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Abstract. 

The subsurface is a temporally dynamic and spatially heterogeneous compartment of the Earth’s Critical 

Zone, and biogeochemical transformations taking place in this compartment are crucial for the cycling of 

nutrients. The impact of spatial heterogeneity on such microbially mediated nutrient cycling is not well 15 

known which imposes a severe challenge in the prediction of in situ biogeochemical transformation rates 

and further of nutrient loading contributed by the groundwater to the surface water bodies. Therefore, we 

used a numerical modelling approach to evaluate the sensitivity of groundwater microbial biomass 

distribution and nutrient cycling to spatial heterogeneity in different scenarios accounting for various 

residence times. The model results gave us an insight into domain characteristics with respect to presence 20 

of oxic niches in predominantly anoxic zones and vice versa depending on the extent of spatial 

heterogeneity and the flow regime. The obtained results show that microbial abundance, distribution, and 

activity are sensitive to the applied flow regime and that the mobile (i.e., observable by groundwater 

sampling) fraction of microbial biomass is a varying, yet only a small, fraction of the total biomass in a 

domain. Furthermore, spatial heterogeneity resulted in anaerobic niches in the domain and shifts of 25 

microbial biomass between active and inactive states. The lack of consideration of spatial heterogeneity, 

thus, can result in inaccurate estimation of microbial activity. In most cases this leads to an overestimation 

of nutrient removal (up to twice the actual amount) along a flow path. We conclude that the governing 

factors for evaluating this are the residence time of solutes and the Damköhler number (Da) of the 

biogeochemical reactions in the domain. We propose a relationship to scale the impact of spatial 30 

heterogeneity on nutrient removal governed by the log10Da. This relationship may be applied in upscaled 

descriptions of microbially mediated nutrient cycling dynamics in the subsurface thereby resulting in more 

accurate predictions of e.g., carbon and nitrogen cycling in groundwater over long periods at the catchment 

scale. 
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1 Introduction 35 

The Earth’s Critical Zone comprises the near surface, surface and sub-surface compartments, from the top 

of the vegetation canopy to aquifers in the bedrock (Giardino and Houser, 2015;Küsel et al., 2016). 

Biogeochemical processes impact most ecosystem functions (and consequently ecosystem services) in the 

Critical Zone by controlling the distribution of nutrients in the compartments of the Critical Zone. All these 

compartments are connected by water fluxes. Within the Critical Zone, the soil and deeper subsurface 40 

compartments account for almost 50% of the global carbon budget, and the subsurface is also one of the 

biggest storage compartments of nitrogen (McMahon and Parnell, 2014;Schlesinger and Andrews, 2000). 

Especially the subsurface part of the Critical Zone exhibits high spatial and temporal variability in 

environmental conditions that have been proven to be correlated with subsurface nutrient dynamics (Cole 

et al., 2007;Harden et al., 1997;Holt, 2000;Küsel et al., 2016;van Leeuwen, 2000). Since studies 45 

investigating these links are limited to near-surface soil zones, e.g. focusing on the root zone (Küsel et al., 

2016), studies linking surficial events with nutrient dynamics in the deeper subsurface are limited. Some 

research however shows that both, subsurface heterogeneity and input variation, affect subsurface microbial 

community structure. Schwab et al. (2017);Zhou et al. (2012);Hofmann et al. (2020) linked changing 

diversity of microbial communities in groundwater with spatio-temporal variation of the groundwater 50 

physico-chemical quality. McGuire et al. (2000) and Benk et al. (2019);McGuire et al. (2000) linked 

changing composition of terminal acceptors and of dissolved organic matter (DOM) in groundwater with 

surficial events, respectively. Their results also indicated further links with microbial community evolution, 

but they were unable to resolve the effect of transport in the subsurface presumably due to unresolved 

spatial heterogeneity. All the aforementioned studies combined establish a link between spatial-temporal 55 

variability in environmental conditions and nutrient cycling. However, this link is not yet quantitatively 

characterized. Therefore, this further impedes the predictability of biogeochemical cycles. 

Improved prediction of biogeochemical cycles requires advancement in mechanistic understanding of 

governing factors. Microbial communities play a key role in these biogeochemical cycles since they mediate 

nearly all the naturally occurring processes that contribute to these cycles. Recent advances in microbial 60 

techniques have led to greater insight into the functions of microbial communities for biogeochemical 

transformations in laboratory scale batch and column experiments (Ballarini et al., 2014;Grösbacher et al., 

2018). However, transferring this knowledge to the subsurface is challenging. For instance, the growth 

conditions used in laboratory studies are favourable with high substrate concentrations and readily 

accessible terminal electron acceptors (Grösbacher et al., 2018;Hofmann and Griebler, 2018). This is not 65 

representative of the subsurface as the subsurface is a spatially heterogeneous medium. Spatial 

heterogeneity influences subsurface microbial and nutrient dynamics by limiting access to nutrients and 

electron acceptors (Murphy et al., 1997), thereby influencing the distribution of active, inactive, suspended 
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and attached microbes as well (Grösbacher et al., 2018; Couradeau et al. 2019). Inactive microbes were 

found to vary between 60% to 80% of total microbial biomass in soil (Lennon and Jones, 2011), and 70 

attached microbes commonly form the majority of microbial biomass fraction in the subsurface (Griebler 

and Lueders, 2009; Grösbacher et al., 2018). However, data on these fractions for groundwater systems are 

still scarce. Investigating the impact of spatially heterogeneous media on microbial biomass and nutrient 

cycling in the subsurface is hindered by the limited observational opportunities, lack of visualization of real 

time conditions and limitations of sampling methods and oligotrophic conditions (growth limiting) in 75 

groundwater (Ballarini et al., 2014;Hofmann and Griebler, 2018). Since the Critical Zone is a complex 

system with non-linear process dynamics, governing factors are difficult to isolate, and their impact is 

unfeasible to quantify (Grösbacher et al., 2018). To overcome these limitations, numerical modelling 

approaches are powerful alternatives to undertake such investigations (Molins et al., 2014). 

Formulating a conceptual model for microbially mediated carbon and nitrogen dynamics in the subsurface 80 

requires a two-pronged approach. First, the reaction network should be representative of a system’s 

chemical and biological species, and second, the flow component of the model representative of a system’s 

flow and transport pathways. Biogeochemical reaction networks have been explored extensively over the 

past decades with improvement in the conceptual understanding of the transient environmental conditions 

of the Critical Zone, the microbial life cycle, and the key processes involved in carbon and nitrogen cycles 85 

(Thullner and Regnier, 2019; Manzoni and Porporato, 2009). Incorporating microbially explicit reaction 

networks in reactive transport models is beneficial as these models could capture transient conditions and 

associated impacts (Thullner et al., 2007). In contrast to soil-based models that account for complex reaction 

networks, often comprising more than one microbial functional group (Yabusaki et al., 2017b;Thullner et 

al., 2007;Thullner and Regnier, 2019;Manzoni and Porporato, 2009), the reaction networks used for 90 

modelling biogeochemical processes in deep sub-surface domains are seldom complex. They do not 

account for microbially explicit models and relevant microbial life processes or any interactions thereof 

(Thullner and Regnier, 2019). A straight-forward application of the soil-based biogeochemical model 

approaches to conditions in deeper subsurface compartments is problematic because the nature of carbon 

source changes as it travels into the deeper zones. A reaction network that is sufficiently representative of 95 

growth conditions found in the subsurface is lacking and must be conceptualized to study both microbial 

dynamics and resulting nutrient dynamics. Below we present a possible reaction network for such 

groundwater setting. 

The second challenge, as stated above, is to characterize the flow and transport in a heterogeneous medium. 

Several attempts have already been made to model microbially driven reactions in the subsurface (Yabusaki 100 

et al., 2017b;Thullner et al., 2005;Schäfer et al., 1998a;Hunter et al., 1998;Arora et al., 2016) at a regional 

scale with further investigations on the impact of temporal variation on microbial activity and microbially-



 

4 

 

driven redox dynamics in riparian zones (Yabusaki et al., 2017a;Dwivedi et al., 2018;Arora et al., 2016). 

Conducting studies at this scale is relevant but it lacks spatial resolution of microbially mediated nutrient 

dynamics in the subsurface. Additionally, it is difficult to transfer the results to other geological settings 105 

(Tufenkji, 2007). 

To understand the fundamental mechanisms (without the volume averaging effect of large-scale studies) 

influencing microbial activity, several studied worked on identifying factors influencing microbial activity 

at the pore scale (Stolpovsky et al., 2011;Meile and Tuncay, 2006;Heße et al., 2010; King et al., 2010; 

Gharasoo et al., 2012). Exploring microbial dynamics at the pore scale requires the knowledge of pore scale 110 

features/geometry for practical applications (Heße et al., 2010), which is typically not available. 

Additionally, utilizing the pore scale resolution as the base for modelling catchment scale nutrient cycles is 

computationally problematic. Meanwhile, field groundwater sampling techniques reflect average 

conditions at the continuum scale depending on sampling resolution. Sanz-Prat et al. (2016) attempted to 

simplify reactive transport modelling in heterogeneous media at the meter scale by proposing a travel time 115 

approach but considered a limited reaction network comprising only growth and decay dynamics of aerobic 

degraders and denitrifiers. The study conducted by Jung and Meile (2019) applied first-order reactions in 

heterogeneous porous media at the Darcy scale (or continuum scale) and further upscaled the effective 

reactions to the regional scale. Microbial kinetics and interplay between different functional groups thereof 

are more accurately expressed using Monod derived kinetics (Arora et al., 2016;Thullner et al., 2007) 120 

although Liu et al. (2019) attempted to identify the conditions in which first-order rates may be suitably 

used in soil systems to optimize computational efforts at field or regional scales. In summary, model 

attempts have been related to the regional and pore scale, leaving a gap at the soil core, rock core and 

groundwater sampling scale. 

In this research, we aim to study nutrient dynamics using a comprehensive reaction network at the 125 

continuum scale (sub-meter scale in our case). This provides the link between the pore scale microbial 

dynamics and regional scale microbial dynamics. It assists in developing a process-based understanding of 

the impact of spatial heterogeneity on microbial activity and subsequent nutrient dynamics and assists in 

scaling the activity to pragmatic regional scales accounting for spatial heterogeneity.  

We seek to describe the influence of spatial variability of terrestrial subsurface settings (i.e., porous aquifer 130 

properties) on the in situ biogeochemical function of microorganisms through numerical simulations. Since 

preferential flow paths have been established to control access to nutrients, electron acceptors and thus 

influence the emergence of microbial hotspots (Franklin et al., 2019), we focus on investigating spatial 

heterogeneity alone. We use a complex reaction network that considers varying microbial functional groups 

(both aerobes and anaerobes), key microbial life processes in a variety of redox conditions (aerobic, 135 

ammonia oxidizing, nitrate reducing and sulphate reducing) eventually influencing carbon and nitrogen 



 

5 

 

transformation. Simulated scenarios are informed by data from the literature and from a subject site to 

describe realistic although generic conditions, which allows us to combine these conditions with different 

types of subsurface heterogeneities to determine the resulting biogeochemical potential of the subsurface 

system. The results of this study support the identification of key drivers of microbial dynamics in the 140 

Critical Zone and assist in effective upscaling these process descriptions. This, in turn, contributes towards 

the regional scale modelling of biogeochemical cycles resulting from microbial dynamics. 

2 Methods 

This study investigates the impact of spatial heterogeneity of the aquifer matrix on nutrient cycling in 

groundwater with a focus on carbon and nitrogen using reactive transport modelling. For this we used a 145 

numerical reactive transport modelling approach which considered the microbial abundance and activity in 

spatially heterogeneous environmental conditions, that is, spatial variations of aquifer permeability. We 

used the geochemical and geomicrobial observations from our subject site in the Hainich Critical Zone 

Exploratory (CZE, Küsel et al. (2016)) as the foundation of the conceptual model to investigate the research 

questions. The subject site was set up under the DFG Collaborative Research Centre Grant 1076 AquaDiva 150 

to study the links between surficial processes and subsurface dynamics. Thus, it provides spatially and 

temporally resolved field observations to enable the formulation of a representative conceptual model. We 

used this information to constrain our conceptual approach and the simulated scenarios to realistic 

conditions. It is however not the aim to explicitly simulate and specific part of the subject site. For some 

model input we rather considered values at the extreme end of possible conditions to enlarge the range of 155 

conditions covered by our model scenarios. We ran all simulations for a two-dimensional transect of 50 x 

30 cm size assuming fully saturated conditions, steady-state flow and constant inflow concentrations of 

dissolved species. We deemed this domain size appropriate to investigate sub-sampling (sub-meter) scale 

heterogeneities. We considered three different average flow velocities and 12 scenarios of hydraulic 

conductivity fields of varying heterogeneity for all simulations. The following sections describe the 160 

conceptual model comprising reaction network, flow regime and corresponding parameterization, the 

simulated scenarios and methodology of analyses of the simulation results. 

2.1 Reaction Network 

We conceptualized an extended biogeochemical process network to describe the turnover of carbon and 

nitrogen (Appendix A and Fig. 1). The reaction network is an extended adaptation of the carbon dynamics 165 

described by Vogel et al. (2018), and relevant processes in the subsurface as implemented by Manzoni and 

Porporato (2009). The network accounts for autotrophy, and heterotrophy in both aerobic and anaerobic 
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regimes considering four functional groups of microorganisms: aerobic dissolved organic carbon (DOC) 

degraders, nitrate reducing DOC degraders, ammonium oxidizers and sulphate reducing DOC degraders. 

 170 

Figure 1: Schematic representation of the simulated biochemical reaction network 

The network accounts for other observed microbial processes such as dormancy and mortality using a 

modified dual-Monod approach adapted from Stolpovsky et al. (2011), and as well as for the “maximum 

carrying capacity” of the matrix (Ding, 2009;Grösbacher et al., 2018). The latter lumps all growth-limiting 

effects not explicitly accounted for into an additional term (Prommer et al., 1999;Schäfer et al., 175 

1998b;Thullner et al., 2007;Wirtz, 2003). Eventually the carbon and nitrogen loop are completed via 

recycling of bacterial necromass. Furthermore, the reaction network accounts for microbial attachment, in 

case of hospitable conditions, and detachment due to inhospitable conditions or velocity of the water (see 

section A.3.3). The detached mobile bacteria are transported by the flowing water. 

2.2 Flow and Transport 180 

We modelled steady-state flow conditions in each fully saturated domain (50 x 30 cm in size) by imposing 

fixed hydraulic heads at the inlet and outlet of the domain adjusting the inlet value to achieve the desired 

average flow velocity. We kept the head at both, inlet and outlet, constant throughout the simulation periods 

ensuring steady-state flow conditions. All simulated domains had a constant porosity of 0.2 and an average 

hydraulic conductivity of 2.0 10-6 m s-1. The transport regimes account for advection, dispersion and 185 

diffusion. We assumed inlet concentrations of mobile species to be constant for all simulations. 



 

7 

 

2.3 Parameterization 

The subject site is a monitoring well transect within the Hainich Critical Zone Exploratory (CZE) in the 

Hainich National Park, Thuringia, Germany. Groundwater characteristics and composition of microbial 

communities observed in the groundwater of the subject site over five years (Küsel et al., 2016) informed 190 

the parameterization of the model.  

As model input, we introduced a solution which was representative of water infiltrating from the shallow 

subsurface (Table A3), containing a mixture of naturally derived dissolved organic carbon (DOC), 

dissolved oxygen (DO), nitrate, sulphate and some mobile microorganisms (heterotrophic aerobic 

degraders, heterotrophic nitrate and sulphate reducers and autotrophic ammonia oxidizers) in the domain. 195 

The concentrations of the reactive species mimicked conditions observed in the subject site. 

2.4 Simulated Scenarios 

We performed simulations for three different flow regimes, each characterized by a specific average flow 

velocity: for the slow flow regime, the average flow velocity of 3.8 10-4 m d-1 is given by the estimated 

recharge rate at the subject site (Kohlhepp et al., 2017;Jing et al., 2017) and represents the slow migration 200 

of water through the uppermost part of the saturated aquifer. We increased the average flow velocity by a 

factor of 10 for the medium flow regime, and by a factor of 100 for the fast flow regime (Table 1). 

 

Table 1: Flow and transport parameters considered in the simulations and the resulting Peclet number (Pe) associated with 

the different flow regimes. For the latter, the domain size of 0.5 m was used as characteristic length for all flow regimes.  205 

Property Slow flow Medium flow Fast flow 

Darcy velocity (m d-1) 3.8 10-4 3.8 10-3 3.8 10-2 

Diffusion coefficient 

(m2 d-1) 

8.64 10-5 8.64 10-5 8.64 10-5 

Longitudinal 

dispersivity (m) 

0.02 0.02 0.02 

Pe (-) 2.02 11.7 22.45 

 

For each flow regime, a base case scenario accounted for a homogeneous flow field, i.e., the homogeneous 

domains did not have any variation in the distribution of conductivity field, and no associated anisotropy. 

Further scenarios considered spatial heterogeneity of the flow field using randomly generated hydraulic 

conductivity fields (Heße et al., 2014). Each random field was characterized by the same mean value of 210 

conductivity (i.e., average conditions at the subject site (Jing et al., 2017)) and spatial autocorrelation length 

scale (0.1 m) in all realizations, scaling with the size of the domain in line with previous studies (Turcke 
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and Kuper, 1996; Welhan and Reed, 1997; Desbarats and Bachu, 1994). To conceptualize heterogeneity, 

we used a limited parameter set, variance in the log normal distribution of conductivity and anisotropy, to 

represent varying porous and fractured media and to also control the degree of channelized flow in the 215 

domain (Edery et al., 2016; Heße et al., 2014). We varied the values of these parameters within ranges 

reflecting the site conditions/geological features at the study site (Heath, 1983;Kohlhepp et al., 2017). The 

scenarios are summarized in Table 2. In total, we ran 147 simulations for the three different flow regimes 

in spatially heterogeneous domains. For each scenario we kept the average water fluxes the same in all 

scenarios, and we compared the results of the scenarios with the base case scenario. We used the 220 

breakthrough of a constantly injected conservative tracer as a measure of the solute residence time (i.e., 

time for flux averaged outlet concentration to reach 50% of inlet value) in the system. 

2.5 Numerical Tools 

We used OGS#BRNS (Centler et al., 2010) to carry out the numerical simulations. This numerical model 

couples the BRNS (Biochemical Reaction Network Solver (Aguilera et al., 2005;Regnier et al., 2002)), an 225 

established tool that allows for the simulation reaction networks of arbitrary size and complexity (Thullner 

et al., 2005) with OGS (Open Geosys), a state of the art open source thermo-hydro-mechanical-chemical 

(THMC) simulator (Kolditz et al., 2012) that has also been used for modelling groundwater flow and 

transport (Jing et al., 2017). We used a constant finite volume discretization of 0.01 m in both directions. 

Transient simulations were performed until steady state was achieved. 230 

 

Table 2: Summary of spatially heterogeneous scenarios investigated for each flow regime. S. No. 1 is the homogeneous base 

case. 

S. No. Variance in 

permeability 

Anisotropy Number of 

realizations 

Category type 

1 0 Not applicable 1 Homogeneous (referred as 0:1 

in Fig. 2) 

2 0.1 2 4 0.1:2 

3 0.1 5 4 0.1:5 

4 0.1 10 4 0.1:10 

5 1 2 4 1:2 

6 1 5 4 1:5 

7 1 10 4 1:10 

8 5 2 4 5:2 

9 5 5 4 5:5 
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10 5 10 4 5:10 

11 10 2 4 10:2 

12 10 5 4 10:5 

13 10 10 4 10:10 

We used the Python programming language (van Rossum and Drake, 2006) (referred to as Python 

henceforth) to set up the scenarios for running the simulations using OGS#BRNS. These tasks included the 235 

generation of input files. We used ogs5py (Müller, 2020) to generate the input files for running the 

simulations in OGS#BRNS. We used gstools (Müller and Schüler, 2019) to generate the spatial random 

fields to represent heterogeneous domains in OGS#BRNS. We processed and further analysed simulation 

results using a workflow in Python as well. We also used Python to generate all graphical outputs presented 

in this paper. The scripts used for the Python workflow along with the input files are available in a repository 240 

for ease of reproducibility (Khurana et al., 2021). 

2.6 Data Analysis 

The Peclet number (Pe) indicates the relative importance of flow processes in the flow regime. The resulting 

Pe of each flow regime (calculated using Eq.(1)) increased from 2 indicating a mixed diffusion-advection-

transport regime for the slow flow regime to 22 indicating fully advection-dominated transport for the fast 245 

flow regime (see Table 1 for further details). 

𝑃𝑒 =
𝑣𝑒𝑓𝑓∙𝑙

𝐷+ 𝛼∙𝑣𝑒𝑓𝑓
,           (1) 

with veff as effective Darcy velocity, l as length scale, D as diffusion coefficient, and α as longitudinal 

dispersivity. 

The breakthrough time is a useful metric to evaluate the matter flux in the domain. We defined the 250 

breakthrough time of a conservative tracer as the time taken for the flux averaged concentration at the outlet 

of the domain to be 50% of the continuous tracer input concentration at the inlet of the domain. This also 

enables evaluating impact of spatial heterogeneity on matter flux alone, without considering impact of 

reactions. 

To evaluate impact of spatial heterogeneity on nutrient cycling, we calculated removal of reactive species 255 

(that is, DOC, DO, ammonium, and nitrate) from the domain in steady state conditions. Thus, while the 

chemical species entering the domain at the inlet were consumed at varying rates by the microbial species 

present in the system, the rate of consumption was constant in time in each domain in all flow regimes. 

Additionally, to these dissolved reactive species, we also considered (total) nitrogen and total organic 

carbon (TOC) concentrations by considering also nitrogen and carbon present in the mobile microbial 260 

biomass and in particulate organic matter being transported in the domain (Appendix A). We compared the 
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changing mass removal in heterogeneous domains with the respective base case scenarios (homogeneous 

domains). 

To evaluate the key factors determining the impact of spatial heterogeneity on nutrient cycling, we 

undertook a series of multivariate statistical analyses of the simulation results using Linear Mixed Effect 265 

Modelling, progressively including variables in both fixed effects and random effects. We compared the 

Akaike Information Criterion (AIC) of each model to evaluate the fit of the model. AIC is an indicator of 

prediction error associated with a general linear model. It is an indicator of relative performance of a group 

of models; the model with the lowest AIC is concluded to be the one with least prediction error or best 

performance. With each iteration of the model, we selected the features most influencing the performance 270 

of the model and reducing the AIC of the predictions. We described these key factors using established 

dimensionless numbers which are also identifiable by observations. For example, we used Pe to indicate 

different flow regimes (described in Sect. 2.4). Similarly, we used the Damköhler number (Da) to indicate 

the reaction regime for each reactive species. Da is defined as the ratio of the advective transport time scale 

and the reaction time scale as described in Eq. 2. 275 

𝐷𝑎 =  
𝜏𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡

𝜏𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
,          (2) 

where, τreaction is the characteristic reaction time scale and τrtransport is the characteristic transport time scale 

given by the breakthrough time of a conservative tracer in the domain. We adapted this definition to derive 

characteristic reaction time scale assuming 63% loss (Pittroff et al., 2017) and used Eq 3 below to calculate 

the apparent Da using values estimable in the field when 
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
> 5%. 280 

𝐷𝑎 =  − ln
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
,           (3) 

with Cin as flux averaged concentration of a reactive species entering the domain, and Cout as flux averaged 

concentration of the reactive species leaving the domain. In case  
𝐶𝑜𝑢𝑡

𝐶𝑖𝑛
≤ 5%., we used Eq. 4 and Eq. 5 to 

derive the apparent Da of the chemical species 

𝜏𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 =  
−ln (0.37)

− ln(
𝐶𝑦5

𝐶𝑖𝑛
)

 ×  𝜏𝑦5,         (4) 285 

𝜏𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 =  
𝜏𝑦5

ln(
𝐶𝑦5

𝐶𝑖𝑛
)
,           (5) 

where, 𝐶𝑦5 is the concentration of the chemical species at the first cross-section (y = y5) when 
𝐶

𝐶𝑖𝑛
≤ 5%, 

and 𝜏𝑦5 is the breakthrough time for a conservative tracer at the same cross-section, i.e., y = y5. 𝜏𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 

in this case was the same as the breakthrough time of the conservative tracer in the domain (Eq. 6). 

𝐷𝑎 =  
𝑏𝑟𝑒𝑎𝑘𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑡𝑖𝑚𝑒

𝜏𝑦5

ln(
𝐶𝑦5
𝐶𝑖𝑛

)

,         (6) 290 
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Thus, we were able to characterize reaction dominant systems where Da > 1. We took the logarithm of Da 

to the base 10 (log10Da) to characterize the regime for each reactive species in each domain. 

For a scalable relationship addressing impact of spatial heterogeneity on reactive species removal, we 

conduct a simple linear regression analysis of species removal vs. residence time (both in relative units to 

the homogeneous reference cases) for different log10Da ranges.  295 

For comparison we also use the following expression to predict the impact of reducing breakthrough time 

on removal of reactive species, in case of a first order removal rate expression (Eq. 7): 

𝐶𝑡 =  𝐶𝑖𝑒−𝑘𝑡,           (7) 

with Ci as initial concentration of reactive species [ML-3], Ct as concentration of reactive species at time t 

[ML-3], k as first order rate constant [T-1], and t as time taken for the reaction to occur [T].  300 

Then it follows that, normalized removal of reactive species may be described with: 

𝐶𝑖− 𝐶𝑡

𝐶𝑖
= 1 −  𝑒−𝑘𝑡          (8) 

To compare the removal of reactive species between two different time points, we use: 

𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑛 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒 =  
1− 𝑒−𝐷𝑎.𝑡𝑓

1− 𝑒−𝐷𝑎   (9) 

with tf as ratio of the time taken for the reaction to take place in the two (2) different scenarios. In our study, 305 

this is the same as the ratio of breakthrough time in the heterogeneous domain and that in the base case. 

Furthermore, we calculated the impact of reducing breakthrough time on removal of reactive species, in 

case of a zeroth order (i.e. constant) removal rate R0 as  

𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑛 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜 𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒 =  𝑡𝑓 𝑅0   (10) 

3 Results 310 

We compare characteristics of flow and transport of porous media such as conservative tracer breakthrough, 

microbial biomass in the domain and nutrient removal from the domain for heterogeneous domains and the 

base case. The base case is the homogeneous domain in all the three considered flow regimes. We explore 

flux-averaged concentrations of mobile species and spatially averaged concentrations of immobile species 

in 1-D, along the predominant flow direction, and explore the 2-D concentration heat maps of the domain 315 

to compare the information lost when neglecting spatial heterogeneity at scales smaller than that of the 

sample. We further consider the total microbial biomass present in the domain, and nutrient removal from 

the domain as aggregated results and compare these between the heterogeneous domains and respective 

base cases.  
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3.1 Base case (homogeneous domain with uniform flow rate) results 320 

The breakthrough time varied in the base case of each flow regime depending on the flow velocity in the 

domain. It was 205 days in the slow flow regime, 24 days in the medium flow regime and 2.4 days in the 

fast flow regime. 

As mentioned in Sect. 2.3, we set the concentration of the dissolved species at the inlet to be the same across 

all flow regimes and heterogeneity scenarios, while it varied at the outlet for each scenario. In all flow 325 

regimes DOC concentrations decreased continuously along the domain length, yet they remained at 

relatively high values. In other words, an active microbial DOC degradation in the entire domain was not 

significantly limited by the abundance of DOC itself. In the slow flow and medium flow regimes, the 

dissolved oxygen (DO) dropped to concentrations less than 3 µM (common detection limit of DO sensors 

(ISO, 2014)) within the top half (upgradient) of the domain, indicating anoxic conditions in the 330 

downgradient parts of the domain (Fig. S1). Along the 1-D flow path in the domains aerobic degradation 

rates decreased more and more at low concentrations of oxygen (below approximately 20 µM), while 

ammonia oxidation persisted. With DO concentration lowering further, nitrate concentration reduced which 

is attributable to the activity of nitrate reducers at DO < 15 µM (Fig. S1). As the concentration of DO 

reduced, so did the biomass of aerobic degraders, while ammonia oxidizer biomass increased. This resulted 335 

in preferential occurrence of ammonia oxidation and nitrate reducers and nitrate reduction further 

downgradient in the domain (Fig. S2). No sulphate reduction took place in any of the flow regimes; the 

concentration of nitrate was still high (> 63 µM in all flow regimes) down to the outlet. In contrast to the 

slow and medium flow regime, DO concentration at the outlet of the fast flow regime (~4 µM in the base 

case) indicated that both oxic zones and aerobic activity prevailed further downgradient in the domain and 340 

consequently the growth of nitrate reducers was suppressed till further downgradient in the domain. Overall, 

the concentration profiles along the flow direction of the base case in all flow regimes were thus in 

agreement with redox hierarchy wherein aerobic degradation occurred preferentially upgradient in the 

domain promoted by a relatively high concentration of aerobic degraders. 

The removal of reactive species, DOC (59.2%), DO (99.6%), ammonium (19.8%) and nitrate (74.7%), was 345 

the highest in the slow flow regime (Table 3). The removal of the reactive species was related to the average 

flow velocities since it related directly to the residence time in the domain and reaction dominated regimes. 

Hence, the rate of removal of all these reactive species reduced in medium flow and fast flow regimes. Also 

the removal of total nitrogen was the highest in the slow flow regime (57%), while the removal of TOC 

was the lowest there (32.6%) and highest in the medium flow regime (42.6%). 350 

 

Table 3: Removal of dissolved species (𝑹𝒃) in terms of mass flux (�̇� in µmol d-1) from the homogeneous domain in three 

flow regimes - slow flow, medium flow and fast flow 
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Dissolved 

Species 

Slow flow Medium flow Fast flow 

 �̇�𝑖𝑛 �̇�𝑜𝑢𝑡 𝑅𝑏(%) �̇�𝑖𝑛 �̇�𝑜𝑢𝑡 𝑅𝑏(%)  �̇�𝑖𝑛 �̇�𝑜𝑢𝑡 𝑅𝑏(%)  

DOC 0.456 0.186 59.2 4.56 1.98 56.5 45.6 31.4 31.1 

DO 0.143 0.001 99.6 1.43 0.01 99.4 14.3 0.2 98.4 

Ammonium 0.0342 0.0274 19.8 0.342 0.276 19.4 3.42 3.03 11.5 

Nitrate 0.143 0.036 74.7 1.43 0.49 65.8 14.3 14.1 1.12 

Nitrogen 0.178 0.077 57.0 1.78 0.84 53.1 17.9 17.6 1.90 

TOC 0.470 0.316 32.6 4.70 2.70 42.6 47.0 36.3 22.7 

The concentration of microbial species in different states of activity and locations in the domain is shown 

in Table 4. The total biomass concentration was the highest in the slow flow regime (122 µM C), while it 355 

was the lowest in the fast flow regime (86 µM C). This reduction was mainly attributed to a decrease in 

mobile biomass concentration with increasing flow rate while the total concentration of immobile biomass 

remained constant with changing flow regimes. In all the flow regimes, the aerobic degraders formed the 

dominant species, primarily due to the influx of oxygenated water at nearly saturation levels entering the 

domain at the inlet. In the slow flow regime, the highest proportion of biomass was contributed by inactive 360 

microbial species (>90% of the total biomass concentration). The proportion of active aerobic degraders 

and ammonia oxidizers was the lowest in the slow flow regime (~5%) while it increased in the medium 

flow regime (~17%) and it was the dominating species in the fast flow regime (~87%). This was indicative 

of a small oxic zone with aerobic activity in the slow flow regime domain, which further expanded 

downgradient in the medium flow regime domain (Fig. S1 and Fig. S2). The dominance of the active aerobic 365 

degraders and increased presence of ammonia oxidizers in the fast flow regime domain indicated persistent 

oxic conditions and aerobic activity. Consequently, the proportion of active nitrate reducers was lowest in 

the fast flow regime (~3%), only growing in the downgradient direction near the outlet of the domain (Fig. 

S2). The medium flow regime provided the conditions for active nitrate reducers to sustain and form a 

substantial proportion of the microbial community (14% as opposed to ~4% in slow flow regime and ~3% 370 

in fast flow regime). Among the active microbial species, the immobile fraction was higher than the mobile 

fraction in all flow regimes (more than 7 times in the slow flow regime, more than 4 times in the medium 

flow regime and more than 2 times in the fast flow regime). 
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Table 4: Total biomass concentration (µM C) in homogeneous base case domains (volume averages) with fraction of biomass 

concentration (%) of each microbial species for three flow regimes 375 

Microbial Species Slow flow Medium flow Fast flow 

Total 122.0 93.34 86.35 

Active fixed aerobes 3.5 12 74 

Active fixed ammonia oxidizers 0.5 2.5 2.4 

Active fixed nitrate reducers 2.5 12 2.3 

Active mobile aerobes 1.0 2.2 9.6 

Active mobile ammonia oxidizers 0.2 0.7 0.7 

Active mobile nitrate reducers 1.2 3.1 0.3 

Inactive fixed aerobes 44 41 5.2 

Inactive fixed ammonia oxidizers 0.5 0.2 0.2 

Inactive fixed nitrate reducers 15 11 3.2 

Inactive mobile aerobes 24 12 0.5 

Inactive mobile ammonia oxidizers 0.3 0.1 0.3 

Inactive mobile nitrate reducers 7.9 2.9 1.4 

3.2 Tracer breakthrough times  

For each flow regime, the tracer breakthrough time in heterogeneous domains varied from that in the base 

case. With increase in variance of the hydraulic conductivity field, and increasing anisotropy in the domain, 

the breakthrough time was shorter compared to the base case (Fig. 2). This was a result of preferential flow 

paths that were introduced by the heterogeneous hydraulic conductivity fields. The same “category” 380 

(combination of variance and anisotropy) of heterogeneity induced varying impact depending on the flow 

regime, with higher average flow velocities leading to relatively stronger reductions of the breakthrough 

times. This difference in the impact of heterogeneity on tracer breakthrough times and thus the residence 

time of solutes in the domain was attributed to the different Peclet numbers (Pe) of the regimes (Table 1). 

Diffusion played a stronger role in the transport processes in the slow flow regime, promoting mixing 385 

effects and reduced influence of the preferential flow paths in heterogeneous domains. This resulted in the 

lower deviation in breakthrough time from the base case in the slow flow regime. In contrast, in the medium 

and in particular in the fast flow regime transport was dominated by advection with little mixing between 

flow paths. The preferential flow paths in the heterogeneous domains therefore had a higher influence on 

the resulting tracer breakthrough times, and thus on the residence time of dissolved species in these regimes. 390 
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Figure 2: Breakthrough time in different heterogeneous scenarios (described as variance in permeability field:anisotropy) 

normalized by that in the base case (or homogeneous case) in three flow regimes: Slow, medium and fast flow. 

3.3 Distribution of dissolved reactive species in heterogeneous scenarios 

Scenarios with a heterogeneous hydraulic conductivity distribution exhibited a heterogeneous flow velocity 395 

distribution with pronounced preferential flow paths emerging with increasing variance and/or anisotropy 

of the conductivity distributions. The distribution of dissolved species in heterogeneous domains followed 

the orientation of the preferential flow paths (Fig. S3). All the species persisted longer along these 

preferential flow paths compared to the low permeability zones. Moreover, also on average all the reactive 

species penetrated further downgradient into the heterogeneous domains compared to the homogeneous 400 

domain due to the presence of the preferential flow paths (Fig. S1). For example, in the medium and fast 

flow regime DO persisted further in the heterogeneous domain (deeper in the domain) as the groundwater 

flowed through preferential flow paths. This impact of heterogeneity on longer persistence of DO was, 

however, not observable for the slow flow regimes. This is because the DO was preferentially and quickly 

consumed by aerobic degraders close to the inlet of the domain in the slow flow regime, rendering more 405 

than 90% of the domain sub-oxic to anoxic with prevailing anaerobic activity. Effectively, spatial 

heterogeneity did not play a role in aerobic respiration in the slow flow regime. In contrast, a larger oxic 

zone with aerobic activity existed in the upgradient section of the domains in medium and fast flow regimes. 

There, spatial heterogeneity resulted in observable shifts of the transition from oxic to sub-oxic zone or 

from aerobic activity to anaerobic activity to further downgradient parts of the domain. Additionally, spatial 410 

heterogeneity resulted in oxic and anoxic mesh nodes coexisting along a cross-section that was apparently 
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oxic (Fig. 3). Oxic mesh nodes were nodes where DO was recorded to be higher than 3 μM. We noted that 

even though the flux averaged concentration decreased steadily in the downgradient direction, a high 

percentage of nodes along the cross-section remained oxic in heterogeneous domains. Because of this 

delayed transition, nitrate reduction was also affected. In heterogeneous domains, nitrate was observed to 415 

be respired further downgradient in the domain and at the interface of high flow and low flow zones (Fig. 

S3). 

These concentration distributions translated into reduced removal of carbon and nitrogen in heterogeneous 

domains with increasing spatial heterogeneity compared to the base cases (Fig. 4). DOC removal was less 

than in the base case in all the flow regimes with lowest removal reaching only 40% of the base case values 420 

in the fast flow regime. The removal of DO was reduced in the fast flow regime (down to 40% of the base 

case value) while no or negligible reductions were observed for most slow and medium flow scenarios. 

Nitrogen removal was reduced in the slow and medium flow regimes yet reaching at least 70% of base case 

values. One exception was nitrogen removal in the fast flow regime, which increased (up to 6 times the 

base values) compared to the base case. The dependency of TOC removal on spatial heterogeneity matched 425 

that of DOC for the different flow regimes (Fig. 4). 

 

Figure 3: Comparison of flux averaged DO concentration and % of oxic mesh nodes (i.e., cells with DO concentration > 3 

µM) along the flow direction in a medium flow regime. 

 430 
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Figure 4: Removal of chemical species in spatially heterogeneous domains in different flow regimes. Values show mass flux 

differences between inlet and outlet of the heterogeneous domains normalized by the flux differences for the homogeneous 

base case of each flow regime. 

The above results could be summarized by use of log10Da. The distribution of log10Da is shown in Fig. S6. 435 

The same value of log10Da is associated with different combinations of reaction and flow regimes. The 

aerobic reactions in the slow flow and the medium flow regimes were characterized with high values of 

log10Da (>0.5), while the anaerobic reactions in the slow and medium flow regimes were characterized by 

mid-range values of log10Da (0 - 0.5) along with the aerobic reactions in the fast flow regime. The anaerobic 

reactions in the medium flow regime were characterized by low values (-1 – 0) of log10Da. Lastly, the 440 

anaerobic reactions in the fast flow regime were characterized by extremely low values of log10Da (<-1). 

3.4 Distribution of microbial biomass in heterogeneous scenarios 

As already shown in Sect. 3.1, the active immobile fraction of the biomass has a larger presence in the 

domain compared to the mobile fraction, thereby making a larger contribution to nutrient cycling. The 

median value of the mobile biomass in the domain varied from 98 μM C (in the fast flow regime) to 320 445 

μM C (in the slow flow regime), out of which, active mobile biomass varied from 8 μM C (in the medium 

flow regime) to 15 μM C (in the fast flow regime). Immobile biomass in comparison was in the order of 

300 μM in all flow regimes, out of which active immobile biomass varied from 29 μM (in the slow flow 

regime) to 232 μM (in the fast flow regime). Therefore, next we focus on the impact of spatial heterogeneity 

on the distribution of this important fraction of the biomass. Aerobic immobile degraders were found to be 450 

active and most abundant near the inlet of the domain, and along the preferential flow paths in the 
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downgradient zone of the domain (Fig. S4). Ammonia oxidizers were active at the interfaces between high 

flow and low flow regions of the upstream parts of the system, co-existing with high concentration of active 

aerobic degraders. Ammonia oxidizers were also active further downgradient in the system along the 

preferential flow paths. This may be due to the presence of DO at reduced concentrations in the 455 

downgradient region of the domain. DO at these concentrations and low DO/Ammonium ratios can be 

preferentially taken up by ammonia oxidizers compared to aerobic degraders (Gu et al., 2006). The 

maximum concentration of active immobile ammonium oxidizers was more than an order of magnitude 

lower than that of the active immobile aerobic degraders. Nitrate reducers were present in lower 

permeability zones in the heterogeneous domains, but close to the preferential flow paths, in response to 460 

the continuous supply of nutrients from the groundwater flowing through the domain. They co-existed with 

ammonia oxidizers but at higher concentrations. Active immobile nitrate reducers were much higher than 

active mobile nitrate reducers in the fast and medium flow regimes, but comparable in magnitude in the 

slow flow regime. 

 465 

Figure 5: Biomass concentration of active immobile fraction of different species in spatially heterogeneous domains in 

different flow regimes. Shown volume averaged values for the heterogeneous domains were normalized by values of the 

homogeneous base case of each flow regime. 

The corresponding 1-D distribution of microbial species in heterogeneous domains was observed to vary 

from the base case given the same average water flux (Fig. S2). All the microbial species were prevalent 470 

along a larger section in the heterogeneous domains. Aerobic and anaerobic microorganisms also appear to 

co-exist in heterogeneous domains (solid lines), in contrast to their sequential occurrence in the base case 

(dashed lines). 

The changing distribution pattern of the microbial species impacts the total active immobile biomass 

concentration in the domain, which diverges from the base case as heterogeneity increases (Fig. 5). The 475 
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biomass of active immobile aerobic degraders decreased with increasing heterogeneity regardless of the 

flow regime, with lowest values reaching only 40% of the base case biomass. The biomass of immobile 

active ammonia oxidizers and nitrate reducers also decreased with increasing heterogeneity in slow (~75% 

and ~90% of base case, respectively) and medium flow regimes (30% and 85% respectively). However, the 

impact on the biomass of immobile active nitrate reducers was the reverse in fast flow regime (increase to 480 

5 times the concentration in the base case). Lastly, there was no impact of spatial heterogeneity in the 

biomass of immobile active ammonia oxidizers in the fast flow regime. 

Overall, active immobile biomass decreased with increase in spatial heterogeneity in all the flow regimes, 

while active mobile biomass increased marginally (Fig. S9). Inactive immobile biomass reduced with 

spatial heterogeneity in slow and medium flow regimes, while it increased in the fast flow regime. Lastly, 485 

inactive mobile biomass increased with heterogeneity in all flow regimes. 

3.5 Predicting impact of spatial heterogeneity on redox regimes. 

While conducting the multivariate statistical analysis of change in mass removal of reactive species, we 

made use of AIC to evaluate governing factors influencing mass removal in a spatially heterogeneous 

domain. The analysis indicated that AIC was 994 when considering only breakthrough time and chemical 490 

species. AIC reduced to -211 when the chemical species, the flow regime, variance in permeability field 

and the anisotropy of the domain were included as random factors). Please refer to Table S1 for further 

details. Thus, we concluded that nutrient dynamics are influenced by spatial heterogeneity. Categorizing 

the systems using log10Da, we proposed a linear expression to predict the impact of spatial heterogeneity 

on nutrient removal. The regression parameters informing this expression are given in Table 5. The results 495 

indicated that we may underestimate nutrient removal by 6 times or overestimate it by twice the amount 

(Fig. 6). 

Table 5: Regression parameters for predicting removal of chemical reactive species based on the reaction regime indicated 

by log10Da. 

Category of flow and 

reaction regime 

Regression parameters 

Slope Intercept RMSE 

log10Da < -1 -365.0 497.3 57 

-1 < log10Da < 0 53.94 46.68 3.7 

0 < log10Da < 0.5 12.16 87.71 4.7 

log10Da > 0.5 0 100 - 

 500 
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Figure 6: Regression analysis: Predicting impact of spatial heterogeneity on chemical species removal in different reaction 

regimes indicated by log10Da. Value on Y-axis indicate the removal of chemical species in heterogeneous domains 

normalized by that in the corresponding base case. Spatial heterogeneity is plotted on the X-axis, indicated by the 

breakthrough time in the heterogeneous domain normalized by that in the base case (homogeneous domain). A value of 505 
100% on the Y-axis indicates that the removal of the chemical species is the same as that in the corresponding base case 

(homogeneous domain). A value of 50% indicates that the removal of the chemical species reduced by half in the 

corresponding heterogeneous domain. A value of 600 indicates that the removal of the chemical species in the heterogeneous 

domain was 6 times that in the homogeneous domain. 

4 Discussion 510 

In this study we synthesized available process knowledge and observations from our subject site on 

geomicrobial activity in the deep subsurface, both terrestrial and marine, into a set of in silico scenarios on 

the fate of biogeochemically reactive compounds in heterogeneous subsurface settings. This approach 

allowed us to generate a wide range of spatially heterogeneous domains (with variance of the log normal 

distribution of conductivity varying from 0.1 to 10, and anisotropy varying from 2 to 10), which is not 515 

possible experimentally. Therefore, we utilized geostatistical methods using variance in conductivity field 

and anisotropy to simulate heterogeneous subsurface scenarios. Variance reflects naturally occurring 

variation in the conductivity field. In case of a high variance, it represents scenarios where lenses of a 

different medium are present in another medium (such as clay lenses in a sandy aquifer). Anisotropy 

provides an additional control to enforce channelized flow fields in the domain or layering processes in 520 

general, common in both alluvial sediments and fractured bedrock. Thus, we considered 12 scenarios for 

representing these heterogeneous flow fields, covering most physically (variance) and geometrically 

(anisotropy) plausible scenarios. At the same time, linking extent of spatial heterogeneity with breakthrough 
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time allowed us to discuss the impact of spatial heterogeneity on removal of chemical species independently 

of how we generated the spatial heterogeneity. 525 

The reaction network was formulated using literature knowledge and geomicrobial activity identified at the 

subject site. At the same time, it captures varying respiration and microbial regimes, from aerobic 

autotrophy to aerobic heterotrophy and anaerobic heterotrophy. The activity of geomicrobial reactive 

systems is dependent on a variety of factors, such as nutrient availability, access to energy gradients, pH, 

pore size, hydraulic conductivity, particle size distribution (Smith et al., 2018). The limited information on 530 

microbial activity applicable to oligotrophic conditions in the subsurface does challenge the 

parameterization of the reaction network, which is a priori a potential major source of uncertainty for the 

obtained model results. Given this limitation, we calibrated the parameters of the reaction network to ensure 

that it covers a sufficiently large range of Da values and that it does not violate the established redox 

hierarchy in any of the flow regimes considered (see Appendix A and the base case results). Additionally, 535 

we consistently used our parameter set in all scenarios and used results of the homogeneous base cases as 

internal reference to which we compared results of the individual heterogeneous scenarios as we aimed to 

study the impact of spatial heterogeneity on microbial activity and subsurficial nutrient dynamics.  

Lastly, consideration of varying flow regimes in combination with the reaction network provides a view on 

both reaction dominant systems and flow dominant systems, indicated by the use of Da. This approach 540 

compensates for our approach wherein we do not explore additional scenarios varying concentrations of 

chemical species and their influence on microbial growth and distribution. By treating the analysis of results 

in terms of Da, we condense the discussion to effective rates of microbial activity given presence of spatial 

heterogeneity of hydraulic conductivity. Thus, we are confident that the presented findings are not limited 

to the particular parameter set used in this study but that they are applicable widely. 545 

4.1 Sampling and analysis: Biomass and reactive species 

Microbial abundance can be derived from carbon content in the biomass using available conversion factors 

varying from 5 - 39 femtogram (fg) C/cell (Fukuda et al., 1998;Vrede et al., 2002). This resulted in median 

values of total mobile biomass in the domain of 109 to 1011 cells L-1. Opitz et al. (2014) measured the total 

bacterial biomass in groundwater of the subject site to vary from 106 to 108 gene copies L-1 (depending on 550 

location, tapped aquifer and season of measurement), which is lower than the simulated mobile values. 

However, the simulated values of mobile biomass are in the range derived in both lab scale and field scale 

studies (Holm et al., 1992;Griebler and Lueders, 2009;Grösbacher et al., 2018). Also, the mobile biomass 

concentration is in the range of particulate organic carbon concentration observed to be exported in the 

seepage at the subject site (Lehmann et al., 2021). The relatively high biomass values obtained in the 555 

simulations are attributed to the relatively high inflow concentrations as well as to the relatively high 
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microbial reactivity we considered in the simulations to allow them to cover also high Da ranges. We note 

that while the total biomass may not be matching the observations at the subject site, the relative 

composition of the microbial species fractions (that is, immobile, mobile, active and inactive) follow 

established findings. For example, immobile microbial biomass indeed forms the majority biomass in the 560 

subsurface (as well as in our study), with its ratio with mobile biomass changing based on nutrient and other 

environmental conditions (Griebler et al., 2002; Grösbacher et al., 2018). It is proposed that the ratio of 

immobile and mobile biomass in (Griebler et al., 2002; Grösbacher et al., 2018) varies per nutrient 

availability, with higher ratios observed in oligotrophic conditions and lower ratios in nutrient rich 

conditions. We extend this further in our study, by observing that the ratio depends on the Damköhler 565 

number, with higher ratios in in low Da systems, and lower ratios in high Da (reaction dominant) systems. 

It is further estimated that 60%-80% of microbial biomass in soil may be inactive (Lennon and Jones, 2012). 

In our study, we observe these ranges in the slow flow and medium flow regimes, but not in the fast flow 

regime. With newer technologies equipped to better characterise activity of microbes in environmental 

samples (Couradeau et al. 2019), we expect that it will be easier to draw the comparison in the future. 570 

It is also important to note that the estimated abundance at the subject site varies with both sampling location 

and season. And as mentioned above, we also observe that microbial biomass may be in different states of 

activity (active or inactive) or location (immobile or mobile) depending on the flow regime and the structure 

of spatial heterogeneity in the system. This brings into focus that next to spatial heterogeneities addressed 

in this study also temporal variations of environmental conditions can have a significant impact on 575 

microbial abundance (Eckert et al., 2015). This study provides preliminary insights into how varying water 

velocities/flow regimes may impact relative contribution of microbial species between inactive, active, 

mobile and immobile fractions in spatially heterogeneous domains. The system may respond similarly to 

temporal fluctuations in groundwater velocities resulting from seasonal cycles as well. While this is not 

part of the current study, the presented conceptual approach and assessment scheme may be applied in 580 

future studies focussing on such transient effects. 

Commonly used groundwater sampling techniques do not resolve the heterogeneous distribution of 

chemical and microbial species along the length and cross-section of a well screen, though specialised 

probes exist to characterise small-scale chemical variability in the subsurface (Ronen et al., 1987). The 

obtained samples may thus present a skewed/biased observation of the biogeochemical dynamics in the 585 

subsurface. For example, the gradual reduction of flux averaged DO concentration from near saturation 

values at the inlet to below detection limit implies the continuous presence of an aerobic zone until DO is 

fully depleted. However, when the number of oxic and anoxic mesh nodes were calculated at each cross-

section, it was evident that several oxic and anoxic regions can coexist in an apparently oxic zone (Fig. 4). 

This results in unexpected observations wherein aerobes and anaerobes appear to be active in similar 590 
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conditions, while in fact, their zones of activity are spatially separated, and anaerobes are active in smaller 

zones that specifically provide hospitable conditions to their activity. Spatial heterogeneity allows for this 

apparent co-occurrence of several microbial species by providing appropriate niches. For instance, the 

biomass of immobile active nitrate reducers increased with spatial heterogeneity in the fast flow regime due 

to the introduction of sub-oxic pockets with anaerobic activity in low flow zones within a predominantly 595 

oxic zone with aerobic activity (Fig. S4). Seemingly overlapping conditions have also been observed by 

field scale studies (Alewell et al., 2006;Waldron et al., 2009;Schwab et al., 2017;Lohmann et al., 2020), 

although the diversity of microbial communities varied in both space and time. (Alewell et al., 

2006);Schwab et al. (2017) and Lohmann et al. (2020) also noted that small scale heterogeneities did not 

allow for the sequential redox hierarchy (as defined by energy yields of redox half reactions) to be 600 

applicable at the meter scale. We establish that the persistence of microbial species in the domain is 

governed by the presence of the appropriate carbon source and electron acceptor, despite apparent co-

existing microbial species that may be identified by groundwater sampling techniques that do not resolve 

sub-sampling scale heterogeneities. Therefore, while mobility of microbial species using water as the 

medium may temporarily affect the composition of microbial communities, it is unlikely that mobile 605 

microbial species persist in high numbers at a location in absence of sustained sources of nutrient and 

energy. This is further evident from the impact of spatial heterogeneity on microbial biomass distribution 

whereby active microbial biomass is only found to be persistent in high numbers in zones where reactive 

species are easily accessible. In addition, Kim et al. (2009) and Kim et al. (2019) also suggested that 

groundwater redox chemistry and distribution of carbon pools are linked with geological controls such as 610 

hydraulic conductivity. The requirement of vertically discretized sampling has already been recognized 

(Ronen et al., 1987; Smith et al., 2018) and addressed by various sampling methodologies such as low flow 

sampling techniques, passive samplers, point and discrete interval samplers (Ronen et al., 1987;Smith et 

al., 1991;Powell and Puls, 1993;Báez-Cazull et al., 2007;Anneser et al., 2008) even though sub-sampling 

scale heterogeneities will not be resolved. Our results support the usefulness of such spatially resolved 615 

sampling techniques for analysis of microbial activity in the groundwater. On the other hand, composite 

sampling from macro-scale matrix samples is useful to estimate the microbial activity in the sampled matrix 

core. This enables a more accurate estimate of microbial activity aggregated over the matrix core. 

The impact of heterogeneity on microbial biomass distribution has strong implications for evaluating 

sampling techniques and data obtained from groundwater samples. Immobile microbes account for more 620 

microbial activity compared to mobile microbes. However, groundwater samples represent mobile 

microbial biomass, termed as planktonic biomass (Smith et al., 2018). Estimates of microbial respiration 

are thereafter made based on the abundance of mobile microbes in the obtained groundwater samples. The 

results of this study suggest that the immobile microbes are, in fact, the major contributors to microbial 
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respiration in the subsurface, which was also experimentally established by (Alfreider et al., 1997;Griebler 625 

et al., 2002;Grösbacher et al., 2018) by providing the link between heterogeneous structures in the domain, 

corresponding nutrient availability and microbial biomass growth. The relative composition of mobile and 

immobile species is however similar (in part due to the same detachment/attachment properties assigned to 

the microbial species in this study), such that the assessment of microbial diversity based on the mobile 

fraction, only, would still be representative. However, this is not necessarily the case for nutrient cycling 630 

(see below). 

Since spatial heterogeneity impacts microbial biomass distribution and microbial activity, it is not 

surprising that spatial heterogeneity also impacts carbon and nitrogen removal. Sanz-Prat et al. (2015, 2016) 

already established that travel time models are valid for use as reactive transport models in steady-state 

advective-transport conditions with other studies already discussing the same in surface waters and 635 

hyporheic zones (Liao and Cirpka, 2011;Painter, 2018). Painter (2018) also considers the application of 

travel time distribution as a representation of heterogeneity to be specific to the processes or reactive species 

being considered. We further this understanding by exploring a wider range of flow regimes, from locally 

mixed regimes to dominantly advective flow regimes and a complex process network exploring a variety 

of reactive species across both aerobic and anaerobic microbial processes. The impact on removal of carbon 640 

resulting from heterogeneity is consistent for all flow regimes, with carbon removal decreasing in 

heterogeneous domains. For nitrogen removal the same trend is observed for the slow and medium flow 

regimes. In contrast, nitrogen removal in the fast flow regime increases with spatial heterogeneity, as 

spatially heterogeneous domains provide the opportunity for anaerobic activity sub-zones to sustain in 

predominantly oxic systems with aerobic regimes. As for the fast flow regime oxic conditions prevailed 645 

until the vicinity of the outlet of the simulated domain, nitrogen removal is mainly restricted to such sub-

oxic sub-zones and heterogeneity leads to an increased number of such subzones. It must be noted though 

that the concentration of nitrate decreases when and where the concentration of DO is below 15 µM (Fig. 

S1) (De Brabandere et al., 2014;Kalvelage et al., 2013;Seitzinger et al., 2006). The reduced concentration 

of nitrate is attributable to the activity of nitrate reducers. It is assumed that for sufficiently long domains 650 

with sub-oxic conditions dominating the downstream parts nitrogen removal would also exhibit a 

decreasing trend with heterogeneity, even for the fast flow regime. Therefore, travel time information is 

useful for estimating both carbon and nitrogen removal and identifying dominant microbial redox processes 

despite sub-scale heterogeneities allowing for co-existence of several microbial species. Since immobile 

active microbial biomass was the major contributor to carbon and nitrogen removal, the reduction in 655 

removal of reactive species can be traced to reduced presence of immobile active microbial biomass in 

heterogeneous domains. In contrast, the contribution of the mobile active biomass in heterogeneous 

domains remains largely the same as that in homogeneous domains. This indicates that the mobile microbial 
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abundance detected in groundwater samples must be used with care as a proxy for effective microbial 

activity and nutrient cycling (also confirmed by Alfreider et al. (1997), Murphy et al., (1997), Griebler et 660 

al. (2002) and Grösbacher et al. (2018) as mentioned earlier). 

4.2 Indicators to evaluate impact of spatial heterogeneity on biomass and redox regimes 

In this study, we explored three different flow regimes, representing Peclet (Pe) numbers varying over an 

order of magnitude. The Damköhler number of the varying components of the system (derived from the 

observed mass removals and breakthrough times) varies over 4 orders of magnitude (Fig. S6 (a)) in the 665 

considered scenarios. 

There is substantial overlap in Da across all the flow regimes; a given reactive species has different Da in 

the different heterogeneous domains in each flow regime. However, spatial heterogeneity impacts the 

removal of each reactive species in the flow regimes differently. This is further evidenced in the significant 

improvement of the model AIC (Table S1) when the reactive species is included as a fixed effect in 670 

conjunction with the flow regime. While this approach helps us to generate a predictive understanding of 

system behaviour, it is specific to reactive species and flow regimes concerned. For a scalable approach to 

modelling and predicting nutrient cycles at larger scales, it is therefore useful to consider proxy indicators 

that may assist in generalizing this expression. 

Noting that the impact of spatial heterogeneity on removal of nitrogen in the medium flow regime, and of 675 

DO and TOC in the fast flow regime is the same given the same reduction in breakthrough time (Fig. S7), 

we consider the impact of spatial heterogeneity in context of Da or log10Da, thus providing an opportunity 

to disentangle reactive species and flow regimes in terms of non-dimensional numbers (Fig. 5). The impact 

of spatial heterogeneity on nutrient cycling varies with the value of log10Da (Fig. 5). For values higher than 

0.5, the impact is negligible. For log10Da < -1, spatial heterogeneity results in an increased removal of 680 

nutrients from the domain. This is in part due to negligible removal of the corresponding nutrients in the 

base case (specifically, nitrogen in the fast flow regime, refer to Sect. 3.3 and 4.1). Even a marginal increase 

in the relevant microbial activity results in a remarkably high impact on the removal of the corresponding 

nutrient when compared to the base case. As discussed above, for the fast flow regime oxic conditions with 

aerobic activity are found along the entire homogeneous domain. Since most nitrogen removal processes 685 

are suppressed by elevated DO concentrations, the formation of a sub-oxic zone exhibiting anaerobic 

activity in low flow regions of the heterogeneous domains is the only chance of these nitrogen removal 

processes to take place in the fast flow scenarios. The observed increase in mass removal with heterogeneity 

is thus to some extent an artefact that may not represent a general trend. While heterogeneity does have an 

impact on nitrogen removal in the fast flow regime, even after increased removal, the log10Da value remains 690 

below -1, indicating low absolute activity/removal. 



 

26 

 

For regimes where log10Da > 0.5, spatial heterogeneity has limited impact on the ability of the system to 

remove reactive species. But, removal of reactive species decreases with reduction in breakthrough time 

for -1 < log10Da < 0.5. To explore the cause of this, we compared the trend of removal of reactive species 

in first order rates (Fig. S8) and zero order rates with reduced residence times with the simulation results 695 

for varying values of log10Da. The mean of log10Da in this regime was -0.3 with a standard deviation of 0.3. 

So, we approximated the analytical solution for varying values of log10Da (Fig. S8). With increasing 

log10Da (between 0 and 0.5), the root mean squared error (RMSE) between the analytical solution for a first 

order reaction and the simulation results decreases. Additionally, the data points lie in between the solutions 

for first order and zero order kinetics, as it would be the case for Monod kinetics in case of reduced residence 700 

times. Consequently, the impact of spatial heterogeneity on regimes with 0 < log10Da < 0.5 may be 

described on the bases of reducing residence time alone and the results do not allow to determine if 

additional heterogeneity effects on removal take place. For regimes where -1 < log10Da < 0, first order 

kinetics may be substituted with zero order kinetics. Additionally, the impact on mass removal of reactive 

species in this domain is lower than estimated from the analytical solution. Therefore, while mass removal 705 

of reactive species reduces with reducing breakthrough times, it does not follow Monod kinetics which 

implies that heterogeneity has a different impact on removal than changing only the residence time. In fact, 

the impact of spatial heterogeneity on mass removal is lower than that predicted by reducing residence time 

alone. For a quantitative assessment we proposed linear regression metrics to estimate mass removal 

resulting from reducing residence times. At the same time, we observed that the dramatic increase in mass 710 

removal for regimes log10Da < -1 is not attributable to a shorter residence time, but due to heterogeneous 

conditions providing niches to the relevant microbial species to become active. Therefore, we conclude that 

spatial heterogeneity may result in changed nutrient dynamics. The regression model links the impact of 

heterogeneity to variables which can be estimated in field studies. Furthermore, this helps to categorize 

reaction regimes to consider if spatial heterogeneity is of significance. For high log10Da values, spatial 715 

heterogeneity is not of significance. For extremely low log10Da values, spatial heterogeneity resulted for 

the used model domains in a high impact on removal rates with respect to the homogeneous base cases. 

However, this might be an artifact of the used domain size and the absolute removal values are still low. 

Thus, heterogeneity effects may be neglected for these low log10Da values. In turn, spatial heterogeneity is 

significant for medium range log10Da values (-1 < log10Da < 0.5). For these values, the highest heterogeneity 720 

induced reductions in mass removal were observed and can be well described by the linear regression 

model. 

We expect advection dominated systems to be impacted by spatial heterogeneity because spatial 

heterogeneity had a higher impact on the transport profiles in these systems. These are typically systems 

that are shallow, less compacted (in case of alluvial sediments), or fractured rock systems. Furthermore, the 725 
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shallow subsurface also received bioavailable and reactive organic matter with the incoming water which 

enables a relatively high microbial activity. In contrast, in the deep subsurface microbial activity is lower 

and rather relies on inputs from the matrix material, which is ubiquitous and doesn’t rely on transport for 

access. We expect additional studies exploring the impact of varying concentrations of chemical species, 

parameters relevant to these ecosystems or subject sites to add to the evidence generated by our study that 730 

the impact of spatial heterogeneity on subsurficial reactive systems may be predicted using field estimated 

indicators such as breakthrough time, Pe and Da. 

5 Summary and Conclusions 

In this study, we investigated the impact of spatial heterogeneity on biomass persistence, distribution, and 

nutrient cycling at the sub-meter scale in the subsurface. When considering spatial heterogeneity, a 735 

combination of variance and anisotropy of the hydraulic conductivity was considered when evaluating the 

transport regime, which may be further interpreted as a reduction of solute residence time in the domain. 

The flow regime was found to play an influential role in the average behaviour of the domain. Not only 

does the total microbial biomass vary with the flow regime, but the contribution of different fractions of 

microbial biomass (between active or inactive, mobile or immobile) is also different based on the flow 740 

regime. Spatial heterogeneity also impacts the different fractions of microbial biomass differently. This has 

a cumulative impact on nutrient cycling in the subsurface. The activity of the microbial species in the 

domain is governed by the spatial heterogeneity as it influences the distribution of nutrients and energy 

sources. We found that several microbial species that are conventionally accepted to occupy mutually 

exclusive niches may co-exist in the subsurface in close vicinity. This further demonstrates that the 745 

occurrence of oxic systems does not preclude the existence of anaerobic species in the same zone as 

heterogeneity leads to the formation of sub-oxic regions with anaerobic activity within an oxic zone 

exhibiting predominantly aerobic activity. Since modelers and experimentalists do not conventionally 

resolve these small-scale heterogeneities the accuracy of the prediction of biogeochemical cycles at the 

larger scale suffers. 750 

Depending on the reaction and flow regime of the domain, the impact of spatial heterogeneity on mass 

removal of reactive species can be quantified as a linear function of the breakthrough time. We propose the 

use of the Damköhler number to identify the appropriate parameters of this function. Simulations that 

neglect or aggregate microbially mediated dynamics in spatially heterogeneous media may overestimate 

reactive species removal by as much as 2 times. This factor can be predicted using readily observable data 755 

that informs Damköhler numbers and residence times using a linear function of residence time. We propose 
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using this scaling factor to account for heterogeneity in regional scale simulations for accurate prediction 

of microbial mediated reactive species dynamics in groundwater.  

Appendix A: Biochemical reaction network 

A.1 Reactive Species 760 

1. Chemical compounds: 

a. Dissolved Organic Carbon (DOC) 

b. Particulate Organic Carbon (POC) 

c. Oxygen (O2) 

d. Nitrate (NO3) 765 

e. Sulphate (SO4) 

f. Ammonium (NH4) 

2. Microbial species: 

a. Aerobic DOC degraders (BO2) 

b. Nitrate reducers (BNO3) 770 

c. Sulphate reducers (BSO4) 

d. Ammonia oxidizers (BNH4) 

For each microbial species, we considered different subpopulations: active bacteria able to grow and to 

perform biogeochemical reactions, inactive bacteria, immobile bacteria attached to the solid matrix, mobile 

bacteria moving with the flowing water. In combination this leads to four subpopulations for each microbial 775 

species X: active immobile (Xa,s), active mobile (Xa,w), inactive immobile (Xi,s) and inactive mobile (Xi,w). 

A.2. Biogeochemical Reactions 

Aerobic respiration: 𝐶𝐻2𝑂 +  𝑂2 → 𝐻𝐶𝑂3
− +  𝐻+      (A1) 

Nitrate reduction: 𝐶𝐻2𝑂 +  0.8𝑁𝑂3
− + 0.8𝐻+  → 𝐻𝐶𝑂3

− + 0.4𝑁2 + 0.4𝐻2𝑂 + 𝐻+  (A2) 

Sulphate reduction: 𝐶𝐻2𝑂 +  0.5𝑆𝑂4
2− + 𝐻+ → 𝐻𝐶𝑂3

− +  0.5𝐻𝑆− +  1.5𝐻+   (A3) 780 

Ammonia oxidation: 0.5𝑁𝐻4
+ +   𝑂2 → 0.5𝑁𝑂3

− +  0.5𝐻2𝑂 + 𝐻+    (A4) 

Hydrolysis of POC:  𝐶10𝐻7𝑂2𝑁 + 8𝐻2𝑂 +  𝐻+ → 10𝐶𝐻2𝑂 +  𝑁𝐻4
+    (A5) 

A.3. Rate expressions: 

A.3.1 Microbial respiration 

We used modified Monod-type expressions for microbially driven reactions: 785 

1. Aerobic respiration: 
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𝑟 =
𝑘𝑚𝑎𝑥1  × (

𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑂2

𝑘𝑠𝑜𝑥+𝑂2
)

𝑒

𝑑𝑜𝑥𝑚𝑖𝑛−𝑘𝑚𝑎𝑥1×(
𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑂2
𝑘𝑠𝑜𝑥+𝑂2

)

𝑠𝑡 ×𝑑𝑜𝑥𝑚𝑖𝑛 +1

 (𝐵𝑂2𝑎,𝑠 + 𝐵𝑂2𝑎,𝑤)     (A6) 

2. Nitrate reduction: 

 𝑟 =
𝑘𝑚𝑎𝑥2  × (

𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑁𝑂3

𝑘𝑠𝑛𝑜3+𝑁𝑂3
) ×  (

𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥+𝑂2
)

𝑒

𝑛𝑜3𝑚𝑖𝑛−𝑘𝑚𝑎𝑥2×(
𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑁𝑂3
𝑘𝑠𝑛𝑜3+𝑁𝑂3

) ×  (
𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥+𝑂2
)

𝑠𝑡 ×𝑛𝑜3𝑚𝑖𝑛 +1

 (𝐵𝑁𝑂3𝑎,𝑠 + 𝐵𝑁𝑂3𝑎,𝑤)  (A7) 

3. Sulphate reduction: 790 

𝑟 =
𝑘𝑚𝑎𝑥3  × (

𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑆𝑂4

𝑘𝑠𝑠𝑜4+𝑆𝑂4
) ×  (

𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥+𝑂2
) × (

𝑘𝑖𝑛𝑛𝑜3

𝑘𝑖𝑛𝑛𝑜3+𝑁𝑂3
)

𝑒

𝑠𝑜4𝑚𝑖𝑛−𝑘𝑚𝑎𝑥3×(
𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑆𝑂4
𝑘𝑠𝑠𝑜4+𝑆𝑂4

) ×  (
𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥+𝑂2
) × (

𝑘𝑖𝑛𝑛𝑜3
𝑘𝑖𝑛𝑛𝑜3+𝑁𝑂3

)

𝑠𝑡 ×𝑠𝑜4𝑚𝑖𝑛 +1

 (𝐵𝑆𝑂4𝑎,𝑠 + 𝐵𝑆𝑂4𝑎,𝑤) (A8) 

4. Ammonia oxidation: 

𝑟 =
𝑘𝑚𝑎𝑥4  × (

𝑂2

𝑘𝑠𝑜𝑥+𝑂2
) × (

𝑁𝐻4

𝑘𝑠𝑎𝑚𝑚+𝑁𝐻4
)

𝑒

𝑛ℎ4𝑚𝑖𝑛−𝑘𝑚𝑎𝑥4×((
𝑂2

𝑘𝑠𝑜𝑥+𝑂2
)) × (

𝑁𝐻4
𝑘𝑠𝑎𝑚𝑚+𝑁𝐻4

)

𝑠𝑡 ×𝑛ℎ4𝑚𝑖𝑛 +1

 (𝐵𝑁𝐻4𝑎,𝑠 + 𝐵𝑁𝐻4𝑎,𝑤)    (A9) 

A.3.2 Microbial growth 

Growth processes (i.e. formation of biomass carbon) are linked to rates of microbially driven reactions 795 

using a constant yield factor with an additional dependency on the concentration of ammonium, and its 

availability for uptake. For the latter, we considered a fixed ratio between carbon (DOC) and nitrogen (NH4) 

uptake. 

1. Dependency on ammonium: 

𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 =  
1

𝑒
𝑎𝑚𝑚𝑖𝑛𝑔−𝑁𝐻4

𝑠𝑡×𝑎𝑚𝑚𝑖𝑛𝑔 +1

         (A10) 800 

2. Active aerobic DOC degraders: 

𝑟 = 𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 ×
𝑘𝑚𝑎𝑥1 ×  (

𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑂2

𝑘𝑠𝑜𝑥+𝑂2
)

𝑒

𝑂2𝑚𝑖𝑛−𝑘𝑚𝑎𝑥1×(
𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑂2
𝑘𝑠𝑜𝑥+𝑂2

)

𝑠𝑡 ×𝑂2𝑚𝑖𝑛 +1

 𝑌𝑜  × 𝐵𝑂2𝑎,𝑥    (A11) 

with a = active biomass, x=s for attached and x=w for mobile bacteria 

3. Active nitrate reducers: 

𝑟 = 𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 ×
𝑘𝑚𝑎𝑥2  × (

𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑁𝑂3

𝑘𝑠𝑛𝑜3+𝑁𝑂3
) × (

𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥+𝑂2
)

𝑒

𝑛𝑜3𝑚𝑖𝑛−𝑘𝑚𝑎𝑥2×(
𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑁𝑂3
𝑘𝑠𝑛𝑜3+𝑁𝑂3

) × (
𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥+𝑂2
)

𝑠𝑡 ×𝑛𝑜3𝑚𝑖𝑛 +1

𝑌𝑛 ×  𝐵𝑁𝑂3𝑎,𝑥  (A12) 805 

4. Active sulphate reducers: 

𝑟 = 𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 ×
𝑘𝑚𝑎𝑥3  × (

𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑆𝑂4

𝑘𝑠𝑠𝑜4+𝑆𝑂4
) ×  (

𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥+𝑂2
) × (

𝑘𝑖𝑛𝑛𝑜3

𝑘𝑖𝑛𝑛𝑜3+𝑁𝑂3
)

𝑒

𝑠𝑜4𝑚𝑖𝑛−𝑘𝑚𝑎𝑥3×(
𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐+𝐷𝑂𝐶
) × (

𝑆𝑂4
𝑘𝑠𝑠𝑜4+𝑆𝑂4

) ×(
𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥+𝑂2
) × (

𝑘𝑖𝑛𝑛𝑜3
𝑘𝑖𝑛𝑛𝑜3+𝑁𝑂3

) 

𝑠𝑡 ×𝑠𝑜4𝑚𝑖𝑛 +1

 𝑌𝑠 × 𝐵𝑆𝑂4𝑎,𝑥  

            (A13) 
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5. Active ammonia oxidizers: 810 

𝑟 = 𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 ×
𝑘𝑚𝑎𝑥4  × (

𝑂2

𝑘𝑠𝑜𝑥+𝑂2
) × (

𝑁𝐻4

𝑘𝑠𝑎𝑚𝑚+𝑁𝐻4
)

𝑒

𝑛ℎ4𝑚𝑖𝑛−𝑘𝑚𝑎𝑥4×((
𝑂2

𝑘𝑠𝑜𝑥+𝑂2
)) × (

𝑁𝐻4
𝑘𝑠𝑎𝑚𝑚+𝑁𝐻4

)

𝑠𝑡 ×𝑛ℎ4𝑚𝑖𝑛 +1

 𝑌𝑎 × 𝐵𝑁𝐻4𝑎,𝑥   (A14) 

A.3.3 Processes governing the location of the microbes 

1. Mobilization of immobilized bacteria (Bxx) into the fluid medium (i.e. the transfer of attached bacteria 

into mobile bacteria) are adapted from (Rittman and McCarty (2001)) assuming additionally that high total 

attached biomasses lead to higher detachment rates (adapted from Clément et al. (1997)): 815 

𝑟 = 𝑘𝑙 ×  (𝑣𝑞0 × 𝑣𝑝𝑜𝑟0)0.58 × 𝐵𝑥𝑥 +

 
𝑘𝑑𝑒𝑡

𝑒

𝐵𝑓𝑚𝑎𝑥−𝐵𝑜2𝑎,𝑠−𝐵𝑂2𝑖,𝑠−𝐵𝑁𝑂3𝑎,𝑠−𝐵𝑁𝑂3𝑖,𝑠−𝐵𝑆𝑂4𝑎,𝑠−𝐵𝑆𝑂4𝑖,𝑠−𝐵𝑁𝐻4𝑎,𝑠−𝐵𝑁𝐻4𝑖,𝑠
𝑠𝑡×𝐵𝑓𝑚𝑎𝑥 +1

× 𝐵𝑥𝑥     (A15) 

 2. Immobilization or reattachment: Attachment rates of mobile bacteria Byy is also depending on the total 

concentration of attached biomass: 

𝑟 =  𝑘𝑎𝑡𝑡 × (1 −
1

𝑒

𝐵𝑓𝑚𝑎𝑥−𝐵𝑜2𝑎,𝑠−𝐵𝑂2𝑖,𝑠−𝐵𝑁𝑂3𝑎,𝑠−𝐵𝑁𝑂3𝑖,𝑠−𝐵𝑆𝑂4𝑎,𝑠−𝐵𝑆𝑂4𝑖,𝑠−𝐵𝑁𝐻4𝑎,𝑠−𝐵𝑁𝐻4𝑖,𝑠
𝑠𝑡×𝐵𝑓𝑚𝑎𝑥 +1

) × 𝐵𝑦𝑦 (A16) 820 

A.3.4 Processes governing the activity states of microbes: 

1. Deactivation/Dormancy: Deactivation rates of active bacteria (i.e., conversion of active (mobile/attached) 

into inactive or inactive (mobile/attached) bacteria) at unfavourable substrate conditions are expressed 

following Stolpovsky et al. (2011). 

𝑟 = 𝑘𝑑𝑒𝑎𝑐 × 𝐵𝑥𝑥 × (1 −  
1

𝑒
𝐾𝑥𝑥

𝑠𝑡 +1

)         (A17) 825 

with the term Kxx depending on the bacterial species Byy and its substrate source (see Table A1). 

 

2. Reactivation: In analogy to the deactivation rates, reactivation rates are expressed as: 

𝑟 = 𝑘𝑟𝑒𝑎𝑐 × 𝐵𝑦𝑦 ×
1  

𝑒
𝐾𝑥𝑥

𝑠𝑡 +1

          (A18) 

with the term Kxx depending on the bacterial species as described in Table A1. 830 

 

3. Mortality: Mortality rates follow a first-order dependency on biomass concentration: 

𝑟 = 𝑘𝑚 × 𝑓𝑑𝑜𝑟𝑚 ×  𝐵𝑥𝑥         (A19) 

For active bacteria fdorm = 1, for inactive bacteria fdorm = 0.1. Dead bacterial biomass is added to the 

POM pool. 835 
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Table A1 Expressions controlling respiration, growth, dormancy, and reactivation of microbial species. 

Notation 

Descriptors 

Aerobic degraders Nitrate reducers Sulphate reducers 
Ammonia 

oxidizers 

Bxx BO2a,s and BO2a,w BNO3a,s and BNO3a,w BSO4a,s and BSO4a,w BNH4a,s and BNH4a,w 

Byy BO2i,s and BO2i,w BNO3i,s and BNO3i,w BSO4a,s and BSO4i,w BNH4a,s and BNH4i,w 

Kxx 

1 − 𝑘𝑚𝑎𝑥1 

×  (
𝐷𝑂𝐶

𝑘𝑠𝑜𝑑𝑜𝑐1 + 𝐷𝑂𝐶
)

×  (
𝑂2

𝑘𝑠𝑜𝑥1 + 𝑂2
)

/𝑂2𝑚𝑖𝑛 

1 − 𝑘𝑚𝑎𝑥2 

 ×  (
𝐷𝑂𝐶

𝑘𝑠𝑛𝑑𝑜𝑐 + 𝐷𝑂𝐶
) 

×  (
𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥 + 𝑂2
) 

×  (
𝑁𝑂3

𝑘𝑠𝑛𝑜3 + 𝑁𝑂3
)

/𝑁𝑂3𝑚𝑖𝑛 

1 − 𝑘𝑚𝑎𝑥3 

×  (
𝐷𝑂𝐶

𝑘𝑠𝑠𝑑𝑜𝑐 + 𝐷𝑂𝐶
) 

×  (
𝑆𝑂4

𝑘𝑠𝑠𝑜4 + 𝑆𝑂4
) 

×  (
𝑘𝑖𝑛𝑑𝑜𝑥

𝑘𝑖𝑛𝑑𝑜𝑥 + 𝑂2
) 

×  (
𝑘𝑖𝑛𝑛𝑜3

𝑘𝑖𝑛𝑛𝑜3 + 𝑁𝑂3
)

/𝑆𝑂4𝑚𝑖𝑛 

1 − 𝑘𝑚𝑎𝑥4 

×  (
𝑁𝐻4

𝑘𝑠𝑎𝑚𝑚 + 𝑁𝐻4
) 

×  (
𝑂2

𝑘𝑠𝑜𝑥 + 𝑂2
)

/𝑁𝐻4𝑚𝑖𝑛 

 

A.3.5 Miscellaneous processes: 840 

1. Hydrolysis of POC is described by first order rate kinetics: 

𝑟 = 𝑘𝑝𝑑 × 𝑃𝑂𝐶          (A20) 

2. Background autotrophic microbial growth dependent on the presence of ammonium: 

𝑟 = 𝑁𝐻4𝑙𝑖𝑚𝑖𝑡 × 𝑘𝑚𝑎𝑥5  ×  (
𝑁𝐻4

𝑘𝑠𝑎𝑚𝑚+𝑁𝐻4
)        (A21) 

A.4. Parameters 845 

A.4.1 Biogeochemical reaction network parameters 

S. 

No. 
Description Notation Value Units Source 

1 
Rate constant for aerobic 

reduction of DOC 
kmax1 1 d-1 calibrated 

2 

Minimum biomass 

normalized rate value for 

aerobic respiration to be 

favourable 

o2min 0.06 d-1 calibrated 
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S. 

No. 
Description Notation Value Units Source 

3 

Yield coefficient for 

growth of aerobic 

degraders of DOC 

Yo 0.25 - 
calibrated, based on Thullner et 

al., 2005 

4 
Half-velocity DOC 

concentration 
ksodoc 1,000 µM C 

calibrated, based on 

concentrations observed in the 

field 

5 
Half velocity oxygen 

concentration 
ksox 2- µM 

Thullner et al. (2005), Wang 

and van Cappellen (1996) 

6 
Rate constant for nitrate 

reduction 
kmax2 0.9 d-1 

calibrated, based on Schäfer et 

al.(1998b) 

7 

Minimum biomass 

normalized rate value for 

respiration to be favourable 

no3min 0.1 d-1 calibrated 

8 
Yield coefficient for 

growth of nitrate reducers 
Yn 0.17 - 

calibrated, based on Clément et 

al. (1997) and Thullner et al. 

(2005) 

9 
Half-velocity DOC 

concentration 
ksndoc 1,000 µM C 

calibrated, based on 

concentrations observed in the 

field 

10 
Half velocity nitrate 

concentration 
ksno3 100 µM 

calibrated, based on Clément et 

al. (1997) and André et al. 

(2011) 

11 
Inhibition constant for 

presence of oxygen 
kindox 1 µM 

calibrated, based on detection 

limits of sensors defining 

anaerobic conditions 

12 
Rate constant for sulphate 

reduction 
kmax3 0.03 d-1 calibrated 

13 

Minimum biomass 

normalized rate value for 

respiration to be favourable 

so4min 0.0039 d-1 calibrated 
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S. 

No. 
Description Notation Value Units Source 

14 

Yield coefficient for 

growth of sulphate 

reducers 

Ys 0.02 - 
calibrated, based on Thullner et 

al. (2005) 

15 
Half-velocity DOC 

concentration 
kssdoc 1,000 µM C 

calibrated, based on 

concentrations observed in the 

field 

16 
Half velocity sulphate 

concentration 
ksso4 1,000 µM 

calibrated, based on Pallud and 

Van Cappellen (2006), Thullner 

et al. (2005) and Boudreau and 

Westrich (1984) 

17 
Inhibition constant for 

presence of oxygen 
kindox 1 µM 

calibrated, based on detection 

limits of sensors defining 

anaerobic conditions 

18 
Inhibition constant for 

presence of nitrate 
kinno3 50 µM calibrated 

19 
Rate constant for ammonia 

oxidation 
kmax4 0.1 d-1 calibrated 

20 

Minimum biomass 

normalized rate value for 

respiration to be favourable 

ammin 0.004 d-1 calibrated 

21 

Yield coefficient for 

growth of ammonia 

oxidizers 

Ya 0.0038  calibrated 

22 
Half-velocity Ammonia 

concentration 
ksamm 20 µM 

calibrated based on conditions 

observed in the field 

23 
Half velocity oxygen 

concentration 
ksox 20 µM 

De Brabandere et al. (2014), 

Kalvelage et al. (2013), 

Seitzinger et al. (2006) 

24 
Maximum/Carrying 

capacity at a node 
Bfmax 500 µM C 

calibrated, based on Fukuda et 

al. (1998), Vrede et al. (2002) 

and Grösbacher et al. (2018). 
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S. 

No. 
Description Notation Value Units Source 

25 

Mobilisation rate constant 

due to exceedance of 

carrying capacity 

kdet 1 
µM C 

d-1 

calibrated, based on Clément et 

al. (1997) 

26 
Sigmoidal function slope 

parameter 
st 0.1 - Stolpovsky et al. (2011) 

27 

Minimum concentration of 

Ammonium for growth to 

remain favourable 

amming 10 µM 
calibrated based on review by 

Jin et al. (2013) 

28 
Immobilisation rate 

constant 
katt 0.3 

µM C 

d-1 
calibrated, based on kdet 

29 
Deactivation/dormancy 

rate constant 
kdeac 1 d-1 

calibrated, based on Stolpovsky 

et al. (2016) 

30 Reactivation rate constant kreac 0.3 d-1 
calibrated, based on Stolpovsky 

et al (2016). 

31 Mortality rate constant km 0.01 d-1 
calibrated, based on Clément et 

al. (1997) 

32 Hydrolysis constant kpd 0.03 d-1 calibrated 

33 

Carbon Nitrogen ratio for 

hydrolysis of particulate 

organic matter 

fcn 10:1 - 
calibrated, based on Wang and 

van Cappellen (1996) 

34 Desorption constant kl 0.00544 - Rittmann and McCarty (2001) 

35 
Rate constant for 

background activity 
kmax5 0.00038 d-1 calibrated 

Table A2 Parameters used for the biogeochemical reaction network 

A.4.2 Transport boundary conditions 

Property (units) Value 

Porosity (-) 0.2 

Density (matrix, kg m-3) 1,500 

Density (groundwater, kg m-3) 1,000 

Boundary conditions for chemical and microbial species at the inlet of the domain 
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POM (µM C) 5 

DOC (µM C) 800 

DO (µM) 250 

Nitrate (µM) 250 

Ammonium (µM) 60 

Sulphate (µM) 1,500 

Bx,w (µM C) 2 

Table A3 Flow and transport parameterization and boundary conditions for all domains in all three flow regimes. The 

boundary condition for the reactive species was a Dirichlet boundary condition (fixed concentration) at the inlet of the 850 
domain. 

Code Availability 

The source code of OGS5 is available in an online repository (Khurana et al., 2021). The input files for all 
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We provide the raw simulation results on this repository on Zenodo (Khurana et al., 2020) along with 860 

processed data files. 
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