; see
Materials and Methods section of the main paper for further details). d Bar chart comparing relative trends (in
% decade−1) in LAI, NDVI and FAPAR from di�erent datasets for the entire period (1982–2017/2018) obtained
from the gradients shown in a-c, respectively. e as in d but for the second half of the period (2000–2017/2018).
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