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Abstract. Regularized time series of ocean carbon data are necessary for assessing seasonal dynamics, annual budgets,
interannual and climatic variability. There are, however, no standardized methods for filling data gaps, and limited evaluation

of the impacts on uncertainty in the reconstructed time series when using various imputation methods. Here we present an

empirical multivariate linear regression (MLR) model to estimate the concentration of dissolved inorganic carbon (DIC) in the

surface ocean, capable of utilizing remotely sensed and modelled data to fill data gaps. This MLR was evaluated with seven
other imputation models using data from seven long-term monitoring sites in a comparative assessment of gap-filling

performance and the impacts on variability in the reconstructed time series. Methods evaluated included three empirical

models: MLR, mean imputation, and multiple imputation by chained equation (MICE); and five statistical models: linear.

spline, and Stineman interpolation, exponential weighted moving average and Kalman filtering with a state space model. Cross
validation was used to determine model error and bias, while a bootstrapping approach was employed to determine sensitivity
to varied degrees of data gaps. A series of synthetic gap filters, including 3-month seasonal gaps (spring, summer, autumn
winter), 6-month gaps (centered on summer and winter) as well as bimonthly and seasonal (4 samples per year) sampling
regimes were applied to each time series to evaluate the impacts of timing and duration of data gaps on seasonal structure

annual means, interannual variability and long-term trends. All models were fit to time series of monthly mean DIC, with MLR
and MICE models also applied to both measured and modelled temperature and salinity with remotely sensed chlorophyll. Our

MLR estimated DIC with a mean error of 8.8 umol kg™ among 5 oceanic sites and 20.0 pmol kg™' among 2 coastal sites. The

MLR performance indicated reanalysis data, such as GLORYS, can be utilized in the absence of field measurements without

increasing error in DIC estimates. Of the methods evaluated in this study, empirical models did better than statistical models

to retain observed seasonal structure, but these led to greater bias in annual means, interannual variability and trends compared

to statistical models. Our MLR proved to be a robust option for imputing data gaps over varied durations and may trained with

either in-situ or modelled data depending on application. This study indicates the amount and distribution of data gaps should
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be a determining factor in selecting a model that optimizes uncertainty while minimizing bias and can inform strategies for

observational sampling.
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1 Introduction

Despite continued policy development aimed at combating climate change and declines in carbon dioxide (CO2) emissions by

many countries over the last 10-15 years, global fossil fuel consumption continues to rise (Friedlingstein et al., 2020). We are

now in unchartered territory, with anthropogenic carbon emissions over the last two and half centuries eclipsing that jn the

geological record of the past 66 million years, leaving the future of our marine and terrestrial ecosystems uncertain (Zeebe et

al., 2016). Our ability to predict future conditions, affect policy and effectively manage climate change relies on understanding
the feedbacks between climate, ecosystems, and biogeochemical cycles. To that end, the value of sustained time series
observations has been well recognized for decades, as they are essential to characterizing processes, quantifying natural

variability, identifying regime shifts and detecting long-term changes in our environment {Ducklow et al., 2009). Monitoring

ocean carbon over the last three decades has revealed the decline in ocean pH concurrent with the uptake of 25% of !

anthropogenic COz by the global ocean (Friedlingstein et al., 2020). Quantification of the ocean carbon sink and the impacts

of ocean acidification remain actively researched given the significance of the ocean’s role in controlling climate feedbacks as

well as the ecological and economical importance of our marine systems (Kroeker et al., 2013; Devries et al., 2019; Krissansen-

Totton et al., 2018; Bernardello et al., 2014). Ocean carbon programs have led to a growth in surface pCO: data from 250,000
global measurements in 1997 to 13.5 million in 2019; however, continuity and coverage of this inorganic carbon data in space

and time remains a challenge for understanding seasonal and interannual variability (Takahashi and Sutherland, 2019;

Takahashi et al., 1997).

1.1 Filling the gaps

Consistent sampling intervals for physical and biogeochemical parameters over several decades are critical for understanding

ocean processes, establishing variability and detecting long-term changes (Henson et al., 2016). In addition to constraints

arising from limitations in technology, logistics and funding, ocean science takes place in a particularly harsh environment
where data loss is a common occurrence. Whether from equipment failure, cancelled field campaigns, budget cuts, or a global
pandemic, gaps in time series are ubiquitous and must be appropriately filled in order to carry out various statistical analyses

and modelling applications which require serially complete data sets.

Machine learning techniques such as neural network methods, regression trees, and random forests have been widely used to

fill gaps in meteorological and some oceanographic data, including surface ocean pCO: (Laruelle et al., 2017; Sasse et al.,

2013; Coutinho et al., 2018). While these methods are successful in the context of geospatial data, there remains little

necessary for assessing seasonal dynamics, annual budgets,
interannual variability and long-term trends. There are, however, no
standardized methods for imputing gaps in ocean carbon time series,
and only limited evaluation of the numerous methods available for
constructing uninterrupted time series. A comparative assessment of
eight imputation models was performed using data from seven long-
term monitoring sites. Multivariate linear regression (MLR), mean
imputation, linear interpolation, spline interpolation, Stineman
interpolation, Kalman filtering, weighted moving average and
multiple imputation by chained equation (MICE) models were
compared using cross-validation to determine error and bias. A
bootstrapping approach was employed to determine model sensitivity
to varied degrees of data gaps and secondary time series with
artificial gaps were used to evaluate impacts on seasonality and
annual summations and to estimate uncertainty. All models were fit
to DIC time series, with MLR and MICE models also applied to field
measurements of temperature, salinity and remotely sensed
chlorophyll, with model coefficients fit for monthly mean conditions.
MLR estimated DIC with a mean error of 8.8 pumol kg™ among 5
oceanic sites and 20.0 pmol kg™ among 2 coastal sites. The empirical
methods of MLR, MICE and mean imputation retained observed
seasonal cycles over greater amounts and durations of gaps resulting
in lower error in annual budgets, outperforming the other statistical
methods. MLR had lower bias and sampling sensitivity than MICE
and mean imputation and provided the most robust option for
imputing time series with gaps of various duration.
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standardization in methods for imputing data gaps in oceanographic time series, particularly carbonate chemistry, at monitoring
sites where there are not sufficiently close neighboring values (in time or space) that can be leveraged. Linear interpolation

and mean imputation are among the most common methods for handling missing data over short to moderate time scales

[(Reimer et al., 2017; Kapsenberg and Hofmann, 2016; Currie et al., 2011), but comparative assessment and validation of

approaches overall is lacking. Gap-filling studies and standardization have been pursued in other terrestrial and atmospheric
disciplines, such as eddy covariance carbon flux, solar radiation, air temperature, surface hydrology, and soil respiration

(Moftat et al., 2007; Demirhan and Renwick, 2018; Zhao et al., 2020; Henn et al., 2013; Pappas et al., 2014), many of which

focused on high temporal resolution data and imputing missing values over time scales from seconds to days. However it is

important that the imputation method not only focuses on minimizing error but also minimizing bias, as the preservation of

variance and trends is imperative for accurate analyses and understanding of climate (Serrano-Notivoli et al., 2019).

Here we present an empirical multiple linear regression (MLR) model for estimating site-specific DIC concentration in the

g (Field Code Changed )
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surface ocean using remotely sensed data products to fill gaps in field measurement records. We compare this MLR approach

to other commonly used and computationally inexpensive methods, including two empirical and five statistical methods. Using

established carbonate time series from varied ecosystem types, we evaluate the sensitivity, error, and bias of these select

methods and investigate the impacts of gap-filling on seasonal and interannual variability and long-term trends. Although the

methods for carbonate time series by establishing which techniques
perform with sufficiently low error and bias to assess seasonal and
interannual variability of carbonate biogeochemistry and the
biological and physical processes that determine it.
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focus here is on DIC time series, the principles of this study should extend to other carbonate parameters.

2 Materials and Methods

2.1 Field data

We used data from the Bermuda Atlantic Time-series [BATS], (adapted from Bates et al., 2012), Carbon Retention In A

) ,(Deleted:

, (Deleted: (BATS, http://www.bios.edu/research/projects/bats/),

Colored Ocean,[CARIACO] (Astor et al., 2005; Astor et al., 2013), Firth of Thames [FOT] (adapted from Law et al., 2020),
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Hawaiian Ocean Time-series [HOT]adapted from Dore et al., 2009), Kuroshio Extension Observatory [KEO] (Sutton, 2012b;
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methods and five statistical methods for time series imputation with
the goal of informing best practice for gap-filling temporal ocean
carbonate data.
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2012a; Fassbender et al., 2016), These time series present data describing significant ecological and environmental variability
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from different ocean basins and coastal regions (Fig. 1), which have been characterized in other studies (Bates et al., 2014;
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Fassbender et al., 2016; Fassbender et al., 2017; Zeldis and Swaney, 2018). Additionally, these time series have sufficient
sampling frequencies and length of record to assess the monthly mean climatological conditions and seasonal cycle, so to allow

inclusion of empirical imputation methods in this comparative assessment. Table 1 lists the site details including the carbonate
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parameters measured, the duration of the time series, and the gap rate based on the expected sampling frequency for each of

the seven sites.

All mixed layer temperature, salinity and dissolved inorganic carbon (DIC) data were averaged to monthly means for each
time series site. For non-moored sampling sites with bottle sampling (BATS, CARIACO, HOT, Munida), monthly values were
treated as the monthly mean condition. For each site the mixed layer depth was determined according to the temperature profile

and a threshold of AT > 0.2 °C relative to 10 m depth (De Boyer Montégut, 2004). For sites that did not measure DIC directly

Papa, KEO, FOT), the measured carbonate parameters were used with in situ temperature and salinity to calculate the DIC
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concentration and the uncertainty of calculation using the functions carb and errors, respectively within the R package seacarb

(Jean-Pierre Gattuso et al., 2012; Orr et al., 2018) with Ki, K from (Lueker, 2000); Kr from (Dickson, 1979); and Ks from .
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(Dickson et al., 1990); on the appropriate pH scale, where used, in R version 3.5.2 (Team, 2020). DIC at Papa and KEO was

calculated from measured pCO. and estimated total alkalinity (TA) based on the salinity-alkalinity relationships determined
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by (Fassbender et al., 2016) and (Fassbender et al., 2017) respectively. DIC at FOT was calculated from measured pH (SeaFet)

and estimated TA based on the salinity-alkalinity relationship at that site (see supplemental material for more detail).

2.2 Remotely sensed and modelled data products

[Monthly composites of satellite-derived surface ocean chlorophyll (O’reilly et al., 1998) from MODIS (4 km resolution) data

) (Field Code Changed
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were paired with field data from each site except FOT. The mean surface chlorophyll was taken from a ~20 km? cell
surrounding each of these sampling locations. For FOT, surface chlorophyll was estimated from monthly composite of VIIRS
data (750 m resolution), with the mean from a ~ 4 km? cell surrounding the mooring used in this case given the greater spatial

heterogeneity in this semi-closed coastal system. VIIRS also showed greater daily coverage of the FOT mooring location

compared to MODIS, indicating a better representation of the monthly mean condition (see Supplemental Material).

Modelled monthly mean temperature and salinity profiles for each site were extracted from the GLORYS12V1 Global Ocean

Physical Reanalysis Product (Global Monitoring and Forecasting Center, 2018; Fernandez and Lellouche, 2021; M. Drévillon,
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2021). Temperature and salinity were averaged for the mixed layer depth in a ~20 km? cell surrounding each sampling location.

GLORYS temperature and salinity were used only with empirical models where observations were either not available or

synthetically removed for testing purposes. GLORYS temperature and salinity values were regressed against synchronized

observations to quantify errors for each site (see Supplemental Materials).

2.3 Estimation of DIC with MLR

DIC, pCO: and other carbonate parameters have been successfully estimated in a variety of marine systems using multiple

linear regression (MLR) approaches (Bostock et al., 2013; Velo et al., 2013; Hales et al., 2012; Lohrenz et al., 2018). In
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addition, empirical estimates of pCO2 using remotely sensed chlorophyll and sea surface temperature (SST) have proven useful
for investigating seasonal and interannual dynamics across spatial gradients, particularly in coastal systems where sustained

observations may be limited (Hales et al., 2012; Lohrenz et al., 2018). We investigated using an MLR model to estimate DIC

from remotely sensed chlorophyll, SST and salinity in order to fill gaps in the seven monthly time series data. Parametric
correlation matrices of DIC with remote chlorophyll, in situ SST and salinity showed significant linear correlation (Table 2),
across most sites, with temperature having the strongest and most consistent correlation with DIC.

DIC at time # can be estimated using MLR relationships described in the form of Equation 1.

EDICy = a+ B1Chl, + BT, + B3S;, )

where DIC has units of umuol kg™, Chl has units of mg m?, T has units of °C, and S has units of psu and the coefficients
and B, through S5 are the regression coefficients fit using a generalized linear model with a Gaussian error distribution and
link function. The sensitivity to each predictor variable was assessed by selectively omitting chlorophyll, temperature, and

salinity from the model fit.

The MLR model was also fit using GLORYS temperature and salinity data for each site to investigate its use for imputing

gaps in observations, assuming no in situ measurement are available.

2.4 Imputation of DIC time series

Six general methods were compared for imputing DIC time series: classical, interpolation, Kalman filtering, weighted moving
average (WMA) and regression and multiple imputation by chained equations (MICE). To apply the six methods, it must be

assumed that the gaps in the time series are data ‘Missing at Random’, i.e. not missing systematically (Little, 2002). Given this

assumption, these methods can be used to handle data gaps with limited biasing. This is suitable in our study where synthetic
gaps are created using random number generators. However, this may not always be appropriate such as when data gaps are
the result of systematic field site issues such as seasonal sea ice cover, season-specific sampling regimes, or seasonal

biofouling.

The primary goal was imputing timeseries at monthly resolution to investigate variability and trends over seasonal, interannual
and decadal timescales. Therefore, random sampling and persistence methods were not considered as these methods can lead
to distortion of seasonal structure in the time series. Within the 6 methods chosen, 8 models were evaluated. These imputation
models vary in complexity and flexibility and represent a range that have been widely applied to time series data, with 6 of the

8 models utilizing formalized packages (Demirhan and Renwick, 2018; Moritz, 2017). These methods limit overfitting and

can be implemented with relative ease and low computational cost. Artificial data gaps were created as described below
(Section 2.5) for the time series from each site in order to assess the performance of each method. In addition to the MLR

model described by Equation 1, alternate models are described next.
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The classical (and simplest) method applied was mean imputation, where missing values were replaced by the monthly
climatological average. The climatological mean was taken as the monthly averaged means across the duration of the time
series, which was over 1-2 decades in most cases. Linear interpolation was used to estimate missing values by drawing a
straight line between existing values in the time series and using the slope of each of these segments to determine the value of
DIC at a time point(s) between known values. Spline interpolation utilized piecewise cubic polynomials to fit a curve with
knots at &g, K= 1,2...k, to the data, providing more flexibility with the ability to interpolate between each point of the training

data. Stineman interpolation was developed to provide the flexibility of polynomials while reducing unrealistic estimations

during abrupt changes in slope within the time series (Stineman, 1980) (see Demirhan and Renwick (2018) for algorithm .

details). Kalman filtering was implemented using a structural model. In this case a linear Gaussian state-space model was fit

to the univariate time series by maximum likelihood based on decomposition (Demirhan and Renwick, 2018). A single

weighted moving average model was evaluated. Missing values were replaced by weighted average of observations in the
averaging window with size k = +2 and weighting was exponential such that the exponent increases linearly to the ends of

the window, here Y, Y... ¥, Y.

Multiple Imputation by Chained Equations (MICE), also known as fully conditional specification (FCS) and sequential

regression multivariate imputation, was applied to time series data with artificial gaps and fit using the mice library (Van

Buuren, 2011) (citel) in R version 3.5.2 (Team, 2020) (cite2), with function call mice(data = TimeSeries$data, m = 5, method

= "pmm", maxit = 2(), where m is the number of multiple imputations, method is predictive mean matching and maxit is the
maximum number of iterations. This method progresses through the following steps: 1) missing values are filled by random
sampling from the observations for a given variable; 2) the first variable with missing values is regressed against all other
variables, while using only those with observed values; 3) moving iteratively, the remaining variables are regressed against

the others but now including imputed values fitted by the regression models (White et al., 2011). This process is repeated

according to the set iterations, in this case 20, to allow stabilization and convergence of the results. Regression models used in
MICE allow for both linear and nonlinear relationships across variables, making this method very flexible.
2.5 Model performance and comparison

Each imputation model was evaluated using two schemes that assessed model performance and sampling sensitivity.

2.5.1 Cross validation

Leave one out cross validation (LOOCV) was chosen to assess the predictive error of the MLR model as well as the standard
error for each imputation method. In this approach a single observation (DIC,_,) is held out for validation while the remaining
observations (DIC;—, ... DIC,_,) are used for training the model. This process is repeated n-1 times, allowing each data point

in the time series to be treated as both training data and testing data, thus maximizing the efficiency when the data sets are of
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modest sampling size. Predicted DIC values and model parameters determined in each iteration were collated for the time

series and performance statistics were evaluated on the total output.

2.5.2 Bootstrap sampling sensitivity

A bootstrapping approach was used to evaluate the sensitivity of the imputation models to the amount of data gaps in each
time series. For each year of input data in the time series, artificial gaps were created by random removal of 1:8 monthly
samples resulting in data gaps of 8.33%, 16.67%, 25.00%, 33.33%, 41.67%, 50.00%, and 66.67%. Random sampling was
replicated 1000 times for each gap amount to ensure that an even distribution of sampling combinations was evaluated to
assess the impacts of degree of data gaps on imputation error. Only years with 12 monthly samples were used to evaluate the
sampling sensitivity in order to ensure consistency. It should be noted that most data sets used in this study do not have monthly
mean data available for all years. Table 3 shows which years of data were used from each site and the distribution of years

across sites.

2.5.3 Statistical performance metrics

The performance of each model was evaluated by comparing the predicted DIC values to the observed DIC measurements.
The performance metrics included the coefficient of (multiple) determination (R?) for indicating correlation; the root mean

square error (RMSE), the relative root mean square error (RRMSE), and the mean absolute error (MAE) for establishing the
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To evaluate the impacts of imputation, errors on seasonal structure, interannual variability and long-term trends we
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seasonal gaps were evaluated by selectively removing 3-month windows from the DIC time series. Two longer 6-month

sequential gaps scenarios were also used, one centered on winter and the other on summer. Lastly, two economical sampling

275 schemes were evaluated, bimonthly (odd months only) and seasonal, in which only January, April, July and October were

retained.
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To evaluate the impacts on seasonal cycles and long-term trends DIC was first normalized to the mean salinity (S,) at each uncertainty of the net annual CO flux (Fassbender et al., 2016). ¢
site per Equation 8.
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CARIACO, HOT, KEO, Munida, and Papa. FOT was not included in the evaluation because the time series of measured pH

at this site is limited to 2015. To test the realistic application of the MLR and MICE models, it was assumed that measurement

gaps resulted in missing observations of temperature and salinity along with DIC. While this may not always be the case, this

285 allowed us to test using these empirical models to estimate DIC using a combination of remotely sensed chlorophyll data and

modelled temperature and salinity in cases where all measurements are unavailable due to operational or logistical issues.

The PE of the time-regressed trends in nDIC were evaluated for each imputed time series compared to the observed trend in

the data sets from each site. The mean seasonal cycle was evaluated as the monthly averages of the observed and imputed time

290 series. Seasonal maximum and minimum concentrations of nDIC and their associated timing (which month) were compared.

The seasonal amplitude, which was taken as the difference between maxima and minima of the climatological monthly means

and the interannual variability, which was taken as the standard deviation of the monthly means were also compared. Seasonal

errors were combined according to Equation 9 for the purpose of comparing the overall impacts of each imputation method on

seasonal structure.
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Uncertainty associated with the calculation of DIC from other carbonate measurements combinations (e.g. SALK/pCOp) was

determined using the R package seacarb as described above. Uncertainty in TA estimated by salinity was taken as the 1.96 X

Formatted

RMSE of the S-TA regression and propagated into DIC where needed. Uncertainty of monthly means was calculated by

Equation 10.
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where @, is the standard deviation of the measurements within a month, ¢, is the t-statistic and s is the number of measurement
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within a month. Uncertainty of monthly means was assessed for moored sites KEO and Papa. Annual data from the moored

sensors at WHOT were used to estimate that uncertainty for HOT. Daily values of DIC, with n = 30, were used to estimate

the uncertainty associated with treating sampling values (a single daily value) from BATS, HOT, CARIACO, and Munida as

monthly averages. Uncertainty associated with monthly averaging ranged narrowly between 3-4 umol kg! for DIC and 0.03

—0.05 psu for salinity and the upper limits of 4.00 umol kg™ and 0.05 psu were applied as_u, in the combined uncertainty for

DIC to all sites.

The uncertainty imposed from salinity normalization of DIC is calculated by taking the partial derivative of DIC with respect ;

to salinity in Equation 8 and accounting for the uncertainty in salinity measurement and monthly averaging as given in Equation

10.
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Uncertainty in long-term trends was evaluated on the slope of the linear regression of the time series data according to Equation
11.
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where a positive value denotes flux from the sea to the air was
calculated according to Equation 7:9

Fco, =k X Ko X [PCO3, gcean = PCO2, atm] (W)
Where k is the gas transfer velocity coefficient (Wanninkhof,
1992), K, is the temperature- and salinity-dependent solubility of

where m_is the slope and R is the coefficient of correlation. Combined uncertainty for imputed DIC values was evaluated by

adding the sources of uncertainty in quadrature shown in equation 12.

Ucpicy = [uélci + u’fm: + urznolci + RMSEﬁwth d (14)
ia A i aaa 4 aa faa A i A x
N
3 Results
318 1 gycles, interannual variability and long-term trends across sites

Box and whisker plots (Fig. 2) show the seasonal climatology and interannual variability for DIC and nDIC across the sites
tested. The bar plots in Fig. 2 show the seasonal amplitude, which was taken as the difference between maxima and minima

of the climatological monthly means, and the interannual variability, which was taken as the standard deviation of the monthly

CO in seawater (Weiss, 1974), pCO3 oceqn and pCO; o are the
partial pressure of CO: in the surface ocean and the atmosphere
respectively. The ocean pCO, was calculated from DIC and TA

collected at BATS using the R package seacarb (see Section 2.1).

The pCO, g1, Was calculated according to Equation 8: §
q

PCO2atm = XCO4 atm (Pharo — Puy0)” 8)"

‘Where xCO; o4y, is the atmospheric concentration of CO2 pjqr, is
the barometric pressure at sea level and py, ¢ is the vapor
pressure of water at the sea surface temperature and salinity
(Zeebe and Wolf-Gladrow, 2001). ¢

q

The monthly mean molar fraction of atmospheric CO: was
measured at Mauna Loa
(https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html). Wind
speed was calculated from the mean zonal and meridional
components of the NCEP reanalysis of daily surface winds across
220 km? cell
(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.
html). The vapor pressure of water was calculated using
barometric pressure by taking the daily mean of the 6-hourly
FNMOC Sea Level Pressure data product across a 100 km? cell
(https://data.noaa.gov/dataset/dataset/fnmoc-sea-level-pressure-
360x180-6-hourly1).§

2.6.2 Monte Carlo simulations

Given that the air-sea CO: flux depends non-linearly on the sea
surface temperature and salinity, the wind speed, barometric pressure,
and the pCO, in the atmosphere and the surface ocean, a Monte
Carlo approach provides a straightforward means of determining
uncertainty. We followed the approach of (Fassbender et al.,(", ., [10]
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means. The amplitude of the seasonal cycle of DIC spanned 11.5 — 90.1 umol kg! across sites, while interannual variability

ranged from & 3—22.6 umol kg'\, When the DIC is normalized to salinity the ranges of the seasonal cycles and interannual

variability for nDIC become 12.7— 65.8 umol kg and 7.6- 20.9 pumol kg' respectively. The seasonal cycles, including

amplitude, timing and interannual variability illustrate diversity among the test sites so enabling robust assessment of the

empirical MLR model for surface layer DIC and other imputation methods. Figure 3 shows the long-term trends in DIC and

nDIC time series from each site except FOT. Papa does not show a significant trend in DIC and was not included in the

assessment of imputation methods on long-term trends. Note here that BATS, CARIACO, and HOT time series were truncated

to start at Sep 1997 when remotely sensed chlorophyll can be utilized in the empirical models (MLR and MICE) and compared

to the other statistical approaches.

3.2 DIC estimation by MLR

Fig. 4 shows the performance of the MLR model to estimate DIC using the available time series data from each site (N = 897).
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The cross validated MLR exhibited an R? of 0.93, with an RMSE of 11.75 umol kg'!, RRMSE of 0,57%, MAE of 8 57 umol .

kg'! and bias of 0.030 umol kg™'. The high R? and low error and bias indicate that the MLR model worked well for prediction
of DIC from remotely sensed chlorophyll, and in situ temperature, and salinity across different ecosystems. The predictions
and errors for the data from each site are provided in Table 4, which includes the means of the model coefficients and their

standard deviations for the N iterations of LOOCV per site.

The MLR performed best at Papa with a RMSE of 4.85 umol kg™'. This appears to be driven in part by low interannual variably

and seasonal thermal stratification as discussed for reasons discussed below. The greatest error was associated with the

CARIACO and FOT coastal sites, however, most of the predicted values still fell within 1% of observed DIC. When the sites
were separated into oceanic (BATS, HOT, KEO, Papa and Munida) and coastal (CARIACO, FOT) categories, the RMSE was
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8.75 umol kg'and 19.97 pmol kg™ respectively. When comparing the predictive accuracy of the MLR to the DIC variability
at each site (Fig.5), the interannual variability is strongly correlated ((R) = 0.8532, p <.02) to the RMSE while the seasonal
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amplitude has no apparent impact ((R)= 0.0771, p > .8), meaning the error in the predictions is most strongly related to

interannual variability at each site.

To assess the sensitivity of the MLR to the predictor variables, the model was adjusted by selectively removing predictor
variables and refitting the model. The changes in RMSE per site due to the omission of a given variable are shown as an

anomaly in the tile plot of Fig. 6. BATS exhibited the greatest sensitivity to chlorophyll relative to other sites; FOT, HOT and
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KEO were relatively more sensitive to the effect of salinity; and temperature omission had the greatest impact for CARIACO,

KEO, Munida, and Papa. The mean effects of variable omissions are given in Table 5, which indicates that collectively
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temperature had the greatest impact among the predictor variables on the predictive error. This was consistent with the
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expectations resulting from the correlation matrix provided in Table 2. The selective omission of predictor variables indicates

that salinity contributes the most to the bias error although the bias error was low (<0.1) across all sites.

Comparing the GLORY'S physical reanalysis data to the observations, the pooled RMSE was 0.68 °C for temperature and 0.18

psu for salinity with &7 values of 0.9899 and 0.9841 respectively. The MLR performed similarly when GLORYS temperature .

and salinity values were used (R2 = 0.9453, RMSE = 11.24 umol kg'!, RRMSE = 0.55%, MAE = 8.18 umol kg!, and bias of
0.00000 pumol kg''; see the Su

lemental Materials for more details).

3.3 Performance of imputation methods

Table 6 shows the pooled performance metrics for each cross validated model. These pooled results of the LOOCV jndicate .

that each of the imputation models performed reasonably well with only 11% of all residuals exceeding 1% error and only
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of 7424 estimated DIC values gxceeded 5% error.
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Overall, the MICE and MLR models exhibited the highest R*> and lowest error (MAE, RMSE and RRMSE), followed by

Kalman Filtering, Linear Interpolation, Exponential Weighted Moving Average, Mean Imputation, Stineman Interpolation,
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singular gaps were generally minor. Table 6 shows the performance
metrics for the cross validated models across all sites.

'[Deleted: Differences in the performance of the models to fill

and Spline Interpolation in order of increasing RMSE. Mean exhibited the least amount of bias, while Spline Imputation

exhibited the greatest amount of bias. Fig. 7 shows the kernel density curves of the residuals from the LOOCV of each

imputation model with individual results from each site. This illustrates the error distribution varied greatly across sites when
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applying a selected model.

Jhis considerable variability among the performance of each method across sites is further evidenced in Fig. 8. The tile colors, .
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in Fig. 8 indicate,the RMSE and R? normalized to their pooled mean values for comparing the relative error and correlation _

across sites and methods. The individual cross-validated errors and 82 values for each imputation method per site are given as

the numerical value in each tile of the figure. Generally, Fig. 8 provides further evidence that CARICO and FOT exhibit the

greatest error overall, while KEO and Papa exhibit the lowest error. The R” panel in Fig.8 indicates that while some imputation

errors may be low (<1%), they may still show poor correlation with observations. This is the case for statistical models at

MUNDIA as well as mean imputation and spline interpolation models at HOT. The error and correlation across sites are
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consistent with the interannual variability shown in Fig.2 and with the MLR behavior shown in Fig. 5.

3.4 Sampling sensitivity

Sampling sensitivity was assessed by the RMSE for randomized artificial gaps totaling 8.33%, 16.67%, 25.00%, 33.33%,
41.67%, 50.00%, and 66.67%. The randomized approach resulted in a mixture of sequential and non-sequential gaps, while

bootstrapping achieved equivalent representation of all months for each assessment. Fig. 9a shows boxplots of the RMSE for
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each imputation method as a function of percent of data missing at each site. Spline interpolation resulted in much greater
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Jnagnitude and frequency of outliers_and necessitated separate scaling. There was significant variability in both the
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performance of different imputation methods within sites and within imputation methods across different sites. In general,
mean imputation and MLR converge on a maximum error once data gaps reached 20-40%, whereas the error for other
imputation models is positively correlated with the percent of data missing. While the performance of the cross validated

Kalman filtering model did not differ greatly from the other interpolation methods, Fig. 9A indicates it leads to a greater

(r d: 8A

number of outliers overall, in particular at BATS, KEO and Papa. Spline interpolation also resulted in a high number of outliers,
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with the most extreme error over other methods. Fig. 9B shows the median error as a function of the percent of data missing

with a loess fit. The general lack of a strong correlation shown by Mean imputation and MLR exhibit the least amount of
sensitivity to the number of data gaps in the time series. The MICE model shows the highest level of sensitivity to the percent

of data missing despite performing very well under the LOOCV and low numbers of data gaps.

3.5 Time series gaps_and trend assessment

The imputed secondary time series synthesized with the 8 artificial gap_scenarios, including sequential 3-month seasonal

durations, -month durations centered on summer and winter, and bimonthly and seasonal sampling simulations are shown in
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the Fig. 10, Note that time series from each of the sites tested contained data gaps in the observations and synthetic gap

scenarios were applied to the observed time series as-is. Extended gaps were observed at CARIACO (Apr 2001 — Feb 2002)
KEO (Jan 2011 — Oct 2011), and Papa (Aug 2008 — May 2009). Thirteen 3-month, three 4-month and one 5-month data gaps

present in the Muninda time series. Table 7 shows the number of observations for the total number of months in the time series

at each site and the percent of data missing for each gap scenario tested.

Fig. 10 indicates a significant variability in the performance of each imputation method for the tested gap durations and timing

within the datasets from each site. Note some outliers produced by spline interpolation were cropped in order to maintain

appropriate scaling of the y-axes. Overall, spline interpolation shows the highest propensity for creating outliers, as was also

seen the in the assessment of sampling sensitivity. WMA shows a tendency for exaggerating seasonal minima and maxima,

except in the cases of extended gaps, such as those seen at KEO and Papa. However, WMA remained within the observed

range of annual seasonal cycles at Munida. Kalman filtering performed similarly to WMA. The empirical models (Mean

MLR, and MICE) better represent consistent seasonal cycles compared to other methods, as expected. However, these donot .

perform as well when data deviate significantly from mean seasonal cycle, such as at HOT and CARIACO where the ratio of

interannual variability to seasonal amplitude are high (84% and 46% respectively for nDIC). This is most clear in the high DIC
concentrations observed at HOT during 2012-2013 and low DIC concentrations observed at CARIACO in 2003. KEO and

Papa have the lowest ratio of interannual variability to seasonal amplitude (13%, and 14% respectively) and empirical models

perform well here. This was consistent with the correlation between error and interannual variability evidenced by the LOOCV.

Fig. 11 shows the kernel density curves of the residuals between the infilled and observed nDIC values. The pooled residuals

shown on the right-hand side of Fig. 11 indicate the time and duration of gaps has a significant impact on the error distribution.
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Fig. 12 shows the kernel density curves of the residuals between the observed and reconstructed trends in nDIC over time for

each site, method, and gap scenario. Trends from imputed time series that were significantly different than the observed trend
(taken here as a difference in trend that is beyond the uncertainty in the slope) are identified with a black asterisk in Fig. 12.

Synthetic gap filters were applied by prescribed months across all sites rather than site-specific seasonal cycles and thus the

impacts from each filter vary across sites. Generally, the mean imputation and MLR models led to reduced apparent trends

across all sites by pushing the imputed values toward the climatological means. While this is inherent in mean imputation, it

is implicit in this MLR because it utilizes climatological relationships between the predictor variables rather than year-to-year

variations. Linear and Stineman interpolation had the lease impact on time series trends because values produced by these

models are constrained to the range of the observations bracketing the gap and they tend more to preserve the trend as the

observed values change through time. Except for KEO, Kalman and WMA models generally resulted in a reduced trends but

with less error than the empirical models. The state space approach in the Kalman model attempts to describe the dynamics

through decomposition of the time series resulting in imputation values that are determined from prior observations, generally

resulting predictions that are within the observed seasonal range. The tendency of the exponential weighting in the WMA is
to overestimate when predicting values near maxima and minima. This is less apparent at Munida where the lower frequency

of observations leads to weighting toward the annual means. This balance in the WMA behavior explains its tendency for
lower impact on the apparent trend. KEO exhibits both the strongest trend in nDIC and largest seasonal amplitude and the

Kalman and WMA models exaggerated the apparent trend here in all gap scenarios. Spline interpolated values of the extended

gap at CARIACO were well below the seasonal minima from previous years in the time series and were extreme enough to

inflate the trend in most of the gap scenarios.

The impacts on trends were greater for the 6-month gaps, bimonthly and seasonal scenarios than for the seasonal filters across

all models (see Supplemental Material for additional figures). This result is consistent with greater error being associated with

higher percentages of missing data, however, there was no direct correlation between imputation errors and the magnitude and

direction of changes in trends. The greatest impacts were observed when using mean imputation and MLR with the seasonal

sampling regime. This appears to be driven by the high percentage of data being replaced with climatological values.

Interestingly, MICE did not result in the same level of discrepancies with observed trends as the other empirical models. This

is likely due to the increased flexibility in the MICE model due to the inclusion of time fields (e.g. month as a predictor

variable) and the fact that the chained equation approach will allow for refitting throughout the time series allowing for year-

to-year variability in the relationships between predictor variables.

3.6 Seasonal cycles, annual means and interannual variability

The monthly means of the imputed time series and their associated uncertainties are shown in Fig. 13. These monthly series

more clearly illustrate the typical behavior of each imputation model described for each time series above. While deviations
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from climatological monthly means are apparent across all sites, few of these fell outside of the uncertainty associated with

the observed monthly means, which is represented here by the combined sources of uncertainty in measurement and calculation

of the monthly mean nDIC and does not include the interannual variability of the monthly means.

The effects of imputation on the seasonal maxima and minima, their respective timing and amplitude are shown in Fig. 14

which also includes residuals for interannual variability, annual means and the combined seasonal error pooled across sites.

Two-way ANOVA of each of these seasonal residuals indicated that the distribution of errors among the different models was

significantly different for seasonal amplitude, maxima, minima, while the difference between gap scenarios was significant

for the timing of seasonal minima. The combined seasonal error was significantly different among both imputation models

and gap scenarios. The residuals of annual means were also significantly different among both imputation models and gap

scenarios, while only model selection resulted in significantly different interannual variability.

The weakening of seasonal amplitude from linear imputation methods is evident in the residuals for all gap scenarios, as is the

tendency for the Kalman and WMA models to increase seasonal amplitude. The autumn gap filter resulted in the greatest

amount error in seasonal amplitude. This was driven by the larger residuals in the seasonal minima since most of the test sites

experience seasonal minima during autumn months. This also affected the timing of seasonal minima with residuals of up to

3 months. The distribution of the seasonal residuals among the imputation models for the 6-month winter gap were similar to

those for the autumn gap, althought the residuals for seasonal minima, maxima and amplitude were largest with the 6-month

winter gap filter.

The combined seasonal errors indicate that next to mean imputation, MLR does the best out of the other methods tested to

retain the climatological seasonal structure observed at each site. The combined seasonal MAPE was 7.2% MLR, followed by

14.2% for spline interpolation, 15.1% for MICE, 19.2% for Stineman, 19.8% for Kalman, 19.9% for linear interpolation, and

21.1% for WMA. The autumn gap filter resulted in a combined seasonal MAPE of 20.9%. This was just over double that of

all other seasonal gap filters which resulted in error that ranged 8.8 — 9.9%. The seasonal error was largest for the 6-month

winter gap with a median error of 26.4%. Interestingly, the bimonthly sampling regime resulted in a seasonal MAPE of,16.8%,
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regime was 12.7% and lower than that exhibited by the more frequently bimonthly sampling.
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0.1% while the 6-month gaps and seasonal sampling regime were 0.15-0.16%. When the errors are broken down by model

selection, the empirical models showed the greatest deviation from the annual means, with mean imputation having a median
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error of 0.16%, MLR 0.16%, and MICE performing slightly better at 0.13%. These were followed by Kalman 0.12%, spline
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Ocean Global Reanalysis (GLORYS). Additional data product options could include the Hybrid Coordinate Ocean Model
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(HYCOM), the Climate Forecast System Reanalysis (CFSR), and the Bluelink Reanalysis (BRAN),

given location and included in the uncertainty budget (De Souza et al., 2020). Satellite-based estimates of sea surface

temperature and salinity may also be considered although remotely sensed salinity typically has a larger error than the i

GLORYS data presented here when compared to observations (Wang et al., 2019).
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The variability in the MLR model coefficients indicated that the relationships between DIC, chlorophyll, temperature and
salinity were location-specific and cannot be spatially extrapolated to different water masses and ecosystems. This was
indicated by the variability seen among the correlations of predictor variables to DIC across sites and clearly evidenced by the
differences in model performance between the coastal sites (FOT and CARIACO) and the oceanic sites. However, when the

MLR was trained with sufficient observations to capture the seasonal cycle, it can predict DIC with error that was far less than

- C" leted: could

the natural variability over seasonal and interannual time scales and was typically on the order of, or better than the variability
on monthly time scales. The RMSE of 4.85 — 10.67 pumol kg™! at the oceanic sites is consistent with other MLR studies which
have ranged from ~4-11 pmol kg' (Evans et al., 2013; Juranek et al., 2011; Bostock et al., 2013), while the RMSE at coastal

sites (FOT and CARIACO) of approximately 20 pmol kg™ is larger than exhibited in a California Current study (Alin et al.,

2012). The Alin study, like others (Juranek et al., 2009; Juranek et al., 2011), estimated DIC based on O: and density,

incorporating a multiplicative relationship. While O2 may improve the performance of MLR approaches, particularly in
biologically active coastal environments, the MLR model here only utilized remotely sensed chlorophyll and temperature and
therefore only applied to the surface layer. Oz and CO2 may become decoupled in the surface layer due to varying time scales
for air sea gas exchange, making O: a less reliable predictor variable for surface concentrations of DIC (Juranek et al., 2011).

Despite somewhat higher RMSE in coastal environments relative to the results of Alin et al. (2012), the MLR model here

exhibited predictive error that is still less than 1% at such sites. With the mean performance among oceanic sites being 8.75

umol kg and within the “weather” requirements adopted by the Global Ocean Acidification Observing Network, we contend

that this is an acceptable approach for femporal interpolation (Newton, 2015).
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4.2 DIC time series imputation

Despite the pervasiveness of gaps in climatological data aimed at understanding the ocean carbon cycle, there is limited

evaluation errors and bias in reconstructed time series due to gap-filling methods outside of the spatiotemporal interpolation

in surface ocean pCO; datasets (Gregor et al., 2019). The MLR presented herein was developed as an empirical method toward

constructing gap-filled regularized DIC time series, specifically for investigating seasonal and interannual variability in the
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carbon cycle within the surface layer. A thorough characterization of implementing this model beckoned the comparison to

other commonly used techniques and provided the opportunity to investigate the temporal and seasonal impacts of gap-filling.

Cross validation of the imputation models evaluated in this study indicated that each of these models have reasonably low
(typically <1%) error when imputing a single value at monthly timescales. This was similar to other comparative gap-filling
studies in the fields of soil respiration, net ecosystem exchange, and solar radiation, which focused on higher temporal

resolution data and imputing missing values over time scales from seconds to days (Moffat et al., 2007; Zhao et al., 2020,

Demirhan and Renwick, 2018). For the assessment of annual budgets in the studies of Zhao et al (2020) and Moffat et al

(2007), the error associated with the imputation methods was similar to the uncertainty in the fluxes across sites (Lavoie et
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al., 2015). As a result, the choice of imputation model yielded limited improvement on the accuracy of budget estimates.

Similarly, we found that the MAPE was under 0.2% for the annual means calculated from imputed time series, which was less .

that the relative uncertainty for annual nean concentrations in surface layer DIC wergon the order of 0.5-1%, However, Fig,
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14 shows this can be biased positively or negatively depending on imputation method. While imputation resulted in limited

error in annual means, there were significant impacts on the interannual variability, which ranged from 8-19%. These errors

would have a direct impact on the time of emergence in detecting trends (Sutton et al., 2019; Turk et al., 2019). Furthermore,

our evaluation of reconstructed DIC time series with synthetic gaps showed that selection of imputation method can have

significant effects on the calculated timing, magnitude and structure of seasonal variability as well as longer temporal trends.
The timing and duration of data gaps are important considerations, as are the research objectives for a given study and whether

seasonal or climatic variability are more heavily weighted.

The empirical models evaluated in this study performed better than others selected here to maintain all aspects of the seasonal

structure. Mean imputation, by definition, maintains the climatological seasonal structure perfectly. However, year-to year this

may lead to bias in the seasonal amplitude up or down relative to the temporal position in the time series and any long-term

trend. This is apparent in interannual variability of reconstructed timeseries showing a positive bimodal distribution of the

residuals for mean imputation (see Fig. 14), indicating larger error associated with a higher percent of missing data.

When looking at the combined seasonal error of each model pooled for all gap scenarios, MLR performs better than twice as

well as all remaining methods and was the only model (other than mean imputation) with a median error under 10%. Looking

at the individual imputed time series, the MLR generally tracks closely with mean imputation but with added interannual

variability. This leads to less error compared to mean imputation as also seen in the distribution of residuals (see Fig. 11). The

MICE model showed considerably more variability in its prediction of DIC values, leading to higher error with a wider

distribution. This was likely due to the MICE method refitting regression models along the time series. whereas the MLR, as

presented here, is fit once using the entire time series.

While mean imputation and MLR provide the best options of the models evaluated here for maintaining the seasonal structure

in the time series, it is at the sacrifice of maintaining the observed trend. These two models led to the greatest discrepancies

between observed and reconstructed trends. Both models act to weaken the trend, pushing toward the climatological mean;

and this becomes more apparent with increasing data loss. Linear and Stineman interpolation models generally do well to

maintain the observed trend in the time series due to them constraining infilled values between existing observations along the

trending time series. This is at the sacrifice of maintaining seasonal structure as is clearly evidenced in Figs. 13 & 14. Even

under the bimonthly sampling regime, these interpolation methods lead to a lower seasonal amplitude and this impact is

worsened by longer duration gaps. Spline interpolation, WMA, Kalman filter and MICE models exhibit inconsistent impacts

on trends across sites and varied gaps. WMA and Kalman performed best at Munida with limited bias, while MICE performed
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well during some gap scenarios at BATS (spring, summer, and 6-month summer gap) and KEO (spring, winter, seasonal);
likewise for spline interpolation at BATS (spring, seasonal) and HOT (spring, summer, autumn, 6-month summer gap, and
seasonal).

The impact on trend assessment does not appear correlated with the mean imputation error, bias, or mean seasonal errors;

rather, visual inspection of the imputed time series in Fig. 10 appears to indicate that the timing of data gaps relative to how a

selected model typically responds to such a gap, dictates the bias error for that gap. This bias error may then be exaggerated

for longer durations and accumulate in the reconstructed time series and ultimately impart bias on the trend, even if the mean

errors remain small. While using static month-based gap filters in our assessment, it also appears that in some cases interannual

variability in the seasonal cycle changed the gap filter window. For example, linear and Stineman interpolation applied to the

6-month winter gaps at KEO 2008-2009 and 2015-2016 lead to a higher mean DIC concentration over these windows, leading

to lower trend in these reconstructed time series than was observed. Additionally, spline interpolation was biased at HOT using

the winter gap filter due to the splines exaggerating some of the seasonal transitions 2004 — 2009. The seasonal cycles 2006 —

2009 were further exaggerated using the 6-month winter gap filter leading to bias in the other direction. The correlation

between trend error and imputation performance presents an area for further investigation.

One-way ANOVA indicated that the distribution of RMSE resulting from each of the gap scenarios were significantly different

for each of the imputation models tested, further indicating the importance of the timing and duration of data gaps. Of the four

seasonal filters, spring data gaps had the least impact (lowest error), while autumn data gaps had the most. Given that these

correspond to the seasonal maxima and minima respectively, it is interesting that selected imputation models are generally

better at predicting the seasonal highs rather than lows. Errors associated with seasonal minima were further exacerbated by

the long 6-month winter gap tested, whereas the 6-month gap centered in summer had errors that were on the order of other

seasonal 3-month gaps. Collectively these results can help guide strategy for both sampling and the handling data gaps.

Bimonthly and seasonal sampling regimes provide economical options for data collection. The median RMSE associated with

the bimonthly and seasonal sampling regimes were 10.4 umol kg! and 10.7 pumol kg™ respectively. There were less than the
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errors associated with summer (11.3 umol kg'") and autumn (12.1 umol kg™") gap filters and similar to the spring (10.7 umol

kg™") and winter RMSE (10.4 pmol kg™"). This result is encouraging despite the bimonthly and seasonal sampling regimes

equate to twice as much data loss compared to the seasonal filters. These sampling regimes also impart similar results with

respect to maintaining seasonal structure; although, bimonthly sampling leads to greater variance. Bimonthly sampling resulted

in a median RMSE for annual means of 4.0 umol kg™!, equal to a typical measurement uncertainty. This was only slightly

higher for seasonal sampling at 5. umol kg™!. The RMSE for interannual variability for these sampling regimes are less than 3
umol kg™!'. These results are promising to indicate that these economic sampling regimes can capture the seasonal cycle with
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reasonable uncertainty. However, it must be noted that these pooled errors include the performance and low errors of mean

imputation and MLR and these empirical models require multiple years of data to adequately train. Uncertainty of annual and

seasonal data based on these regimes would be higher.

Jhe results presented here indicate that care should be taken when considering what method to use to fill data gaps in ocean

carbon time series, with criteria for selection including the percent of missing data, gap lengths and site characteristics. Of the !

methods we tested, the empirical models performed better than statistical models evaluated in this study, with respect to *

imputation error and retaining seasonal structure. Mean imputation provides a stable and straightforward approach to filling

methods evaluated in this study.,

MICE appeared to be well suited to environmental time series data that have covariate parameters such as the correlation

between DIC, chlorophyll, temperature and salinity. This could be extended to other nutrients such as phosphate and nitrate as

) —
—

well as dissolved oxygen in order to train the models used in MICE. MICE also offers the opportunity to impute data gaps

over multiple variables in larger time series data sets. MICE does well to limit biases and did best to reproduce interannual

variability across the sties tested. MICE performed very well during cross validation but exhibited higher RMSE compared to |

MLR when reconstructing the time series, perhaps due to its greater sampling sensitivity shown in Fig. 9.

Our MLR model provides a stable option that performs well over all rates of data missingness once it is sufficiently trained

with field data. This MLR performed equally well using GLORYS reanalysis temperature and salinity data. This approach

provides the benefit of utilizing remotely sensed and modelled data products in the absence of covariate field data. The low |

error and uncertainty associated with this MLR approach show promise. Allowing the model to update the fit and coefficients

for the predictor variables over the time series may help reduce biasing of temporal trends while maintaining the ability to

retain seasonal structure. This MLR has potential to be trained with field data over broader spatial extents to assess regional

carbon cycles.
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5 Conclusi

This study provides the first comparative assessment of several common gap-filling methods which are easy to implement and

‘| DIC data.

relationships rather than the other statistical approaches evaluated
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Moved up [1]: The stability of mean imputation, MICE and MLR
because they are based on climatological and empirical relationships
rather than the other statistical approaches evaluated here. The
bootstrapping assessment of sampling sensitivity for each method
provided additional insight into how the imputation methods
performed at randomized data missingness rates. Linear and
Stineman interpolation, and weighted moving average had responses
similar to each other in terms of the median error and range of
outliers in response to varied rates of missingness in the data, while
spline interpolation produced a far greater range of outliers for all
sites (over 5 times greater at FOT and CARIACO). This was also
exhibited in the BATS time series assessment where the flexibility of
the spline interpolation led to a tendency to overestimate seasonal
maxima and minima, as observed in other comparative studies (North
and Livingstone, 2013). Stineman interpolation performed better than
basic spline interpolation by providing greater constraint, but no
better than linear interpolation, despite the increased flexibility.
Interestingly, MICE performed very well at lower percentages of data
missing and led to relatively low error in estimating the annual
budget, yet it is highly sensitive to the percent of data missingness.
However, outliers produced by MICE were constrained by the
observational range because it is an empirical model. Outliers were
most tightly constrained when using mean imputation and MLR
given these empirical approaches are based on the climatology. This
was shown in Fig. 8A which illustrated how error variability

d d with i ing per of data missing for mean
imputation and MLR. Though the sampling sensitivity for each
imputation model varied across sites (Fig. 8B), MLR exhibited the
lowest sensitivity and overall error and bias for imputing missing
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computationally inexpensive that may be applied to ocean carbon time series. Regularized carbonate time series data are

necessary for understanding seasonal dynamics, annual budgets, interannual variability and long-term trends in the ocean
carbon cycle and changes to the ocean carbon sink, which are of particular importance in the face of global climate change.
Our assessment indicates that the amount and distribution of gaps in the data should be a determining factor in choosing an

imputation method that optimizes uncertainty while minimizing bias. Imputed values, however, cannot be treated as
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measurements and the uncertainty of imputation methods must be included in the overall uncertainty budget of broader ocean
carbon analyses. The results presented above indicate the performance and behavior of select empirical and statistical

approaches and the methods used provide a simple approach for estimating uncertainty of DIC predicted by a given imputation

- (" leted: using the RMSE

method.

This study provides evidence that DIC can be estimated with an empirical MLR approach that ptilizes remotely sensed

chlorophyll and may be trained with either in-situ or modelled femperature,and salinity depending on the intended application.
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This method performs consistently well across 7 disparate ecosystems in oceanic and coastal environments, but the model
coefficients are unique to the water mass and ecosystem and further study is needed to assess the spatial extent over which
regional extrapolation is still valid. However, when using this method to impute data gaps in carbonate time series, it performs
better than several options, particularly for larger gaps. We conclude that when trained with sufficient field data (e.g., captures
the seasonal cycle and some interannual variability), this empirical MLR method accurately predicts DIC from remotely sensed

data and provides the most robust option from those we compared for imputing gaps over a variety of data gap scenarios.
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Figure 1, Location map of seven ocean carbon time series sites utilized for estimating DIC using an empirical multiple linear

regression model and other empirical and statistical approaches for imputing carbonate time series, including Bermuda Atlantic
Time-series (BATS), Carbon Retention In A Colored Ocean (CARIACO), Firth of Thames (FOT), Hawaiian Ocean Time-series

(HOT), Kuroshio Extension Observatory (KEO), Munida Time-series (Munida), and Ocean Site Papa (Papa). See Table 1 for _
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Figure 2, Box and whisker plots of thly mean concentrations of DIC (gray) and salinity normalized nDIC (white) jn the mixed ‘(I‘ leted ation
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each box and whisker marker indicate the number of observations per month within the time series.

25

’(Field Code Changed

“‘(Deleted: 2

~. '(Deleted: .

AN




2200

2100

2000

2025
2000
1975

1950

52050

DIC, umol kg™’

2000

1950

1900

1850

2100

2050

2050

"",""3.';-;

2000

BATS =1.00 +0.12 umol kg ™" yr”'
nDIC = 1.15 +0.09 umol kg™' yr”'

CARIACO = 0.73 £ 0.46 umol k™' yr”!
nDIC = 1.17 £ 0.39 umol kg ™" yr”!

_,qyr',m .18 '3.- f\\M_.‘,.e\L V\J\-fy "..\'.‘;

2000

HOT =1.44 £0.09 umol kg™ yr”!
nDIC = 1.07 +0.04 umol kg™ yr'

F:gs‘

- %3 i

1990

pind
!

KEO =3.07 £ 0.99 umol kg yr”'
nDIC = 1.28 £ 0.71 umol kg™ yr™'

2008 2010

Munida = 0.50 £ 0.25 umol kg™ yr”!
nDIC = 0.48 + 0.25 umol kg ™! yr"

oA A A DN
Y ’W\g/ \\fb\/\/’% P AN Y

2000 2005

Papa =-0.41+0.72 umol kg™ yr™'
nDIC = -0.09 + 0.60 umol kg™ yr”!

o

2008 2010

2000

r-

2015

2010 2020

2012 2014 2016 201

2010 2015

2018

2012 2014 2016

Figure

Time series of DIC and salini

normalized nDIC for each of the long-term data sets used to assess the impacts of gap- .

iven for each site

filling on the seasonal and interannual variability and long-term trends. Trends in DIC with uncertainty are

followed by the trend in nDIC below each value.

26

'(Field Code Changed

’ ‘(Deleted: 3

N N




345

1000 ‘
| -404
5004 |
5 | -80q ]
! *
22004 a By
70
0.04 04
254 504
-5.0 404
7.5 | 304
100 ) | 204 ] x
o B2 s
2 R?=0.9352
S 21004 =0.
£ RMSE = 12.04
%) RRMSE = 0.59
o MAE= 8.76
g BIAS = 0.03 ,
ki o
[
o
20001
<
.
> »
rs .'. BATS
o S CARIACO
6 * F FOT
® HOT
KEO
MUNIDA
19004 PAPA
19’00 ZDVCU 21'0[] 2200
Measured DIC, umol kg™
Figure 4, Composite_of predicted and ed DIC using a multiple linear regression model based on ed temperature, . (r leted: 4

salinity and remotely sensed chlorophyll pooled from test sites: Bermuda Atlantic Time-series Study (BATS); Carbon Retention In E

A Colored Ocean (CARIACO); Firth of Thames (FOT); Hawaiian Ocean Time-series (HOT); Kuroshio Extension Observatory "(Field Code Changed

(KEO); Munida Time-series (Munida); Ocean Site Papa (Papa). Box and whisker plots for predictor variable coefficients a, By B "O‘ leted: Comparison

and B; are composed of the median (solid line), lower and upper quartiles (box), the minimum and maximum values beyond the 25" N

. . . . N . (Deleted: MUNIDA
and 75" quantile but < 1.5 interquartile range (whiskers) and values > 1.5 interquartile range (dots).

“(Deleted: PAPA

AN

27



(GY) B)

SO [ [~ z o — [::gmraat:‘er:]:lérFont colour: Text 1, English (US), Check spelling ]
p>8 B p<.02 9
—‘m 15 15
2
°
E
E
o
)
) o BATS
3 ,
= ©  CARIACO
Z 0 10
+ FOT
. '} * HOT
5 s ®  KEO
MUNIDA
° PAPA
% EY 7s 8 2 1 E)
Seasonal Amplitude, DIC, umol kg™ Interannual Variability, DIC, ymol kg™
N
1355  Figure 5, Correlations between RMSE and (A) 1 amplitude and (B) inter 1 variability across sites, .(r leted: . )
. CField Code Changed )
BATS - 163 001 K“’CDeIeted: 5 )
e A
CARIACO 0.21 24 0.3 1
" f BATS 1
Normalized !
RMSE i
FoT 0.26 0.08 - anomoly CARIACO 4
due to
variable
HOT 0.21 0.85 3.51 omission i FOT4
KEO{ 032 il 468 I 3 HOT{
2
MUNIDA 0 6.71 0.18 1 KEo1
/ MUNIDA {
PAPA 0.55 1.14 i
i PAPA+
Mean{ 048 447 245 4 v
Chlorophyll Temperature
Chiorophyll  Temperature Salinity Del A
L J
Figure 6, Tile plot showing the change in RMSE per site due to the selective omission of input variables and refitting of the MLR. - CField Code Changed )
Tiles are colored to normalized error anomalies for visualization of relative differences, while RMSE anomalies are given in each (D leted: 6 )
tile for the effect of omitting the predictor variable at each site. eleted:

28



365

0.10

0.05

0.00

0.10

Density

=
o
a

0.00

0.10

0.05

A A

Kalman

MICE

Stineman

Linear

MLR

WMA

Residuals umol kg™

L

HE

Mean

Spline

BATS
CARIACO
FOT

HOT

KEO
MUNIDA
PAPA

Deleted:

Predicted DIC, it mol kg™’

Kalman

2200

2100

2000 A

1900

MICE

2200

N
2
3

N
S
2
3

1900

Stineman

2200

2100 % b

2000 ® y

1900

1900 2000 2100 2200

- _Field Code Changed

Del q

Figure 7, Kernel density curves of the DIC residuals between gap-filled and observed time series for each imputation model using
ug 1997 coinciding with avallablllty of remotely sensed chlorophyll

Leave One Out Cross Validation, for all gbservations after

model. Skewness and modalities away from 0 indicate biasing.,

29

Tauee

>4 monthly sampl...

Estimates ...

bservations after >...ug 1997

ernel density curves of the DIC
residuals between gap-filled and observed time series based
on...or each imputation model using Leave One Out Cross
Validation, for all years ...
with availability of remotely sensed chlorophyll datacontaining

Density curves are scaled so area under the
curve equals one. Plots show the probability distribution of the

residuals for each model. Skewness and modalities away from 0
indicate biasing. es.

(. 115]

BATS 4

CARIACO 1

FOT4

HOT4

KEO 1




390

(A)

AN

NN

BATS{ 7.96 797 1055 7.26 10.9
Normalized
FOT+4 18.04 18.69 21.02 1825 17.05 18.2 RMSE
25 - CFormatted: Font: (Default) Arial, 7 pt
HOT{ 883 879 1286 58 853 1142 888 87 20 CFormatted: Line spacing: Exactly 15 pt
15
KEO4 5.82 6.66 1143 7.25 8.34 6.25 6.22 8.67 10
05
f(Formatted: Font: (Default) Arial, 7 pt, English (US)
MUNIDA4  13.8 13.8 8.57 8.44 8.31 1457 1371 14.28 B
PAPAA | 6.06 9.94 5.17 4.6 4.36 5.46 8.96
Kalman Linear  Mean  MICE  MLR  Spine Stineman WMA
B)
BATS{ 0.8173 0.8173 0.6754 0.8479 0.6537
CARIACO . 0.4045 0.5106 0.5963 0.5976
Normalized
FOT+ 0.4405 0.4511 0.4317 0.5011 0.5385 'CFormatted: Font: (Default) Arial, 9 pt, Italic
15 .
|| ) 'CFormatted: Superscript
HOT4 0.5839 0.5998 0.6116 0.4591 0.5958 0.6015 1.0
05
KEO A
MUNIDA - 0.7469 0.7522
PAPA - 0.8127
Kalr’nan Lin‘ear Me‘an MIZZE MILR Spl’ine Stine‘man WI{IIA
,.(Field Code Changed
Figure & Tile plots showing (A) the RMSE (black text in tiles) for each cross validated i ion methods at each site. Tiles are (r leted: 8

colored according to RMSE normalized to the mean value across all methods and sites; and gB) the same format but for the squared C leted: whi
correlation goefficient. Note errors at or below average performance do not equate to correlation that are average or better, e.g. Deleted: white

Munida and HOT. T (Deleted: .

AN

30



400

(A) Kalman Linear MEAN MICE MLR Stineman WMA Spllne
O

:!!!!!!! TTTTLL TP 1111 T PO {1 TYL1 LI TP 1L I 53 ..mll!
DR B frns W T Qé¢é§$¢¥ ot -

® #ééé#i ;Bﬁfféréé Yoot s Lt éé?%#‘* gt %Eg ;__,,,,, g
A I e i e S I
: :a!!!! TT TS0 IO 11111 ST 1 LTI ,;;;;:!@ﬁ

nl!!!;; R TTIICS QPO T R SR M ITTL R T1isi S P i1

20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60

00VI¥YD

RMSE DIC, umol kg

12.5

®'; e T ,,”"" ST et A :gg.»"""
e e e

20/"“/”.“/““/“'”.«’"‘)"“/”““ 28
*Sguf"‘/“‘f“‘"/,-omr""‘/"szf/

14.0
25

fg..-~"’.-""‘-“"”'-"“”.-""""""".""““ lg'ﬂ"‘Jf
fg"..,.".‘,..~".,,,....-,,ﬂ"’._........,,.."’..a""‘ 1§_.,4*/,

20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60 20 40 60

-1
OOVINVO slvag

O:l

RMSE DIC, umol kg

O3

Ydvd

Percent of Data Missing

Figure 9, (A) Boxplots of RMSE for each gap corresponding to 8.33%, 16.67%, 25%, 33.33%, 41.67%, 50%, 58.33% .

and 66.67% data missing rates. Box and whisker plots are composed of the median (solid line), lower and upper quartiles (box), the
minimum and maximum values beyond the 25" and 75" quantile but < 1.5 interquartile range (whiskers) and values > 1.5
interquartile range (dots). Points above box and whiskers indicate the distribution of outliers for each model. (B) Loess fit (red line)
of the median error for each gap assessment, indicating the sensitivity of the model to increasing data loss. Scales adjusted per site.

31

| Kalman

Linear

[ wmean

- il

!!! stagetd

;334'-#4-“ |11}

IO bt

lassemes L4

Bl

e s

RM SE DIC, ymol kg™’

i@i‘g@éﬂ it

S

e

2 !:a!! !
%;qu!! ;& TR

20 40 60

! aaiaitd

20 40 60

jéﬁ#--»-l'- !!2

22224 unn

20 40 60

Kalman

[ [ inear

[ wmean

RMSE DIC, pmol kg ™'
3
b

..;“"“ :

%gﬂ/“.ﬁ/"’-ﬁ
‘22.0""-.‘: ......‘ P

INCINTINGINGIN T 8

e

20 40 60 20 40 60 20 40 60 20

Percent o

(Field Code Changed

”(Deleted: 9

NN




410

BATS CARIACO

M:‘ x r
= i = %‘*"{Wf*"‘w‘"’* :
= i v

= iy ZEE A -y

)

Munida Papa fDeIeted' <0bject><object>
poomo Ap A AR d Ax Kalman Linear Mean
20 IS
A s | \
MWW“WV *Bgv [RAAR
! w0 |1 I
%0 {

Ny | LR
i 2060
2025 975 i
i 2040
e 2050 ) Al H
2100 w dNianit b
! A i
2000
250 | ! i
s ]
2060
2040 | | !
2020

6uuds

Jowwng

uwniny

T B \{" M MWNWW& -

Voss | {1
1975

DIC, pmol kg ™'

. ; 2150 00 . | 2000 \
IS = b ARAAMANAT = R -
wso il - J 1 1050 ], V ., 2075 oo 4 2130
5 s (PPN w10 Iy "
o 2000 028
B4 225 i 2100
2 200 o
g ‘ 2010 2125 2080 g
G o i 2100 2 2070
a }*\M i g = 3
€ 2050 2075 | F] y
t ' 2000 g 2040 i
2025 2050 Q
s £
. 2028 ° 2010
2 1 2050 3 1999 2001 1999 2001 1999 2001 1999
2075 200 e
es =
00 215 ] i :
s =] o 8 B Kaman B8 Mean B MR B3 Stineman
- :: 60 BH Linear B3 MICE B3 spine B3 wmaA
2050 =
200 - I E 540
! o0 2 2
2028 050 ! 5
2100 220
ans < .
e g s o 38 : g
3
g
- s ¥l H o *****ééé *
o oo ! w0 ' S
o 1975 H Bimonthly
w0 a5 20 wots w0 aws a0 s mo ;s om0 mis wm o a0 0 W me i % 0 w0 20wt 15 . ws 10 2012 2014 2016 2008 |
~— Kalman — Mean — MLR ~ Stineman H .
Linear — MICE — Spline WMA
Figure 10, Composites ofyeconstructed time series of nDIC from each test site. Observations were selectively removed (Deleted: AT

using eight gap filters: 3-month sequential seasonal filters for Spring, Summer, Autumn, and Winter; 6-month sequential gaps

centered on summer and winter; and bimonthl

regimes and gaps were filled using Kalman filter with a state space model, linear interpolation, mean imputation, empirical multiple

linear regression (MLR), multiple imputation

exponential weighted moving average (WMA). Training observations are shown as black points, while testing data (removed

observations) are shown as cyan points.

'CField Code Changed
(Deleted: 10

| Deleted: at BATS (black) with artificial gaps represennng
bimonthly 3 th and 6 th seq 1 gaps.
Predicted DIC values for each artificial gap are shown (red) for
each imputation model. (B) Box and whisker plots of the absolute
imputation error for each method are composed of the median
(solid line), lower and upper quartiles (box), the minimum and
maximum values beyond the 25" and 75" quantile but < 1.5
interquartile range (whiskers) and values > 1.5 interquartile
range (dots)....

odd months) and seasonal (1 max, 1 min. and 2 transition samples) samplin

by chained equations (MICE), spline interpolation, Stineman interpolation and

- @@ A NN

32



430

0.20
0.15

Density

0.09
0.06

0.00
0.05 é§ :
0.00

0.125
0.100
0.075

BATS

0.050
0.025
0.000

25 0

25

50 -50

CARIACO

-25

0

0.05 %
0.00

25

50 -50

HOT KEO

0 25 50-50 -25 0

HETNBESRRET P R
:z:AAAJ&ZLA%
ZZZA%&AAELMM%
EEEAZQ,,_J&J&LAJLzz
A A A A
ENEl e e
hAC LA A
A A A A

-25

25

Munida Papa Mean

Jowuwng Buuds

uwnny

deg seu 0w g Jen Jewiwng ow ¢

Auowng

|euoseeg.

> bbb o

50-50 256 0 25 50-50 -25 0 25 50

&
3
»
R
o
»
*
o
g

D Kalman \:‘ Mean \:‘ MLR ‘:‘ Stineman
| | tinear [ | mice | | spiine | | wma

nDIC Residuals, ymol kg™

Figure 11,

tested (see also Fig. 10). Residuals pooled across sites are shown as the Mean column on the right-hand side. Density curves are
scaled so area under the curve equals one. Plots show the probabili

Kernel density curves of the nDIC residuals between gap-filled and observed values for each site and synthetic gap filter

from 0 indicate biasing.
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Figure 12, Kernel density curves of the nDIC residuals between the trends calculated from observed and gap-filled time series for

each site and synthetic gap filter tested (see also Figs 10-11).

Residuals pooled across sites are shown as the Mean column on the

right-hand side. Residuals that exceeded the uncertainty bounds for the observed trend are denoted with a black asterisk. Peaks to

either side of 0 indicate positive or negative biasing in the imputation method resulting in changes in the a

arent trend for the

reconstructed time series.
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d: Absolute percent difference between annual CO: flux

observed at BATS 1998-2001 and the flux estimated from
imputed DIC values over bimonthly, 3-month and 6-month
sequential gaps per year.
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Composites of climatological monthly means calculated from reconstructed time series of nDIC measurements from each
st site. Monthly means were calculated from the imputed time series shown in Fig. 10. The observed climatological monthly means

ac

¢ shown in black over the values infilled by the eight jmputation models. Sticks represent the combined uncertainty for each value

counting for measurement, averagin normalization and imputation method.
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Deleted: Flux uncertainty for mean monthly air-sea CO2 flux
estimates for imputed bimonthly, 3-month gap and 6-month gap

time series at BATS over the period 1998-2001.
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maximum and minimum); the seasonal maxima and minima, and their respective timing (the month when maxima and minima are

observed); interannual variability (the standard deviation of monthly means); and the annual means. Combined Seasonal Error
represents the combined absolute percent errors of the seasonal amplitude, maximum, minimum, and timing (see Eq.10). Box and
whisker plots are composed of the median (solid line), lower and upper quartiles (box), the minimum and maximum values beyond
the 25" and 75" quantile but < 1.5 interquartile range (whiskers) and values > 1.5 interquartile range (dots). The right-hand column
shows the kernel density curves for each seasonal metric, pooled across all synthetic gap filters. Peaks in the density plots represents
modes where mean errors for each model as associated with each gap filter.
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480

Table 1, Information about each sa

pling site with ocean carbonate time series used in our analyses, i

ling Bermuda Atlantic (r leted: 1

485  Time-series (BATS), Carbon Retention In A Coloded Ocean (CARIACO), Firth of Thames (FOT), Hawaiian Ocean Time-series
(HOT), Kuroshio Extension Observatory (KEO), Munida Time-series (Munida), and Ocean Site Papa (Papa). DIC = dissolved

o (Field Code Changed

inorganic carbon. TA = total alkalinity. pCO; = partial pressure of carbon dioxide. pH = -log[H']. Gap rate based on expected
sampling frequency.

(Deleted: MUNIDA

“(Deleted: PAPA

NN

. Time series Sampling . Time series Sampling Gap Carbonate (Field Code Changed
Site Type Location
Site Region Duration Frequency Rate  Measurements
31.88°N, 1983 -
BATS Sargasso Sea Imonthly 4% DIC/TA
64.26°W present
22.67°N, 1988 -
HOT North Pacific 2monthly 15% TA/pH
Sampling 158°W present
Site Cariaco 10.5°N, 1995 -
CARIACO monthly 16% TA/pH
Basin 64.67°W present
. 45.8°8 1998 - .
MUNIDA South Pacific 3bimonthly 5% pCO»/TA
171.5°E present
] 50.13°N, 2007 -
PAPA North Pacific 3 hours 26% pH/pCO2
144.83°W present
32.25°N, 2004 -
Mooring | KEO North Pacific 3 hours 18% pH/pCO2
144.56°E present
New Zealand 36.88°S, 2015 -
FOT *15 minutes 59% pH
Coast 175.32°E present

A

490 Web addresses for site information and data access:
BATS: http://www.bios.edu/research/projects/bats/
HOT: https://hahana.soest.hawaii.edu/hot/

CARIACO: http://www.imars.usf.edu/cariaco
Munida: https://marinedata.niwa.co.nz/nzoa-on/

495  Papa: https://www.pmel.noaa.gov/ocs/Papa
KEO: https://www.pmel.noaa.gov/ocs/KEO

FOT: https://marinedata.niwa.co.nz/nzoa-on/

“Sampling began in 1998, mooring installed in 2015
'BATS sampling target is at least monthly

2HOT sampling target is approximately monthly

*Munida sampling is typically bimonthly, varying with
conditions and additional coordinated voyages



510

A

A

Table 2, Pearson correlation coefficients between DIC and chlorophyll, temperature and salinity in the surface layer across test sites. '(Field Code Changed
515  Asterisks indicate weak correlations (threshold = 0.3). (Delete a2
. Pearson Correlation Coefficient
Site Chlorophyll Temperature Salinity
KEO 0.49 -0.91 0.87
BATS 0.48 -0.73 0.65
Papa -0.34 -0.97 0.73 (Deleted: PaPA
FOT -0.22% 0.24* 0.74
HOT 0.1* -0.51 0.74
CARIACO 0.53 -0.77 0.58
Munida -0.37 -0.87 0.32 (Deleted: MUNIDA
Table 3, Years with 12 monthly ples per site. *Actual pling interval greater than monthly | '(Field Code Changed
Time-Series Site  Years With 12 Monthly Samples N Years (Deleted: 3
BATS 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 17
2004, 2005, 2007, 2008, 2012, 2013
HOT 1998, 2004, 2006 3
CARIACO 2008 1
Munida NA” 0 - O‘ leted: MUNIDA
Lapa 2015, 2016, 2017 3 - (l‘ leted: PAPA
KEO 2009, 2010, 2014, 2015, 2016 5
FOT 2016 1

520
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530

A A A

535 Table4, R : Its of cross validated MLR model for estil.natil.lg qu at each individual site, and at gr?uped i (BA:I"S, HOT, — .Cr leted: 4
gg,cavlliltl;ﬁat,i ;%?3) and coastal (FOT, CARIACO) sites, including the mean and standard deviation of each coefficient for N ““”gFiel d Code Changed
> Del d: MUNIDA
Site RMSE RRMSE  R? MAE  BIAS N o [} f Bs . (Deleted: PAPA
BATS 10.67 0.52 0.6611 8.93 0.017 208 401.65£13.75 -13.48£1.56 -3.53+0.03 47,53i0,3<Deleted:
CARIACO  20.14 0.96 0.5861 1494 0015 153  1446.46£40.07 250010  -10.16+0.12 2437410 Field Code Changed
FOT 19.02 0.92 0.3958 15.13 0.099 28 718.32+47.59 8.30+2.53 0.4740.35 37.93£1.26
HOT 8.45 0.42 0.6178 7.40 0.029 204 276.4419.51 -82.88+2.25 -3.47£0.04 51 .44i0’.26
KEO 8.12 0.41 0.9330 6.12 0.061 90 -208.45+16.79 -27.85£1.01 -4.61£0.03  66.3610.48
MUNIDA 8.15 0.39 0.7564 6.48 0.029 109 1069.11£65.27 4.77%1.05 -7.69+0.08  32.00+l ~3(Deleted: 5
PAPA 4.85 0.24 0.9631 3.74 0.035 94 799.13+£17.96 -16.47£0.52 -6.55+0.02 39.82t0.5(Field Code Changed
Oceanic 8.75 0.43 0.9567 7.09 0.030 671  412.044356.85 -34.86£32.81  -4.54+1.53 48.35’i9,3(Fie|d Code Changed
Coastal 19.97 0.95 0.6078 1497  0.028 181 1333.824267.23  3.40+2.32 -8.5243.86  26.47+5 (( Deleted: 6
* ( Deleted: Mean
,%Deleted: 15.07
Table 5, Mean model results for selective of input variables. } ,(r leted: 0.74
Variabl Deleted: 0.905
Omittt;: RMSE RRMSE R MAE BIAS ” : EDeleted: 11.65
none 12.044 0.591 0.9352 8.764 0.030 ; EE:::::: ii:r
chlorophyll 12.106 0.594 0.9345 8.849 0.005 i) i (Deleted: 14.79
temperature 15.526 0.762 0.8923 11.871 0.013 i (Deleted: 0.72
salinity 13.998 0.687 0.9124 10.285 0.022 i (Deleted: 0.895
540 ' (Deleted: 10.09
Table 6, Performance metrics for cross validated imy ion models across all sites. (Deleted: 0141
CDeleted: Spline
Model RMSE RRMSE R MAE BIAS (Deleted: 17.64
Kalman, 13.22, 0.65 0.9230, 8.74, -0.03, ,(Deleted: 0.86
Linear, 13.34, 0.65, 0.9218, 9.00, 0.0 ( Deleted: 074
Mear, 13.91, 0.68, 0.9149, 10.51, 0.00, (Deleted: 12.21
(Deleted: -0.252
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(Deleted: Stineman
) (Deleted: 15.28

MICE, 10.7 0.53, 0.9489, 717, 0.07, & (Deleted: 075
MLR, 11.7 0.58, 0.9392, 8.57, 0.03, (Deleted: 0.900
Spline, 19.89, 097, 0.8672, 1329, -0.43, (Deleted: 10.51
Stineman, 1691, 0.83, 0.9013 11.53, -0.28, (Deleted: -0.036
WMA, 13.79, 0.68 0.9163, 9.69, 0.0 ‘ (Deleted: ll(sajx;an

Y (Deleted: 0.76
. (Deleted: 0.89

e

Table 7, Percent of missing data associated with synthetic gap filters applied fo each time series, the number observations, total (Deleted: 10.49
months, and percent missing observations based on a monthly frequency for the time series duration tested.,

D)
D)
D)
)
J
)
D)
D)
D)
D)
: 0.570 %
-month, 6-mont WMA )
Site | Spring Summer Autumn Winter Summer Winter Bimonthly Seasonal : 15.50 )
Gap Gap 0.76 )
BATS 32% 33% 33% 29% 56% 53% 53% 1% .89 )
CARIACO | 42% 42% 41%  41% 62% 60% 61% 5% 1101 )
HOT 41% 39% 39% 39% 61% 59% 59% 74% 1 0.069 )
) 33% 32% 35%  35%  53% 59% 57% 71% : MLR )
Mhnida, 67% 67% 69% 67% 78% 79% 63% 85% 109 252 57 Deleted: 12.04 )
Pdpy 30% 37% 34% 34% 55% 57% 55% 70% 118 134 < ||i2{ Deleted: 0.59 )
570 (Deleted: 0935 )
(Deleted: 8.76 )
(Deleted: 0.030 )
(Deleted: MICE )
(Deleted: 10.92 )
(Deleted: 0.54 )
(Deleted: 0.949 )
(Deleted: 7.08 )
(Deleted: -0.297 )
Deleted: 7.... Percent of missing data associated with sym
(Field Code Changed (ﬁ
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