Response to Reviewer 2

Towards Estimation of Seasonal Water Dynamics of Winter Wheat from Ground-Based L-Band Radiometry (Manuscript # BG-2021-71)

Comments	Responses/Actions
The manuscript presents a radio-meter	Dear Mostafa Momen,
based approach along with on-site	Many thanks for your encouraging and positive
measurements to estimate seasonal flux	feedback, we are grateful you found this study useful
rates of water over a winter wheat field. The	and appropriate for this special issue and for the BG
paper is well written, and the manuscript	community.
exhibits useful results. There are just a few	Concerning the aspects to address, we will closely follow
aspects that need to be addressed before	your advice and include other sources of data to
publication. First, the paper lacks other	compare and validate the employed empirical models
sources of data (e.g., satellite products	and results. Moreover, we will also incorporate further
and/or field laboratory data) to validate the	modifications and clarifications in response to your
employed empirical models and results. I'd	suggested major and minor comments.
suggest the authors at least include a few	
other observations to validate the overall	
utilized approach. Second, the paper requires	
some further modifications and/or	
clarifications in different parts. Based on	
these shortcomings, I recommend a minor	
revision. The authors should consider the	
following comments in their revision.	
Major Comments:	
Comment (1): Line 105:	We will add several text paragraphs to the manuscript
	to address the three issues (Q1-Q3) raised here. Please
Q1: Why this particular plant has been	find our answers as follows:
selected for this study?	
	Q1: In 2017 winter wheat (<i>Triticum destivum</i>) was
O2: What are the characteristics that	grown in the crop rotation of the farmers at the
distinguish it from other plants?	Seinausen test site. We have access to this test field and
distinguish it from other plants?	the on-site measurements. The winter wheat at
	Semausen grew wen without too much care (no
	hy diseases
O2: How door colorting a plant and its	by uisedses. Moreover, this wheat monoculture has the advantage
US. How does selecting a plant and its	that growth stages between individual plants are nearly
conclusions of the research?	completely synchronized and the canopy is yery
	homogenous. The henefit here is that measurements of
The authors need to comment on these	individual plants are very likely representative for all
The authors need to comment on these.	other plants and can be scaled to the whole canony. In a
	more complex study design a direct comparison
	between remote sensing and in situ measurements
	would be even more difficult.

The described experimental work, together with first estimations of VOD and the gravimetric water content of wheat (m_g) were the focus of previous research (Meyer et al., 2018; Meyer et al., 2019). We build on these results here and present a concept study for the estimation of water fluxes in the SPAS. Most notably, a main motivation for analyzing wheat comes from its importance for food production being one of the major crop types cultivated around the globe. A concise infographic of the FAO (Food and Agriculture Organization of the United Nations) summarizes the main impact of wheat as one of the top commercial crops: http://www.fao.org/assets/infographics/FAO-Infographic-wheat-en.pdf
Q2: Key developmental stages of winter wheat (<i>Triticum aestivum</i>) are published by H. A. Bruns & L. I. Croy and indicate that this agricultural crop has a distinct phenological cycle in the yearly growing period. Detailed information on global distribution, botany, growth and physiology of winter wheat are presented in Curtis et al., 2002 (http://www.fao.org/3/y4011e/y4011e00.htm). These distinct growth stages are particularly interesting, since they allow us investigating whether and to what extent L-band radiometry is a technology suitable to capture them. Taking the other extreme, a tree in a system where nearly no change in biomass happens, would not allow conducting these analyses. We will add an introductory paragraph to the manuscript characterizing winter wheat as the investigated crop type of our study.
Q3: We used a field-based measurement setup (including several in situ and radiometer observations) that monitored a winter wheat (<i>Triticum aestivum</i>) field at the Selhausen (Germany) test site of the FZ Jülich for the 2017 growing season. The final conclusions of our research study are bound to this setup as well as the selected plant type (winter wheat), its characteristics and traits. A transferability to another setup as well as to another plant type and its individual traits may not or only partially be possible. This will depend on the similarity between setups as well as phenotypes, phenological status and traits of the plant subject to study compared to the one used in the

	present study.
Comment (2): Equation 6: This model seems	We will add a comment (text paragraph) on the revised
to have some empirical coefficients. Are	manuscript specifying that the coefficients are
these coefficients plant-type dependent?	empirically derived from a field study on corn, published
In Lynn and Carlson (1990), Fig. 16 is	in Lynn and Carlson (1990). We will acknowledge that
depicted for corn.	the relationship for wheat may be different than that of
How can that impact the used model in this	corn, but that we adopted it due to its simplicity (linear
study?	correlation with LAI) that allows us to dynamize the
The authors need to comment on these.	root-xylem resistance along the growing season, while
	keeping the amount of needed input variables constant.
Comment (3): Figure 11 and Line 420:	Above ground biomass is shown together with other in
Something that perplexes me is that the LAI	situ measurements (LAI, vegetation height & vegetation
is changing nonlinearly in the whole duration	water content) in Figure 1.
of the measurements according to Figure 6	Figure 1 particularly illustrates how the total biomass
implying that the total biomass is changing. If	changes across the growing season, as indicated by the
this is true, the comparison shown in this	reviewer.
study does not seem valid (based on Line	However, the reason for presenting Figure 11 and
420) and does not add anything to the paper.	including the statement at line 420 (see Figure and
	statement below) is to show that VOD carries influences
	from both vegetation water content and vegetation
	biomass & structure.
	Hence, we want to convey the message, especially to
	the readers with interest in vegetation water content
	estimation by remotely sensed VOD, that
	$RWC_{Season,VOD}$, directly calculated with VOD from (9)
	carries a biomass imprint (gray curve in Figure 11), while
	$RWC_{Season,mg}$ does not, because m_g was extracted from
	<i>VOD</i> before <i>RWC</i> -calculus. This is especially important,
	since VOD is being increasingly used as a direct
	indicator of either biomass or vegetation water content
	depending on the study focus (biomass: Malon et al.,
	2020; Rodriguez-Fernandez et al., 2018; Tian et al.,
	2016; vegetation water content: Xu et al., 2021;
	Holtzman et al., 2021). This is in line with the study in
	Momen et al., 2017, where the reviewer investigated
	water and biomass effects on VOD. We will add these
	references to the respective chapter in the manuscript.
	Statement at line 420:
	"However, in periods of constant biomass, meaning
	times where only the water content in the
	plants would change, RWC _{Season} could be directly
	estimated from VOD (Rao et al., 2019; Holtzman et al.,
	2020)."

	Figure 11:
	100 0 0 0
	Ö Ö
	04 Sate
	O RWC _{Season,ma}
	0 RWC _{Season,VOD}
	100 120 140 160 180 200 220 DOY
	Figure 11: Seasonal Relative Water Content
	(RWC_{Season}) [%] calculated in (2) with radiometer-
	derived m_a (green circles) along growing season of 2017
	in days of year (DOY) at the winter wheat field in
	Selhausen. Germany. The gray circles indicate
	RWC_{season} calculated directly with the radiometer-
	derived vegetation optical depth (VOD) according to (9).
Comment (4): Figure 11, and a general	As suggested by the reviewer, we will investigate the
comment: In general, one downside of the	best way to compare and validate our obtained results
paper is that it does not compare the	with other available remote sensing products and/or
obtained results with other remote sensing	laboratory analysis, despite the given inconsistencies in
products and/or laboratory analysis. This is	spatial and temporal resolutions of the different
significant for validation of the employed	approaches and sensors. We plan to compare our water
empirical models and results. In particular,	potential estimates and the water dynamics (PWU, TR)
authors can compare their derived RWCVOD	with independently measured/derived entities of these
(Fig. 11) or soil moisture with satellite	variables, considering the following approaches:
products. Although the resolution might be	1. Comparison with space-borne VOD from
different, it is expected to see generally a	radiometer missions (e.g. SMAP or SMOS).
similar trend that can further validate the	2. Comparison with evapotranspiration data from
employed methods.	the remote sensing-based EcoSTRESS mission
	(starting from 2018): <u>https://ecostress.jpl.nasa.</u>
	gov/.
	3. Comparison with Penman-Monteith-based
	calculus of evapotranspiration using on-site
	measurements (in situ & remote sensing).
	4. Comparison with values of wheat water
	dynamics from literature.
	However, we would like to note that this research study
	cannot contain a thorough validation study of the
	proposed concept. This will be subject of future
	research in which we plan to design dedicated
	measurement campaigns to validate and explore the
	practical application of the here introduced
	methodology for a wider range of vegetation types and
	climate conditions.

Comment (5): Line 560: How can such water	In order to discuss possible limitations and challenges on
flow estimations be done solely using remote	the use of large-scale remote sensing for fully capturing
sensing data?	the water flow dynamics, we will add the following text
The authors could add some discussions on	paragraph to the discussion section, connected to lines
this and the deficiencies of remote sensing	610-620:
approaches to fully capture the water flow	"This would enable a wide-area (up to global)
dynamics. I noticed that this has been	assessment of the SPAS in the end." However, this
somewhat discussed in lines 610-620 but	comes with the limitations in spatio-temporal as well as
more discussions focusing on the limitations	spectral coverage of remote sensing systems, no matter
and deficiencies of such remote sensing data	if active (e.g. lidar, radar) or passive (e.g. spectrometer,
would be useful especially for large-scale	radiometer) systems are used. Moreover, it has to be
studies.	acknowledged that remote sensing acquisitions do not
	purely sense one variable of the Earth system, but
	normally a mixture of variables (e.g. combination of soil
	and vegetation variables). Hence, the quality of
	retrieved Earth system variables (e.g. soil or plant
	moisture), extracted from remotely sensed
	observations, depends directly on the sophistication of
	the signal-to-variable conversion by the established
	retrieval algorithm.
	Moreover, L-band radiometry does not measure fluxes
	per se. Hence, we need valid estimates of the water
	reservoirs (soil moisture, plant moisture and relative
	humidity of atmosphere). Afterwards, we need
	performant estimates of the water potentials. In the
	end, we need to transit to the water fluxes, here the
	essential auxiliaries are the flow resistances of the soil,
	vegetation and atmosphere. These resistances are
	challenging to assess with remote sensing due to multi-
	factorial (inter-)dependencies.
	For these reasons, in order to retrieve exact water flow
	dynamics, the most plausible solution will probably
	come from the combination of Earth system/vegetation
	growth models and high spatio-temporal resolution
	remote sensing data from multiple instruments. This
	multi-source approach will be key for applications
	needing quantitative estimates of water fluxes and will
	be the subject of further research.
Minor Comments:	
Comment (1): Line 125: How far is the	The used climate stations are located directly next to
climate station from the measurement site?	the test field (60 m from radiometer) and on a
	neighboring field (about 400 m from the radiometer).
	The second station is used only for assessing wind speed
	and net radiation as measurements of the closer station
	would be biased by interfering man-made infrastructure
	and measurement devices, which are located close by.
	We will add an informative sentence to the section 2
	(test site and experimental data) to report this on-site

	setup.
Comment (2): Figure 1: How much is VWC	We calculated the Pearson's correlation coefficient R
correlated with LAI?	between the in situ measured vegetation water content
	(VWC) and leaf area index (LAI) along the growing
	season at the wheat field (see Figure 1 for individual
	data sets). It amounts to R=0.94. We will add a
	statement close to the description of Figure 1.

References

Bruns, H. A., & Croy, L. I.: Key developmental stages of winter wheat, Triticum aestivum. Economic botany, 37(4), 410-417, 1983.

Curtis, B. C., Rajaram, S., & Gómez Macpherson, H.: Bread wheat: improvement and production. Food and Agriculture Organization of the United Nations (FAO), 2002.

Meyer, T., Weihermüller, L., Vereecken, H., and Jonard, F.: Vegetation Optical Depth and Soil Moisture Retrieved from L-Band Radiometry over the Growth Cycle of a Winter Wheat, Remote Sensing, 10(10), 1637, 2018

Meyer, T., Jagdhuber, T., Piles, M., Fink, A., Grant, J., Vereecken, H., and Jonard, F.: Estimating Gravimetric Water Content of a Winter Wheat Field from L-Band Vegetation Optical Depth. Remote Sensing, Remote Sensing, 11(20), 2353, 2019.

Holtzman, Nataniel M., et al. "L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand." Biogeosciences 18.2 (2021): 739-753

Mialon, Arnaud, et al. "Evaluation of the Sensitivity of SMOS L-VOD to Forest Above-Ground Biomass at Global Scale." Remote Sensing 12.9 (2020): 1450.

Momen, Mostafa, et al. "Interacting effects of leaf water potential and biomass on vegetation optical depth." Journal of Geophysical Research: Biogeosciences 122.11 (2017): 3031-3046.

Rodríguez-Fernández, Nemesio J., et al. "An evaluation of SMOS L-band vegetation optical depth (L-VOD) data sets: high sensitivity of L-VOD to above-ground biomass in Africa." Biogeosciences 15.14 (2018): 4627-4645.

Tian, Feng, et al. "Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel." Remote Sensing of Environment 177 (2016): 265-276.

Xu, Xiangtao, et al. "Leaf surface water, not plant water stress, drives diurnal variation in tropical forest canopy water content." New Phytologist (2021).