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Abstract. Australia plays an important role in the global terrestrial carbon cycle on inter-annual timescales. While the Aus-

tralian continent is included in global assessments of the carbon cycle such as the global carbon budget, the performance of

dynamic global vegetation models (DGVMs) over Australia has rarely been evaluated. We assessed simulations of net biome

production (NBP) and the carbon stored in vegetation between 1901 to 2018 from 13 DGVMs (TRENDY v8 ensemble).

We focused our analysis on both Australia’s short-term (inter-annual) and long-term (decadal to centennial) terrestrial carbon5

dynamics. The TRENDY models simulated differing magnitudes of NBP on inter-annual timescales, and these differences

contributed to carbon accumulation in the vegetation on decadal to centennial timescales (-4.7–9.5 PgC). We compared the

TRENDY ensemble to several satellite-derived datasets and showed that the spread in the models’ simulated carbon storage

resulted from varying changes in carbon residence time rather than differences in net carbon uptake. Differences in simulated
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long-term accumulated NBP between models were mostly due to model responses to land-use change. The DGVMs also sim-10

ulated different sensitivities to atmospheric carbon dioxide (CO2) concentration, although notably, the models with nutrient

cycles did not simulate the smallest NBP response to CO2. Our results suggest that a change in the climate forcing did not have

a large impact on the carbon cycle on long timescales. However, the inter-annual variability in precipitation drives the year-to-

year variability in NBP. We analysed the impact of key modes of climate variability, including the El Niño Southern Oscillation

(ENSO) and the Indian Ocean Dipole (IOD) on NBP. While the DGVMs agreed on sign of the response of NBP to El Niño and15

La Niña, and to positive and negative IOD events, the magnitude of inter-annual variability in NBP differed strongly between

models. In addition, we identified differences in the timing of simulated phenology and fire dynamics associated with differ-

ences in simulated/prescribed vegetation composition and process representation. Model disagreement in simulated vegetation

carbon, phenology and apparent carbon residence time, indicates the models have different types of vegetation cover across

Australia (whether prescribed or emergent). Our study highlights the need to evaluate parameter assumptions and the key pro-20

cesses that drive vegetation dynamics, such as phenology, mortality and fire, in an Australian context to reduce uncertainty

across models.

1 Introduction

Decadal variability in the growth rate of atmospheric carbon dioxide (CO2) is strongly influenced by variability in the uptake

and release of carbon by the oceans and the terrestrial biosphere (Ballantyne et al., 2012; Raupach et al., 2008). The inter-25

annual variability (IAV) in the CO2 growth rate is dominated by terrestrial processes (e.g. vegetation productivity, respiration

and fire emissions) and their responses to both temperature and precipitation, driven by modes of climate variability (Ahlström

et al., 2015; Zhang et al., 2018; Poulter et al., 2014). The El Niño Southern Oscillation (ENSO) is the dominant mode of global

variability (e.g. Ahlström et al., 2015) and contributes around 26% to IAV in global gross primary production (GPP; Zhang

et al., 2019). Globally, ENSO has also been shown to explain more than 40% of satellite-derived net primary production (NPP)30

variability, mainly driven by the response of Southern Hemisphere ecosystems (Bastos et al., 2013) and in particular, semi-arid

ecosystems (Zhang et al., 2018).

Around 70% of the land in Australia is classified as either arid or semi-arid (Brown et al., 2008). Oceania has been found

to contribute significantly to the uncertainty in global and regional carbon budgets (Bastos et al., 2020) and the important role

played by semi-arid ecosystems in explaining the variability of the global carbon cycle was highlighted by the 2011 La Niña35

event. While on average, ∼ 17% of IAV in net biome production (NBP) was attributable to Australia over the historical period,

during the 2011 La Niña event, Australia contributed around 60% to the global carbon sink (e.g. Poulter et al., 2014). A recent

study suggested that the Australian terrestrial carbon sink may be enhanced due to more extreme wet-events projected for

future decades (Ma et al., 2016). This carbon uptake enhancement has been associated with the asymmetric response of GPP

to precipitation, i.e. positive GPP anomalies tend to be larger than negative ones (based on upscaled global flux tower data;40

Haverd et al., 2017), in combination with vegetation expansion linked to rainfall (based on a single dynamic vegetation model;
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Poulter et al., 2014). At the same time, a series of studies have also identified evidence of rising CO2 leading to a marked

greening of the Australian continent (Donohue et al., 2009, 2013; Ukkola et al., 2016b; Trancoso et al., 2017).

Dynamic global vegetation models (DGVMs) are commonly used to explore large–scale responses of the carbon cycle

to climate variability and climate change (Friedlingstein et al., 2019; Le Quéré et al., 2018). However, comparing NBP (the45

change in carbon stocks including carbon losses due to disturbance) between different DGVMs shows a large model spread with

substantial variations of annual global NBP of up to 3 PgC yr−1 when forced with the same meteorological drivers (Le Quéré

et al., 2018). This demonstrates large uncertainties in the representation of the terrestrial carbon cycle and the associated

response to climate and land-use change in DGVMs. Roxburgh et al. (2004) concluded from an Australian based evaluation of

NPP that DGVMs were unable to capture the interactions between terrestrial biosphere and atmosphere (models simulated a50

fivefold variation in annual NPP), citing weaknesses related to the role of water and nutrients in limiting productivity. A number

of more recent studies have improved our understanding of the Australian terrestrial carbon cycle, employing flux tower data

(e.g Tarin et al., 2020), satellite derived carbon fluxes (e.g. Cleverly et al., 2016) and regional biospheric modelling (e.g. Haverd

et al., 2013, 2016b). Nevertheless, while the Australian continent is included in global assessments of the carbon cycle, DGVM

performance over Australia has rarely been evaluated. The need for such an evaluation is emphasized by recent studies that55

have used DGVM simulations to underline the importance of Australia’s ecosystems to the inter-annual variability of the global

carbon cycle (Poulter et al., 2014; Ahlström et al., 2015). DGVM studies have also previously highlighted vegetation responses

to climate as critical to future projected changes in water resources (Ukkola et al., 2016a) and an enhanced future carbon sink

(Kelley and Harrison, 2014) across Australia. Thus, evaluating DGVM skill is also equally important for assessing projected

changes in Australia’s carbon and water cycles.60

In this study, we assessed the terrestrial carbon cycle for Australia simulated by 13 DGVMs that are part of the TRENDY

v8 ensemble. We examined drivers of both the long-term (decadal to centennial timescales) and short-term (inter-annual

timescales) model responses of the carbon cycle. With these timescales in mind, we expected that model differences result

from:

– sensitivity to increasing CO265

– sensitivity to climate variability

– prescribed/ simulated land cover and interpretation of land-use change

– assumed/emergent functional representation of Australian vegetation

We therefore examined the contribution made by each of these differences across the TRENDY v8 ensemble. Our goal was

to isolate, to the extent possible, the causes of differences among the TRENDY v8 ensemble as a first step towards prioritising70

areas to focus on to resolve the differences among the models.
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2 Materials and Methods

2.1 Models and simulations

We used the 13 dynamic vegetation models that are part of the TRENDY v8 model ensemble (Friedlingstein et al., 2019):

CABLE–POP, CLASS–CTEM, CLM5.0, ISAM, ISBA-CTRIP, JSBACH, JULES-ES, LPX-Bern, OCN, ORCHIDEE, ORCHIDEE-75

CNP, SDGVM and VISIT. All models used identical forcing inputs and followed a common simulation protocol over the period

1700–2018 (see appendix figure B1 and description in the appendix for more detailed information). However, each model used

a model-specific interpretation of the land-use change forcing.

We remapped all model outputs and satellite datasets (see below) to a common 0.5◦ grid using first order conservative

regridding (except for the comparison with the NATT data). For this analysis, we defined a year to start in July and end in June80

(except for the CVeg analysis which followed calendar years) to capture the Southern Hemisphere growing season and capture

full El Niño and La Niña events, which usually start and end in austral winter. We expressed the change in the variables as the

difference to the 1901–1930 average and processed the data with netCDF Operators (NCO; version 4.7.7. http://nco.sf.net) and

climate data operators (CDO; version 1.9.5. http://mpimet.mpg.de/cdo). The data analysis was conducted with Python version

3.85

2.2 Satellite Data

To assess model simulations, we used several satellite-derived data sets. We note that direct continental-scale measurements of

the variables below do not exist, and that the satellite products also rely on models themselves.

Gross primary production/phenology

We compared the simulated the GPP phenology cycle to GPP derived from solar-induced chlorophyll fluorescence (SIF)90

(GOSIF-GPP; Li and Xiao, 2019). To ensure the GOSIF-GPP phenology accurately captured phenology, we also compared

these data to a satellite-derived leaf-area index (LAI) product (modified Copernicus Service information, 2020; see appendix

figure B2). GOSIF-GPP is based on the OCO-2-based SIF product (GOSIF) and derived by assuming linear relationships

between SIF and GPP estimated from eddy covariances sites. Uncertainties were accounted for by using eight different SIF-

GPP relationships (derived universally and biome-specific, with and without intercept at both site and grid cell levels). The95

0.05◦ dataset covers the period 2000 to 2018 at an 8-day temporal resolution, that we aggregated to a monthly time step.

Carbon stored in vegetation

Estimates of aboveground carbon biomass can be derived from satellite estimates of vegetation optical depth (VOD; related

to the aboveground vegetation’s water content, density and biomass). We used aboveground carbon biomass to assess the carbon

stored in vegetation in the TRENDY models and note that the datasets are not directly comparable since the satellite product100

does not account for belowground carbon. We used global estimates of the annual average aboveground biomass carbon for

1993–2012 with a 0.25◦ spatial resolution derived from a series of satellite passive microwave instruments (Version 1.0; Liu

et al., 2015). Liu et al. (2015) used an empirical approach to convert a harmonised time series of VOD to above-ground biomass

carbon.
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Fire-related CO2 fluxes105

We used two different satellite estimates of fire CO2 emissions: the Global Fire Emissions Database version 4 (GFED4s)

described in van der Werf et al. (2017) as well as the Copernicus Atmosphere Monitoring Service Global Fire Assimilation

System (CMAS-GFAS; Kaiser et al., 2012). GFED4s has a spatial resolution of 0.25◦ with a monthly time step and provides

data from 1997–2020. We note that starting from 2017, the GFED4s data are flagged as a beta version, i.e. starting 2017, fire

emissions are derived from active fire detections instead of burned area. CAMS-GFAS covers the years 2003–2020 on a 0.1◦110

horizontal grid. The source for both estimates is the MODIS satellite but different variables and methods are used to derive the

fire CO2 emissions (see e.g. van der Werf et al., 2017; Kaiser et al., 2012; Li et al., 2019; Pan et al., 2020, for more detail).

Landcover fraction

We used the MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006 dataset for a comparison

of satellite derived and landcover in DGVMs. This product estimated the global landcover fraction using surface reflectance,115

brightness temperature and the MODIS Global 250m Land/Water Map (DiMiceli et al., 2017).

2.3 Fluxsites/ North Australian Tropical Transect sites

We analysed the TRENDY models in context of the North Australian Tropical Transect (NATT) gradient, which encompasses

a precipitation gradient ranging from∼720 to 1650 mm yr−1. The NATT was established to understand the function of savanna

ecosystems, the predominant landscape in north Australia. We used the four sites Howard Springs (AU-How), Daly Uncleared120

(AU-DaS), Dry River (AU-Dry) and Sturt Plains (AU-Stp; see appendix table B1). We chose the simulations with transient CO2

concentration, climate and land-use change. In order to compare the models to the flux sites, we isolated the corresponding

gridcells based on the site coordinates and calculated the net ecosystem exchange (NEE) as a balance between GPP and

terrestrial ecosystem respiration (TER). We further divided the data into the wet (November–April) and dry (May–October)

season.125

Although we showed flux tower observations and simulations of NEE, GPP and TER together, we note that the spatial scales

of observed ecosystem fluxes (eddy covariance) and simulations by a DGVM are not directly comparable given the flux tower

footprint is ∼ 1 km2 vs. ∼ 3000 km2 for a gridcell in a 0.5◦ grid. Consequently, DGVMs cannot represent local features such

as heterogeneous environmental conditions and land cover, or biogeographical feedbacks with atmospheric conditions specific

to the site (Piao et al., 2013; Luo, 2007). However, given the meteorology recorded at the sites and the meteorology used to130

drive the TRENDY simulations were highly correlated (see appendix figure B3), we assumed the TRENDY models simulated

the vegetation in a similar climate as the observed. We also note that due to data loss, some of the observed data contained a

high proportion of gap-filled data. This was particularly the case at Howard Springs site and for the TER flux across sites.

2.4 Vegetation classes

To group the analysis by regions, we classified Australia into six vegetation classes (tropics, savanna, warm temperate, cool135

temperate, mediterranean and desert; see appendix figure B4) following Haverd et al. (2012). These regions have distinct

climate and biophysical characteristics and are based on the agro-climatic classification by Hutchinson et al. (2005).
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2.5 Identification of modes of variability

Numerous studies highlighted the impact of different modes of climate variability on Australian weather patterns (e.g. Um-

menhofer et al., 2011). The El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) drive variability in140

precipitation, which in turn is the main driver of variability in the Australian carbon cycle (e.g Cleverly et al., 2016; Haverd

et al., 2013). We identified years corresponding to the phase of ENSO and IOD events (see appendix table B2). We used these

different climate modes to group our analysis of modelled carbon fluxes.

2.6 Apparent carbon residence time in vegetation

To understand model differences that are related to carbon stored in vegetation (CVeg), we analysed the carbon residence time145

in vegetation (τ ). We followed Friend et al. (2014) and Pugh et al. (2020) who defined the change in CVeg over time as

dCVeg

dt
=NPP − CVeg

τ
(1)

Consequently, we calculated the change in the carbon residence time using annual timesteps according to

τ =
CVeg

NPP − dCVeg
dt

(2)

2.7 PFT groups150

Each of the TRENDY models has its own vegetation classification. To compare simulated/prescribed vegetation cover between

models, we grouped the model-specific plant functional types (PFTs) into ten PFT groups: evergreen trees (’EVG’), deciduous,

summergreen and raingreen trees (’DCD/ SMG/ RNG’), shrubs, savanna, C3 grass, C4 grass, C3 agriculture and C4 agriculture

(i.e. crops and pasture PFTs), bare ground and a group comprising the remaining landcover types, such as city, urban, or lakes.

For each model, we assigned the model-specific PFTs to these groups and finally compared the fraction of land covered by155

each PFT group. Note that not all models account for all the vegetation groups, i.e. only four out of the ten PFT groups included

input from all of the models (EVG, DCD/ SMG/ RNG, C3 Grass, and C4 Grass).

3 Results

3.1 Net biome production and carbon stored in vegetation

Summed over Australia, the TRENDY model ensemble simulated large inter-annual variability in NBP (see fig. 1a) ranging160

from -0.9 PgC yr−1 to 1.4 PgC yr−1. Figure 1a also shows a considerable model spread: the TRENDY models varied on

average by 0.5 PgC yr−1 with a difference of up to 1.26 PgC yr−1 between the most extreme models. Years with extremely

high or low NBP, such as in 1973 and 2010, were associated with particularly large uncertainty amongst the models. These
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large differences on inter-annual timescales led to differences in cumulative NBP over 1901–2018, varying between -4.7 PgC

(OCN) and 9.5 PgC (LPX-Bern; see fig. 1b). Two of the DGVMs simulated a net carbon source over the Australian continent165

from 1901–2018 while the remaining models simulated a net sink ranging from negligible through to 9.5 PgC.

Across the 20th Century, the TRENDY models simulated very different amounts of CVeg. For example, JSBACH simulated

∼2.5 PgC while JULES-ES and ORCHIDEE-CNP simulated more than ∼16 PgC (see fig. 1c). We used an estimate derived

from vegetation optical depth (VOD; see fig. 1c) to put the model simulations into context. Nine of the thirteen models predicted

a higher amount of CVeg than aboveground biomass estimated by the satellite. Uncertainty in the VOD data was not available,170

but if we conservatively assume ± 30%, at least 7 of the 12 models were outside this range. However, we note that higher

CVeg in comparison to aboveground biomass might also result from the fact that CVeg includes above- and belowground

biomass. The models also showed very different long term behaviour. For example, some DGVMs simulated a steady state

CVeg (e.g. JSBACH and LPX-Bern) through 1901–2018, while other models displayed a strong decrease in CVeg until 1970 and

subsequently increased slightly (e.g. OCN and ISBA-CTRIP). VISIT simulated a sudden jump in CVeg around 1975. Similarly,175

CSoil varied strongly between the models from 11.9 PgC (JSBACH) up to 64.4 PgC (JULES-ES). Most of the models did not

show a change over time while three models increased in CSoil (CABLE-POP, ISAM and LPX-Bern). In short, figure 1 shows

that the 13 TRENDY models simulated different inter-annual variability, contrasting cumulative NBP and inconsistent short

and long term CVeg and CSoil.

3.2 Response to atmospheric CO2 concentration, climate and land-use change180

We used three sets of TRENDY simulations (see appendix figure B1) to separate the effect of three drivers — atmospheric

CO2 concentration, climate and land-use change — on the Australian carbon cycle. Figure 2 shows cumulative NBP over

1901–2018 for the three simulations CO2, CO2 + CLIM and CO2 + CLIM + LUC. Summed over the years 1901–2018, the

TRENDY models showed high variability in the response to the different external drivers. The models agreed on the sign of the

response to atmospheric CO2 and the combined effect of atmospheric CO2 and varying climate, such that by 2018, all models185

accumulated NBP, both on regional and continental scales. However, the response of cumulative NBP to increasing atmospheric

CO2 differed strongly among the models with an increase in NBP ranging from 2.5 PgC up to 10 PgC over all of Australia.

Varying climate in combination with increasing atmospheric CO2 concentration led to stronger increases in cumulative NBP

for some models (e.g. LPX-Bern and VISIT, see fig. 2; all regions except tropics and mediterranean), or decreases (e.g. ISAM

and ORCHIDEE-CNP). Lastly, land-use change led to the the greatest variation among the TRENDY-models with differences190

both in sign and magnitude (–3.3–8.5 PgC). Eight out 13 models simulated a decrease in cumulative NBP compared to the CO2

+ CLIM run for all regions. Imposed land-use turned positive cumulative NBP in the CO2 + CLIM simulations into negative

cumulative NBP in the CO2 + CLIM + LUC simulation for OCN and ORCHIDEE-CNP. Only ISAM accumulated more NBP

in the CO2 + CLIM + LUC simulation compared to the CO2 + CLIM run in most regions.
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Figure 1. Net biome production (NBP), carbon stored in vegetation (CVeg) and carbon stored in soil (CSoil) for the TRENDY model ensemble

for the CO2 + CLIM + LUC run. Positive values in NBP represent a net carbon sink, negative values are a net carbon source. The solid green

line in a) shows the ensemble mean of total annual NBP and the shaded green area shows the range across models. b) shows the cumulative

net biome production for each model summed over Australia. c) and d) show CVeg and CSoil respectively summed over Australia for each

model. The black line in c) shows the a satellite derived estimate (’VOD’; Liu et al., 2015). Note that we define the first month of the year as

July and the last month of the year as June for NBP and follow calendar years for the carbon pools.
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3.3 Response to modes of climate variability195

The climate in Australia, especially the precipitation patterns, is strongly influenced by different modes of variability such as

ENSO and the IOD. Therefore, the modes of variability can be expected to influence the IAV of the terrestrial carbon cycle over

Australia. To further understand the response to the climate forcing, we decomposed the model response to the different modes

of variability (see appendix table B2), specifically to positive and negative IOD events (see fig. 3 ’pIOD’ and ’nIOD’), and El

Niño and La Niña events (see fig. 3 ’El Niño’ and ’La Niña’). Negative and positive NBP values that are neither associated200

with ENSO nor with the IOD (see fig. 3 ’other negative’ and ’other positive’) as well as the response of the models to the ten

driest and wettest years (’Driest years’ and ’Wettest years’) are also shown in figure 3.

In general, the individual models agreed on the sign of NBP for the different climate modes of variability with negative NBP

for positive IOD and El Niño events, and positive NBP for negative IOD and La Niña events. The two ’other’ groups (negative

and positive) covered a similar value range compared to the modes of variability. For both IOD- and ENSO-events as well as205

for the ’other negative/positive’ categories, the median values across years were similar among the models. Interestingly, the

model responses in the driest and wettest years led to the largest range among the models in both median and IAV compared

to the other six panels. This highlights the importance of looking beyond climate modes of variability to understand responses

of the Australian terrestrial carbon cycle.
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Figure 3. Net biome production (NBP) during positive IOD (’pIOD’), negative IOD (’nIOD’), El Niño and La Niña events (see appendix

table B2). All negative NBP values that are neither associated with pIOD nor El Niño are classified as ’other negative’; all positive NBP

values that are neither associated with nIOD nor La Niña events are classified as ’other positive’. ’Driest years’ show NBP values associated

with the ten driest years, and ’Wettest years’ show NBP values associated with the ten wettest years (based on precipitation anomalies

averaged over Australia). We define the first month of the year as July and the last month of the year is defined as June. Note that the y-axis

limits differ between the panels.
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3.4 Seasonal productivity and phenology210

To examine differences in simulated carbon uptake, we evaluated the simulated seasonal cycle. Figure 4 shows that the

TRENDY models varied in the timing and the magnitude of peak productivity for the different vegetation regions. We com-

pared the TRENDY models to the GPP estimate derived from solar-induced chlorophyll fluorescence (’GOSIF-GPP’; Li and

Xiao, 2019). We note that because direct measurements of GPP at continental scales do not exist (i.e. GOSIF-GPP is not di-

rectly observed GPP), we constrained our comparison to an indicative evaluation of differences. Most models simulated higher215

productivity for the tropics, savanna and warm temperate regions compared to GOSIF-GPP. For all regions except the desert,

most models were not within the uncertainty band of the GOSIF-GPP satellite estimate (grey band). The timing of peak produc-

tivity varied among the TRENDY models and GOSIF-GPP: most models matched peak productivity for the tropics, Savanna

and desert. In contrast, for the cool temperate and Mediterranean regions, most models lagged peak productivity estimated

by GOSIF-GPP by one to three months. As the SIF–GPP relationship was derived using a fixed relationship between eddy220

covariance and satellite SIF, it is possible that the model data mismatch implies a missing species sensitivity to water stress in

the SIF data. However, the consistent timing in peak SIF and satellite LAI (see appendix figure B2) tends to imply that the lags

in phenology relate to differences in assumed/emergent vegetation cover (see below).
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Figure 4. Seasonal cycle for satellite derived gross primary production (GOSIF-GPP; black) and the associated uncertainty (i.e.± 1 standard

deviation) as well as the individual TRENDY models averaged over 2000–2017. Regions are defined according to appendix figure B4. Note

that the y-axis limits differ between the panels.

3.5 Apparent carbon residence time

Relative to the average over 1901–1930, all models simulated a similar rate in increase in NPP (see fig. 5a). The apparent225

carbon residence time (τ ), i.e. the balance between growth of plant tissues (leaves, wood, roots) and the turnover of these

tissues, varied between 2 and 14 years averaged over Australia. Models that simulated high CVeg (compare fig. 1) also had

high values for τ (e.g. ORCHIDEE-CNP and JULES-ES) and vice-versa (e.g. JSBACH and LPX-Bern). Some models did not

simulate changes in τ over time (e.g. CLM5.0, JSBACH, JULES-ES, LPX-Bern) while other models simulated decreases. In

particular, the ISBA-CTRIP and OCN models showed a strong decline: from ∼six years (1900) to four years (1960) before230
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leveling off (see fig. 5c). Even though NPP increased for ISBA-CTRIP and OCN, CVeg significantly declined for these two

models as well due to the decrease in τ . The remaining models either balanced increasing NPP and decreasing τ so that CVeg

did not show a strong trend (e.g. CLM5.0, JSBACH, JULES-ES, LPX-Bern) or increased in CVeg because the effect of change

in NPP was greater than the decline in τ (e.g. CLASS-CTEM, ORCHIDEE, VISIT).
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Figure 5. Change in net primary production (NPP) in comparison to the 1901–1930 average (a), total apparent carbon residence time in

vegetation τ (b), change in τ in comparison to the 1901–1930 average (c) and change in carbon stored in vegetation (CVeg) in comparison

to the 1901–1930 average (d). The solid lines in panel b) and c) show the 5-year-moving average, the shaded lines are the original data.

3.6 Northern Australian Tropical Transect (NATT)235

To better understand differences in modelled carbon fluxes, we examined simulations along a rainfall gradient: the Northern

Australian Tropical Transect (NATT). Figure 6 shows the probability density functions for NEE, GPP and TER for the wet
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(November–April) and dry (May–October) seasons across the NATT. During the dry season, as the sites become drier, the mean

position of the GPP and TER distributions shifted closer to zero and the distribution spread narrows. By contrast, the shape of

the distributions varied strongly among the models for all variables: some models (e.g ISAM; LPX-Bern for dry season NEE240

and GPP) simulated high peak probability densities and narrow distributions while others (e.g. JULES-ES and OCN) displayed

a flatter distribution. During the wet season, some models were more productive than observed for all sites (CABLE-POP,

JSBACH, JULES-ES and SDGVM). Overall, there was no clear systematic pattern in the arrangement of the models across

the NATT, even when models simulated similar distributions for NEE, they often did so for different reasons (i.e. contrasting

trade-offs in carbon uptake/respiration).245
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Figure 6. Probability density functions for observed and modelled net ecosystem exchange (NEE), gross primary production (GPP) and

terrestrial ecosystem respiration (TER) for the for four fluxsites: Howard Springs (AU-How), Daly Uncleared (AU-DaS), Dry River (AU-

Dry) and Sturt Plains (AU-Stp). These sites reflect a strong mean annual precipitation (MAP) gradient (provided for each row). We show the

monthly distribution of each variable for the wet (November–April) and dry (May–October) seasons. The observed variables originate from

eddy covariance data collected by the TERN-OzFlux facility. The probability density function is based on kernel density estimates using

Gaussian kernels with bandwidth selection following Scott (1992).
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3.7 Fire-related CO2 fluxes

Fire is an important component of the carbon cycle in many of Australia’s ecosystems. At the monthly timescale, the seven

DGVMs that simulated fire dynamics, significantly underestimated the fire CO2 emissions associated with extreme events

compared to the GFED4s and CAMS-GFAS satellite products. However, the timing of simulated peak fire events was synchro-

nised with the observations for some models (see fig. 7a). Fire weather can be associated with ENSO-cycles in Australia (e.g.250

Harris and Lucas, 2019); figure 7a however did not indicate a clear connection between ENSO-cycles and extreme fire events.

The first two peaks in observed fire emissions occur during El Niño events; the two highest peaks in fire CO2 emission accord-

ing to CMAS-GFAS instead coincided with the 2011 La Niña event and with the ENSO-neutral year 2012/ 2013. Figure 7b)

shows that all models simulated lower variability compared to the satellite derived estimates with similarly wide but less peaked

probability density functions. The peak was shifted to the right of the observations for some models (LPX-Bern, SDGVM and255

VISIT; see fig. 7b). Aggregated to annual values, the TRENDY models generally underestimated the fire CO2 emissions and

did not capture the variability in, or timing of, extreme fire years (see fig. 7c). CLASS-CTEM, JSBACH and ISBA-CTRIP

captured some features of the variability in the satellite derived observations on monthly timescales with significant moderate

correlation coefficients (see appendix table B3) but it is hard to reconcile the other four models with either of the observational

products.260
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Figure 7. Monthly (a, b) and annual (c) fire CO2 emissions of seven TRENDY models and two satellite derived estimates (CMAS-GFAS

and GFED4s). Blue shaded areas show La Niña events, red shaded areas show El Niño events. a) and c) show the total fire CO2 emissions,

b) shows the probability density function based on kernel density estimates using Gaussian kernels with bandwidth selection following Scott

(1992) of the normalised monthly fire CO2 emissions. Note that the satellite derived estimates have a different y-axis for the monthly fire

CO2 emissions than for the TRENDY models.

3.8 Land cover fraction

Figure 8 shows the vegetation fraction, either prescribed or simulated dynamically, from the TRENDY models averaged over

Australia. We grouped the model-specific PFTs into ten groups (see methods). In general, the average landcover varied quite

strongly among the models. The average fraction of Australia covered by natural vegetation differed between 24.9% (LPX-

Bern) up to 93.7% (VISIT). The vegetation composition also displayed large differences with some models simulating high265

tree fractions around 40% (ORCHIDEE and ORCHIDEE-CNP) while other models had low fractions around 2% (e.g. ISAM,

and SDGVM). Models accounting for shrubs populated 3.5% (ISBA-CTRIP) up to 55% (VISIT) of Australia with shrubs.
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Similarly, land populated by grasses covered a large range between 4% up to 50% (VISIT and OCN, respectively) and the

fraction of C3 grasses either exceeded land covered by C4 grasses or vice versa. Most models showed a relatively small

proportion of agricultural landcover except for LPX-Bern. Lastly, models accounting for bare landcover fraction (i.e. bare270

ground or desert) defined 0.2–51% of Australia as bare (VISIT and SDGVM, respectively).
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Landcover fraction [%]

VISIT 
(93.7%)
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(42.6%)
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(24.9%)

JULES-ES 
(61.2%)

JSBACH 
(69.2%)

ISBA-CTRIP 
(59.1%)

ISAM 
(27.8%)

CLM5.0
(71.7%)

CLASS-CTEM
(50.0%)

CABLE-POP
(56.4%)

EVG
DCD/ SMG/ RNG

Shrubs
Savanna

C3 Grass
C4 Grass

C3 Agriculture
C4 Agriculture

Bare
Other

Figure 8. Landcover fraction in % averaged over 1989–2018 over Australia. EVG is the sum of all evergreen tree plant functional types

(PFT)s, DCD/ SMG/ RNG is the sum of all deciduous, summergreen and raingreen tree PFTs, Shrubs is the sum of all shrub PFTs, Savanna

represents the Savanna PFT, C3 Grass and C4 Grass include all natural C3 and C4 grasses, respectively, C3 and C4 agriculture represent

all C3 and C4 crops and pasture PFTs, respectively, Bare is the sum of bare and desert landcover types and Other includes landcover types

that are not captured by the above group, such as cities/ urban, and lakes. The numbers in brackets represents the land covered by natural

vegetation (sum of EVG/ RNG, DCD/ SMG, Shrubs, Savanna and C3 and C4 grasses). Note that not all models account for shrub, savanna,

and agriculture PFTs or for explicit bare and desert PFTs.

Figure 9 shows the spatial distribution of the fraction of all herbaceous vegetation, the predominant vegetation in Australia,

averaged over 1989–2018 for the TRENDY models. The models displayed different patterns in land covered by grass and

crops. For example, VISIT had a high grass fraction in almost all regions with values close to 1, whereas other models showed

dense grass cover fractions in the Tropics, and around the East and West of Australia (e.g. ISAM, ISBA-CTRIP, LPX-Bern,275

and SDGVM). Some models simulated a more even distribution of grass cover across Australia with either relatively high

(JSBACH) or low fractions (CLASS-CTEM, JULES-ES, and ORCHIDEE-CNP). In contrast, the grass cover fraction for
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ORCHIDEE generally increased moving from the coastal areas to the interior of the continent. The tree fraction also varied

strongly across the models. Most models had high fractions along the East Coast and in the tropics and no significant tree

growth in other places, similar to the MODIS satellite derived tree cover fraction. In contrast, OCN had a low tree cover280

fractions along the coastline but this fraction increased towards the interior of Australia, with a higher distribution in the South

West and South East (see appendix figure B5).

Figure 9. Landcover fraction of non tree vegetation averaged over 2001–2018. Non tree vegetation here shows the sum of all natural C3 and

C4 grasses as well as C3 and C4 pasture and agriculture, and savanna PFTs in the TRENDY models. The MODIS panel shows the non tree

fraction variable from the MODIS/Terra vegetation continuous fields dataset. White areas are missing values.
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4 Discussion

On average, Australia’s simulated contribution to the global NBP anomaly was 17%, with greater contributions when the global

sink (excluding Australia) was small, or in years with above average precipitation in Australia (e.g. in a La Niña years; Poulter285

et al., 2014). Depending on the model, Australia’s share of global cumulative NBP could be as high as ∼53% (SDGVM).

Given Australia’s significant contribution to the global terrestrial carbon sink on inter-annual timescales, our goal was to assess

the skill of state-of-the-art DGVMs applied to Australia.

Despite being forced with identical meteorology, the 13 DGVMs from the TRENDY v8 ensemble simulated markedly

different representations of Australia’s terrestrial carbon cycle. The maximum difference in annual NBP among the models290

reached up to 1.3 PgC yr−1 (see fig. 1a). Importantly, uncertainties associated with IAV in simulated NBP accumulated over

time, leading to large differences in cumulative NBP among the models by 2018 (see fig. 1b). The TRENDY models also

simulated very different amounts of carbon stocks in vegetation (fig. 1c). While the satellite estimate of CVeg lie within the

range simulated by the models, individual model estimates of CVeg varied widely (averaged over 1901–2018 from around 2.7

PgC for JSBACH to 17.2 PgC for JULES-ES). Similarly, averaged over 1901–2018, simulated CSoil differed strongly from295

11.9 PgC (JSBACH) to 64.4 PgC (JULES-ES).

We identified the key reasons for model differences in NBP related to the processes land cover/land-use change, rising

atmospheric CO2 concentration, carbon residence time in the vegetation, climate modes of variability and fire processes.

Landcover

We found that the models either prescribed or simulated very different fractions of woody and herbaceous cover (see fig. 9300

and appendix figure B5), and that these discrepancies likely explained a large proportion of the model divergence in simulated

CVeg and τ (see below). Notably, the two models with the lowest CVeg had a comparably low tree cover (JSBACH and

LPX-Bern; see fig. 8) and a high proportion of bare land. In contrast, the two models with the highest CVeg (JULES-ES

and ORCHIDEE-CNP) simulated a high tree cover fraction. However, figure 8 also implies that seemingly similar PFTs were

parametrised in different ways in the individual models. For example, CLM5.0 and JSBACH simulated a similar fraction of land305

covered by natural vegetation with a comparable vegetation composition comprising trees, shrubs, natural grass, agriculture

and bare land. However, CLM5.0 stored around four times more carbon in vegetation compared to JSBACH.

Land-use and land-cover change is one of the major drivers of the terrestrial carbon sink on global and regional scales

(e.g. Pugh et al., 2019; Huntzinger et al., 2017). Over Australia, the largest divergence in cumulative NBP was associated

with the implementation of land-use change (LUC; see fig. 2). Overall, the TRENDY models simulated different magnitudes310

of cumulative NBP in response to LUC, ranging from -15.5 PgC (OCN) up to 2.9 PgC (ISBA-CTRIP). For two models,

accounting for LUC turned almost all regions from a carbon sink to a carbon source (OCN, ORCHIDEE-CNP).

Whilst DGVMs were developed to understand the interactions between natural vegetation and the atmosphere, the insight

that land-use is a major driver of the terrestrial carbon sink has driven efforts to incorporate land use change into DGVMs

(Marquer et al., 2018; Pongratz et al., 2018). Differences in the models’ response to LUC results from process inclusions,315

parametrisations and the model-specific interpretation of the land-use forcing (e.g. change in vegetation composition, as well
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as wood/crop harvest). Although LUC information was taken from the Land-Use Harmonization 2 (LUH2) guidelines, the

modelers had to decide how to implement it. For example, the LUH2 suggests that all natural vegetation should be cleared for

the conversion to managed pasture while the conversion to rangeland only requires the transformation of forest to (managed)

grassland. Other natural vegetation, such as grass- or shrubland, were used for animal browsing without any transformation320

of the land cover type (Ma et al., 2020). Furthermore, the fraction of croplands reconstructed by LUH2 increased markedly in

South West Australia and South East Australia. This increase in crop fraction was associated with increased harvests and con-

sequently expected to reduce NBP. Some models exhibited this feature to varying degrees (JULES-ES, OCN, and ORCHIDEE-

CNP) while other models barely increased the crop fraction and impact on NBP (CABLE-POP, ORCHIDEE and VISIT; see

appendix figure B6). These different representations of LUC led to emergent differences (e.g. in physiology as the models325

transition between PFTs and agricultural management) when harvesting was imposed on models simulations.

Atmospheric CO2 concentration

All the models simulated an increase in cumulative NBP in response to increasing CO2 but with very different magnitudes

(+2.46–10.13 PgC from 1901–2018). This was in line with studies that have identified increasing CO2 as the main driver of

change in the global terrestrial carbon sink and find that model disagreement was largest due to differing sensitivities to CO2330

in cumulative NBP (e.g. Huntzinger et al., 2017; Arora et al., 2020; Walker et al., 2020). The incorporation of nutrient cycles in

models and DGVMs in particular, tends to result in a reduced sensitivity to CO2 (e.g. Smith et al., 2014; Zaehle, 2013; Thomas

et al., 2013; Meiyappan et al., 2015; Meyerholt et al., 2020). In a global analysis, Huntzinger et al. (2017) found that models

incorporating an nitrogen cycle tended to have a lower net carbon sink than models without nitrogen constraints. Similarly,

two model based analyses in the context of CO2 manipulation experiments, found lower simulated net primary productivity335

responses in models that incorporated nitrogen and phosphorus cycles (Medlyn et al., 2016; Fleischer et al., 2019). Interestingly,

this finding does not hold for our study: the three models with the highest cumulative NBP all included a nitrogen cycle. A

possible explanation may be that Australian soils are considered to be phosphorus, rather than nitrogen limited (Du et al., 2020;

Lambers et al., 2015) due to weathering processes and high phosphorus sorption capacities (Beadle, 1966; Wild, 1958). Results

from an ecosystem-scale CO2 manipulation experiment (Ellsworth et al., 2017) showed that phosphorus availability limited340

biomass growth in an Australian woodland, although leaf-level photosynthesis was observed to have consistently increased

(Jiang et al., 2020; Ellsworth et al., 2017; Yang et al., 2020). Despite the importance of phosphorus availability in Australia, only

two of the TRENDY ensemble incorporated an interactive phosphorus cycle and these models (CABLE-POP and ORCHIDEE-

CNP) did not show consistent behaviour. It is likely that improved modelling of the phosphorus cycle and in particular, the

relative ’openness’ of this cycle and the flexibility of the plant tissue stoichiometry, will remain key to accurately simulating345

the time evolution of Australia’s carbon cycle (Medlyn et al., 2016).

Apparent carbon residence time in vegetation

The capacity of the terrestrial vegetation to store carbon depends on the magnitude of the input carbon flux and the carbon

residence time in plant tissues (τ ; Luo et al., 2003). All models simulated increases in NPP at similar rates compared to

their initial NPP (1901–1930 average; see fig. 5). As the other models simulated a similar change in the rate of carbon uptake350

throughout the period, divergence in the change of CVeg instead resulted from differences in the change of τ . τ depends on
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the turnover of plant tissues, the simulated mortality rates and mortality induced by competition. Each of these processes can

be affected indirectly through shifts in vegetation composition (Friend et al., 2014). Previous studies have found that τ was

a key source of model uncertainty shared amongst DGVMs (Friend et al., 2014; Pugh et al., 2020). In an analysis of CMIP5

models, Carvalhais et al. (2014) found that less than a quarter of the models were within the range of of observed τ in tropical355

Australia and parts of the Northeastern Savannas. Similarly, we found that τ in the TRENDY models was associated with

large uncertainty: between 2 and up to 14 years over Australia. Models that simulated high vegetation carbon storage also

had comparably long τ and vice versa. These differences in modelled τ imply that the TRENDY models assume different

parametrisations associated with their PFTs, mortality and/ or simulated different vegetation compositions and this is an area

requiring future evaluation.360

Climate and modes of climate variability

Variability in Australia’s climate can influence the terrestrial carbon sink directly (e.g. fire, droughts or increased water

availability; Keenan and Williams, 2018; Ma et al., 2016) or indirectly via interactions with nutrient availability or fire. For

example, models that include interactive fire modules might directly (e.g. wind speed driving fire spread; temperature threshold

to allow for fire) and indirectly (fuel availability and moisture) depend on climate variables, and altered fire patterns could365

further affect the simulated terrestrial carbon sink. Overall, we found that the effect of climate on inter-annual NBP was

relatively small, with the exception of the Mediterranean region (see fig. 2). This is in general agreement with Huntzinger et al.

(2017) who found that long term trends in climate were too small to significantly alter the simulated terrestrial carbon sink on

long timescales and was less important factor than CO2 fertilisation, nitrogen deposition (depending on whether the models

include an interactive nitrogen cycle) and land-use change. While climate variability might not influence Australian carbon370

cycle trends on long timescales, inter-annual weather variability, especially the amount and timing of precipitation, is a strong

control on inter-annual variability in NBP.

Australia’s weather is influenced by different modes of variability with El Niño and pIOD events tending to result in below

average precipitation in south eastern Australia (e.g. Ummenhofer et al., 2011). The reduced water availability can be expected

to reduce NBP or even turn Australia from a carbon sink to a carbon source (e.g. Ma et al., 2016). In contrast, nIOD and La375

Niña events are associated with above average rainfall and consequently, an enhanced carbon sink (e.g. Ma et al., 2016; Bastos

et al., 2013). The TRENDY models mostly agreed on sign of the NBP anomaly and simulated negative median values for

both pIOD and El Niño events and positive median values for nIOD and La Niña events. The sign of the NBP flux was not

unambiguously driven by either ENSO or IOD but was also influenced by other variability (see fig. 3 ’other negative’ and ’other

positive’). The interquartile range for the category ’other negative’ was similar to those for the pIOD and El Niño categories380

and displayed more negative outliers than the other modes of variability. This implies that years with extremely low NBP

were not necessarily associated with pIOD or El Niño but instead driven by other modes of climate variability and/or periods

that did not reach the threshold to be defined as an ENSO or IOD event. Especially for the nIOD, La Niña and other positive

categories, the models varied strongly in the interquartile range, indicating the individual models simulated different responses

to the modes of variability. Studies showed that other modes of variability, such as the Southern Annual Mode (SAM), can385

influence the Australian weather patterns and consequently the terrestrial vegetation (e.g. Cleverly et al., 2016). We did not

23

https://doi.org/10.5194/bg-2021-66
Preprint. Discussion started: 15 March 2021
c© Author(s) 2021. CC BY 4.0 License.



include an analysis of SAM because these events are short lived (one–two weeks), but future work may examine the resulting

impacts. We note that selecting years based on ENSO- and IOD-events does not completely isolate the effect of ENSO- or

IOD-events on the terrestrial carbon cycle as these modes of variability are not independent and could have legacy impacts that

last more than one year. Further, years where both an IOD and an ENSO event occur were accounted for in both the IOD and390

ENSO categories and therefore, double counted. An additional limitation of our approach was that we compiled the occurrence

of ENSO and IOD events from different sources based on the sea surface temperature. Observations of sea surface temperature

prior to 1960 however are associated with large uncertainty given they were mostly based on ship data (e.g. Deser et al., 2010).

In addition, the Southern Hemisphere tends to be less well observed and spurious trends in reanalyses do occur (e.g. Hines

et al., 2000), leading to an overall increased uncertainty in the sampling of data based on modes of variability.395

Overall, dry and wet extremes in precipitation led to the largest differences among the models (see fig. 3 ’Driest years’ and

’Wettest years’), suggesting that the models’ sensitivities to wet and dry extremes vary strongly. About half of the TRENDY

ensemble had a stronger response to wet than to dry extremes. This is in line with studies that have noted an increased carbon

uptake resulting from the asymmetry in the inter-annual distribution of rainfall as well as the asymmetry in the response of GPP

to precipitation (e.g. Haverd et al., 2017). The ecosystem in Australia largely consists of vegetation that is adapted to drought400

(e.g. Cleverly et al., 2016; Li et al., 2018; De Kauwe et al., 2020). About half of the TRENDY ensemble displayed greater

divergence during dry extremes, implying that models did not accurately capture process responses as water becomes limiting.

This result is consistent with an a model intercomparison at an Australian woodland site, which showed disagreement was

greatest in low-rainfall years (Medlyn et al., 2016). The TRENDY models not only simulated different carbon uptake sensitivi-

ties to precipitation but also simulated different seasonal phenology (see fig. 4), suggesting that differing model sensitivities to405

rainfall may result as much from the underlying simulated vegetation as the different mechanisms at play in wet/dry extremes.

We further looked at the TRENDY output in context of the NATT, defined by a strong rainfall gradient (∼ 720 to 1650 mm

yr−1). We found that for dry season GPP, the mean position of the distributions shifts closer to zero and the distribution narrows

as the sites become more arid, implying that vegetation is only productive following rain (Whitley et al., 2016). By contrast,

there was no clear systematic pattern in the responsiveness of simulated productivity during the wet and dry seasons.410

Fire-related CO2 fluxes

The seven TRENDY models that included fire outputs consistently underestimated satellite-derived peak monthly emissions

and did not accurately capture the timing of peak fire CO2 emissions. Importantly, we found that DGVMs did not accurately

capture fire dynamics in Australia, even when aggregated annually (which should reduce timing biases). While land-use change

has been identified to be a significant driver of global burned area (Teckentrup et al., 2019), we found that the effect of land-use415

change on fire CO2 emissions in Australia was small (see appendix figure B7). Models either increase or decrease in fire CO2

emissions due to land-use change but these changes were mostly smaller than 1%. All models simulated fire with varying

degrees of complexity and derive fire CO2 emissions based on model-specific burned area using emission factors based on

Andreae and Merlet (2001) and Akagi et al. (2011). Consequently, model disagreements must originate from differences in

simulated burned area.420
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Biases in burned area have been found to be associated with underlying vegetation composition (which determines fuel load;

Teckentrup et al., 2019) and how vegetation cover changes with rising CO2 and land-use change (through the conversion of

natural vegetation to agriculture; Teckentrup et al., 2019). Model evaluations suggest that fire models broadly capture first-order

patterns of emissions under present-day conditions (e.g. Li et al., 2019; Hantson et al., 2020), but simulations of seasonality

and inter-annual variability are associated with high uncertainty due to differences in process representation. We did not find425

evidence that models linked extreme fire events with ENSO as suggested by Harris and Lucas (2019). However, the limited

availability of ’observed’ fire CO2 emissions makes it difficult to draw firm conclusions. In addition, while Harris and Lucas

(2019) found that El Niño like conditions can be associated with extreme fire weather, they also emphasized that this depends

on the regions and is most pronounced in eastern Australia whereas our analysis focused on all of Australia. Lastly, global

fire emission estimates based upon satellite observations are still associated with substantial uncertainty, as reflected by the430

considerable differences in spatial and temporal patterns between different data products (e.g. Li et al., 2019). To account for

satellite-derived uncertainty, we included two satellite products, the GFED4s (van der Werf et al., 2017) and the CAMS-GFAS

(Kaiser et al., 2012) datasets, that are derived based on different variables (burned area until 2016, subsequently active fire

detections for GFED4s; fire radiate power for CAMS-GFAS). However, since both products rely on the MODIS sensor, they

are not independent and consequently only capture the uncertainty associated with satellite derived fire CO2 emission estimates435

to a limited extent.

5 Future directions

Our analysis highlights considerable work is still required to improve our capacity to simulate the dynamics of Australian veg-

etation and the resulting terrestrial carbon cycle. This finding is consistent with previous model evaluations of NPP (Roxburgh

et al., 2004), carbon flux responses to rainfall (Whitley et al., 2016, 2017) and responses to elevated CO2 (Medlyn et al., 2016).440

When DGVMs are applied to Australia, the assumed plant traits are not adjusted to reflect differences in observed physiology

(e.g. Bloomfield et al., 2019; Cernusak et al., 2011), investment in plant tissues (e.g. Togashi et al., 2015), how moisture limits

plant function (e.g. De Kauwe et al., 2020; Li et al., 2018) or responses of photosynthesis and growth to temperature (Drake

et al., 2015). For example, models typically assume much lower values for the key model parameter Vcmax (the maximum

rate of carboxylation by the enzyme Rubisco; Rogers, 2013) than is commonly observed in Australia (e.g. Bloomfield et al.,445

2019; Cernusak et al., 2011), implying that DGVMs miss key carbon and water trade-offs. Whitley et al. (2017) previously

stressed the importance of improving process representation of phenology, root-water uptake, rooting depth and fire to improve

the representation of Savanna ecosystem dynamics in DGVMs. These Savanna ecosystem cover around 20% of the Australian

landscape, but as this study implies (see fig. 6), progress has been limited, although recent model developments incorporating

competing rooting strategies and dynamic root growth (Sakschewski et al., 2020) may help this process. Australia has a high450

fraction of endemic vegetation (>90%; Chapman, 2006), structurally distinct vegetation including open canopy forests and

woodlands (predominately Eucalyptus) and hummock grasslands and a dominance of Sclerophyll leaves (Box, 1996). Thus,

there remains a significant opportunity in future work to directly test the current hypothesis implicitly embedded in DGVMs,
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i.e. that Australia’s vegetation is not distinct from other continents. The forthcoming AusTraits (https://ardc.edu.au/project/

austraits-a-curated-plant-trait-database-for-the-australian-flora/) database presents one possibility to examine how the use of455

Australian specific plant traits may change DGVM simulations.

One core area in which model development should be focused relates to the processes that govern the vegetation cover.

In these models vegetation cover is either dynamically simulated (CABLE-POP, JULES-ES, LPX-Bern and SDGVM) or

prescribed (CLASS-CTEM, CLM5.0, ISAM, ISBA-CTRIP, JSBACH, OCN, ORCHIDEE, ORCHIDEE-CNP and VISIT).

Our study has highlighted major differences across models under historic forcing (see fig. 8 and 9), implying that future460

simulations need to be interpreted cautiously. Haxeltine et al. (1996) demonstrated a realistic simulation of Australia’s potential

vegetation cover with the BIOME2 model and yet, 25 years later, it is not clear that DGVMs have made significant progress.

One explanation for this apparent discrepancy may simply relate to focus of the modellers. In the Haxeltine et al. (1996) study,

the model explicitly aimed to reproduce Australia’s potential vegetation cover, whereas the current TRENDY models are

instead focused on global applications. Nevertheless, our results imply that a one-size fits all approach does not appear to work465

for Australia. Australia’s National Vegetation Information System (https://www.environment.gov.au/land/native-vegetation/

national-vegetation-information-system) generates maps of both vegetation distribution as well as structure, which could be

used to evaluate and develop DGVM predictions of potential vegetation. However, a direct comparison to observed vegetation

distributions still requires model-specific rules to transform simulated foliar projected cover and height to vegetation classes.

Our results also showed that imposing land-use change adds further uncertainty to the vegetation distribution. Despite the470

importance of improving simulated vegetation type, as Fisher et al. (2015) highlighted, it is not necessarily a straight forward

task but over-reliance on bioclimatic boundaries is not preferable moving forwards. Emergent differences in cover type may

also originate from parameter assumptions, which determine carbon uptake/loss, additional hypotheses that govern demography

and responses to fire. Haverd et al. (2016a) demonstrated promise in accurately predicting tree-grass partitioning in Australian

savannas using optimality theory to determine daily carbon allocation. However, this approach has yet to be incorporated into475

any of the Australian land models (e.g. CABLE-POP), so a fuller evaluation is still required, including the resulting interactions

with a nutrient cycle. Kelley et al. (2014) demonstrated significant progress in both the simulation of fires in Australia and

the resulting grass-tree cover fractions, by incorporating PFT-specific fire (adaptive bark thickness) resistance and post-fire

epicormic resprouting into a DGVM. However, these features have yet to be incorporated into any current DGVMs when

applied to Australia.480

In conclusion, there is a major opportunity in evaluating DGVMs using Australia as a laboratory. The strong inter-annual

variability in precipitation offers an opportunity to evaluate the simulated response of the Australian ecosystems to both extreme

wet events and droughts. Similarly the repeated frequency of heat extremes (van der Horst et al., 2019; van Gorsel et al., 2016;

Mitchell et al., 2014), offers important tests of underlying physiology assumptions. It is likely that insights gained from model

evaluation in Australia’s environment of longer duration and high intensity climate extremes, including droughts, heatwaves485

and floods, will help understand how Northern Hemisphere systems will respond to extremes, and in particular events that may

intensify in the future (IPCC, 2012). Finally, our study focused on Australia’s carbon cycle, but the carbon and water cycle are
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intimately linked and divergence between model simulations of the carbon cycle implies further work may also be needed to

evaluate DGVM simulation of the hydrological cycle.

Code and data availability. All Eddy covariance data are available from http://www.ozflux.org.au/ (last access: 26 April 2017.) The Global490

Aboveground Biomass Carbon (version 1.0) dataset (Liu et al., 2015) is freely available from http://wald.anu.edu.au/global-biomass/ (last ac-

cess 13 August 2020), and the GOSIF-GPP product (Li and Xiao, 2019) can be obtained from https://globalecology.unh.edu/data/GOSIF-GPP.

html (last access 20 April 2020). Fire CO2 emissions were provided by the Copernicus Atmosphere Monitoring Service Global Fire As-

similation System (CAMS GFAS; https://apps.ecmwf.int/datasets/data/cams-gfas/; last access 6 March 2021) and the Global Fire Emissions

Database version 4 (GFED4s) described in (van der Werf et al., 2017) are available from https://globalfiredata.org/pages/data/ (last access495

11 July 2020). The MODIS/Terra Vegetation Continuous Fields dataset was provided by the NASA’s Land Processes Distributed Active

Archive Center (https://lpdaac.usgs.gov/products/mod44bv006/; last access 29 January 2021). The TRENDY v8 model output is available

upon request (https://sites.exeter.ac.uk/trendy). All analysis scripts are accessible on https://github.com/lteckentrup/TRENDY_v8_Australia.

Appendix A: Forcing data and simulation protocol

Climate forcing500

The modelling groups either chose the 0.5◦ CRU monthly historical forcing over 1901–2018 (Harris, 2019a) or the 0.5◦

CRU-JRA55 6–hourly historical forcing over 1901–2018 (Harris, 2019b) regridded to the CRU 0.5◦ grid. The variables tem-

perature, downward solar radiation flux, specific humidity and precipitation in JRA-55 are aligned to temperature, cloud frac-

tion, vapour pressure and precipitation in CRU TS (v4.03), respectively. Atmospheric pressure, downward longwave radiation

flux and the meridional and zonal components of wind speed are not modified. JRA-55 is used for the years from 1958 to 2018.505

For years between 1901 and 1957, random (but fixed) years from JRA-55 for 1958-1967 are used to fill.

CO2 concentration

The atmospheric CO2 concentration is derived from ice core CO2 data merged with NOAA data from 1958 onwards. The

forcing covers the years 1700–2018 incremented annually (Le Quéré et al., 2018). The data from March 1958 are monthly

averages from the Mauna Loa (MLO) and the South Pole Observatory (SPO) provided by NOAA’s Earth System Research510

Laboratory http://www.esrl.noaa.gov/gmd/ccgg/trends/. When no SPO data are available (including prior to 1975), SPO is

constructed from the 1976–2017 average MLO–SPO trend and average monthly departure. Data for 2016–2018 are preliminary

values. Data prior to March 1958 are estimated with a cubic spline fit to ice core data from Joos and Spahni (2008).

Land-use

The land-use datasets are based on updated data from HYDE for the years 1960–2019, as well as the latest wood harvest515

data provided by the Food and Agriculture Organization (FAO). The land-use states and transitions are identical to the LUH2

v2h dataset (Hurtt et al., 2020) for the years from 1700 to 1949 (i.e. consistent with the input for CMIP6). Starting 1950, the

land-use forcing is based on new inputs from HYDE, and new FAO data for the national wood harvest demands. This leads to

differences in comparison to LUH2 v2h, primarily in Brazil.
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In order to convert natural vegetation to managed pasture, the LUH2 guidelines suggested all natural vegetation is cleared.520

The conversion of natural vegetation to rangeland only requires the clearance of forests. However, each modelling group

developed model-specific land-use forcings leading to inter-model differences. We show the change in agricultural landcover

in appendix figure B6.

Nitrogen deposition and fertilization

For the years from 1850 to 2014, the TRENDY models were forced with the historical nitrogen deposition database and then525

transitioned to the future RCP8.5 nitrogen-deposition databases for the years from 2015 to 2018. Details are available at https:

//esgf-node.llnl.gov/search/input4mips/. Nitrogen fertiliser input datasets are available via the N2O Model Intercomparison

Project (’NMIP’; Tian et al., 2018) NMIP assumes that the nitrogen input data remain unchanged in years 2015, 2016, 2017

and 2018. Manure is not included for the TRENDY simulations.

A0.1 Simulation protocol530

The TRENDY models either simulated or prescribed vegetation cover. All models prescribed land-use change according to

the LUH2 guidelines. All models used the atmospheric CO2 concentration from the year 1700 (276.6ppm) and recycled the

climate mean and variability from the years 1901–1920 for the spin-up. Land-use change was constant during the spin-up and

the crops and pasture distribution was set constant to the 1700 set-up. Depending on the simulation, different drivers became

transient starting in 1701.535

We use three simulations of the TRENDY experiment (see appendix figure B1; Friedlingstein et al., 2019): the run with

transient atmospheric CO2 concentration, and time-invariant climate forcing and land-use (’CO2’); the run with transient

atmospheric CO2 concentration and climate forcing and time-invariant land-use (’CO2 + CLIM’); and finally the run with

transient atmospheric CO2 concentration, climate forcing and land-use change (’CO2 + CLIM + LUC’).

Spin-up540

For the spin-up, the atmospheric CO2 concentration and landcover were set to the pre-industrial values of the year 1700.

During the spin-up, the years from 1901 to 1920 from the climate forcing were recycled.

CTRL

After the spin-up, the atmospheric CO2 concentration remained time-invariant for the years 1701–2018. The simulation

continued to recycle the 1901–1920 climate forcing and the land-use was prescribed to the distribution of the year 1700.545

CO2

After the spin-up, the CO2 run used a transient atmospheric CO2 forcing. The simulation continued to recycle the 1901–

1920 climate forcing and the land-use was prescribed to the distribution of the year 1700 (as in the ’CTRL’ run).

CO2 + CLIM

After the spin-up, the CO2 + CLIM run used a transient atmospheric CO2 forcing. The simulation continued to recycle the550

1901–1920 climate forcing until the year 1900 and the land-use was prescribed to the distribution of the year 1700. Starting

from 1901, the climate forcing became transient.

CO2 + CLIM + LUC
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After the spin-up, the CO2 + CLIM run used a transient atmospheric CO2 and land-use forcing while the simulation contin-

ued to recycle the 1901–1920 climate forcing until the year 1900. Starting from 1901, the climate forcing became transient as555

well.

The TRENDY protocol required all participating models to be in equilibrium for the CTRL simulation after the spin-up.

Further, all models had to simulate the net annual land flux as a carbon sink over 1990s and/or 2000s for the CO2 + CLIM +

LUC run as constrained by global atmospheric and oceanic observations (Keeling and Manning, 2014). Lastly, the global net

annual land use flux (ELUC) had to be a carbon source over the 1990s (based on the CO2 + CLIM and CO2 + CLIM + LUC560

simulation).
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Appendix B: Tables

Table B1. Information for the four fluxsites located in the Northern Australian Tropical Transect (NATT). This includes the mean annual

precipitation (MAP), mean annual temperature (MAT) and the vegetation classification following the International Geosphere-Biosphere

Programme (IGBP). The observed variables originate from eddy covariance data collected by the TERN-OzFlux facility. Further details of

the site vegetation is available in Whitley et al. (2016).

Howard Springs

(AU-How)

Daly Uncleared

(AU-DaS)

Dry River

(AU-Dry)

Sturt Plains

(AU-Stp)

Years
2002–2018

(2002–2019)

2008–2019

(2008-2018)

2009–2018

(2008–2019)

2009–2018

(2008–2018)

Latitude -12.4952 -14.1592 -15.2588 -17.1507

Longitude 131.15005 131.3881 132.3706 133.3502

MAP [mm/ yr−1] 1662 1324 925 719

MAT [◦C] 26.8 26.8 27.0 26.3

Vegetation

Woody Savannas:

Herbaceous and other

understory systems,

30–60% forest canopy

Savannas:

Herbaceous and other

understory systems,

30–60% forest canopy

Savannas:

Herbaceous and other

understory systems,

30–60% forest canopy

Grasslands:

Herbaceous types of

cover. Tree and shrub

cover is less than 10%
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Table B2. Years from 1901–2017 identified as El Niño, La Niña, positive Indian Ocean Dipole (’pIOD’), negative Indian Ocean Dipole event

(’nIOD’) and remaining years that are both ENSO and IOD neutral based on the analysis by NOAA (for the ENSO events) and Bureau of

Meteorology (IOD events). Note that we define a year to start in July and end in June so that for example the 1991–1992 El Niño appears

in this table as the 1991 El Niño. We follow Ummenhofer et al. (2011), the Bureau of Meteorology Australia (Bureau of Meteorology,

Commonwealth of Australia, 2016) and the National Weather Service Climate Prediction Center (Climate Prediction Center Internet Team,

2021) for the identification of ENSO and IOD events.

El Niño La Niña pIOD nIOD
ENSO and IOD

neutral

1902 1972 1903 1964 1902 1963 1906 1974 1901 1951

1905 1976 1906 1970 1913 1972 1909 1975 1904 1952

1911 1977 1909 1973 1919 1982 1915 1980 1907 1953

1914 1982 1910 1974 1923 1983 1916 1981 1908 1959

1923 1986 1916 1975 1926 1995 1917 1985 1912 1962

1925 1987 1917 1988 1935 1997 1930 1989 1920 1966

1930 1991 1922 1989 1944 2002 1933 1992 1921 1967

1940 1994 1924 1993 1945 2006 1942 1996 1927 1971

1941 1997 1928 1998 1946 2012 1958 1998 1929 1978

1957 2002 1933 1999 1957 2015 1960 2010 1931 1979

1963 2004 1938 2000 1961 1964 2014 1932 1984

1965 2006 1942 2007 1934 1990

1968 2009 1949 2008 1936 2001

1969 2015 1950 2010 1937 2003

1954 2011 1939 2005

1955 2012 1943 2013

1956 1947 2016

1948
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Table B3. Fire CO2 emissions for Australia averaged over 2003–2018 and the Pearson correlation coefficients between the TRENDY models

and the respective observation data. Bold numbers indicate a significant statistical relationship ((p-value < 0.05).

Model
Fire CO2 emissions

(PgC yr-1)
R(CAMS-GFAS, model) R(GFED4s, model)

Monthly Annual Monthly Annual

CLASS-CTEM 0.010 ± 0.006 0.68 -0.49 0.78 -0.51

CLM5.0 0.014 ± 0.013 0.12 -0.67 0.08 -0.68

ISBA-CTRIP 0.029 ± 0.021 0.35 0.59 -0.41 0.47

JSBACH 0.012 ± 0.007 0.50 -0.19 0.43 -0.31

LPX-Bern 0.006 ± 0.002 0.05 -0.26 0.04 -0.3

SDGVM 0.048 ± 0.011 0.10 0.51 0.09 0.49

VISIT 0.026 ± 0.010 0.21 -0.50 0.26 -0.47

CAMS-GFAS 0.043 ± 0.049

GFED4s 0.030 ± 0.029
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Appendix B: Figures

{ { {Spin-up 1701 - 1900 transient 1901-2018 transient

Constant CO2
Recycled climate 1901-1920
Landcover distribution year 1700
Nfert year 1850
Ndep year 1860

CTRL,
CO2,

CO2 + CLIM,
CO2 + CLIM + LUC

CTRL

{
1701-2018 transient population density forcing
1701-2018 transient lightning forcing

Transient CO2
Recycled climate 1901-1920
Landcover distribution year 1700
Nfert year 1850
Transient Ndep from year 1860

CO2

Transient CO2
Recycled climate 1901-1920
Landcover distribution year 1700
Nfert year 1850
Transient Ndep from year 1860

CO2 + CLIM

Transient CO2
Recycled climate 1901-1920

Transient land-use change
Transient Nfert from year 1850
Transient Ndep from year 1860

CO2 + CLIM
+  

LUC 

Constant CO2
Recycled climate 1901-1920
Landcover distribution year 1700
Nfert year 1850
Ndep year 1860

Constant CO2
Recycled climate 1901-1920
Landcover distribution year 1700
Nfert year 1850
Ndep year 1860

CTRL

Transient CO2
Recycled climate 1901-1920
Landcover distribution year 1700
Nfert year 1850
Transient Ndep 

CO2

Transient CO2
Transient climate forcing
Landcover distribution year 1700
Nfert year 1850
Transient Ndep 

CO2 + CLIM

Transient CO2
Transient climate forcing

Transient land-use change
Transient Nfert 
Transient Ndep 

CO2 + CLIM
+  

LUC

Figure B1. Simulations conducted by the TRENDY models (Friedlingstein et al., 2019). Italic forcing datasets are not used by all models.
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Figure B2. Seasonal cycle for satellite derived gross primary production (GOSIF-GPP; black) and satellite derived leaf area index data (LAI;

Copernicus Global Land Service; green). Shaded areas indicate the according uncertainty (i.e. ± 1 standard deviation.)
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Figure B3. Monthly temperature, precipitation and incoming shortwave radiation data that are observed (blue) and the corresponding data

from the reanalysis product CRU-JRA (orange) for the four fluxsites located in the Northern Australian Tropical Transect (NATT): Howard

Springs (AU-How), Daly Uncleared (AU-DaS), Dry River (AU-Dry) and Sturt Plains (AU-Stp). The figure titles display the Pearson correla-

tion coefficient between observation and reanalysis (ρmon). The bottom panels show observed monthly NEE (black) and simulated NEE by

the individual TRENDY models.
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Figure B4. Different vegetation classes in Australia according to Haverd et al. (2012).
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Figure B5. Landcover fraction of tree vegetation averaged over 2001–2018. Tree vegetation here shows the sum of tree, forest and shrub

PFTs in the TRENDY models. The MODIS panel shows the tree fraction variable from the MODIS/Terra vegetation continuous fields dataset.

White areas are missing values.
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Figure B6. Cumulative NBP for all TRENDY models over 1901–2018. Land–use change based on Hurtt et al. (2020): Increase in C3 and

C4 crops, rangeland, managed pasture and urban areas in 2018 compared to 1901.
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Figure B7. Difference between CO2 + CLIM + LUC and CO2 + CLIM simulations for monthly (a) and annual (b) fire CO2 emissions of

six TRENDY models.
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