
Answer to editor 
We would like to thank you for your valuable comments and the five points of criticism and your 

suggestions how to address them. We will discuss these points below: a) standardisation technique, b) 

maturity of remotely sensed soil moisture data, c) spatial aggregation of land cover data, d) ground 

truth and e) trend analysis (these answers are also part of the individual responses to the reviewers).  

 

a) Standardisation technique 
Calculating z-scores is a commonly applied standardisation technique (Phillips 2018). It does not lead 

to a bias in the tails of the distribution, but merely rescales the data. The purpose of this transformation 

here is to rescale soil moisture and temperature to a common scale, so they can be analysed and 

displayed jointly on this standardised scale (while maintaining their original distribution shape) (Orth 

et al. 2020). For illustration, we show time series and histograms for an exemplary pixel for all three 

variables before and after the transformation below (Figs. R1 and R2). 

 

Figure R1: Time series of temperature, soil moisture and FAPAR from 1999-2019 before (upper row) and after standardisation 
(lower row) for an exemplary pixel 



 

Figure R2: Histograms of temperature, soil moisture and FAPAR from 1999-2019 before (upper row) and after standardisation 
(lower row) for an exemplary pixel 

Many time series are not normally distributed (according to the Shapiro-Wilk test the assumption of 

normality is rejected for 23.3%, 66.7%, 69,6% of the time series of deseasonalised temperature, soil 

moisture and FAPAR used in this study, based on a p-value of 0.05, respectively). However, normally 

distributed data is not a prerequesite for standardizing the time series to z-scores. This transformation 

has been applied in similar contexts for a variety of data sets (von Buttlar et al. 2018 and Orth et al. 

2020, both published in Biogeosciences, Seddon et al. 2016, published in Nature) including non-

normally distributed data such as precipitation, as it was carried out e.g. in the Ahlström et al. 2015, 

published in Science.  

We repeated the entire analysis, standardizing by dividing by the interquartile range instead of the 

standard deviation. The differences in the results of the vulnerability analysis are negligible: statistical 

significance changes in 3 out of the 504 cases displayed for the land covers classes and subregions as 

despicted in Figs. 5, 6, A1 and A2 of the article. For all other combinations of land covers, subregions 

at the 12 months of the year, statistical significance remains unchanged. The standardisation using z-

scores is statistical sound in the context of our study, but we can provide our findings based on division 

by the interquartile range instead of the standard deviation if required. 

 

 

b) Maturity of remotely sensed soil moisture data 
To address the uncertainties of the satellite-based soil moisture data set from ESA CCI, we additionally 

used the soil moisture reanalysis data set from ERA5 Land for the layers 0-7 cm, 7-28 cm and 28-100 

cm (corresponding to the soil moisture data sets used in Nicolai-Shaw et al. 2017) to assess the 

soundness of our results. Both data sets show agreement in the overall patterns (see Appendix A). We 

only show the first layer (0-7 cm) from ERA5 Land in the submitted manuscript, because it is rather 

well correlated with deeper layers and there are only subtle changes in vulnerability between these 

layers. This is in line with findings by Orth et al. (2020) who also found only minor difference between 

surface and deep layers. In addition to Figure A1 and A2, we will add corresponding figures for the 

layers 7-28 cm and 28-100 cm, to enable the reader to assess how vulnerability to soil moisture varies 

within the top 100 cm of the soil according to the reanalysis data set from ERA5 Land. We appreciate 

that the additional usage of the soil moisture data set from ERA5 Land should be described more 

prominently in the manuscript (currently in lines 5-6, 80-81 and 200-202). We will further mention its 

usage in line 58 in the introduction. 



The optimal hydrologic variable referring to ecosystem vulnerability is plant available water within the 

root zone. However, observations of this variable are not available for large spatial scales. Therefore, 

it is necessary to use either related observational data as proxies such as precipitation or satellite 

surface moisture data or data resulting from land surface models or assimilation of model and 

observations, all of which have specific constraints.  

Soil moisture values are included in the land-data assimilation in the ERA5 Land reanalysis data set 

based on a point-wise Simplified Extended Kalman Filter (de Rosnay et al. 2013, Hersbach et al. 2020). 

Surface soil moisture is linked to root-zone soil moisture via soil water redistribution to deeper layers 

and therefore remotely sensed surface soil moisture is used for the approximation of root zone soil 

moisture in land data assimilation systems (Maggioni and Houser 2017, Orth et al. 2020). We are well 

aware that the dynamics of surface soil moisture are directly linked to wetting and drying processes, 

i.e. rainwater infiltration and soil evaporation. Thus, soil water dynamics of deeper soil layers show a 

dampened and delayed dynamics compared to the surface layer, but still there is a significant 

correlation between them (Akbar et al. 2018). ERA5 is the first ECMWF reanalysis data set, which 

includes satellite information for the derivation of soil moisture estimates (Hersbach et al. 2020). 

We will add a further sentence on the delayed connection of surface and deeper soil layers in line 297: 

“For example, it takes some time for the propagation of surface drying to deeper soil layers, because 

of the slow capillary flow (Berg et al. 2017).” 

 

We further argue that using satellite-based soil moisture data in large-scale ecological applications is 

a state-of-the art method. We want to emphasize that remote sensing soil moisture products have 

significantly improved over the last years (Mohanty et al. 2017, Gruber et al. 2019) (see lines 199-200), 

are increasingly being used to assess the impact of droughts on plant productivity (Dorigo and de Jeu 

2016) and the ESA CCI soil moisture has been applied succesfully in a large number of studies for 

ecological applications. For an overview we refer e.g. to Table 5 and section 4.3 in Dorigo et al. (2017).  

This shows that surface soil moisture – despite its undisputed limitation – can give valuable insights on 

the state of the ecosystems. Denissen et al. 2019 state that satellite surface soil moisture is well suited 

to infer the state of the vegetation and corresponding land-atmosphere interactions during climate 

extremes. The transition from an energy- to a water-limited regime is marked by the critical soil 

moisture regions (Denissen et al. 2019), which makes soil moisture an appropriate variable especially 

in Mediterranean environemnets (Szczypta et al. 2014). Chen et al. (2014) assessed variability in the 

NDVI over Australia and conclude that not only precipitation but also remotely sensed soil moisture 

data from ESA CCI can be a good predictor for vegetation growth. A further example where ESA CCI 

soil moisture is used for biospheric drought effect assessment can be found in Orth et al. (2020) 

(published in Biogeosciences). Nicolai-Shaw et al. (2017) emphasize that remotely sensed soil moisture 

is a valuable addition or might even be able to replace other soil moisture proxies for the investigation 

of land-vegetation-atmosphere-dynamics (see lines 54-55). The authors highlight the usage of remote 

sensing based soil moisture for the assessment of drought development. They found strong responses 

of grasslands to soil moisture droughts, while forests showed weaker responses and relate this to the 

shallower rooting depth of grasslands compared to forests. 

We will add a sentence on this at line 298: 

“Nicolai-Shaw et al. (2017) found that soil moisture data from ESA CCI was a good indicator for drought 

in grasslands, while forests exhibited weaker responses, probably due to access to deeper soil layers 

for forests compared to grasslands.”  



For a comparison of the ESA CCI soil moisture data set with gridded precipitation, see e.g. Dorigo et al. 

(2012, 2017). Furthermore, the ESA CCI soil moisture data set was even used to create a global 

precipitation product, which was compared to state-of-the-art precipitation data sets and showed 

relatively good performance (Ciabatta et al. 2018). We also would like to emphasize that ESA CCI soil 

moisture has been validated succesfully with in situ observations e.g. in Spain and France at depths 

from 5 to 30 cm (see lines 299-301; Albergel et al. 2013, Dorigo et al. 2015) and Turkey (Bulut et al. 

2019). 

Finally, precipitation does not directly translate into plant available water within the root zone (de 

Boeck et al. 2011; see lines 47-49) and is thus not necessarily superior to surface soil moisture data for 

the assessment of plant available soil water. Several other processes play a role, such as 

evapotranspiration (especially important in the Mediterranean), runoff, topography, soil properties 

and irrigation (Mohanty et al. 2017).  

 

 

c) Spatial aggregation of land cover data 
A general remark on the data used in this study: There is a certain mismatch between the desirable 

spatial scale for assessing ecological impacts and the actually available climatic and land cover data 

sets (Ummenhofer et al. 2017). So, while remote sensing offers consistent large spatial and temporal 

coverage, there remains a trade-off regarding their coarse spatial resolution.  

A more detailed land cover classification map would be beneficial, but is not available for the 
Mediterreanean Basin to our knowledge (CORINE Land Cover would show greater detail but is only 
available for the European side of Mediterranean basin).  
 
We argue that it is common to use such rather broad categories, which rather resemble plant 
functional types than specific plant communities, for the analysis of the impact of climatic extremes 
on ecosystems. Plant functional types are partially based on climatic preferences (Bonan 2016). While 
there are certain simplifications, their distinctions nevertheless provide valuable insights on key 
ecological properties. For example, when comparing broadleaf and needleleaf forests, the former have 
high photosynthetic rates and stomatal conductance, the latter have lower photosynthetic rates and 
conductance (Bonan 2016), and it has been shown, that they show differences in drought-induced 
growth reductions leading to tree mortality (Cailleret et al. 2016). As a further example, Teuling et al. 
(2010) investigate the differing responses to heatwaves for forests and herbaceous perennial 
vegetation using data from various European flux tower sites. Furthermore, dynamic global vegetation 
models are usually based on plant functional types and these models are built with the intent to 
investigate the feedback of ecosystems and climate (Bonan 2016). 
Therefore, we argue that we use an adequate state of the art classification scheme for investigating 

interactions of ecosystems and climate at such spatial scales for our type of research. 

Land cover classification schemes like the one in our study are commonly applied; examples of studies 

using the same or similar land cover classifications in such a context include Ceccherini et al. (2014), 

Baumbach et al. (2017) (published in Biogeosciences), Nicolai-Shaw et al. (2017) and Buitenwerf et al. 

(2018). 

We would further like to point out that we only include grid points belonging to the Köppen-Geiger 

classes Csa (“Warm temperate climate with dry and hot summer”) or Csb (“Warm temperate climate 

with dry and warm summer”), i.e. areas with alpine grasslands and semiarid steppes are not considered 

in the study. 



 

d) Ground truth 
We agree that validation with ground truth is generally desirable. 
We would like to point out that all data sets have been validated using both ground truth and model 
data and underwent quality assessment see e.g. Dorigo et al. (2015), Dorigo et al. (2017) for ESA CCI, 
Sanchez-Zapero (2019), Fuster et al. (2020) for FAPAR and Hersbach et al. (2020) for ERA5. We would 
like to emphasize that ESA CCI soil moisture has been validated succesfully with ground observations 
e.g. in Spain, France (see lines 299-301; Albergel et al. 2013, Dorigo et al. 2015) and Turkey (Bulut et 
al. 2019) and the FAPAR has been validated with observation data from e.g. Tunisia, Italy, Spain and 
France primarily for a variety of crop types (Fuster et al. 2020). In addition to the already mentioned 
validation of ESA CCI soil moisture in Spain and France, we will mention its validation in Turkey and the 
validation of the FAPAR in line 301. 
 
It is usually challenging to validate satellite data with ground truth, as ground truth does not exist in 
such a consistent form in space and time, as it would be desirable (Preimesberger et al. 2020). A full-
fledged validation of our analysis remains therefore hardly feasible, as there is no ground truth data 
set available, which is consistently available for the representative land cover classes and subregions 
for all months of year for the entire time span to our knowledge. Because a comparison with in-situ 
data was not feasible in our case, we rather used ERA5 reanalysis data as an independent additional 
source for comparison to the soil moisture product from ESA CCI (see lines 199-202 and Appendix A), 
which is common practice in cases where sufficient in-situ data is not available (Preimesberger et al. 
2020). 
 
We argue that it is beyond the scope of our study to incorporate ground truth and it is common in the 
scientific literature to rely on validated data sets without carrying out an independent validation for 
the specific case study (for examples of similar studies without ground truth validation see e.g. van 
Oijen et al. 2013, Rolinski et al. 2015, Ivits et al. 2016, Baumbach et al. 2017, Nicolai-Shaw et al. 2017). 
 
For the points raised regarding lines 231, 311 and 325 we refer to the corresponding sections below. 
 
 

 

e) Trend analysis 
We quantify vulnerability (after Rolinski et al. 2015) as the average deviation of the environmental 

variable under hazardous ecosystem conditions from values under non-hazardous ecosystem 

conditions for a specific time span (e.g. the vulnerability to temperature for all months of July in a grid 

point in central Spain regarding the time span 1999-2019). Thus, ecosystem vulnerability is based on 

the comparison of non-extreme to extreme conditions within a given time span, i.e. it is always related 

to a certain reference period and cannot be assigned for a single point in time. Therefore, a trend 

analysis investigating year-to-year changes is not directly feasible, but a trend anaylsis can be carried 

out by analysing several time spans, if time series are available for a sufficient length (e.g. comparing 

vulnerability for the periods 1999-2019, 1999-2024, 1999-2029).  

A certain number of years encompassing a few extremes is required to obtain a meaningful baseline 

value. For only a small number of years, stochasticity is still too high for such a trend analysis. The time 

span we investigate has a length of 21 years from 1999 onwards (the year where the applied FAPAR 

product is first available), which is considered too short for a vulnerability trend analysis, as  a reference 

period of 30 years is commonly suggested as a baseline in climatological settings (Stocker et al. 2013).  

We will add the following text in line 282: 



“The time series used here encompasses 21 years and is thus still too short for analyzing long-term 

trends. Nevertheless, our approach can potentially be used to monitor how vulnerability changes in 

future for the 12 months of the year by comparing vulnerability during different time spans if time 

series of sufficient length are available.” 
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