
Answer to Anonymous Referee #1 
We would like to thank the anonymous reviewer for the comments.  

The reviewer raised concerns regarding a) the quality of soil moisture data, b) the spatial aggregation 

of land cover classes and Mediterranean subregions and c) the standardization technique. 

The satellite-based soil moisture data set from ESA CCI is a state of the art data set, which underwent 

validation and quality assessment and has been used frequently for similar purposes in the scientific 

literature. Furthermore, the results from the reanalysis soil moisture data set from ERA5 Land are in 

agreement with the ones from ESA CCI in general. For details, we refer to our answer regarding the 

comments on lines 45-54 / 75-80. 

The broad aggregation of land cover classes is common at such large spatial scales and a significantly 

more detailed land cover product is not available for the entire Mediterranean Basin to our knowledge. 

We argue that the classification of Mediterranean subregions allows visualizing certain large-scale 

patterns, while more detailed at pixel scale can be retrieved from the spatial maps provided in the 

article. For details, we refer to our answers regarding the comments on lines 69, Figure 5 and Figure 6. 

The z-score standardization technique used here is commonly applied and does not bias our results. 

We additionally performed the analysis by dividing by the interquartile range instead of the standard 

deviation, however differences in the results of both approaches are negligible. For details, we refer 

to our answer regarding the comment on lines 100-105. 

A detailed answer to all comments follows below. We refer to the lines corresponding to the submitted 

version. 

 

Major comments 

Lines 45-54 / 75-80: 
To address the uncertainties of the satellite-based soil moisture data set from ESA CCI, we additionally 

used the soil moisture reanalysis data set from ERA5 Land for the layers 0-7 cm, 7-28 cm and 28-100 

cm (corresponding to the soil moisture data sets used in Nicolai-Shaw et al. 2017) to assess the 

soundness of our results. Both data sets show agreement in the overall patterns (see Appendix A). We 

only show the first layer (0-7 cm) from ERA5 Land in the submitted manuscript, because it is rather 

well correlated with deeper layers and there are only subtle changes in vulnerability between these 

layers. This is in line with findings by Orth et al. (2020) who also found only minor difference between 

surface and deep layers. In addition to Figure A1 and A2, we will add corresponding figures for the 

layers 7-28 cm and 28-100 cm, to enable the reader to assess how vulnerability to soil moisture varies 

within the top 100 cm of the soil according to the reanalysis data set from ERA5 Land. We appreciate 

that the additional usage of the soil moisture data set from ERA5 Land should be described more 

prominently in the manuscript (currently in lines 5-6, 80-81 and 200-202). We will further mention its 

usage in line 58 in the introduction. 

The optimal hydrologic variable referring to ecosystem vulnerability is plant available water within the 

root zone (see lines 294-295). However, observations of this variable are not available for large spatial 

scales. Therefore, it is necessary to use either related observational data as proxies such as 

precipitation or satellite surface moisture data or data resulting from land surface models or 

assimilation of model and observations, all of which have specific constraints.  



Soil moisture values are included in the land-data assimilation in the ERA5 Land reanalysis data set 

based on a point-wise Simplified Extended Kalman Filter (de Rosnay et al. 2013, Hersbach et al. 2020). 

Surface soil moisture is linked to root-zone soil moisture via soil water redistribution to deeper layers 

and therefore remotely sensed surface soil moisture is used for the approximation of root zone soil 

moisture in land data assimilation systems (Maggioni and Houser 2017, Orth et al. 2020). We are well 

aware that the dynamics of surface soil moisture are directly linked to wetting and drying processes, 

i.e. rainwater infiltration and soil evaporation. Thus, soil water dynamics of deeper soil layers show a 

dampened and delayed dynamics compared to the surface layer, but still there is a significant 

correlation between them (Akbar et al. 2018). ERA5 is the first ECMWF reanalysis data set, which 

includes satellite information for the derivation of soil moisture estimates (Hersbach et al. 2020). 

We will add a further sentence on the delayed connection of surface and deeper soil layers in line 297: 

“For example, soil drying during summer affects primarily the top soil layer, while drying in deeper 

layers shows a lagged response, because upward capillary flow from these layers is comparatively slow 

(Berg et al., 2017).” 

 

We further argue that using satellite-based soil moisture data in large-scale ecological applications is 

a state-of-the art method. We want to emphasize that remote sensing soil moisture products have 

significantly improved over the last years (Mohanty et al. 2017, Gruber et al. 2019) (see lines 199-200), 

are increasingly being used to assess the impact of droughts on plant productivity (Dorigo and de Jeu 

2016) and the ESA CCI soil moisture has been applied succesfully in a large number of studies for 

ecological applications. For an overview we refer e.g. to Table 5 and section 4.3 in Dorigo et al. (2017).  

This shows that surface soil moisture – despite its undisputed limitation – can give valuable insights on 

the state of the ecosystems. Denissen et al. 2019 state that satellite surface soil moisture is well suited 

to infer the state of the vegetation and corresponding land-atmosphere interactions during climate 

extremes. The transition from an energy- to a water-limited regime is marked by the critical soil 

moisture regions (Denissen et al. 2019), which makes soil moisture an appropriate variable especially 

in Mediterranean environemnets (Szczypta et al. 2014). Chen et al. (2014) assessed variability in the 

NDVI over Australia and conclude that not only precipitation but also remotely sensed soil moisture 

data from ESA CCI can be a good predictor for vegetation growth. A further example where ESA CCI 

soil moisture is used for biospheric drought effect assessment can be found in Orth et al. (2020) 

(published in Biogeosciences). Nicolai-Shaw et al. (2017) emphasize that remotely sensed soil moisture 

is a valuable addition or might even be able to replace other soil moisture proxies for the investigation 

of land-vegetation-atmosphere-dynamics (see lines 54-55). The authors highlight the usage of remote 

sensing based soil moisture for the assessment of drought development. They found strong responses 

of grasslands to soil moisture droughts, while forests showed weaker responses and relate this to the 

shallower rooting depth of grasslands compared to forests. 

We will add a sentence on this at line 298: 

“Nicolai-Shaw et al. (2017) found that soil moisture data from ESA CCI was a good indicator for drought 

in grasslands, while forests exhibited weaker responses, probably due to access to deeper soil layers 

for forests compared to grasslands.”  

For a comparison of the ESA CCI soil moisture data set with gridded precipitation, see e.g. Dorigo et al. 

(2012, 2017). Furthermore, the ESA CCI soil moisture data set was even used to create a global 

precipitation product, which was compared to state-of-the-art precipitation data sets and showed 

relatively good performance (Ciabatta et al. 2018). We also would like to emphasize that ESA CCI soil 

moisture has been validated succesfully with in situ observations e.g. in Spain and France at depths 



from 5 to 30 cm (see lines 299-301; Albergel et al. 2013, Dorigo et al. 2015) and Turkey (Bulut et al. 

2019). 

Finally, precipitation does not directly translate into plant available water within the root zone (de 

Boeck et al. 2011; see lines 47-49) and is thus not necessarily superior to surface soil moisture data for 

the assessment of plant available soil water. Several other processes play a role, such as 

evapotranspiration (especially important in the Mediterranean), runoff, topography, soil properties 

and irrigation (Mohanty et al. 2017).  

 

Line 69: 
A general remark on the data used in this study: There is a certain mismatch between the desirable 

spatial scale for assessing ecological impacts and the actually available climatic and land cover data 

sets (Ummenhofer et al. 2017). So, while remote sensing products offer consistent large spatial and 

temporal coverage, there remains a trade-off regarding their coarse spatial resolution.  

A more detailed land cover classification map would be beneficial, but is not available for the 
Mediterreanean Basin to our knowledge (CORINE Land Cover would show greater detail but is only 
available for the European side of Mediterranean basin).  
 
We argue that it is common to use such rather broad categories, which rather resemble plant 
functional types than specific plant communities, for the analysis of the impact of climatic extremes 
on ecosystems. Plant functional types are partially based on climatic preferences (Bonan 2016). While 
there are certain simplifications, their distinctions nevertheless provide valuable insights on key 
ecological properties. For example, when comparing broadleaf and needleleaf forests, the former have 
high photosynthetic rates and stomatal conductance, the latter have lower photosynthetic rates and 
conductance (Bonan 2016), and it has been shown, that they show differences in drought-induced 
growth reductions leading to tree mortality (Cailleret et al. 2016). As a further example, Teuling et al. 
2010 investigate the differing responses to heatwaves for forests and herbaceous perennial vegetation 
using data from various European flux tower sites. Furthermore, dynamic global vegetation models are 
usually based on plant functional types and these models are built with the intent to investigate the 
feedback of ecosystems and climate (Bonan 2016). 
Therefore, we argue that we use an adequate state of the art classification scheme for investigating 

interactions of ecosystems and climate at such spatial scales for our type of research. 

Land cover classification schemes like the one in our study are commonly applied; examples of studies 

using the same or similar land cover classifications in such a context include Ceccherini et al. (2014), 

Baumbach et al. (2017) (published in Biogeosciences), Nicolai-Shaw et al. (2017) and Buitenwerf et al. 

(2018). 

We would further like to point out that we only include grid points belonging to the Köppen-Geiger 

classes Csa (“Warm temperate climate with dry and hot summer”) or Csb (“Warm temperate climate 

with dry and warm summer”), i.e. areas with alpine grasslands and semiarid steppes are not considered 

in the study. 

 

Lines 100-105:  
Calculating z-scores is a commonly applied standardisation technique (Phillips 2018). It does not lead 

to a bias in the tails of the distribution, but merely rescales the data. The purpose of this transformation 

here is to rescale soil moisture and temperature to a common scale, so they can be analysed and 

displayed jointly on this standardised scale (while maintaining their original distribution shape) (Orth 



et al. 2020). For illustration, we show time series and histograms for an exemplary pixel for all three 

variables before and after the transformation below (Figs. R1 and R2). 

 

Figure R1: Time series of temperature, soil moisture and FAPAR from 1999-2019 before (upper row) and after standardisation 
(lower row) for an exemplary pixel 

 

Figure R2: Histograms of temperature, soil moisture and FAPAR from 1999-2019 before (upper row) and after standardisation 
(lower row) for an exemplary pixel 

Many time series are not normally distributed (according to the Shapiro-Wilk test the assumption of 

normality is rejected for 23.3%, 66.7%, 69,6% of the time series of deseasonalised temperature, soil 

moisture and FAPAR used in this study, based on a p-value of 0.05, respectively). However, normally 

distributed data is not a prerequesite for standardizing the time series to z-scores. This transformation 

has been applied in similar contexts for a variety of data sets (von Buttlar et al. 2018 and Orth et al. 

2020, both published in Biogeosciences, Seddon et al. 2016, published in Nature) including non-

normally distributed data such as precipitation, as it was carried out e.g. in the Ahlström et al. 2015, 

published in Science.  

We repeated the entire analysis, standardizing by dividing by the interquartile range instead of the 

standard deviation. The differences in the results of the vulnerability analysis are negligible: statistical 



significance changes in 3 out of the 504 cases displayed for the land covers classes and subregions as 

despicted in Figs. 5, 6, A1 and A2 of the article. For all other combinations of land covers, subregions 

at the 12 months of the year, statistical significance remains unchanged. The standardisation using z-

scores is statistical sound in the context of our study, but we can provide our findings based on division 

by the interquartile range instead of the standard deviation if required. 

 

Figure 5: 
High temperatures favor grain filling only for a certain temperature range. The relationship is 

nonlinear, so high temperature may favor crop growth until a certain threshold, where temperatures 

become too hot and limit crop growth (Hatfield and Prueger 2015). A variaty of crops is particularly 

vulnerable to temperature extremes during reproductive stages such as anthesis and grain filling (Luo 

2011). The optimum and maximum temperature for grain filling for wheat is at 20.7 and 35.4°C, 

respectively (Porter and Gawith, 1999). We analysed the daily maximum temperature from ERA5 in 

May from 1999-2019 at all pixels with landcover “Crops (rainfed)” in the Mediterranean Basin west of 

40°E and the optimum temperature is exceeded 69% of the time on average and the maximum 

temperature is exceeded at least once within this time span in 42% of the pixels. 31°C is stated as the 

physiological limit for wheat beyond which sterile grains are produced (Porter and Gawith, 1999). This 

temperature is exceeded on average 7% of the time and at least once within the time 1999-2019 for 

83% of the grid points. This shows that relevant physiological temperature thresholds for crops are 

exceeded in the Mediterranean Basin in May and vulnerability to hot conditions is therefore plausible. 

For a detailed overview on crop sensitivity to temperature extremes during anthesis we refer to 

Hatfield and Prueger (2015). 

We agree that crops such as maize and wheat are vulnerable to dry conditions in their reproductive 
phase (see e.g. Zhang and Oweis 1998, Daryanto et al., 2016). As we point out in lines 362-364, 
significant vulnerability to dry conditions in May is detected for various land cover classes in the ERA5 
Land soil moisture data set, while there is no significant vulnerability in the ESA CCI data set. We will 
add a sentence in line 364, stating that the ERA5 Land soil moisture data set is presumably more 
realistic for the month of May. 
“For land cover classes such as “Crops (rainfed)” vulnerability to dry conditions in May seems realistic, 
as various crops are prone to drought in their reproductive phase (Zhang and Oweis 1998, Daryanto et 
al., 2016), which indicates that ERA5 Land might give more plausible results for the month of May.” 
 

Figure 6: 
In addition to the time series plots, spatial maps are provided to give further detail on the spatial 

patterns. Therefore, we argue that this division is still justified. It allow to quickly spot large-scale 

patterns (such as the prolonged vulnerability to hot and dry conditions in Turkey), while details which 

are not apparent in subregion aggregation can still be seen in the spatial maps.  

 

Minor comments 

Line 20 and lines 26-30: 
Land abandonment has indeed led to increasing biomass and forest cover in the Mediterranean within 

the past decades (Spano et al. 2013, Peñuelas et al. 2017). We rather refer to increased tree mortality, 

growth reduction, extended fire risk, agricultural yield decline and vegetation shifts connected to 

increasing aridity and rising temperatures. Thank you for the remark, we will add more details on 

climatic impacts on ecosystems in the introduction. 



We would further like to point out that ecosystems impacts are repeatedly addressed in the Discussion 

as well, e. g. in lines 232-237, 241-242, 261-274 and 312-320. 

 

Lines 24-25: 
Note that most of NE Spain is excluded from the study since it does not have a Mediterranean climate 

according to the Köppen-Geiger classification (see section 2.1 Study area and Fig. 1). Furthermore, we 

mention seasonal differences e.g. in lines 242-243. 

 

Lines 40-41: 
We will mention the linkage of extreme heat waves and Saharan air intrusions. 

 

Lines 45-46:  
We agree that soil moisture is important for crops during winter and spring and that it reaches its 

annual minimum in summer. High winter temperatures have been demonstrated to have both positive 

(see e.g. Sippel et al. 2018 for an example in Spain) and negative (see e.g. Ben-Ari et al. 2018 for an 

example in northern France) impacts on vegetation in combination with wet springs. This 

demonstrates that high winter temperatures can play a relevant role for crop productivity.  

 

Introduction in general: 
The research gap we address here is the inclusion of seasonality in the assessment of ecosystem 

vulnerability (see lines 31-33 and 59-63). 

The introduction is structured in the following way: In the first two paragraphs (lines 20-30), we 

address characteristics of the Mediterranean Basin and the vulnerability of its ecosystems. In the third 

paragraph (lines 31-43), we introduce the importance of considering seasonality in the analysis of 

ecosystem vulnerability and discuss why it is important to investigate the impacts of climate anomalies 

on ecosystems in the Mediterranean. In the fourth paragraph (lines 44-58), we state that soil moisture 

is an important variable for ecosystem producitivity and explain the potential of long-term satellite soil 

moisture products, which emerged within the last years for this purpose. We will add information on 

the FAPAR here in the resubmitted version. In the final paragraph (lines 59-63), we give details on our 

research aims. 

 

Lines 75-76: 
Long-term observation data sets such as the ESA CCI soil moisture data set usually contain 

inhomogeneities (Preimesberger et al. 2020). Single satellites only cover a limited time span; therefore 

inhomogeneities at transition times cannot be fully avoided. Such inconsistencies have been carefully 

investigated and the merging scheme of ESA CCI is considered to provide a viable long-term product 

(Su et al. 2016, Preimesberger et al. 2020). 

 

Lines 80-81: 
ESA CCI soil moisture is a satellite-based data set, while ERA5 Land is a reanalysis data set. We apply 

both data sets here for verification of our obtained results. Both data sets are commonly used in the 



scientific literature and have been compared various times (see e.g. Preimesberger et al. 2020, Beck 

et al. 2021 or Albergel et al. 2013 and Dorigo et al. 2017 for their predecessor data sets).  

 

Lines 83-84: 
The bands of SPOT/VGT and PROBA-V cover similar spectral ranges (Smets et al. 2019). For the 

overlapping period from October 2013 to May 2014, the FAPAR from SPOT/VGT and PROBA-V show 

high agreement for all biome types (Verger et al. 2019). 

 

Line 86: 
We will write “Mediterranean climate” instead of “Mediterranean Basin” to be more precise. Note 

that we only investigate those regions of the Mediterranean Basin, which have a Mediterranean 

climate according to the Köppen-Geiger classification. We also mention that crops are affected by soil 

moisture in winter (see lines 241-242) in the discussion. 

 

Lines 85-96: 
We will move the information in this section to the introduction to improve readability, so that the 

background information is gathered jointly in this part of the manuscript. 

 

Error correction 
We noticed an error in our code. The percentiles defining hazardous conditions were wrongly indexed, 

leading to slightly different percentiles throughout. The changes are generally minor and all 

conclusions from our article can be inferred as before. Figures and text will be adjusted where needed. 

We would like to apologize for this inconvenience. 
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Answer to Anonymous Referee #2 
We would like to thank the anonymous reviewer for the detailed feedback, which helped to improve 

the article further. We will address all raised points below. We refer to the lines corresponding to the 

submitted version. 

 

Major comments 

Ground truth 
We agree that validation with ground truth is generally desirable. 
We would like to point out that all data sets have been validated using both ground truth and model 
data and underwent quality assessment see e.g. Dorigo et al. (2015), Dorigo et al. (2017) for ESA CCI, 
Sanchez-Zapero (2019), Fuster et al. (2020) for FAPAR and Hersbach et al. (2020) for ERA5. We would 
like to emphasize that ESA CCI soil moisture has been validated succesfully with ground observations 
e.g. in Spain, France (see lines 299-301; Albergel et al. 2013, Dorigo et al. 2015) and Turkey (Bulut et 
al. 2019) and the FAPAR product has been validated with observation data from e.g. Tunisia, Italy, 
Spain and France primarily for a variety of crop types, as well as a deciduous broadleaf forest in Italy 
and a needle-leaf forest in Spain (Fuster et al. 2020). In addition to the already mentioned validation 
of ESA CCI soil moisture in Spain and France, we will mention its validation in Turkey and the validation 
of the FAPAR in line 301. 
 
It is usually challenging to validate satellite data with ground truth, as ground truth does not exist in 
such a consistent form in space and time, as it would be desirable (Preimesberger et al. 2020). A full-
fledged validation of our analysis remains therefore hardly feasible, as there is no ground truth data 
set available, which is consistently available for the representative land cover classes and subregions 
for all months of year for the entire time span to our knowledge. Because a comparison with in-situ 
data was not feasible in our case, we rather used ERA5 reanalysis data as an independent additional 
source for comparison to the soil moisture product from ESA CCI (see lines 199-202 and Appendix A), 
which is common practice in cases where sufficient in-situ data is not available (Preimesberger et al. 
2020). 
 
We argue that it is beyond the scope of our study to incorporate ground truth and it is common in the 
scientific literature to rely on validated data sets without carrying out an independent validation for 
the specific case study (for examples of similar studies without ground truth validation see e.g. van 
Oijen et al. 2013, Rolinski et al. 2015, Ivits et al. 2016, Baumbach et al. 2017, Nicolai-Shaw et al. 2017). 
 
For the points raised regarding lines 231, 311 and 325 we refer to the corresponding sections below. 
 
 

Trend analysis 
We quantify vulnerability (after Rolinski et al. 2015) as the average deviation of the environmental 

variable under hazardous ecosystem conditions from values under non-hazardous ecosystem 

conditions for a specific time span (e.g. the vulnerability to temperature for all months of July in a grid 

point in central Spain regarding the time span 1999-2019). Thus, ecosystem vulnerability is based on 

the comparison of non-extreme to extreme conditions within a given time span, i.e. it is always related 

to a certain reference period and cannot be assigned for a single point in time. Therefore, a trend 

analysis investigating year-to-year changes is not directly feasible, but a trend analysis can be carried 

out by analysing several time spans, if time series are available for a sufficient length (e.g. comparing 

vulnerability for the periods 1999-2019, 1999-2024, 1999-2029).  



A certain number of years encompassing a few extremes is required to obtain a meaningful baseline 

value. For only a small number of years, stochasticity is still too high for such a trend analysis. The time 

span we investigate has a length of 21 years from 1999 onwards (the year where the applied FAPAR 

product is first available), which is considered too short for a vulnerability trend analysis, as  a reference 

period of 30 years is commonly suggested as a baseline in climatological settings (Stocker et al. 2013).  

We will add the following text in line 282: 

“The time series used here encompasses 21 years and is thus still too short for analyzing long-term 

trends. Nevertheless, our approach can potentially be used to monitor how vulnerability changes in 

future for all twelve months of the year by comparing vulnerability during different multi-year time 

spans if time series of sufficient length are available.” 

 

 

Minor comments 

Lines 90-96: 
To avoid redundancy between “Introduction” and “Methods” we will move the information on FAPAR 

and ESA CCI soil moisture in the second and third paragraph of 2.2 to the introduction at line 59 and 

remove redundant parts. 

 

Line 105:  
Yes, σ is calculated for the whole year. The months of the year have different variabilities and we aim 

to preserve this intraannual variability (whereas a monthly calculation of σ would artificially produce 

months with equal variability). We will add the word “year-round”.  

“dividing by the year-round standard deviation of the deseasonalised time series” 
 

 

Section 2.4: 
Van Oijen et al. (2013) (which our definition is based on) also denote that vulnerability is sometimes 

referred to as sensitivity. Weißhuhn et al. (2018) define sensitivity as a “measure of susceptibility” to 

a hazard and according to Ionescu et al. (2009) sensitivity is “characterising how much a system’s state 

is affected by a change in its input”. These definitions are applicable to the notion of vulnerability in 

our article. We investigate if extreme reductions in ecosystem productivity are linked to significant 

deviations in temperature and soil moisture. Hence, only if temperature or soil moisture deviations 

are related to low FAPAR values, significant ecosystem vulnerability will be detected. 

Smith 2011 states, “we must be able to attribute the extreme ecological response to the period of 
climate extremity. [… This is] critical for elucidating what factors may contribute to differential 
sensitivity of ecosystems to climate extremes.” 
According to the framework by Smith 2011, vulnerability to extreme climatic events is defined as a 
climate extreme leading to an extreme ecological response. The definition used in our article involves 
extremeness in the response, as well as a significant deviation of the climatic driver (to the climatic 
driver during non-extreme ecosystem conditions). Therefore, our definition differs in that regard that 
it includes extremeness only for the ecological response, not necessarily for the driver (but extremes 
in the driver usually are significant deviations and thus they are included, so our definition is broader 
than the one by Smith 2011). In our case, ecosystem vulnerability rather shows if the ecosystem 
variable is susceptible to certain climatic conditions (which do not need to be extreme).  



 
It should be noted that our approach is impact-based (see lines 132-133); following the definition of 

Rolinski et al. 2015 who “[…] define hazardous conditions from an ecosystem perspective to quantify 

the probability of weather conditions determining ecosystem vulnerability”. This means, we are asking 

which are the climatic conditions leading to extreme ecosystem response (perspective from the 

ecosystem: define ecological extreme and attribute it to climatic drivers) rather than asking what are 

ecological impacts of climate extremes (perspective from the climatic driver: defining a climatological 

extreme and attribute it to the ecological response). 

Risk is not assessed in our approach. This could be done in principal by using a qualitative instead of a 
distributional threshold (Rolinski et al. 2015). Risk is related to hazard probability, i.e. the proportion 
of exceedances of the hazard-threshold. In our case, this threshold is a percentile, which means each 
pixel has the same hazard probability (10%), so risk analysis is not directly applicable here. We chose 
to use a relative threshold (a percentile) rather than an absolute threshold, because it is not 
straightforward to determine a meaningful absolute threshold for extremeness of the FAPAR with 
validity for all land covers and subregions. 
We contacted one of the authors of Rolinski et al. 2015, who confirmed that a percentile-based 
approach is an appropriate choice for our setting. 
 
We will make the following changes to the manuscript: 

We will replace lines 112-114 

“The ecosystem vulnerability methodology serves to attribute drivers to their impact and identify 
whether a univariate or bivariate driver can be attributed to the respective impact.” 
by 
“In the context of our study, ecosystem vulnerability depicts if ecosystems are susceptible or sensitive 

to a certain hazard. It allows to attribute states of low ecosystem productivity to certain climatic 

conditions by linking such states to corresponding deviations in temperature and soil moisture.” 

We will add in line 132: 

“Every grid point has the same number of months with hazardous ecosystem conditions, i.e. the 

same risk of exceeding the threshold is assumed uniformly for all grid points.” 

We will move 

“Our approach is impact-based, i.e. it focusses on the extremeness of the impact rather than the 

extremeness of the driver because this enables relating multiple drivers to a single outcome 

(Zscheischler et al., 2014, 2018).”  

from line 132-133 to line 145 and add: 

“According to the framework by Smith (2011), vulnerability to extreme climatic events is defined as a 
climate extreme leading to an extreme ecological response. Therefore, our definition differs in that 
regard that it comprises extremeness only for the ecological response, not necessarily for the climatic 
driver. The definition used here is broader than the one by Smith (2011), because it includes significant 
deviations of the driver variable in general, not only extremes. In our case, ecosystem vulnerability 
rather shows if the ecosystem variable is susceptible to certain climatic conditions (which do not need 
to be extreme). “ 
 

Line 171: 
Yes, in each case 10% are classified as extreme. Extremes are defined by the FAPAR, not the driver 
variables (temperature and soil moisture). Therefore, these FAPAR extremes do not necessarily have 



to be linked to any anomalies in the driver variables. So, in the case of sparse vegetation the subset of 
temperature at times with FAPAR extremes (times where FAPAR is below the 10% percentile) is not 
significantly different from the subset of temperature at other times without FAPAR extremes (times 
where FAPAR is above the 10% percentile). Our approach is designed this way – identifying first the 
impacts and then relate them to potential drivers (see lines 132-133) –, so it specifically leaves the 
option that the regarded driver variables are not relevant in certain cases (which is also an important 
finding).  
 
You also additionally mention that vegetation might be dormant. This is another affect, which can 
occur. It is important to note that the 10% defined as extremes in each time series are not equally 
distributed within the months of the year. As pointed out above in the comment on line 171, σ is 
calculated for the entire time series, not seperately for each month. Therefore, months with higher 
variability are more likely to have a higher number of extremes. Because dormant months have low 
variability in the FAPAR, they thus will have few (if any) FAPAR extremes. Our approach is designed like 
this because this implicitly minimizes extremes outside of the growing season (without the need to 
explicitly define a growing season). See also lines 329-339 in the article. 
 

We will write: 
“Sparse vegetation is probably well adapted to high temperatures, as it never shows vulnerability to 
hot conditions, which means that temperature during extreme ecosystem conditions is not 
significantly higher than during non-extreme ecosystem conditions.” 
 
 

Figure 6:  

Thank you for pointing this out. We will adjust it accordingly. 

 

 

Line 222: 
Thank you, yes we mean indeed ”…or dry system”. 

 

 

Line 231: 
In Fig. R1 we show three example plots for the Iberian Peninsula (first row), northwestern Africa 

(second row) and the southeastern Mediterranean (third row). The months of August are marked by 

red vertical lines. 

We will delete the word “presumably” in line 231. We will add “and the FAPAR values are usually at 

their annual minimum at this time of the year.” in line 232. 

 



 

Figure R3: Time series of FAPAR from 1999-2019 for three example plots for the Iberian Peninsula (first row), northwestern 
Africa (second row) and the southeastern Mediterranean (third row). The months of August are marked by red vertical lines. 

 

Line 267:  
We will write: 

“The sensitivity to heat varies with phenophase (Hatfield and Prueger, 2015) and the effect on the 
carbon cycle can differ seasonally. High temperatures might e.g. increase carbon uptake by advancing 
spring onset, but may lead to uptake reductions in summer (Piao et al., 2019).” 

 

 

Lines 311 / 325: 

We considered this and ran the analysis with various time lags and moving average lengths. The 

article in its current form includes already many components: a bivariate setting (temperature and 

soil moisture), soil moisture from two sources (satellite and reanalysis data), various land covers and 

subregions at all months of the year. Therefore, we investigate (3 driver variables x 12 months x (6 

subregions + 8 land covers) 504 cases currently, which lead to several thousand cases if multiplied 

additionally with various time lags. This makes it challenging to add further complexity. 

As we pointed out (lines 311-328), finding the optimal time lag is particularly cumbersome, as the 

optimal time lag might differ depending on the driver variable (temperature or soil moisture) and 

the specific land cover. 

Therefore, we decided to use only one time lag in our article because a thorough analysis of the 

influence of time lags might add too much complexity to the article and makes it also challenging 

to display all these cases visually in a comprehensive way.  

 

Error correction 
We noticed an error in our code. The percentiles defining hazardous conditions were wrongly indexed, 

leading to slightly different percentiles throughout. The changes are generally minor and all 

conclusions from our article can be inferred as before. Figures and text will be adjusted where needed. 

We would like to apologize for this inconvenience. 
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