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Abstract.	 Plant community composition influences carbon, water and energy fluxes at regional to global scales. Vegetation 

demographic models (VDMs) allow investigation of the effects of changing climate and disturbance regimes on vegetation 

composition and fluxes. Such investigation requires that the models can accurately resolve these feedbacks to simulate realistic 

composition.  Vegetation in VDMs is composed of plant functional types (PFTs), which are specified according to plant traits.  

Defining PFTs is challenging due to large variability in trait observations within and between plant types and a lack of 20 

understanding of model sensitivity to these traits. Here we present an approach for developing PFT parameterizations that are 

connected to the underlying ecological processes determining forest composition in the mixed-conifer forest of the Sierra Nevada 

Mountains of California, USA.  We constrain multiple relative trait values between PFTs, as opposed to randomly sampling 

within the range of observations. An ensemble of PFT parameterizations are then filtered based on emergent forest properties 

meeting observation-based ecological criteria under alternate disturbance scenarios. A small ensemble of alternate PFT 25 

parameterizations is identified that produces plausible forest composition, and demonstrates variability in response to disturbance 

frequency and regional environmental variation. Retaining multiple PFT parameterizations allows us to quantify the uncertainty 

in forest responses due to variability in trait observations. Vegetation composition is a key emergent outcome from VDMs and 

our methodology provides a foundation for robust PFT parameterization across ecosystems.	
  30 
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1	Intro	

Plant community composition has important influences on carbon, water, and energy fluxes at regional (Wullschleger et al., 35 

2014) and global scales (Bonan, 2008).  Because climate-driven shifts in community composition have occurred over the past 

century (Adams et al., 2010;Allen and Breshears, 1998;Millar and Stephenson, 2015;Kelly and Goulden, 2008) and are projected 

to continue into the future (Buotte et al., 2018;Williams et al., 2013;Thorne et al., 2017), capturing compositional changes is 

critical for simulating feedbacks within the Earth system.  Vegetation demographic models (VDMs) can resolve the ecological 

mechanisms that determine community composition and are computationally efficient enough to be coupled to Earth System 40 

Models (Fisher et al., 2018).  These models track plant size, height, and canopy position, which allows for light competition, 

competitive exclusion, and dynamic recovery after disturbance (Fisher et al., 2018).   

Community composition is a dynamic property of ecosystems, arising from complex interactions among climate, 

disturbance, plant ecological strategies, and abiotic conditions (Johnstone et al., 2016;Stephenson, 1990).  VDMs predict 

composition by simulating the effects of the environment on growth and mortality rates based on physiological functions, which 45 

are simplified by grouping species into plant functional types (PFTs) (Fisher et al., 2018;Koven et al., 2020;Lebauer et al., 2013).  

Increasing the ecological resolution represented by PFTs can improve simulated vegetation-climate feedbacks (Druel et al., 

2017) and ecotone transitions (Baudena et al., 2015).  

The functional complexity of VDMs comes with inherent challenges. While VDMs have flexibility in PFT definitions 

(Fisher et al., 2015;Medvigy et al., 2009), observed trait variability, even within a single species, can be large (Kattge et al., 50 

2020). While progress is being made in quantifying model sensitivity to traits (Dietze et al., 2014;Raczka et al., 

2018;Shiklomanov et al., 2020), PFT parameterizations are likely to exhibit variability across climatic gradients.  It remains a 

challenge, given the non-linear feedbacks among climate, disturbance, and PFT composition in VDMs, to define PFT 

parameterizations that lead to accurate resolution of the interactions that determine community composition (Shiklomanov et al., 

2020).   55 

Prior research suggests that the model parameters that are most important in determining composition are likely to vary 

according to the model's representation of the primary constraints on plant growth (Nemani et al., 2003) and disturbance regimes.  

In the mesic temperate forest, temperature has a strong effect on the distribution of evergreen and deciduous broadleaf trees (Xie 

et al., 2015), and the simulated biome boundary between cold-deciduous hardwood and evergreen needleleaf trees was sensitive 

to temperature effects on leaf lifespan (Fisher et al., 2015).  Competition for light exerts a strong control on tropical forest 60 

community composition (Farrior et al., 2016;Condit et al., 2013) and simulated coexistence of tropical PFTs depended on 

parameters that influence the relative differences in canopy tree growth and mortality rates (Koven et al., 2020;Massoud et al., 

2019;Powell et al., 2018). In semiarid temperate forests, light availability, water availability, and the fire regime exert important 

controls on forest composition (North et al., 2016;Nemani et al., 2003).  However, the controls on forest composition within 

VDMs have not been examined in this forest type.  65 

Here we present an approach for defining PFT parameterizations that ensures simulated forest composition is a result of 

the interactions among the ecological strategies the PFTs represent, alternate disturbance regimes, and climate.  We illustrate this 

approach by defining two conifer PFTs in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) for the mixed 

conifer forest of the Sierra Nevada Mountains, California USA.  We define a pine PFT, representative of a shade-intolerant, 

moderately drought-tolerant, fire-resistant conifer and an incense cedar PFT, representative of a shade-tolerant, very drought-70 

tolerant, less fire-resistant conifer.  In this ecosystem, FATES simulations with robust PFT parameterizations should demonstrate 
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1) PFT-specific trait parameters related to shade-tolerance, drought-tolerance, and fire-resistance influence forest composition 

via their controls on growth and mortality rates; 2) forest composition is sensitive to the simulated fire regime through fire's 

effect on the light environment and direct mortality; and 3) forest composition is sensitive to variation in water availability, with 80 

less pine in areas with low water availability compared with greater water availability. 

2	Methods	

2.1	Modeling	Framework	

FATES was developed through integration of the Ecosystem Demography (ED) model (Medvigy et al., 2009;Moorcroft et al., 

2001) with the Community Land Model (Oleson et al., 2013), with initial testing focused in Eastern U.S. forests (Fisher et al., 85 

2015) and Panama tropical forest (Koven et al., 2020;Massoud et al., 2019).  FATES resolves vegetation demographics at the 

level of the cohort, which represents the density of individuals of a given PFT, size, and canopy position.  PFTs are defined by 

functional traits that describe plant physiology (e.g., photosynthesis, respiration, carbon allocation and turnover) and sensitivity 

to disturbance and environmental variation.  Patches can contain multiple cohorts of plants and patch age is tracked according to 

time since last disturbance.  The number of patches and cohorts is dynamic during a simulation.  Allocation of carbon to 90 

reproduction creates new cohorts within a patch.  Disturbance caused by tree mortality, fire or harvest splits existing patches to 

create a new patch.  Growth rates for each cohort are determined by carbon assimilation and allocation, which are affected by 

light and water availability and climate. Mortality is based on fire, carbon starvation, hydraulic failure, and cold-stress, along 

with a background mortality rate representing mortality sources not yet incorporated into the model.  FATES computes 

physiological processes on half-hourly time-steps, and growth, mortality, regeneration, and disturbance on daily time-steps. Here 95 

we have coupled FATES to the Community Land Model version 5 (Lawrence et al., 2019), which allows for a dynamic 

relationship between soil water availability and evapotranspiration that is governed by PFT water stress tolerance and soil 

physical properties. A full description of physiological and demographic processes in FATES can be found in Fisher et al. 

(2015), Koven et al. (2020) and the FATES Technical Note online at 10.5281/zenodo.3517271.   

The simulation of wildfire in FATES is adapted from SPITFIRE, a forest fire behavior and effects model meant for use 100 

at regional to global scales (Thonicke et al. 2010). As implemented in FATES, fires are initiated based on a lightning ignitions 

dataset (Li et al., 2013) and once ignited are modulated by climate with the Nesterov fire danger index.  Fire behaviors, including 

rate of spread, duration, and intensity, depend on six classes of ground fuels and their moisture status. Scorch height is estimated 

for each cohort of trees, determining crown damage. Cambial damage, which is modulated by traits such as bark thickness, 

canopy damage and cambial heating determine the probability of tree mortality.  The amount of biomass consumed is calculated 105 

based on fire intensity and rate of spread. 

2.2	Study	Area	and	Forest	Type	

We simulated the two dominant conifer genera in California's mixed conifer forest: pine and incense cedar.  The pine species in 

this forest, including ponderosa (Pinus ponderosa), Jeffrey (Pinus jeffreyii) and sugar (Pinus lambertiana) pine, are shade 

intolerant and highly resistant to fire (North et al., 2016).  Incense cedar (Calocedrus decurrens) is more shade- and drought-110 
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tolerant, but less fire-resistant (North et al., 2016).  Surface fires, and the creation of microclimates suitable for pine regeneration 

are thought to be important for promoting pine dominance in the Sierra Nevada (Van de Water and Safford, 2011;Yeaton, 1983). 115 

We conducted a parameter sensitivity analysis and developed PFT parameterizations with FATES simulations at the 

Soaproot Saddle flux tower site (O'Geen et al., 2018).  We evaluated simulated forest composition, model biases, and 

environmental controls on coexistence across a regional domain that is dominated by the combination of pine (ponderosa, 

Jeffrey, and sugar) and incense cedar according to data produced by the Landscape Ecology, Modeling and Mapping Analysis 

(LEMMA) project (Ohmann et al., 2011) (Figure 1).    120 
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Figure 1. Overview of our workflow for developing and applying PFT parameterizations. We suggest sampling with relative trait value 

constraints to create the initial ensemble of potential PFT parameterizations. An initial sensitivity analysis may be necessary if 

applying the VDM in a new ecosystem.  Ecological expectations are developed according to understanding of the climate and 125 
disturbance controls on coexistence in that ecosystem.  These expectations are used to filter the simulation outcome, thereby retaining 

PFT parameterizations that conform to their intended ecological niches. The retained parameterizations are applied to a regional 

domain to evaluate model performance, model biases, and environmental controls, which can indicate potential for improvements to 

PFT definitions or forcing data, or representation of processes within the model.  Retaining an ensemble of parameterizations allows 

for quantification of uncertainty in simulated outcomes due to variability in trait observations.  130 

2.3	Trait	Data	

We compiled a database of trait observations by tree species, starting with the TRY database (Kattge et al., 2011) and 

supplementing with data from additional literature where necessary (included in data archive https://doi.org/10.6078/D15M5X).  

To limit variability in trait values resulting from diverse geographic locations, we focused our literature search on California, and 

72% of the collected pine and cedar trait observations came from studies conducted in the Sierra Nevada Mountains.  The 135 

remaining observations were from elsewhere in the Western US.  We queried existing databases for allometric observations 

(Jenkins et al., 2004;Chojnacky et al., 2014;Falster et al., 2015). 

2.4	Experimental	Design	and	Analysis	

Our approach combines observations of plant traits and changes in forest composition under different disturbance scenarios with 

ensembles of model simulations to select robust parameterizations (Figure 1).  After an initial parameter sensitivity analysis, we 140 

filter an ensemble of potential PFT parameterizations based on ecological criteria at a single site.  We then evaluate simulated 

forest composition in the ensemble of retained parameterizations across a regional domain and explore model biases and 

environmental controls on composition and PFT-specific vital rates to suggest avenues for improving simulated forest 

composition.  

All FATES simulations were forced with 4x4 km spatial resolution daily climate data from 1979-2009 (Abatzoglou, 145 

2013) disaggregated to 3-hourly intervals (Rupp and Buotte, 2020).  Soil texture and organic carbon content were taken from the 

best available soils data for our domain, as described in Buotte et al. (2018), and, due to a lack of adequate spatially resolved soil 

data and no representation of root access to regolith water sources in FATES, soil depth was set to 10 m for all grid cells (O'Geen 

et al., 2018;Klos et al., 2018). 

Because FATES had not been previously exercised in the temperate mixed conifer forest, we assessed the sensitivity of 150 

simulated coexistence to 46 PFT trait and model parameters (Table S1).  We defined two hypothetical PFTs, with trait values 

(Table S1) drawn from distributions of trait observations of all conifer species present at the flux tower site (SI trait database), to 

create a 720-member ensemble of FATES parameterizations. We randomly sampled the parameter space based on Latin 

Hypercube sampling. We first divided each parameter range into intervals with equal probability and randomly sampled values 

from these intervals. We then ordered the sampled parameter values to maintain specified rank correlation between different 155 

parameters (Xu and Gertner, 2007;Iman and Conover, 1982).  The rank correlation matrix was calculated based on observed trait 

values for the PFT.  Samples for each parameter were drawn from a distribution defined by the observations, such that pairings 

of samples between parameters maintain the specified rank correlation (Iman and Conover, 1982).  Some parameters, such as the 

Polly Buotte � 6/11/2021 9:06 AM
Deleted:  of

Polly Buotte � 6/11/2021 9:06 AM
Deleted: We then ordered the sampled parameter 160 
values to maintain specified rank correlation among 
different parameters (Xu and Gertner, 2008).



 

 7 

target carbon allocated to storage reserves, are not observable; others are observable but regionally specific data are scarce or 

non-existent.  For such parameters, ranges were determined based on previous sensitivity studies (Fisher et al., 2015;Koven et 

al., 2020;Massoud et al., 2019).  We started these simulations from bare ground and ran the ensemble for 100 years with fire 165 

active, recycling the 1979-2009 climate forcing.  

We quantified composition as the ratio of the basal area of PFT #1 to the total basal area. This ratio therefore varies 

between 0, indicating complete PFT #2 dominance, to 1, indicating complete PFT #1 dominance.  We used univariate, non-linear 

generalized additive models to quantify the variance in composition explained by the differences between PFT #1 and PFT #2 

parameter values.  Because each parameter is varied over its full range of realistic values, variable importance as measured by R2 170 

(coefficient of determination, or variance explained) is also a measure of parameter sensitivity. 

Next, we created an ensemble of parameterizations for a shade-intolerant, fire-resistant pine and a shade-tolerant, 

drought-tolerant, less fire-resistant incense cedar (Table S1).  The parameter sensitivity results, along with the availability of 

observations, informed our decision of which trait parameters to vary. We varied eight trait parameters to capture the differences 

in these two ecological strategies.  We represented plant response to the light environment with four trait parameters: the specific 175 

leaf area at the top of the canopy (SLA top), the maximum possible specific leaf area (SLA max), the maximum rate of 

carboxylation (Vc max), and leaf nitrogen (leaf N), which affects leaf respiration in FATES.  The soil matric potential at which 

stomata close (SMPSC) controlled drought tolerance, and bark thickness (bark) controlled fire resistance.  We varied two 

additional trait parameters, leaf lifespan (leaf life) and wood density (wood den), that differ between these two strategies 

(Niinemets, 2010;Kozlowski and Pallardy, 1997) but are not easily tied to light availability, water availability, or fire resistance 180 

in FATES.    

We constrained the eight trait parameter values to the distributions of observations of pine and incense cedar (Table S1), 

as opposed to the full range of conifer trait values as in the 720-member ensemble used in the parameter sensitivity analysis.  All 

other trait parameters were held constant between the two PFTs as the mean of the combined pine and cedar observations.  

Although some of these trait parameters were found to be influential (e.g. allometric parameters), observations were insufficient 185 

to distinguish between pine and incense cedar.  Non-trait model parameters were set based on previous research with FATES 

(Table S1).  Following the same sampling methods that maintain rank correlation between trait parameters as above, we created 

a 360-member ensemble of PFT parameterizations. We ran this ensemble for 100 years for a total of four scenarios: from bare 

ground and from initialized stands, with fire both active and inactive.  Initialized stands began with an even proportion of pine 

and cedar, with the size structure based on census data from the flux tower site (included in data archive 190 

https://doi.org/10.6078/D15M5X).  

Observations allow us to devise ecological criteria, or expectations, for how the composition of trees with these two 

ecological strategies should respond to disturbance.  To ensure the PFT definitions represented the intended ecological strategies, 

we filtered the ensemble of parameterizations based on eight criteria.  In the mixed conifer forest of the Sierra Nevada, pine 

dominates when fire is present on the landscape (North et al., 2016), and incense cedar increases in dominance when fire is 195 

excluded (Dolanc et al., 2014a;Dolanc et al., 2014b).  From these observations we created six criteria based on pine and incense 

cedar basal area according to initial conditions and the presence of fire (Table 1).  We included two criteria based on 

observations of leaf area index and carbon use efficiency (Table 1).  We filtered the 360-member ensemble and retained 

ensemble members that met all eight criteria.   

 200 
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Table 1. Ecologically expected outcomes for each disturbance (fire on vs off) and initial condition (bare ground vs initialized stands) 

scenario for FATES simulations at the Soaproot Saddle site in the Sierra Nevada Mountains of California. BA = basal area, NPP = net 

primary productivity. 

FATES Scenario Expected Conditions Time Period/ 
Simulation Duration References 

Bare Ground start, Fire On Pine BA > cedar BA 
Pine NPP > 0 
Cedar NPP > 0 

After 100 years Dolanc et al. 2014 
Soaproot Saddle census data 

Bare Ground start, Fire Off Cedar BA > Cedar BA from bare 
ground with fire on 
Pine BA < Pine BA from bare 
ground with fire on 
Pine NPP > 0 
Cedar NPP > 0 

After 100 years Dolanc et al. 2014 
Soaproot Saddle census data 

Initialized start, Fire On Pine BA > cedar BA 
Pine NPP > 0 
Cedar NPP > 0 

After 100 years Dolanc et al. 2014 
Soaproot Saddle census data 

Initialized start, Fire Off 
 

 

 

 

Cedar BA > Cedar BA from 
initialized with fire on 
Pine BA < Pine BA from initialized 
with fire on 
Pine NPP > 0 
Cedar NPP > 0 

After 100 years Dolanc et al. 2014 
Soaproot Saddle census data 

LAI within 2-3 Average 2009-2011 MODIS, personal observations 
0.32<Carbon use efficiency<0.58 After 100 years DeLucia et al. 2007 
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Shade-tolerant trees tend to have lower maximum rate of carboxylation (Vc max), lower dark respiration rates, higher 

specific leaf area (SLA), and longer leaf lifespan than shade-intolerant trees (Kozlowski and Pallardy, 1997;Niinemets, 2010).  

However, filtering the 360-member ensemble retained only one parameterization that preserved these relative trait parameter 

values for pine and incense cedar.    

We therefore created a 72-member ensemble of pine and incense cedar parameterizations using the same eight trait 210 

parameters varied in the 360-member ensemble, but further constrained to enforce the appropriate relative differences between 

these functional types (Table S1, Figure 1). Parameter values were drawn from pine and incense cedar trait observation 

distributions that were centered on the filtered parameterization from the 360-member ensemble, spanned one standard deviation 

of the mean, maintained between-trait correlations, and retained the appropriate relative differences between pine and incense 

cedar traits.  This ensemble was run for 100 years for each of the four scenarios of initial stand conditions and fire at the flux 215 

tower site.  The results were filtered based on the eight criteria in Table 1 to identify the pine and incense cedar 

parameterizations most consistent with the eight expected ecological outcomes.  This filtering retained four plausible 

parameterizations.  We evaluated these four parameterizations against monthly gross primary productivity (GPP) and 

evapotranspiration (ET) fluxes from tower measurements over a 43 month period from July 2010 through January 2014 (O'Geen 

et al., 2018).  These simulations were initialized with stand composition and structure according to the site conditions in 2010. 220 

To evaluate performance of these parameterizations across a wide range of environmental conditions, we ran the four 

plausible parameterizations across our regional domain from bare ground with fire on, for 100 years.  We compared the 

simulated ratio of pine basal area to total basal area (hereafter referred to as pine fraction) with the LEMMA data (Ohmann et al., 

2011), and evaluated area burned with data from the Monitoring Trends in Burn Severity (MTBS) data (Eldenshenk et al., 2007).  
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We classified each FATES grid cell as having a reasonable pine fraction if it was within one standard deviation of the mean of 225 

the 30m LEMMA grid cells encompassed by the FATES grid cell.  We compared simulated and observed annual area burned 

over the domain with probability density functions and boxplots of each distribution.  

We evaluated model biases as the binary correct/not correct response as a multivariate, non-linear function of average 

annual temperature, total annual precipitation, and simulated annual area burned.  Climate variables were averaged over the 

range of climate forcing data, 1979-2009, for each 4-km grid cell.   We evaluated the environmental controls on simulated forest 230 

composition across the mixed conifer forest type in the Sierra Nevada.  We statistically modeled the pine fraction as a 

multivariate, non-linear function of annual precipitation, average annual temperature, and soil characteristics (percent sand, clay, 

and organic carbon).  All statistical analyses were performed using the mgcv package (Wood, 2011) in R version 3.6.2 (R Core 

Team, 2019). 

3	Results	235 

3.1	Sensitivity	of	PFT	Composition	to	Trait	and	Model	Parameters	

Coexistence between two hypothetical conifer PFTs was most influenced by trait parameters controlling gross primary 

productivity and carbon allocation, as controlled in part by allometry (Figure S1).  Allometric parameters, and wood density, set 

the growth rates of stem diameter and thus tree height growth per unit of biomass gained.  Non-trait model parameters 

controlling the creation of new patches from tree-fall (Disturb Frac), and height sorting to determine canopy position (Comp 240 

Excln) were among the least important (Figure S1).  We used these sensitivity results to focus further analysis on the influential 

trait parameters that distinguish pine and cedar strategies, and ensure we held sensitive but observationally unconstrained 

parameters constant between the two PFTs. 

3.2	Constraining	Potential	Pine	and	Incense	Cedar	PFT	Parameterizations	

Only one of the 360 ensemble members had the appropriate relative differences in pine and incense cedar trait values and met all 245 

eight ecological criteria.  This single ensemble member was used as the center point for generating the 72-member ensemble in 

which the relative trait parameter values for pine and incense cedar were additionally constrained according to the ecological 

strategies represented by each PFT (dark grey points in Figure 2).  When between-PFT constraints were not enforced in sampling 

the observations, many ensemble members (light grey points in Figure 2) fell outside of the range of relative trait values that 

represent these two ecological strategies. 250 



 

 10 

 

Figure 2. Distribution of pine and incense cedar parameter values in a 360-member ensemble (light grey), in which selected values 

were constrained by trait correlations and the distributions of observations, and in a 72-member ensemble (dark grey), in which values 

were additionally constrained to preserve the appropriate relative values between pine and incense cedar (hatched area).  The 

parameterizations retained from filtering based on expectations in Table 2 are shown in colors. 255 

Filtering the 72-member ensemble based on ecological criteria with and without fire was critical for selecting 

parameterizations that yielded the correct pine fraction under alternate fire regimes (Figure 3).  While many ensemble members 

(parameterizations) met individual ecological criteria, four members met all criteria regarding the effects of fire (Figure 3) and 

also were within the range of observed leaf area index and carbon use efficiency (not shown).  After continuing simulations with 

these four parameterizations for another 100 years, all four still met the ecological criteria.  Because these parameterizations span 260 

a range of observed pine and cedar trait values (Figure 2), they show differences in the magnitude of the effect of fire on the pine 

fraction (Figure 4).  All four parameterizations show a decrease in pine fraction when fire is excluded (Figure 4), and all four 

have the appropriate relative trait values (Figure 2).  Simulated monthly GPP and ET showed moderate agreement with 

observations (Figure S2).  Simulations underestimate peak GPP by 14 – 26% and overestimate peak ET by 6 – 28%.   

Retaining multiple, plausible PFT definitions allows us to quantify the uncertainty in simulated outcomes due to 265 

variability in trait observations.  For example, when starting from even stands of pine and incense cedar, variability in observed 

traits leads to a 26-84% decline in the total pine fraction when fire is inactive (Figure 4).  Taking canopy position into account, 

variability in observed traits leads to a 24-102% increase in the fraction of incense cedar in the canopy and 56-178% increase in 

the understory when fire is inactive (Figure 4).  
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Figure 3. Ensemble predictions relative to six of the filters based on ecological expectations listed in Table 2.  Each simulation (lines) 

had a unique PFT parameterization. Black hatched areas indicate the range of expected outcomes.  Colored lines indicate simulations 

that were retained and grey lines indicate those excluded after applying all eight filters. 
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Figure 4.  Fraction of pine (blue) and incense cedar (red) basal area (inner circle), differentiated by canopy position (outer circle), in 

simulations at the Soaproot Saddle flux tower site.  Each circle shows one of the four parameterizations retained after filtering based 

on expectations in Table 1. Simulations were started from even stands and run with fire active (top row) and inactive (bottom row) for 

100 years with recycled 1979-2015 climate.  280 

 

3.3	Evaluation	of	Regional	Forest	Composition  

When we applied the 4-member ensemble of PFT parameterizations across the Sierra Nevada mixed-conifer domain, all four 

parameterizations simulated reasonable total basal area with an average overestimate of 4-18% (Figure S3).  Seventy nine 

percent of all grid cells were classified as having the correct (within one standard deviation of observed) ratio of pine to total 285 

basal area in all four simulations (Figure 5).  In each simulation, over 85% of the incorrect grid cells under-represented pine 

basal area.  Annual area burned and fire size were similar to observations, although FATES lacked representation of very large 

fires (Figure S4). Regression analyses indicated that all four parameterizations underestimated the pine fraction where 

precipitation was the lowest (Figure 6a) or area burned was the least (Figure 6b).  The response functions for the other climate 

and environmental variables had 95% confidence intervals that spanned zero along the entire range of the independent variable, 290 

indicating they were not reliable predictors of FATES ability to simulate the correct pine fraction.   

 
Figure 5. Number of simulations with correct pine fraction, according to the LEMMA (Ohmann et al., 2011) dataset, out of four 

FATES simulations with plausible pine and incense cedar parameterizations. 
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Figure 6. Effects of average annual precipitation (a) and simulated average annual area burned (b) on the log-odds of the correct 

simulated pine fraction simulated by FATES.   

3.4	Environmental	Controls	on	Forest	Composition 	300 

Regional variation in forest composition was most sensitive to precipitation (Figure 7a).  Pine dominated in the wetter areas, with 

extreme incense cedar dominance in the driest areas in three of the four parameterizations (Figure 8a). This dominance was not 

formally enforced by the eight expectations, but instead emerges from the combination of model dynamics and the eight 

enforced expectations.   Forest composition was less sensitive to soil characteristics, but cedar tended to dominate on soils with 

higher sand and clay content, and pine on soils with higher organic matter content (Figure 8b-d). 305 
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 310 
Figure 7. Variance in the fraction of pine basal area relative to the total basal area of pine and incense cedar that is explained by 

environmental variables (a), and the difference between pine and incense cedar (pine minus cedar) growth (GR) and mortality rates 

(MR; b), for each of four pine and cedar parameterizations over a regional domain in the Sierra Nevada mixed conifer forest, starting 

from bare ground and run with fire active for 100 years.  Pine fraction was calculated for the final year and rates were averaged over 

the duration of the FATES simulations. 315 

a)	 b)	

Variance	in	Pine	Fraction	Explained	 Variance	in	Pine	Fraction	Explained	
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Figure 8. Effects of a) annual precipitation, b) soil sand content, c) soil clay content, and d) soil organic carbon content on the fraction 

of pine basal area relative to the total basal area of pine and incense cedar at the end of four FATES simulations started from bare 

ground and run with fire active over a regional domain in the Sierra Nevada mixed conifer forest for 100 years.  Each simulation uses 

one of the four parameterizations retained after filtering the outcomes of 72 parameterizations run at a single site according to the 320 
criteria in Table 1.  

Forest composition was sensitive to differences between pine and incense cedar vital rates (Figure 7b).  PFT-differences 

in growth rates could be offset by opposing PFT-differences in mortality rates to prevent pine or incense cedar from excluding 

the other, and the degree of compensation possible varied among the four parameterizations (Figure 9).  When pine growth rates 

were moderately faster than incense cedar, higher pine mortality rates allowed incense cedar to persist in the canopy and 325 

understory (Figure 9).  Differences among trait values in the four parameterizations (Figure 2) allowed for varying degrees of 

compensation between growth and mortality rates (Figure 9).  PFT-differences in growth rates were sensitive to precipitation and 
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temperature (Figure S5).  Pine growth rates were faster than incense cedar growth rates in wetter and cooler areas (Figure S6).  

Incense cedar growth rates were faster than pine growth rates in the driest areas, regardless of temperature (Figure S6). 330 

 
Figure 9. Effects of differences (pine minus cedar) in (a) canopy and (b) understory growth and mortality rates on the log-odds of pine 

dominance, and translated to the fraction of pine basal area to the total basal area of pine and incense cedar, at the end of four FATES 

simulations started from bare ground and run with fire active over a regional domain in the Sierra Nevada mixed conifer forest for 

100 years.  335 

Fire was the primary source of mortality across the mixed conifer forest domain in all four simulations (Figure S7).  

However, PFT-differences in fire mortality rates were less than PFT-differences in carbon starvation mortality rates (Figure 10), 

leading to PFT-differences in fire mortality rates having less influence on regional forest composition than PFT-differences in 

carbon starvation mortality rates (Figure 7b).  Fire-caused mortality rates were similar between small pine and incense cedar 

trees, but higher for incense cedar among larger trees (Figure 10a).  Pine had higher carbon starvation mortality rates across all 340 

size classes (Figure 10b).  PFT-differences in carbon starvation mortality rates were sensitive to climate (Figure S5), with a sharp 

increase in pine mortality at the lowest precipitation levels (Figure S6), where pine growth rates were much lower than incense 

cedar (Figure S6).  PFT-differences in fire-caused mortality rates were less sensitive to climate (Figure S5).   
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Fig. 10. Pine and incense cedar fire mortality (a) and carbon starvation mortality (b) from smallest to largest size classes.  Each box 

plot shows the annual mortality over 100  years, pooled across the four FATES simulations with the PFT parameterizations that met 

the criteria in Table 2.  Boxes bound the first and third quartiles, horizontal lines mark the median and whiskers extend to the max 

and min values. 355 

4	Discussion	

4.1 Approach for Defining PFTs 

Creating PFT definitions that accurately resolve community composition is essential for simulating the Earth System 

(Wullschleger et al., 2014).  We developed and applied a novel approach for assuring PFT definitions have high fidelity to the 

emergent properties of their intended ecological strategies.  First we extended the common practice of sampling trait parameter 360 

observations based on observed correlations among traits within a PFT (Lebauer et al., 2013) by incorporating between-PFT 

parameter constraints. Secondly, we introduced an ensemble filtering process based on expected compositional changes in 

response to alternate initial conditions and disturbance scenarios, and the emergent properties of leaf area index and carbon use 
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efficiency.  Finally, we evaluated the robustness of the resulting plausible PFT definitions across a wide range of environmental 

conditions, comparing simulations to observationally-constrained forest composition (Ohmann et al., 2011). 365 

Several methods for parameter estimation are commonly employed, including Bayesian (Lebauer et al., 2013;Raczka et 

al., 2018), maximum likelihood (Medvigy et al., 2009), and iteration (Hudiburg et al., 2009).  However, these methods do not 

ensure that simulated composition, even when accurate, is a result of the mechanisms that determine competitive outcomes and 

drive composition (Williams et al., 2009). Employing between-PFT parameter constraints and filtering simulations based on 

outcomes connects the PFT definitions to the processes that drive community composition.  In the mixed conifer forest of the 370 

Sierra Nevada, pine dominates when fire is present on the landscape (North et al., 2016), and incense cedar increases in 

dominance when fire is excluded (Dolanc et al., 2014a;Dolanc et al., 2014b).  This knowledge allows us to create eight criteria 

based on pine and incense cedar basal area according to initial conditions and the presence of fire (Table 1). We found many PFT 

parameterizations that met one of these criteria.  However, fewer parameterizations met all eight criteria.  Further filtering based 

on ecophysiological constraints (here, carbon use efficiency) and emergent properties (here, leaf area index) provide additional 375 

connections to field-based understanding of how the ecological strategies we are representing interact to determine community 

composition.  It is important the diagnose the model's ability to simulate both forest composition and biogeochemical stocks and 

fluxes (Shiklomanov et al., 2020). We evaluated simulations using the final filtered parameterizations against observations of 

GPP and ET, however these metrics could be applied as additional filters instead.  

Our understanding of the importance of constraining between-PFT parameter values emerged during the course of our 380 

analysis.  Even though the trait parameter values in the 360-member ensemble were drawn from observations subject to observed 

within-PFT trait correlations, filtering retained only one parameterization with the appropriate relative pine and incense cedar 

values across all eight trait parameters.  In contrast, filtering the 72-member ensemble, in which between-PFT constraints were 

applied, resulted in four plausible parameterizations and allowed us to quantify uncertainty in simulated forest composition due 

to variability in trait observations.  A greater proportion of the potential parameters were retained in the 72-member ensemble 385 

because the between-PFT trait constraints ensured pine would respond to the environment as the less shade-tolerant, less 

drought-resistant, and more fire-resistant PFT as compared to incense cedar.  Including between-PFT trait constraints ensures 

that the PFT responses to environmental conditions are in accordance with the ecological strategies the PFTs represent. The 

process would be more efficient if between-PFT constraints were enforced before filtering an ensemble, as depicted by the center 

box with heavy outline in Figure 1.  390 

We developed a set of plausible PFT parameterizations at a single site, and then applied those parameterizations across 

a regional domain with variability in climate.  Starting with FATES simulations at a single site allowed us to reduce the 

computational cost of simulating hundreds of potential parameterizations across a larger domain.  For reference, CLM-FATES 

simulations are approximately five to six times more computationally expensive than big-leaf CLM simulations.  Even so, 

selecting additional site locations stratified by environmental variables may be beneficial, particularly when developing more 395 

than two PFTs.  Evaluating the retained parameterizations across the regional domain allowed us to use model biases to 

determine if the retained parameterizations were robust across temperature and precipitation gradients, and devise options for 

improving model performance.   

Our approach could be easily applied in other ecosystems, with ecological expectations and scenarios developed in 

accordance with the accumulated knowledge of the controls on community composition.  We suggest conducting an initial 400 

parameter sensitivity analysis to ensure influential parameters can either be estimated based on observations or held constant.  In 

our 720-member ensemble, trait parameters were bounded by observations of all conifer species present at the site, ensuring trait 
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parameters spanned a broad range, and thus limiting the potential for missing influential parameters due to a lack of variability.   

However, a sensitivity analysis could be run on the ensemble created by sampling with inter-trait and inter-PFT constraints 

instead. 

Coupling VDMs to Earth System Models is providing new opportunities for global change research (Fisher et al., 

2018), and defining global PFTs is a critical component of this integration. Current vegetation distributions are the result of 410 

particular sequences of climate, disturbances, and dispersal events across millennia (Jackson et al., 2009). Therefore, without 

observations of realized disturbances (including land management), and their representation in the model, a global model may 

not be able to precisely replicate the spatial patterns of vegetation structure and distribution from observations. Functional 

relationships among climate, disturbances, and vegetation distributions may provide a more meaningful benchmark.  Our 

strategy of filtering ensembles of potential parameterizations at single sites and then evaluating model performance and biases 415 

across larger domains would be an efficient means of arriving at robust global PFT definitions.  First, an ensemble of potential 

PFT definitions would be created, maintaining the appropriate inter-trait and inter-PFT correlations.  Next, sites could be selected 

to represent conditions with known coexistence and known competitive exclusion among two or more PFTs.  It may be useful to 

stratify sites based on the limitations of temperature, radiation, and water (Nemani et al., 2003), and to capture distinct 

disturbance regimes.  Ecological expectations would then be developed for each site-PFT combination to filter the ensemble of 420 

potential PFT definitions.   These expectations, and their implications, depend on the processes and ecological mechanisms 

represented in the model (Medlyn et al., 2015).  If, for example, nutrient limitation has a strong influence on community 

composition but is not represented in the model, it would be important to assess the filtered parameterizations to understand 

which mechanisms are compensating to achieve the expected composition.  The filtered parameterizations can be evaluated 

across a larger domain with gradients of climate and soils to determine if additional parameter, or model, modifications are 425 

necessary before investing in global simulations.   

4.2 Sierra Nevada Forest Composition 

Enforcing the relative parameter constraints and filtering based on ecological criteria resulted in PFT definitions that led to 

realistic emergent dynamics and forest composition that met all three of our driving expectations.  Given the historical 

occurrence of seasonal drought and frequent surface fires in the mixed conifer forest region of the Sierra Nevada Mountains 430 

(North et al., 2016), we expected that composition of tree functional types in FATES would be sensitive to parameters related to 

shade-tolerance, drought-tolerance, and fire-resistance.  Our results described a simulated ecosystem where forest composition is 

driven by available light and water and the presence of fire.  Forest composition in FATES was sensitive to differences between 

the PFTs in specific leaf area, Vc,max, and leaf respiration, reflecting the importance of the light environment (Kozlowski and 

Pallardy, 1997).  We found composition was also sensitive to variation in bark thickness.  Within FATES (following Thonicke et 435 

al 2010), thicker bark provides insulation against cambial damage from fire and thereby lowers tree mortality due to fire. Unlike 

in tropical forest, composition was not sensitive to parameters that control patch creation from small-scale disturbances (Koven 

et al., 2020), indicating the landscape-scale disturbance from fire was more important than disturbances such as tree fall. FATES 

was not sensitive to differences in the parameter controlling the soil matric potential at which stomata close (SMPSC).  However, 

differences in PFT dominance according to precipitation and soil characteristics that define the water holding capacity indicate 440 

water availability affected composition.   
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Simulated between-PFT differences in regional growth and mortality met our expectations of the influence of the fire 

regime and water availability on forest composition, and increased our confidence in FATES' ability to represent the ecological 

dynamics in the Sierra Nevada mixed conifer forest.  Our filtering process forced the expected changes in pine and cedar 

abundance due to fire.  The emergent responses in growth and mortality, however, were not enforced yet conformed to our 450 

expectations.  When fire is active in the model, tree mortality from fire should open canopy gaps, increasing light availability and 

favoring pine (Yeaton, 1983;North et al., 2016).  Conversely, when fire is inactive, the canopy should close, reducing light 

availability and favoring incense cedar (North et al., 2016;Dolanc et al., 2014a).  The combination of increasing pine dominance 

with increasing area burned, and increasing pine dominance with greater differences between pine and cedar growth rates 

supports these expectations. Fire was the dominant source of mortality, with large incense cedars experiencing relatively greater 455 

mortality from fire than pines did.  Our filtering process did not force the expected pine and cedar dominance along the 

precipitation gradient.  Yet, our regional simulations reflect the expected drought-tolerance strategies: pine was more dominant 

in wetter areas and pine growth rate was lower and carbon starvation mortality rate was higher than incense cedar in drier areas. 

Exploration of model biases across the regional ensemble, along with analyses of the environmental controls on forest 

composition and between-PFT differences in vital rates revealed a deficiency in our current simulations in regards to water 460 

availability.  In all four parameterizations, pine was underrepresented at the lowest precipitation levels.  This could indicate that, 

given the range of observed variability in pine carbon allocation and drought tolerance (DeLucia et al., 2000), further delineation 

of a dry pine PFT may be necessary to simulate this forest type across its full range in the Sierra Nevada.  Another possibility is 

that variability in root-depth distributions, in conjunction with improved soil definitions, may be necessary.  Root distributions 

were held constant between the pine and cedar PFTs due to a lack of observations.  Recent analysis with FATES at the Soaproot 465 

Saddle site (Ding et al., in revision) indicates that greater rooting depth yields higher pine productivity during progressive 

drought compared with shallow rooting depth.   Alternatively, this model bias may indicate a structural deficiency in how 

drought stress is represented.  In our simulations, water stress is represented with a scaling factor that reduces potential 

productivity (Oleson et al., 2013).  Incorporating an explicit representation of the flow of water through the soil-plant-

atmosphere continuum (Christoffersen et al., 2016;Xu et al., 2016;Meunier et al., 2021) may be necessary to represent forest 470 

dynamics in a climate with strong seasonal drought. Further iterations of the process of defining PFTs and evaluating model 

biases with an additional PFT and variable rooting parameters could indicate whether improved parameterizations or additional 

model processes are needed to correct this bias.  

Our domain has historically experienced a surface fire regime (Van de Water and Safford, 2011;North et al., 2016).  Our 

simulations represented a surface regime, with frequent, small fires in all parameterizations.  However, canopy fuels are not 475 

included in the calculations of fire behavior and characteristics, and observations indicate forest composition is changing in ways 

that may promote increases in canopy fire (Menning and Stephens, 2007).  Given the important role of fire in filtering ensemble 

members, fire behavior algorithms should be updated to allow for the inclusion of canopy fuels.  As these changes may influence 

competitive ability, pine and incense cedar parameterizations may require further updates. Our approach provides an efficient, 

albeit computationally demanding, means of updating PFT definitions as new developments are incorporated into FATES.  480 

5 Conclusions 

 Plant functional type definitions determine vegetation demographic models' ability to accurately simulate plant 

composition.  Traditional means of parameterization, such as iteration, do not guarantee ecologically robust PFT definitions, and 
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can be extremely slow when many parameters interact to determine outcomes.  Imposing between-PFT trait parameter 

constraints and filtering an ensemble of parameterizations based on a discrete set of criteria for outcomes under alternate 490 

disturbance or environmental scenarios ensures that PFTs are representing their intended ecological strategies. We applied this 

approach to define four plausible PFT parameterizations for a shade-intolerant, fire-resistant pine and a shade-intolerant, 

drought-tolerant, less fire-resistant incense cedar.  All four parameterizations produced robust simulations of forest composition 

across the mixed conifer forest in the Sierra Nevada Mountains.  Analyses of parameter sensitivity and PFT-specific vital rates 

indicate FATES simulated the expected interactions among the fire regime and light and water availability in this ecosystem.  495 

This approach could be applied in any ecosystem, or scaled up to define global PFTs.  Robust resolution of community 

composition will allow us to use VDMs to address important questions related to future climate and management effects on 

forest structure, composition, and carbon storage and feedbacks within the Earth system.  
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Figure Captions 

 

Figure 1. Overview of our workflow for developing and applying PFT parameterizations. We suggest sampling with relative trait 

value constraints to create the initial ensemble of potential PFT parameterizations. An initial sensitivity analysis may be 

necessary if applying the VDM in a new ecosystem.  Ecological expectations are developed according to understanding of the 535 

climate and disturbance controls on coexistence in that ecosystem.  These expectations are used to filter the simulation outcome, 

thereby retaining PFT parameterizations that conform to their intended ecological niches. The retained parameterizations are 

applied to a regional domain to evaluate model performance, model biases, and environmental controls, which can indicate 

potential for improvements to PFT definitions or forcing data, or representation of processes within the model.  Retaining an 

ensemble of parameterizations allows for quantification of uncertainty in simulated outcomes due to variability in trait 540 

observations.  

 

Figure 2. Distribution of pine and incense cedar parameter values in a 360-member ensemble (light grey), in which selected 

values were constrained by trait correlations and the distributions of observations, and in a 72-member ensemble (dark grey), in 

which values were additionally constrained to preserve the appropriate relative values between pine and incense cedar (hatched 545 

area).  The parameterizations retained from filtering based on expectations in Table 2 are shown in colors. 

 

Figure 3. Ensemble predictions relative to six of the filters based on ecological expectations listed in Table 2.  Each simulation 

(lines) had a unique PFT parameterization. Black hatched areas indicate the range of expected outcomes.  Green lines indicate 

simulations that were retained and grey lines indicate those excluded after applying all eight filters. 550 

 

Figure 4.  Fraction of pine (blue) and incense cedar (red) basal area (inner circle), differentiated by canopy position (outer circle), 

in simulations at the Soaproot Saddle flux tower site.  Each circle shows one of the four parameterizations retained after filtering 

based expectations in Table 1. Simulations were started from even stands and run with fire active (top row) and inactive (bottom 

row) for 100 years with recycled 1979-2015 climate. 555 

 

Figure 5. Number of simulations with correct pine fraction, according to the LEMMA (Ohmann et al., 2011) dataset, out of four 

simulations with plausible pine and incense cedar parameterizations. 

 

Figure 6. Effects of average annual precipitation (a) and simulated average annual area burned (b) on the log-odds of the correct 560 

simulated pine fraction.   

 

Figure 7. Variance in the fraction of pine basal area relative to the total basal area of pine and incense cedar that is explained by 

environmental variables (a), and the difference between pine and incense cedar (pine minus cedar) growth and mortality rates 

(b), for each of four pine and cedar parameterizations over a regional domain in the Sierra Nevada mixed conifer forest, starting 565 

from bare ground and run with fire active for 100 years.  Pine fraction was calculated for the final year and rates were averaged 

over the duration of the simulations. 
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Figure 8. Effects of a) annual precipitation, b) soil sand content, c) soil clay content, and d) soil organic carbon content on the 

fraction of pine basal area relative to the total basal area of pine and incense cedar at the end of four simulations started from 570 

bare ground and run with fire active over a regional domain in the Sierra Nevada mixed conifer forest for 100 years.  Each 

simulation uses one of the four parameterizations retained after filtering the outcomes of 72 parameterizations run at a single site 

according to the criteria in Table 1.  

 

Figure 9. Effects of differences (pine minus cedar) in (a) canopy and (b) understory growth and mortality rates on the fraction of 575 

pine basal area to the total basal area of pine and incense cedar at the end of four simulations started from bare ground and run 

with fire active over a regional domain in the Sierra Nevada mixed conifer forest for 100 years.  

 

Fig. 10. Pine and incense cedar fire mortality (a) and carbon starvation mortality (b) from smallest to largest size classes.  Each 

box plot shows the annual mortality over 100  years, pooled across the four simulations with the PFT parameterizations that met 580 

the criteria in Table 2.  Boxes bound the first and third quartiles, horizontal lines mark the median and whiskers extend to the 

max and min values. 
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