Predicting the impact of spatial heterogeneity on microbial redox dynamics and nutrient cycling in the subsurface

Swamini Khurana¹, Falk Heße^{2,3}, Anke Hildebrandt^{2,4,5}, Martin Thullner¹

¹Department of Environmental Microbiology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, 04318, Germany ²Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research – UFZ, Leipzig, 04318, Germany ³Institute of Fourth and Environmental Sciences, University Patadam, Detadam, Company

³Institute of Earth and Environmental Sciences, University Potsdam, Potsdam, Germany

⁴Institute of Geoscience, Friedrich-Schiller-University Jena, Jena, Germany

⁵German Centre for Integrative Biodiversity Research, Leipzig, Germany

Correspondence: Swamini Khurana (swamini.khurana@ufz.de)

Supplement

Figures

Figure S1: Flux averaged concentrations of dissolved species in heterogeneous domains in three types of heterogeneous scenarios (solid lines) compared to that in the homogeneous base case (dashed-dot lines) in all flow regimes

Figure S2: Spatially averaged concentration profile of the immobile active biomass in heterogeneous domains in three types of heterogeneous scenarios (solid lines) compared to that in the homogeneous base case (dashed-dot lines) in all flow regimes

Figure S3: 2D concentration distributions of dissolved species in heterogeneous domains (μM) with the velocity distribution (in m d⁻¹) in these domains.

Figure S4: 2D concentration distributions of microbial species in heterogeneous domains (µM) with the velocity distribution (in m d⁻¹) in these domains

Figure S5: Increasing DO persistence with heterogeneity (presented in the legend as Variance in permeability field: Anisotropy)

Figure S6: Distribution of Damköhler number in the investigated scenarios.

Figure S7: Impact on (normalized) removal of reactive species as a result of spatial heterogeneity characterized as reduction in solute residence times in the domain

Figure S8: Comparison of simulation results and corresponding analytical solutions for changing removal of reactive species with changing residence time alone.

Figure S9: Contribution to total biomass of different fractions of microbial species with increasing spatial heterogeneity (i.e., decreasing residence time of solutes).

Tables

S. No.	Independent variable/ fixed effect	Random effect	Interaction between breakthrough time	AIC
			and random effects	
1	fraction of breakthrough time	Flow regime	No	904.88
2	fraction of breakthrough time	Chemical species	No	841.05
3	fraction of breakthrough time	Flow regime	Yes	896.21
4	fraction of breakthrough time	Chemical species	Yes	677.29
5	fraction of breakthrough time	Flow regime + Variance + Anisotropy + Chemical species	No	426.54
6	fraction of breakthrough time	Flow regime + Variance + Anisotropy + Chemical species	Yes	156.46
7	fraction of breakthrough time	Regime + Chemical species	No	481.84
8	fraction of breakthrough time	Regime + Chemical species	Yes	-147.75
9	fraction of breakthrough time + Flow regime	Flow regime + Variance + Anisotropy + Chemical species	Yes	148.29
10	fraction of breakthrough time + Flow regime	Regime + Chemical species	Yes	-86.47
11	fraction of breakthrough time + Flow regime + Chemical species	Regime + Chemical species	Yes	-141.27
12	fraction of breakthrough time + Chemical species	Regime + Chemical species	Yes	-142.45
13	fraction of breakthrough time	Flow regime + Variance + Anisotropy + Chemical species + Dat category	Yes	35.87
14	fraction of breakthrough time	Flow regime + Chemical species + Dat category	Yes	-211.06
15	fraction of breakthrough time + Flow regime	Flow regime + Variance + Anisotropy + Chemical species + Dat category	Yes	25.39
16	fraction of breakthrough time + Flow regime	Flow regime + Chemical species + Da _t category	Yes	-209.61
17	fraction of breakthrough time + Flow regime + Chemical species	Flow regime + Variance + Anisotropy + Chemical species + Dat category	Yes	20.18
18	fraction of breakthrough time + Flow regime + Chemical species	Flow regime + Chemical species + Da _t category	Yes	-191.36
19	fraction of breakthrough time + Chemical species	Flow regime + Variance + Anisotropy + Chemical species + Dat category	Yes	20.72
20	fraction of breakthrough time + Chemical species	Flow regime + Chemical species + Da _t category	Yes	-180.86

Table S1 Linear mixed models for the simulation dataset

Model:			Depende	nt	impact	on	species	
			Variable	:	removal			
No. Observations:	588		Method:		REML			
No. Groups	4		Scale:		154.32	154.32		
Min. group size	49		Log-Likelihood:		-2318			
Max. group size	214		Converged:		Yes	Yes		
Mean group size	147							
	Coef.	Std. Err	Z	P > z	[0.025	0.	.975]	
Intercept	27.72	7.355	3.769	0	13.30	42	2.14	
Chem [T.DOC]	-12.37	1.468	-8.429	0	-15.25	-9	9.497	
Chem [T. Nitrogen]	-34.32	1.684	-20.38	0	-37.62	-3	31.02	
Chem [T.TOC]	-6.741	1.449	-4.652	0	-9.581	-3	3.901	
fraction of breakthrough	7.086	8.989	0.788	0.431	-10.53	24	4.71	
time								
Group variance	187.5	14.50						
Group x fraction	102.4	12.78						
covariance								
fraction variance	286.3	20.26						

Table S2 Mixed linear effects model results: Summary