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�is paper investigates trends in global leaf area index (LAI) and a�ributes them to drivers (climate, CO2, land
use change) based on factorial simulations with a set of DGVMs and a fully coupled Earth System Model. �is is
basically a revisiting of a study published earlier (Zhu et al., 2016) that applied the same approach (model-based
a�ribution of drivers) and used the same LAI product (GIMMS3g, based on data from the AVHRR mission; Zhu
et al. also used GLOMAP and GLASS to obtain more robust results). Winkler et al. reach conclusions that have
potentially high relevance for our understanding of global vegetation dynamics in response to climate change
and (in particular) to CO2. E�ects of rising CO2 remain a major uncertainty in Earth System Model projections,
owing to challenges in observing and a�ributing e�ects. Hence, deriving new insights from available observational
records is needed.
�e paper by Winkler et al. is well wri�en and display items are of high quality. �e fact that their conclusions
directly challenge �ndings by Zhu et al. (2016) although relying on largely the same method and data, caught
my a�ention. Winkler et al. write in their abstract (”Our results do not support previously published accounts of
dominant global- scale e�ects of CO2 fertilization.”, l. 16) and in their conclusions (”A cause-and-e�ect relationship
between CO2 fertilization and greening of other biomes could not be established. �is �nding questions the study
by Zhu et al. (2016) that identi�ed CO2 fertilization as the most dominant driver of the Earth’s greening trend.”,
l. 722), and in the Key Points (”Most models underestimate the observed vegetation browning, which could be due
to an excessive CO2 fertilization e�ect in the models.”)
Strong conclusions require strong evidence. However, I have several strong concerns with how these conclusions
were reached. In my view, the evidence presented here does not support this main conclusion (represented by the
three citations I refer to above). Although I’m convinced that the analysis itself is diligently carried out and I
consider that the paper o�ers a valuable discussion of the wide and relatively recent literature on the topic, I am
concerned that the main conclusion will not meaningfully contribute to advancing the �eld.

We thank the referee for her/his detailed and constructive review of our manuscript. We appre-
ciate that the referee �nds the subject ma�er of our study highly relevant but we also note the
referee’s main concerns about one of the key conclusions, i.e. a possibly overestimated CO2 fer-
tilization e�ect in terrestrial biosphere models. �e revised manuscript will address this speci�c
point in more detail as well as the other referee comments.

[I’ve reviewed the same manuscript before. As far as I can see (main conclusions are unchanged, �gures are
identical), the mansucript version under review at here is identical to the earlier version I have reviewed. �erefore,
I am posting my previous report here again.]

We acknowledge that the referee already reviewed our manuscript for another journal. �ere the
opportunity to address the referee’s comments was not given, so we are glad to do so now. Some
of the referee’s comments seem to be outdated though as they have been already addressed in the
manuscript, e.g., the referee states ”Winkler et al. rely on a single LAI product to derive trends.
[…]” (Comment 1.1) , yet we have already included analyses comparing a total of �ve di�erent
datasets (see Figure R1-1). More details can be found in our individual responses below.

1 General Comments

1.1 Winkler et al. rely on a single LAI product to derive trends. Yet, several papers have documented inconsis-
tencies between greening and browning trends between satellite data products. In particular, the product used
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here (LAI3g) is based on data from the AVHRR mission. It has been reported that respective data is a�ected by
orbital dri� of the satellite (Tian et al., 2015) and sensor degradation Piao et al. (2019).�e MODIS Collection 6
does not support the AVHRR-derived browning trends in several regions (see also Chen et al. (2019)). �is a�ects
in particular North American boreal forests. […]

We thank the referee for this comment and for emphasizing the limitations of AVHRR-based
datasets. �e current version of the manuscript addresses this issue in the introductory section:

”To assess observed changes in vegetation over climatic time scales, we make use of a 37-year record
of leaf area index (LAI) satellite observations (1982–2017, GIMMS LAI3g, Section 2.1). �e GIMMS
LAI3g product is based on the Advanced Very High Resolution Radiometer (AVHRR) sensors, for which
there are a number of shortcomings (no on-board calibration, no correction of orbit loss, minimal cor-
rection for atmospheric contamination and limited cloud screening; Section 2.1; Zhu et al., 2013; Chen
et al., 2019). To address these shortcomings, we also analyze a total of �ve di�erent remote
sensing products that pursue di�erent strategies for dealing with the issues associated
with AVHRR data (Section 2.1). Due to some inexplicable variations in these datasets (Forzieri
et al., 2017) we concentrate on GIMMS LAI3g in our analysis, which is used in most published papers”
(LL59-68).

Additionally, we go into details describing how these technical issues are addressed in the latest
versions of GIMMS LAI3gV1 and NDVI in the methods section:

”�e complete time series of LAI3gV1 was generated using an arti�cial neural network trained on
data of the overlap period of the Collection 6 Terra Moderate-Resolution Imaging Spectroradiometer
(MODIS) LAI dataset (2000-2017) and and the latest version (third generation) of the Global Inventory
Modeling andMapping Studies group (GIMMS) Advanced Very High Resolution Radiometer (AVHRR)
normalized di�erence vegetation index (NDVI) data (NDVI3g). The la�er have been corrected for
sensor degradation, inter-sensor di�erences, cloud cover, observational geometry e�ects
due to satellite dri�, Rayleigh sca�ering and stratospheric volcanic aerosols (Pinzon and
Tucker, 2014).” (LL96-102).

Most of the other AVHRR-based data products analyzed here also rely on MODIS time series,
among other measures, to correct for the limitations of the AVHRR sensor mentioned above.
As described by the referee, MODIS and AVHRR diverge in their estimates of LAI trends in some
regions. We already cite and discuss the study by Chen et al. (2019) who examined the di�erences
between MODIS and AVHRR-based estimates in more detail. Chen et al. (2019) show that the
greening trends in the MODIS record correspond well to regions with intensive land
use changes. In this study, we focus on long-term climatic and physiological e�ects
and mask regions with intensive agricultural activities, thus do not address land use
changes. �e MODIS time series is still too short to assess long-term changes in the Earth system
associated with climate and rising CO2. AVHRR, on the other hand, now spans nearly 40 years,
making it one of the few resources we have to examine long-term land surface changes over
time. In contrast, the MODIS record alone cannot provide any information on the state of the
vegetation in the 1980s and 1990s. Overall, we agree with the referee that the AVHRR record has
important shortcomings that need to be addressed and discussed. We will place more emphasis
on these points in the revised version of the manuscript.

1.2 […] �e AVHRR-based browning seen in this region combined with the apparent failure of models to capture
the same trends has been used by Winkler et al. (with a largely over- stretched logic) to argue that CO2 e�ects
were inappropriately represented in models (”�us, it is important to focus model development not only on a be�er
representation of disturbances such as droughts and wild�res, but also on revising the implementation of processes
associated with the physiological e�ect of CO2, which currently o�sets browning induced by climatic changes.”,
l., 744). �is is non-sense both in view of the known lack of robustness of apparent browning trends, and in in the
logic of the argument itself. �e failure of models to capture a browning trend may also be due to insu�ciently
sensitive responses to climatic drivers; and in this case (North America) is most likely due to inappropriate repre-
sentations of disturbance in models Anderegg et al. (2020)).
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We thank the referee for his/her comment on the logic of the argument, however, we disagree that
the argument is ’non-sense’. Our argument has two parts as they are stated in the sentence which
is quoted by the referee. First, we argue that the underestimation of historic browning trends in
the models could be rooted in the mis- or underrepresentation of ”disturbances such as droughts
and wild�res” in the models. �e referee suggests the very same in his/her comment: ”�e failure
of models to capture a browning trend may also be due to insu�ciently sensitive responses to climatic
drivers; and in this case (North America) is most likely due to inappropriate representations of distur-
bance in models”. So, we are in agreement here. �us, the referee only disagrees with the second
part of our argument, which proposes an alternative explanation of why models fail to reproduce
vegetation browning: the current implementation of CO2 fertilization e�ect in the models could
o�set the browning induced by climatic changes. We base this statement on our analysis of the
factorial simulations of the MPI-ESM as well as the TRENDYv7 models, which simulate changes
in LAI with and without certain factors such as CO2 fertilization and climate change (Please refer
to 2.3 Max-Planck-Institute Earth SystemModel, 2.4 Land surface models: TRENDYv7 and 2.7 Causal
Counterfactual �eory for details). We �nd that for global estimates (Fig. 3) and especially for the
tropical estimates (Fig. S5), the models reproduce observed decreasing LAI trends only when the
CO2 fertilization e�ect is being absent, as we explain in the manuscript:

”TRENDYv7 models show strongly opposing responses of LAI to the di�erent e�ects of CO2: LAI de-
creases when the physiological e�ect is omi�ed, but increases when the radiative e�ect is omi�ed.
MPI-ESM shows qualitatively the same responses, but less pronounced (Figure S5). For the second half
of the satellite record, the observed trend switches sign to a strong negative trend (∼ -1.4 % decade−1).
�e models reproduce this tendency, but the multi-model average of the TRENDYv7 ensemble is still
positive. During the same time period, the opposing reactions to CO2 in the factorial runs are more
strongly marked (Figure S5). These results suggest that browning caused by CO2-induced cli-
mate change is compensated by greening a�liated with the CO2 fertilization e�ect at the
biome level. Based on these �ndings, we hypothesize that the physiological e�ect of CO2 is strong
in models and outbalances the negative e�ect of climate change in the tropical forests (Kolby Smith
et al., 2016).” (LL457-465)

�e overarching argument we make, then, is that the failure of models to reproduce vegetation
browning may be related to either insu�ciently sensitive responses to climate drivers, overly
sensitive responses to CO2 fertilization, or both. Based on the results presented, this argument
makes perfect sense.

1.3 One aspect that distinguishes the study by Winkler et al., from that of Zhu et al. (2016) is their probabilistic
driver a�ribution. As the authors write, the method has been adopted from Pearl (2009) and Marotzke (2019)
who applied it to a�ribute drivers of near-term climate change. However, I consider that the application of this
method to investigate drivers of vegetation change is ill-conceived. �e usefulness of probabilistic a�ributions is
evident when dealing with systems that are characterized by a substantial inherent stochasticity (deterministi-
cally chaotic systems). In such cases, simulated variations are not necessarily forced, by may result from unforced
internal variability. �is is not the case for vegetation dynamics, where the (simulated) internal unforced vari-
ability is typically zero (except for some models, e.g., LPJ-GUESS, that simulate stochastic gap formation, or some
relatively small internal variability arising from stand dynamics - which are actually not simulated explicitly at
the individual/cohort level in TRENDY models). �is actually facilitates driver a�ibution. All simulated trends
are uniquely a�ributable to drivers using factorial analyses. As a consequence of relying on a probabilistic a�ri-
bution, Winkler et al., �nd, e.g., no clear a�ribution in some semi-arid regions (Africa, South America, AUS) (l.
680-690) due to high interannual variability of green vegetation cover. As I read the paper by Winkler et al., such
�ndings underlie their conclusions (e.g., ”We �nd that CO2 fertilization is an important driver of greening in some
biomes, but not dominant globally as suggested previously”, l. 126). I would argue that the �ndings by Winkler
et al., do not provide new insights that allow for a revision of �ndings by earlier studies (e.g., Zhu et al. (2016)),
but rather fail to identify drivers (including CO2 e�ects) due to their application of an inappropriate a�ribution
method. In most other biomes, a�ributions made here are largely identical with a�ributions made by Zhu et al.
(2016) and also summarised by Piao et al. (2019).
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We thank the referee for his/her critical view of the method Causal Couterfactual �eory, which
we will address in three statements. First, we do not agree that its application is ill-conceived
for long-term changes in the Earth system. �e referee is right, that this method originates from
a�ribution studies of extreme events, e.g. Hannart et al. (2016). Hannart and Naveau (2018)
in ”Probabilities of Causation of Climate Changes” adapted the method to causal a�ribution of
long-term changes. �ey successfully applied it to causal a�ribution of long-term changes in
global surface air temperature, i.e., tested whether the warming trend can be causally linked
to increasing CO2. We adapted their approach to the driver a�ribution problem of long-term
vegetation trends and tested whether they can be causally linked to CO2 or climatic changes. In
our approach, we follow the reasoning as explained in Hannart and Naveau (2018):

”The proposed approach is anchored into causal counterfactual theory (Pearl 2009), which
was introduced recently, and in fact partly used already, in the context of extreme weather event
a�ribution (EA). We argue that these concepts are also relevant to, and can be straightforwardly
extended to, the context of detection and a�ribution of long-term trends associated with
climate change (D&A)” (Abstract Hannart and Naveau, 2018).

Second, it is unclear what the referee means with the statement that land surface models’ ”in-
ternal unforced variability is typically zero”. It is true that variability in the atmospheric forcing
translates into variability in land surface models. However, there are also several ways, besides
the stochastic forest gap modeling proposed by the referee, that coupled processes in land surface
models can lead to internal variability. �ere a various feedback loops connecting, for example,
processes controlling dynamic vegetation (competition among plant types), biomass accumula-
tion, �re events, nitrogen limitation, soil moisture e�ects, which can result into temporal and
spatial variability. But more importantly, the term variability here refers to a more broader con-
cept of variability, including inter-model variability. To estimate uncertainty / variability in this
causal framework we again follow and adapt the approach by Hannart and Naveau (2018) who
argue that the overall uncertainty estimates comprises various components, such as climate vari-
ability, inter-model variability, and variability in observations (Please read Section ”2.7 Causal
Counterfactual �eory”: ”[…] the overall uncertainty […] is estimated based on all simulations,
comprising factual, counterfactual, and centuries-long unforced (pre-industrial) model runs”). �e
intent behind robustly estimating an overall uncertainty is to evaluate the probability of occur-
rence and magnitude of greening/browning trends over ∼ 40-year periods across models and
between forced versus unforced systems. By the way, estimation of uncertainty/variability in
detection & a�ribution studies is also a key element in the Optimal Fingerprinting method (e.g.,
Zhu et al.).

�ird, the referee argues that the causal approach to driver a�ribution of vegetation changes, we
present here, does not provide new insights compared to a�ribution studies that use the conven-
tional Optimal Fingerprinting approach, e.g. in Zhu et al. (2016). As discussed in the manuscript,
the Causal Couterfactual �eory-based a�ribution framework addresses the shortcomings of Op-
timal Fingerprinting, which mainly relate to the fact that it views observed changes as linear com-
binations of individual forced signals, is prone to statistical over��ing, and assumes that linear
correlation re�ects causality (Hannart and Naveau, 2018). For example, a strong correlation be-
tween globally increasing CO2 and the greening signal suggests that CO2 is the driver, but this is
not necessarily the case. �e probabilistic causality approach overcomes these issues and allows
us to test whether long-term greening/browning trends are due to the e�ects of rising CO2 in a
probabilistic framework that combines necessary and su�cient causality. �us, our a�ribution
study and its results are a signi�cant advance over the traditional method. In addition, our at-
tribution study also analyzes a much more recent generation of land surface models (Zhu et. al:
TRENDYv3) and an observational dataset that spans an additional decade (Zhu et. al: 1982-2009).

1.4 I regret that I cannot o�er a more positive assessment of this manuscript. However, my review should not
discourage authors to use their results for a revised manuscript, where more a�ention is paid to assessing robust-
ness of greening/browning signals in the context of multiple satellite products, and where caution is applied when
reaching conclusions based on absence of evidence following the a�ribution method (”Causal Counterfactual �e-
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ory”) applied here, and claiming evidence for an overestimated CO2 e�ect in the current generation of terrestrial
biosphere models.

We thank the referee for his/her critical comments and the encouragement to work on a revision
of the manuscript. All the comments will be addressed in the next version.
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Figure R1- 1: Five di�erent remote sensing datasets displaying the development of the natural vege-
tation over the last four decades. a Time series of changes in LAI relative to the average state from 1982–
1984 as depicted in three di�erent datasets (green: GLOBMAP-LAI, red: GLASS-LAI, and purple: GIMMS-LAI;
see Materials and Methods section of the main paper for further details). �e solid straight line represents
the best linear �t for the entire period (1982–2017/2018), the dashed line represents the best linear �t for the
second half of the period (2000–2017/2018). b as in a but for the dataset LTDR-NDVI (blue; see Materials and
Methods section of the main paper for further details). c as in a but for the dataset NCEI-FAPAR (orange; see
Materials and Methods section of the main paper for further details). d Bar chart comparing relative trends (in
% decade−1) in LAI, NDVI and FAPAR from di�erent datasets for the entire period (1982–2017/2018) obtained
from the gradients shown in a-c, respectively. e as in d but for the second half of the period (2000–2017/2018).
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Authors’ Response to Referee 2 (BGD bg-2021-37)

May 10, 2021

�e manuscript by Winkler et al investigates drivers of global LAI trends using a mix of long-term observations
from AVHRR combined with Earth System Model sensitivity runs to provide causal a�ribution. �e manuscript
is in general well wri�en and the results interesting and of general scienti�c interest. Please �nd some com-
ments/questions below.

We sincerely thank Prof. Dr. Christian Frankenberg for his thorough review of our manuscript
and his thoughtful comments. We address each comment below.

1 General Comments

1.1 Title: I am not convinced the title conveys the gist of the paper, in fact I �nd it somewhat misleading. It reads
as if the slow down of greening is driven by a further rise in CO2. �e word ”instead” instead of ”with” would
have made more sense but then again, the authors would have to make the topic of the title the key message of
their paper, which it isn’t (and it is hard to a�ribute to a weakening CO2 fertilization e�ect anyhow). For this,
the author would have to use their counter-factual theory on the change in LAI changes between the beginning
and end of the time period.

We understand the confusion that may arise from the current title. We are aware that the scienti�c
community in ecology sometimes uses ”CO2 e�ect” and ”CO2 fertilization” interchangeably, ren-
dering the title counter-intuitive. But from a ”Earth system” perspective, rising CO2 as a forcing
agent interacts with various processes in the system, which in turn have an e�ect on ecosystems.
In this paper we investigate the impact of the physiological (PE) versus the radiative e�ect (RE) of
rising CO2 on leaf area. �e title is meant to re�ect that the Earth largely greened in the 1980s and
1990s as rising CO2 had mainly LAI-increasing e�ects, e.g., by warming high northern latitudes
(consequence of RE) and overall more carbon allocation through CO2 fertilization (consequence
of PE). However, as CO2 continues to rise, the system appears to be entering or has entered a
regime in which LAI-decreasing e�ects are ampli�ed, i.e., climatic changes associated with rising
CO2 become more pronounced and have stronger e�ects on various ecosystems/biomes (conse-
quence of RE), and possibly plant sensitivity to CO2 fertilization decreases (as hypothesized in
e.g., Wang et al. (2020), as also mentioned by the viewer in comment 1.2). �erefore, we �nd
the title ”Slow-down of the greening trend in natural vegetation with further rise in atmospheric
CO2” re�ects the key content of the paper.

1.2 �at said, it would be necessary to also discuss the results of Wang et al. (2020) (Recent global decline of
CO2 fertilization e�ects on vegetation photosynthesis) in the current manuscript as it is related to trends in CO2
fertilization as well (especially a reported decline of it, which di�ers strongly from Trendy).

We thank the reviewer for pointing us to this recent paper on the global decline of CO2 fertiliza-
tion by Wang et al. (2020). We already integrated and discuss this study in the revised version
of the manuscript. �e authors used linear and non-linear regression methods and observational
data ranging from remote sensing to in-situ atmospheric CO2, and obtain the key result that global
CO2 fertilization has decreased. While this result seems to be inline with our �ndings, we do not
argue that the sensitivity of the terrestrial biosphere to the CO2 fertilization e�ect has declined,
but that the e�ects of climatic changes rooted in the radiative e�ect of CO2 (e.g. precipitation
changes or increase in VPD) have strengthened, which probably counteracted the physiological
e�ects of CO2.
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1.3 One main strong statement of the paper is that it challenges �nding by Zhu et al. (2016) (with some shared co-
authors!). It sounds like a strong statement early on but if I look at Figure 3, I would say that the CO2 fertilization
e�ect appears to be dominant at the global scale (despite some regional variations). It expands and adds nuance
to Zhu et al, but challenges is too strong a word in my mind. �ere is enough material in this paper to warrant
publication and no need to over-emphasize di�erences wrt to a previous publication.

We thank the reviewer for this very good comment. We will rephrase this passage so as not to
over-emphasize the di�erences with respect to Zhu et al. (2016)’s study in the revised manuscript.
One point we make in the paper is that at the global scale, even the causal a�ribution technique
like the optimal �ngerprinting method used by Zhu et al. (2016) points to CO2 fertilization as the
main driver. �is aspect motivated the biome-level analysis that led to the point that in many
biomes, not all, the CO2 fertilization e�ect cannot be identi�ed as the main driver. But there are
clear imprints of climatic changes that are obscured in a global analysis.

1.4 Browning Trend in 2000-2017: When I look at Figure 3B, it appears a lot of the apparent browning trend in
the later time-period is driven by a sudden decline in the relative change in years 2015-2017. What happens if
you omit these years from the investigated time-period? What might cause such a sudden decline that might be
related to the e�ects of CO2 fertilization or Radiative E�ects? If this is related to detector issues or years with strong
internal variability, I would remove these years (as long term drivers appear unlikely to suddenly appear). In fact,
models and obs seem very consistent with each other between 2000-2014. As far as I can see, most discrepancies
might be due to years 2015-2017 but I might be wrong. A critical discussion would be required here. Surprisingly,
I couldn’t �nd these strong e�ects of the last 3 years in the SOM plots, was it speci�c to some areas only? Can it
be checked against MODIS data as well, which could be more reliable now? In fact, the �rst few years in Figure
3B are also VERY small, so you are ��ing a linear trend through a time-period in which both ends are highly
unusual. �is can heavily bias derived trends, please evaluate and discuss the impact of chosen time-periods for
trend analysis critically. h�ps://doi.org/10.31223/X5K89V outlines some concerns I have with respect to AVHRR
and the application to look at small changes (beyond pure trends). Please answer all questions in this paragraph.

We thank the reviewer for this detailed and important comment. To investigate the sensitivity of
our results towards the rapid decline in the years 2015–2017, we recalculated the relative trends
in global LAI for the time windows for 2000-{2013, 2014, 2015, 2016, 2017} and for comparison for
1982-{1995, 1996, 1997, 1998, 1999}. Figure R2-1a compares the trend sensitivity analysis between
the �rst and the last two decades of the AVHRR GIMMS LAI3g record. Where the relative trend in
LAI in the 1980s/1990s is around 5% decade−1, it is between 0-1% decade−1 in the 2000s/2010s. �e
di�erent end years have an e�ect on the trend calculation, especially in the last two decades, but
the di�erences are rather minor when compared to estimates of �rst two decades. Accordingly,
the slow-down of the trend is also apparent when the sharp decline from 2015–2017 is excluded.

Figure 1b depicts how the global distribution of relative trend changes with varying end-years in
the 2000s/2010s (for be�er readability only three time periods are displayed: 2000-{2013, 2015,
2017}; only time-series which pass the Mann-Kendall trend signi�cance test (p < 0.1) are in-
cluded). With respect to the periods 2000-2013/2015, there is a clear decrease in the pixels count
of signi�cant positive trends at the high range (between 10-20% decade−1), a slight increase in
the low range of positive trends, and an overall increase in negative trends for the period 2000-
2017. Studying the results of the biome-level analysis (Fig. S3–Fig. S16), we �nd that the apparent
rapid shi� in the years 2015–2017 is not a global phenomenon, but rather ”driven” by the tropical
forests. It is currently being investigated whether this rapid decline in recent years could also
be a detector problem. We also include here the current Fig. S3, which compares �ve di�erent
remote sensing datasets and how they depict the development of the natural vegetation over the
last four decades. NCEI-FAPAR, LTDR-NDVI, and GLASS-LAI do not show this rapid decline
in the years 2015–2017 as found in GIMMS-LAI, yet they agree on the slow-down of vegetation
greening for the 2000s/2010s. All in all, our results and the overall conclusion of the slow-down
of greening are not a�ected by the singular years from 2015–2017. As suggested by the reviewer,
we will discuss the impact of the chosen time-periods for trend analysis based on the material
presented here in the revised version of the manuscript.
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In the Fig. S3 (Figure R2-2), we now also include MODIS-LAI for natural vegetation only, as sug-
gested by the reviewer. MODIS-LAI depicts a stable moderate greening trend for the time-span
of 2000-2019. Since the MODIS record cannot provide any information on the state of the vegeta-
tion in the 1980s and 1990s, we cannot assess whether MODIS would also depict a slow-down of
the overall greening trend over this time-period. Also, please note that the comparability of rela-
tive trends in the long-term remote sensing products (baseline period 1982-1984) and MODIS-LAI
(baseline period 2000-2002) is limited. Please see also our response to Comment 1.1 by Reviewer
1 and the discussion on MODIS and AVHRR discrepancies in the manuscript (LL362–369). Since
this important issue was raised by both reviewers, we will move Fig. S3 in the main manuscript
document and extend the discussion on the various datasets.

�e reviewer raised the point that the values of the �rst few years in Figure 3B are very small.
�ese values are very small be de�nition, since we are displaying relative changes in % with
respect to the baseline period 1982-1984, so the initial values of the time-series are around zero
%.

1980s/1990s 2000s/2010s

0

1

2

3

4

5

R
el

at
iv

e
tr

en
d,

%
de

ca
de
−1

a

endyear

1995

1996

1997

1998

1999

2013

2014

2015

2016

2017

−20 −10 0 10 20
Relative trend, % decade−1

0

25

50

75

100

125

150

175

200
P

ix
el

co
un

t

b

2000-2017

2000-2015

2000-2013

Figure R2- 1: Estimating the sensitivity in the trend calculation with respect to the selection of the
window size. a Relative trends (in % decade−1) in LAI relative to the average state from 1982–1984, calculated
for di�erent end-years, comparing the �rst two decades (1982–1999) with the last two decades (2000–2017) of
the AVHRR GIMMS LAI3g record. �e colored dots represent the trend estimates for di�erent end years of
the time series. Black dots represents the average value of the �ve estimates for each period, i.e. 1980s/1990s
versus 2000s/2010s, including whiskers which denote their standard deviation. bHistograms of relative trends
over the last two decades (2000s/2010s) in the AVHRR GIMMS LAI3g record including probability density
functions (kernel density estimation) comparing estimates based on varying end-years. Only trends which
pass the Mann-Kendall trend signi�cance test (p < 0.1) are included.

1.5 Amore general question regarding vegetation dynamics and CO2 fertilization, as you mention ”as thoroughly
equilibrated global carbon cycle” on line 192: What are the time-scales in ESM for CO2 fertilization? At the leaf
scale, the gain in GPP is immediate but if you consider LAI, CO2 fertilization might cause a new state, which won’t
be achieved within a year, especially if species compositions will be a�ected. I would be curious what time-scales
the models predict. E.g. if you changed CO2 suddenly but keep it at a higher level, how long would it take to run
the carbon cycle into a new steady-state? I am mostly asking because the CC was certainly not in equilibrium
in 1980 as CO2 increase and human land impacts are constantly shi�ing the needle. How much of the greening
e�ects would have occurred (persisted for a while) even if we had suddenly frozen the CO2 levels at the 1983
mixing ratio and how would these ”legacy” e�ects a�ect your overall conclusion? �is is not a strong criticism but
rather scienti�c curiosity.
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Figure R2- 2: Five di�erent remote sensing datasets displaying the development of the natural veg-
etation over the last four decades. a Time series of changes in LAI relative to the average state from
1982–1984 as depicted in three di�erent datasets (green: GLOBMAP-LAI, red: GLASS-LAI, purple: GIMMS-
LAI and brown: MODIS-LAI; see Materials and Methods section of the main paper for further details). �e
solid straight line represents the best linear �t for the entire period (1982–2017/2018), the dashed line rep-
resents the best linear �t for the second half of the period (2000–2017/18/19). b as in a but for the dataset
LTDR-NDVI (blue; see Materials and Methods section of the main paper for further details). c as in a but for
the dataset NCEI-FAPAR (orange; see Materials and Methods section of the main paper for further details). d
Bar chart comparing relative trends (in % decade−1) in LAI, NDVI and FAPAR from di�erent datasets for the
entire period (1982–2017/2018) obtained from the gradients shown in a-c, respectively. e as in d but for the
second half of the period (2000–2017/18/19).
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We thank the reviewer for raising this interesting discussion point. Bringing an Earth system
model (ESM) into general equilibrium can take many thousands of years, especially when deep
ocean circulation and slow biogeochemical cycles such as that of nitrogen are included in the
feedback network of an ESM (both of which are the case with the MPI-ESM used in this study).
Even a�er the ocean circulation has reached a steady state and all the ma�er pools have built
up, various variables may still exhibit dri�s, especially on a regional scale. �us, it requires
expertise and patience to bring an ESM into general equilibrium in all of its subsystems - this
is what we meant by a ”thoroughly equilibrated” ESM / carbon cycle. For our study, we took the
pre-industrial equilibrium of the MPI-ESM prepared by the MPI-M development team for CMIP6.

So, regarding the question … if you changed CO2 suddenly but keep it at a higher level, how long
would it take to run the carbon cycle into a new steady-state? : �is strongly depends on the mag-
nitude of change, i.e. CO2 forcing. Many processes respond fairly immediately, such as GPP or
radiative forcing, but others respond more slowly, such as ocean heat uptake, dynamical vegeta-
tion changes, or the global cycling of carbon. With all the feedbacks between ocean, atmosphere,
land, and biosphere, a �xed increase in atmospheric CO2 of, say, the order of 100 ppm would push
the system so strongly that it would again take on the order of a thousand years to reach a new
equilibrium for the carbon cycle.

Yes, absolutely, there are legacy e�ects in the system. Let’s say we froze atmospheric CO2 in
the early 1980s, as for many other variables, greening would also continue a�er CO2 stopped
increasing, e.g. due to slower processes regarding dynamical vegetation. �is is a very interesting
research question in itself! As described above, our simulations, like the TRENDY simulations,
are initialized from a pre-industrial equilibrium (for TRENDY, near pre-industrial: year 1900),
accordingly these legacy e�ects are accounted for in this study, and thus the conclusions of this
study should not be a�ected.

1.6 Causal theory: One caveat that could/should be added is that this is only valid if the models, which are the
basis for the sensitivity runs, are representing the truth. E.g. for the browning trend, you would actually �nd NO
causal a�ribution from models alone, is that right?

Yes, the causality is based on what the models predict for each counterfactual experiment and
region. �is is also true for every other method in ”Detection and A�ribution” using model
output, such as the optimal �ngerprinting method. We integrate an explicit statement about this
caveat in the revised version of the manuscript.

1.7 Overall, I would recommend revisiting the statements regarding Zhu et al, mention caveats in counter-factual
theory using models as surrogate truth, investigate the impact of 2015-2017 on the greening/browning trend in
the later time-period.

We again thank Prof. Dr. Christian Frankenberg for his comments. We will follow his recom-
mendations when preparing the revised manuscript.

2 Speci�c Comments

2.1 Line 36: Stomata can even respond at short time-scales when CO2 changes, stomatal density or max conduc-
tance takes time to adapt. (you mention ”in time”).

�ank you. We have adapted this passage in the manuscript to address the di�erent time scales
on which the physiological e�ects of CO2 act.

2.2 Line 88: ”not dominant globally”. Again, I am having di�culty to not see a similar e�ect in Figure 3c. In line
421, you even say so yourself. I am a bit lost here.

We understand the confusion. �e e�ect is dominant when we look at the global-aggregate sig-
nal. However, when we look at the regional analysis, we �nd that the e�ect is not dominant
everywhere (i.e., globally) as the globally-aggregated signal would suggest. We rephrase these
statements to be more speci�c in the revised manuscript.
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2.3 Line 449: weaken -> weaker

�anks, we corrected the typo in the revised manuscript.

2.4 Sections 3.10+: I was just a bit confused as the discussions now move from causal theories to more local
descriptions, partially just citing other papers to explain speci�c events. It also shows the limits of your causal
method as the lack of drought legacy e�ects (e.g. in tropics) can potentially bias your mode sensitivity runs. For
some e�ects that you mention are due to RF, it would actually be interesting to separate out e�ects of CO2 RF into
VPD, temperature and PAR e�ects (due to cloud cover changes), CO2 RF has various impact factors, which can
very regionally in importance…

Yes, we thank and agree with the reviewer, that it’d could be an interesting next step to further
decompose the radiative e�ect of CO2 into changes in VPD, temperature, and changes in short-
wave radiation (PAR / cloud cover). Further, the physiological e�ect could be decomposed into
the stomatal e�ect and the direct carbon assimilation stimulation e�ect (RUBISCO). We leave this
analysis step for a future study, since this would go beyond the scope of this manuscript.

We show that models are limited in their predictive power in simulating vegetation response to
climate change. To address this issue, we rely on the published literature to evaluate evidence in
observations that con�rm or refute the results based on the causal a�ribution study.
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