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Abstract. Regularized time series of ocean carbon data are necessary for assessing seasonal dynamics, annual budgets, and
interannual and climatic variability. There are, however, no standardized methods for filling data gaps, and limited evaluation
of the impacts on uncertainty in the reconstructed time series when using various imputation methods. Here we present an

empirical multivariate linear regression (MLR) model to estimate the concentration of dissolved inorganic carbon (DIC) in the

surface ocean, that can ytilize remotely sensed and modelled data to fill data gaps. This MLR was evaluated against seven

other imputation models using data from seven long-term monitoring sites in a comparative assessment of gap-filling

performance and yesulting impacts on variability in the reconstructed time series. Methods evaluated included three empirical

models: MLR, mean imputation, and multiple imputation by chained equation (MICE); and five statistical models: linear,
spline, and Stineman interpolation, exponential weighted moving average and Kalman filtering with a state space model. Cross
validation was used to determine model error and bias, while a bootstrapping approach was employed to determine sensitivity

toyaryingdata gap lengths. A series of synthetic gap filters, including 3-month seasonal gaps (spring, summer, autumn winter),
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6-month gaps (centered on summer and winter) as well as bimonthly and seasonal (4 samples per year) sampling regimes were
applied to each time series to evaluate the impacts of timing and duration of data gaps on seasonal structure, annual means,
interannual variability and long-term trends. All models were fit to time series of monthly mean DIC, with MLR and MICE
models also applied to both measured and modelled temperature and salinity with remotely sensed chlorophyll. Our MLR

estimated DIC with a mean error of 8.8 pmol kg!' among 5 oceanic sites and 20.0 pmol kg™ for 2 coastal sites. The MLR

varied
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performance indicated reanalysis data, such as GLORYS, can be utilized in the absence of field measurements without

increasing error in DIC estimates. Of the methods evaluated in this study, empirical models did better than statistical models

Jn retaining observed seasonal structure, but,led to greater bias in annual means, interannual variability and trends compared
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to statistical models. Our MLR proved to be a robust option for imputing data gaps over varied durations and may be trained

with either in-situ or modelled data depending on application. This study indicates_that the yjumber and distribution of data
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gaps are_important factors in selecting a model that optimizes uncertainty while minimizing bias and subsequently enables, .

robust strategies for observational sampling.

1 Introduction

Despite continued policy development aimed at combating climate change and declines in carbon dioxide (CO) emissions by
many countries over the last 10-15 years, global fossil fuel consumption continues to rise (Friedlingstein et al., 2020). We are
now in unchartered territory, with anthropogenic carbon emissions over the last two and half centuries eclipsing that in the
geological record of the past 66 million years, leaving the future of our marine and terrestrial ecosystems uncertain (Zeebe et
al., 2016). Our ability to predict future conditions, affect policy and effectively manage climate change relies on understanding
the feedbacks between climate, ecosystems, and biogeochemical cycles. To that end, the value of sustained time series
observations has been well recognized for decades, as they are essential to characterizing processes, quantifying natural
variability, identifying regime shifts and detecting long-term changes in our environment (Ducklow et al., 2009). Monitoring
ocean carbon over the last three decades has revealed the decline in ocean pH concurrent with the uptake of 25% of
anthropogenic COz by the global ocean (Friedlingstein et al., 2020). Quantification of the ocean carbon sink and the impacts
of ocean acidification remain actively researched given the significance of the ocean’s role in controlling climate feedbacks as
well as the ecological and economical importance of our marine systems (Kroeker et al., 2013; Devries et al., 2019; Krissansen-
Totton et al., 2018; Bernardello et al., 2014). Ocean carbon programs have led to a growth in surface pCO: data from 250,000
global measurements in 1997 to 13.5 million in 2019; however, continuity and coverage of this inorganic carbon data in space
and time remains a challenge for understanding seasonal and interannual variability (Takahashi and Sutherland, 2019;

Takahashi et al., 1997).

1.1 Filling the gaps

Consistent sampling intervals for physical and biogeochemical parameters over several decades are critical for understanding
ocean processes, establishing variability and detecting long-term changes (Henson et al., 2016). In addition to constraints
arising from limitations in technology, logistics and funding, ocean science takes place in a particularly harsh environment
where data loss is a common occurrence. Whether from equipment failure, cancelled field campaigns, budget cuts, or a global
pandemic, gaps in time series are ubiquitous and must be appropriately filled in order to carry out various statistical analyses

and modelling applications which require serially complete data sets.

Machine learning techniques such as neural network methods, regression trees, and random forests have been widely used to
fill gaps in meteorological and some oceanographic data, including surface ocean pCO: (Laruelle et al., 2017; Sasse et al.,

2013; Coutinho et al., 2018). While these methods are successful in the context of geospatial data, there remains little
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standardization in methods for imputing data gaps in oceanographic time series, particularly carbonate chemistry, at monitoring
sites where there are not sufficiently close neighboring values (in time or space) that can be leveraged. Linear interpolation
and mean imputation are among the most common methods for handling missing data over short to moderate time scales
(Reimer et al., 2017; Kapsenberg and Hofmann, 2016; Currie et al., 2011), but comparative assessment and validation of
approaches overall is lacking. Gap-filling studies and standardization have been pursued in other terrestrial and atmospheric
disciplines, such as eddy covariance carbon flux, solar radiation, air temperature, surface hydrology, and soil respiration
(Moffat et al., 2007; Demirhan and Renwick, 2018; Zhao et al., 2020; Henn et al., 2013; Pappas et al., 2014), many of which
focused on high temporal resolution data and imputing missing values over time scales from seconds to days. However it is
important that the imputation method not only focuses on minimizing error but also minimizing bias, as the preservation of

variance and trends is imperative for accurate analyses and understanding of climate (Serrano-Notivoli et al., 2019).

Here we present an empirical multiple linear regression (MLR) model for estimating site-specific DIC concentration in the
surface ocean using remotely sensed data products to fill gaps in field measurement records. We compare this MLR approach
to other commonly used and computationally inexpensive methods, including two empirical and five statistical methods. Using
established carbonate time series from varied ecosystem types, we evaluate the sensitivity, error, and bias of these select
methods and investigate the impacts of gap-filling on seasonal and interannual variability and long-term trends. Although the

focus here is on DIC time series, the principles of this study should extend to other carbonate parameters.

2 Materials and Methods

2.1 Field data

We used data from the Bermuda Atlantic Time-series [BATS] (adapted from Bates et al., 2012), Carbon Retention In A
Colored Ocean [CARIACO] (Astor et al., 2005; Astor et al., 2013), Firth of Thames [FOT] (adapted from Law et al., 2020),
Hawaiian Ocean Time-series [HOT] (adapted from Dore et al., 2009), Kuroshio Extension Observatory [KEO] (Sutton, 2012a;
Fassbender et al., 2017), Munida Time-series [Munida] (adapted from Currie et al., 2011), and Ocean Site Papa [Papa] (Sutton,
2012b; Fassbender et al., 2016). These time series present data describing significant ecological and environmental variability
from different ocean basins and coastal regions (Fig. 1), which have been characterized in other studies (Bates et al., 2014;
Fassbender et al., 2016; Fassbender et al., 2017; Zeldis and Swaney, 2018). Additionally, these time series have sufficient
sampling frequencies and length of record to assess the monthly mean climatological conditions and seasonal cycle, so to allow

inclusion of empirical imputation methods in this comparative assessment. Table 1 lists the site details including the carbonate
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parameters measured, the duration of the time series, and the gap rate based on the expected sampling frequency for each of

the seven sites.

All mixed layer temperature, salinity and dissolved inorganic carbon (DIC) data were averaged to monthly means for each
time series site. For non-moored sampling sites with bottle sampling (BATS, CARIACO, HOT, Munida), monthly values were
treated as the monthly mean condition. For each site the mixed layer depth was determined according to the temperature profile
and a threshold of AT > 0.2 °C relative to 10 m depth (De Boyer Montégut, 2004). For sites that did not measure DIC directly
(Papa, KEO, FOT), the measured carbonate parameters were used with in sifu temperature and salinity to calculate the DIC
concentration and the uncertainty of calculation using the functions carb and errors, respectively within the R package seacarb
(Jean-Pierre Gattuso et al., 2012; Orr et al., 2018) with Ki, K> from Lueker (2000); Kr from Dickson (1979); and Ks from
Dickson et al. (1990); on the appropriate pH scale, where used, in R version 3.5.2 (R Core Team, 2020). DIC at Papa and KEO
was calculated from measured pCO: and estimated total alkalinity (TA) based on the salinity-alkalinity relationships
determined by Fassbender et al. (2016) and (2017) respectively. DIC at FOT was calculated from measured pH (SeaFet) and

estimated TA based on the salinity-alkalinity relationship at that site (see supplemental material for more detail).

2.2 Remotely sensed and modelled data products

Monthly composites of satellite-derived surface ocean chlorophyll (O’Reilly et al., 1998) from MODIS data (Simons, 2020a)

were paired with field data from each site except FOT. The mean surface chlorophyll was taken from a ~20 km? cell
surrounding each of these sampling locations. For FOT, surface chlorophyll was estimated from monthly composite of VIIRS

data, (Simons, 2020b), with the mean from a ~ 4 km? cell surrounding the mooring used in this case given the greater spatial

o (" leted: (4 km resolution)

o (" leted: (750 m resolution)

heterogeneity in this semi-closed coastal system. VIIRS also showed greater daily coverage of the FOT mooring Jocation
compared to MODIS, indicating a better representation of the monthly mean condition (see Supplemental Material).

Modelled monthly mean temperature and salinity profiles for each site were extracted from the GLORYS12V1 Global Ocean
Physical Reanalysis Product (Global Monitoring and Forecasting Center, 2018; Fernandez and Lellouche, 2021; M. Drévillon,
2021). Temperature and salinity were averaged for the mixed layer depth in a ~20 km? cell surrounding each sampling location.
GLORYS temperature and salinity were used only with empirical models where observations were either not available or
synthetically removed for testing purposes. GLORYS temperature and salinity values were regressed against synchronized

observations to quantify errors for each site (see Supplemental Materials).

2.3 Estimation of DIC with MLR

DIC, pCO: and other carbonate parameters have been successfully estimated in a variety of marine systems using multiple

linear regression (MLR) approaches (Bostock et al., 2013; Velo et al., 2013; Hales et al., 2012; Lohrenz et al., 2018). In
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addition, empirical estimates of pCO2 using remotely sensed chlorophyll and sea surface temperature (SST) have proven useful
for investigating seasonal and interannual dynamics across spatial gradients, particularly in coastal systems where sustained
observations may be limited (Hales et al., 2012; Lohrenz et al., 2018). We investigated using an MLR model to estimate DIC
from remotely sensed chlorophyll, SST and salinity in order to fill gaps in the seven monthly time series data. Parametric
correlation matrices of DIC with remote chlorophyll, in situ SST and salinity showed significant linear correlation (Table 2),
across most sites, with temperature having the strongest and most consistent correlation with DIC.

DIC at time # can be estimated using MLR relationships described in the form of Equation 1.

EDICy = a+ B1Chl, + BT, + B3S;, (1)

where DIC has units of umuol kg™, Chl has units of mg m?, T has units of °C, and S has units of psu and the coefficients
and B, through S5 are the regression coefficients fit using a generalized linear model with a Gaussian error distribution and
link function. The sensitivity to each predictor variable was assessed by selectively omitting chlorophyll, temperature, and

salinity from the model fit.

The MLR model was also fit using GLORYS temperature and salinity data for each site to investigate its use for imputing

gaps in observations, assuming no in situ measurements are available.

2.4 Imputation of DIC time series

Six general methods were compared for imputing DIC time series: classical, interpolation, Kalman filtering, weighted moving
average (WMA) and regression and multiple imputation by chained equations (MICE). To apply the six methods, it must be
assumed that the gaps in the time series are data ‘Missing at Random’, i.e. not missing systematically (Little, 2002). Given this
assumption, these methods can be used to handle data gaps with limited biasing. This is suitable in our study where synthetic
gaps are created using random number generators. However, this may not always be appropriate such as when data gaps are
the result of systematic field site issues such as seasonal sea ice cover, season-specific sampling regimes, or seasonal

biofouling.

The primary goal was imputing timeseries at monthly resolution to investigate variability and trends over seasonal, interannual
and decadal timescales. Therefore, random sampling and persistence methods were not considered as these methods can lead
to distortion of seasonal structure in the time series. Within the 6 methods chosen, 8 models were evaluated. These imputation
models vary in complexity and flexibility and represent a range that have been widely applied to time series data, with 6 of the
8 models utilizing formalized packages (Demirhan and Renwick, 2018; Moritz, 2017). These methods limit overfitting and
can be implemented with relative ease and low computational cost. Artificial data gaps were created as described below
(Section 2.5) for the time series from each site in order to assess the performance of each method. In addition to the MLR

model described by Equation 1, alternate models are described next.
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The classical (and simplest) method applied was mean imputation, where missing values were replaced by the monthly
climatological average. The climatological mean was taken as the monthly averaged means across the duration of the time
series, which was over 1-2 decades in most cases. Linear interpolation was used to estimate missing values by drawing a
straight line between existing values in the time series and using the slope of each of these segments to determine the value of
DIC at a time point(s) between known values. Spline interpolation utilized piecewise cubic polynomials to fit a curve with
knots at &g, K= 1,2...k, to the data, providing more flexibility with the ability to interpolate between each point of the training
data. Stineman interpolation was developed to provide the flexibility of polynomials while reducing unrealistic estimations
during abrupt changes in slope within the time series (Stineman, 1980) (see Demirhan and Renwick (2018) for algorithm
details). Kalman filtering was implemented using a structural model. In this case a linear Gaussian state-space model was fit
to the univariate time series by maximum likelihood based on decomposition (Demirhan and Renwick, 2018). A single
weighted moving average model was evaluated. Missing values were replaced by weighted average of observations in the
averaging window with size k = +2 and weighting was exponential such that the exponent increases linearly to the ends of

the window, here Y, Y... Y, Ya.

Multiple Imputation by Chained Equations (MICE), also known as fully conditional specification (FCS) and sequential
regression multivariate imputation, was applied to time series data with artificial gaps and fit using the mice library (Van
Buuren, 2011) in R version 3.5.2 (R Core Team, 2020), with function call mice(data = TimeSeries$data, m = 5, method =
"pmm", maxit = 20), where m is the number of multiple imputations, method is predictive mean matching and maxit is the
maximum number of iterations. This method progresses through the following steps: 1) missing values are filled by random
sampling from the observations for a given variable; 2) the first variable with missing values is regressed against all other
variables, while using only those with observed values; 3) moving iteratively, the remaining variables are regressed against
the others but now including imputed values fitted by the regression models (White et al., 2011). This process is repeated
according to the set iterations, in this case 20, to allow stabilization and convergence of the results. Regression models used in

MICE allow for both linear and nonlinear relationships across variables, making this method very flexible.

2.5 Model performance and comparison

Each imputation model was evaluated using two schemes that assessed model performance and sampling sensitivity.

2.5.1 Cross validation

Leave one out cross validation (LOOCV) was chosen to assess the predictive error of the MLR model as well as the standard
error for each imputation method. In this approach a single observation (DIC,_,) is held out for validation while the remaining
observations (DIC;—, ... DIC,_,) are used for training the model. This process is repeated n-1 times, allowing each data point

in the time series to be treated as both training data and testing data, thus maximizing the efficiency when the data sets are of
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modest sampling size. Predicted DIC values and model parameters determined in each iteration were collated for the time

series and performance statistics were evaluated on the total output.

2.5.2 Bootstrap sampling sensitivity

A bootstrapping approach was used to evaluate the sensitivity of the imputation models to the amount of data gaps in each
time series. For each year of input data in the time series, artificial gaps were created by random removal of 1:8 monthly
samples resulting in data gaps of 8.33%, 16.67%, 25.00%, 33.33%, 41.67%, 50.00%, and 66.67%. Random sampling was
replicated 1000 times for each gap amount to ensure that an even distribution of sampling combinations was evaluated to
assess the impacts of degree of data gaps on imputation error. Only years with 12 monthly samples were used to evaluate the
sampling sensitivity in order to ensure consistency. It should be noted that most data sets used in this study do not have monthly
mean data available for all years. Table 3 shows which years of data were used from each site and the distribution of years

across sites.

2.5.3 Statistical performance metrics

The performance of each model was evaluated by comparing the predicted DIC values to the observed DIC measurements.
The performance metrics included the coefficient of (multiple) determination (R?) for indicating correlation; the root mean
square error (RMSE), the relative root mean square error (RRMSE), and the mean absolute error (MAE) for establishing the
distribution of individual errors; and the bias error (BIAS) for indicating bias induced on annual sums. Percent error (PE) and

meangbsolute percent error (MAPE) were used to evaluate particular metrics for assessing impacts of imputation on seasonal

structure and long-term trends. Performance metrics were calculated according to Equations 2-8, where o; and p; denote the

individual observed and predicted values respectively.

N gi%; )
RMSE = \/m ’
RRMSE = \[2@ :
MAE = J5ipi— 0y .
BiAs = %Z(pi —0) .
PE = |F224-100% ’
MAPE = %Z v%u ’
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2.6 Imputation effects on seasonal structure, jnterannual variability and long-term trends

To evaluate the impacts of imputation errors on seasonal structure, interannual variability and long-term trends we

compared the observed and imputed time series using 8 synthetic gap schemes. Firstly, spring, summer, autumn, and winter
seasonal gaps were evaluated by selectively removing 3-month windows from the DIC time series. Two longer 6-month
sequential gaps scenarios were also used, one centered on winter and the other on summer. Lastly, two economical sampling
schemes were evaluated, bimonthly (odd months only) and seasonal, in which only January, April, July and October were

retained.

To evaluate the impacts on seasonal cycles and long-term trends, DIC was first normalized to the mean salinity (S,) at each

site per Equation 9.

nDIC, = i_': -DIC, )

Jhe 8 imputation methods were applied to each of these 8 synthetic gap schemes for the full time series of nDIC at BATS,

CARIACO, HOT, KEO, Munida, and Papa. Trends in the observed and imputed data were determined by least squares linear

regression of the seasonally detrended time series, where the seasonal signal in each time series was removed according to

Equation 10, following the methods in (Takahashi et al., 2009).

nDIC, jeseasonea = NDIC, — {HDTC; - m}, .
— ()]

where TDTC; is the climatological monthly mean and TDTT is the climatological mean. FOT was not included in the evaluation

because the time series of measured pH at this site is limited to 2015. To test the realistic application of the MLR and MICE
models, it was assumed that measurement gaps resulted in missing observations of temperature and salinity along with DIC.
While this may not always be the case, this allowed us to test using these empirical models to estimate DIC using a combination
of remotely sensed chlorophyll data and modelled temperature and salinity in cases where all measurements are unavailable

due to operational or logistical issues.

The PE of the time-regressed trends in nDIC were evaluated for each imputed time series compared to the observed trend in
the data sets from each site. The mean seasonal cycle was evaluated as the monthly averages of the observed and imputed time
series. Seasonal maximum and minimum concentrations of nDIC and their associated timing (which month) were compared.
The seasonal amplitude, which was taken as the difference between maxima and minima of the climatological monthly means,
and the interannual variability, which was taken as the standard deviation of the monthly means were also compared. Seasonal

errors were combined according to Equation 11, for the purpose of comparing the overall impacts of each imputation method
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2.7 Uncertainty budget

The sources of uncertainty accounted for here include measurement uncertainty, natural variability and the effect of monthly

averaging, the effect of salinity normalization and the uncertainty associated with gap-filling. While individual measurement

uncertainties may vary, measurement uncertainties across all sites in this study were treated as the following: salinity: 0.005

psu, temperature: 0.002 °C; pH: 0.05 units; pCO2: 3 patm; TA: 3 umol kg™'; DIC: 3 umol kg™'. These values were based upon . (" leted: 9
reported uncertainties for,in-situ temperature, salinity and pH (Sea-Bird Electronics, 2020, 2021) and pCO;, (Jiang et al., 2008; (Deleted: m
Willcox et al., 2009; Johengen et al., 2009), and Jab-based measurements of DIC and TA (Riebesell, 2011). Additional sources f \ (Deleted: 4

of uncertainty include: (1) estimation of monthly means, (2) estimation of TA from salinity (SALK), (3) calculation of DIC . %E::::::: :hosen
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regression and propagated into DIC where needed.

Since the moored data here is averaged to monthly means for comparison with other observational time series, the uncertainty

associated with this averaging must be accounted for. Additionally, the observational time series used in this study were treated

as monthly means and the uncertainty associated with the natural variability at these sites must be estimated. The uncertainty

associated with the averaging of monthly means was calculated by Equation J]2.

,.(r' d
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Uncertainty in long-term trends was evaluated on the slope of the linear regression of the time series data according to Equation

J4.

,(r' d: 11 )

1, -1 .
w, =m [HE_ a4 -
n-2 V.

where m is the slope and R is the coefficient of correlation. Combined uncertainty for imputed DIC values was evaluated by

adding the sources of uncertainty in quadrature shown in equation,l 5.
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3 Results
3.1 Seasonal cycles, interannual variability and long-term trends across sites

Box and whisker plots (Fig. 2) show the seasonal climatology and interannual variability for DIC and nDIC across the sites
tested. The bar plots in Fig. 2 show the seasonal amplitude, which was taken as the difference between maxima and minima
of the climatological monthly means, and the interannual variability, which was taken as the standard deviation of the monthly
means. The amplitude of the seasonal cycle of DIC spanned 11.5 — 90.1 umol kg™ across sites, while interannual variability
ranged from 8.3— 22.6 umol kg™!. When the DIC is normalized to salinity the ranges of the seasonal cycles and interannual
variability for nDIC become 12.7— 65.8 pumol kg and 7.6 20.9 pumol kg™ respectively. The seasonal cycles, including
amplitude, timing and interannual variability illustrate diversity among the test sites so enabling robust assessment of the
empirical MLR model for surface layer DIC and other imputation methods. Figure 3 shows the long-term trends in DIC and

nDIC time series from each site except FOT. Interestingly, with seasonal,detrendjng, Papauniquely exhibits a decline in DIC

; (Deleted: 14 )

(ot

over the 10-year record used herein. Note here that BATS, CARIACO, and HOT time series were truncated to start at Sep

1997 when remotely sensed chlorophyll can be utilized in the empirical models (MLR and MICE) and compared to the other

statistical approaches.

3.2 DIC estimation by MLR

Fig. 4 shows the performance of the MLR model to estimate DIC using the available time series data from each site (N = 897).
The cross validated MLR exhibited an R? of 0.93 with an RMSE of 11.75 pmol kg™!, RRMSE of 0.57%, MAE of 8.57 umol
kg and bias of 0.030 umol kg™'. The high R’ and low error and bias indicate that the MLR model worked well for prediction
of DIC from remotely sensed chlorophyll, and in situ temperature, and salinity across different ecosystems. The predictions
and errors for the data from each site are provided in Table 4, which includes the means of the model coefficients and their

standard deviations for the N iterations of LOOCV per site.
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The MLR performed best at Papa with a RMSE of 4.85 umol kg™!. This appears to be driven in part by low interannual variably
and seasonal thermal stratification as discussed for reasons discussed below. The greatest error was associated with the
CARIACO and FOT coastal sites, however, most of the predicted values still fell within 1% of observed DIC. When the sites
were separated into oceanic (BATS, HOT, KEO, Papa and Munida) and coastal (CARIACO, FOT) categories, the RMSE was
8.75 umol kg'and 19.97 pmol kg™ respectively. When comparing the predictive accuracy of the MLR to the DIC variability
at each site (Fig. 5), the interannual variability is strongly correlated ((R) = 0.8532, p <.02) to the RMSE while the seasonal
amplitude has no apparent impact ((R)= 0.0771, p > .8), meaning the error in the predictions is most strongly related to

interannual variability at each site.

To assess the sensitivity of the MLR to the predictor variables, the model was adjusted by selectively removing predictor
variables and refitting the model. The changes in RMSE per site due to the omission of a given variable are shown as an
anomaly in the tile plot of Fig. 6. BATS exhibited the greatest sensitivity to chlorophyll relative to other sites; FOT, HOT and
KEO were relatively more sensitive to the effect of salinity; and temperature omission had the greatest impact for CARIACO,
KEO, Munida, and Papa. The mean effects of variable omissions are given in Table 5, which indicates that collectively
temperature had the greatest impact among the predictor variables on the predictive error. This was consistent with the
expectations resulting from the correlation matrix provided in Table 2. The selective omission of predictor variables indicates

that salinity contributes the most to the bias error although the bias error was low (<0.1) across all sites.

Comparing the GLORY'S physical reanalysis data to the observations, the pooled RMSE was 0.68 °C for temperature and 0.18
psu for salinity with R? values of 0.9899 and 0.9841 respectively. The MLR performed similarly when GLORYS temperature
and salinity values were used (R? = 0.9453, RMSE = 11.24 pmol kg'!, RRMSE = 0.55%, MAE = 8.18 umol kg, and bias of
0.00000 umol kg™'; see the Supplemental Materials for more details).

3.3 Performance of imputation methods

Table 6 shows the pooled performance metrics for each cross validated model. These pooled results of the LOOCV indicate
that each of the imputation models performed reasonably well with only 11% of all residuals exceeding 1% error and only 1

of 7424 estimated DIC values exceeded 5% error.

Overall, the MICE and MLR models exhibited the highest > and lowest error (MAE, RMSE and RRMSE), followed by
Kalman Filtering, Linear Interpolation, Exponential Weighted Moving Average, Mean Imputation, Stineman Interpolation,
and Spline Interpolation in order of increasing RMSE. Mean exhibited the least amount of bias, while Spline Imputation
exhibited the greatest amount of bias. Fig. 7 shows the kernel density curves of the residuals from the LOOCV of each

imputation model with individual results from each site. Kernel density plots provide the probability distribution of the
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residuals, where skewness and modalities (peaks) away from zero indicate biasing. Fig. 7 illustrates the error distribution

varied greatly across sites when applying a selected model.

This considerable variability among the performance of each method across sites is further evidenced in Fig. 8. The tile colors
in Fig. 8 indicate the RMSE and R? normalized to their pooled mean values for comparing the relative error and correlation
across sites and methods. The individual cross-validated errors and R? values for each imputation method per site are given as
the numerical value in each tile of the figure. Generally, Fig. 8 provides further evidence that CARICO and FOT exhibit the
greatest error overall, while KEO and Papa exhibit the lowest error. The R* panel in Fig.8 indicates that while some imputation
errors may be low (<1%), they may still show poor correlation with observations. This is the case for statistical models at
MUNDIA as well as mean imputation and spline interpolation models at HOT. The error and correlation across sites are

consistent with the interannual variability shown in Fig.2 and with the MLR behavior shown in Fig. 5.

3.4 Sampling sensitivity

Sampling sensitivity was assessed by the RMSE for randomized artificial gaps totaling 8.33%, 16.67%, 25.00%, 33.33%,
41.67%, 50.00%, and 66.67%. The randomized approach resulted in a mixture of sequential and non-sequential gaps, while
bootstrapping achieved equivalent representation of all months for each assessment. Fig. 9a shows boxplots of the RMSE for
each imputation method as a function of percent of data missing at each site. Spline interpolation resulted in much greater
magnitude and frequency of outliers and necessitated separate scaling. There was significant variability in both the
performance of different imputation methods within sites and within imputation methods across different sites. In general,
mean imputation and MLR converge on a maximum error once data gaps reached 20-40%, whereas the error for other
imputation models is positively correlated with the percent of data missing. While the performance of the cross validated
Kalman filtering model did not differ greatly from the other interpolation methods, Fig. 9A indicates it leads to a greater
number of outliers overall, in particular at BATS, KEO and Papa. Spline interpolation also resulted in a high number of outliers,
with the most extreme error over other methods. Fig. 9B shows the median error as a function of the percent of data missing
with a loess fit. The general lack of a strong correlation shown by Mean imputation and MLR exhibit the least amount of
sensitivity to the number of data gaps in the time series. The MICE model shows the highest level of sensitivity to the percent

of data missing despite performing very well under the LOOCV and low numbers of data gaps.

3.5 Time series gaps and trend assessment

The imputed secondary time series synthesized with the 8 artificial gap scenarios, including sequential 3-month seasonal
durations, 6-month durations centered on summer and winter, and bimonthly and seasonal sampling simulations are shown in
the Fig. 10. Note that time series from each of the sites tested contained data gaps in the observations and synthetic gap
scenarios were applied to the observed time series as-is. Extended gaps were observed at CARTACO (Apr 2001 — Feb 2002),
KEO (Jan 2011 — Oct 2011), and Papa (Aug 2008 — May 2009). Thirteen 3-month, three 4-month and one 5-month data gaps
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present in the Muninda time series. Table 7 shows the number of observations for the total number of months in the time series

at each site and the percent of data missing for each gap scenario tested.

Fig. 10 indicates a significant variability in the performance of each imputation method for the tested gap durations and timing
within the datasets from each site. Note some outliers produced by spline interpolation were cropped in order to maintain
appropriate scaling of the y-axes. Overall, spline interpolation shows the highest propensity for creating outliers, as was also
seen the in the assessment of sampling sensitivity. WMA shows a tendency for exaggerating seasonal minima and maxima,
except in the cases of extended gaps, such as those seen at KEO and Papa. However, WMA remained within the observed
range of annual seasonal cycles at Munida. Kalman filtering performed similarly to WMA. The empirical models (Mean,
MLR, and MICE) better represent consistent seasonal cycles compared to other methods, as expected. However, these do not
perform as well when data deviate significantly from mean seasonal cycle, such as at HOT and CARIACO where the ratio of
interannual variability to seasonal amplitude are high (84% and 46% respectively for nDIC). This is most clear in the high DIC
concentrations observed at HOT during 2012-2013 and low DIC concentrations observed at CARIACO in 2003. KEO and
Papa have the lowest ratio of interannual variability to seasonal amplitude (13%, and 14% respectively) and empirical models
perform well here. This was consistent with the correlation between error and interannual variability evidenced by the LOOCV.
Fig. 11 shows the kernel density curves of the residuals between the infilled and observed nDIC values. The pooled residuals

shown on the right-hand side of Fig. 11 indicate the time and duration of gaps has a significant impact on the error distribution.

Fig. 12 shows the kernel density curves of the residuals between the observed and reconstructed trends in nDIC over time for
each site, method, and gap scenario. Trends from imputed time series that were significantly different than the observed trend
(taken here as a difference in trend that is beyond the uncertainty in the slope) are identified with a black asterisk in Fig. 12.
Synthetic gap filters were applied by prescribed months across all sites rather than site-specific seasonal cycles and thus the
impacts from each filter vary across sites. Generally, the mean imputation and MLR models led to reduced apparent trends

across all sites by pushing the imputed values toward the climatological means. The exception to this was at Papa, where the

bias was positive, jn contrast to the apparent trend in the observations at that site. While this is inherent in mean imputation, it

,(r'

is implicit in this MLR because it utilizes climatological relationships between the predictor variables rather than year-to-year

variations. Linear and Stineman interpolation had the Jeast impact on time series trends because values produced by these
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models are constrained to the range of the observations bracketing the gap and they tend more to preserve the trend as the
observed values change through time. Except for KEO and Munida, Kalman and WMA models generally resulted in a reduced
trends but with less error than the empirical models. The state space approach in the Kalman model attempts to describe the
dynamics through decomposition of the time series resulting in imputation values that are determined from prior observations,
generally resulting predictions that are within the observed seasonal range. The tendency of the exponential weighting in the
WMA is to overestimate when predicting values near maxima and minima _(see Supplemental Material for additional figures).

This is less apparent at Munida where the lower frequency of observations leads to weighting toward the annual means. This
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balance in the WMA behavior explains its tendency for lower impact on the apparent trend. KEO exhibits both the strongest
trend in nDIC and largest seasonal amplitude and the Kalman and WMA models exaggerated the apparent trend here in all
gap scenarios. Spline interpolated values of the extended gap at CARIACO were well below the seasonal minima from previous

years in the time series and were extreme enough to inflate the trend in most of the gap scenarios.

The impacts on trends were greater for the 6-month gaps, bimonthly and seasonal scenarios than for the seasonal filters across
all models (see Supplemental Material for additional figures). This result is consistent with greater error being associated with
higher percentages of missing data, however, there was no direct correlation between imputation errors and the magnitude and
direction of changes in trends. The greatest impacts were observed when using mean imputation and MLR with the seasonal
sampling regime. This appears to be driven by the high percentage of data being replaced with climatological values.
Interestingly, MICE did not result in the same level of discrepancies with observed trends as the other empirical models. This
is likely due to the increased flexibility in the MICE model due to the inclusion of time fields (e.g. month as a predictor
variable) and the fact that the chained equation approach will allow for refitting throughout the time series allowing for year-

to-year variability in the relationships between predictor variables.

3.6 Seasonal cycles, annual means and interannual variability

The monthly means of the imputed time series and their associated uncertainties are shown in Fig. 13. These monthly series
more clearly illustrate the typical behavior of each imputation model described for each time series above. While deviations
from climatological monthly means are apparent across all sites, few of these fell outside of the uncertainty associated with
the observed monthly means, which is represented here by the combined sources of uncertainty in measurements and

calculation of the monthly mean nDIC and does not include the interannual variability of the monthly means.

The effects of imputation on the seasonal maxima and minima, their respective timing and amplitude are shown in Fig. 14,
which also includes residuals for interannual variability, annual means and the combined seasonal error pooled across sites.
Two-way ANOVA of each of these seasonal residuals indicated that the distribution of errors among the different models was
significantly different for seasonal amplitude, maxima, minima, while the difference between gap scenarios was significant
for the timing of seasonal minima. The combined seasonal error was significantly different among both imputation models
and gap scenarios. The residuals of annual means were also significantly different among both imputation models and gap

scenarios, while only model selection resulted in significantly different interannual variability.

The weakening of seasonal amplitude from linear imputation methods is evident in the residuals for all gap scenarios, as is the
tendency for the Kalman and WMA models to increase seasonal amplitude. The autumn gap filter resulted in the greatest
amount error in seasonal amplitude. This was driven by the larger residuals in the seasonal minima since most of the test sites

experience seasonal minima during autumn months. This also affected the timing of seasonal minima with residuals of up to
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3 months. The distribution of the seasonal residuals among the imputation models for the 6-month winter gap were similar to

those for the autumn gap, although the residuals for seasonal minima, maxima and amplitude were largest with the 6-month

(vel

winter gap filter.

The combined seasonal errors indicate that next to mean imputation, MLR does the best out of the other methods tested to
retain the climatological seasonal structure observed at each site. The combined seasonal MAPE was 7.2% MLR, followed by
14.2% for spline interpolation, 15.1% for MICE, 19.2% for Stineman, 19.8% for Kalman, 19.9% for linear interpolation, and
21.1% for WMA. The autumn gap filter resulted in a combined seasonal MAPE of 20.9%. This was just over double that of
all other seasonal gap filters which resulted in error that ranged 8.8 — 9.9%. The seasonal error was largest for the 6-month
winter gap with a median error of 26.4%. Interestingly, the bimonthly sampling regime resulted in a seasonal MAPE of 16.8%,
which was greater than 6-month summer gap (15.1%) and the spring, summer, and winter seasonal gaps, despite greater
dispersed data coverage across seasons compared to these other scenarios. The seasonal MAPE for the seasonal sampling

regime was 12.7% and lower than that exhibited by the more frequently bimonthly sampling.

The pooled residuals for annual means were mostly normally distributed about a median of 0 umol kg™ with some biasing.
When looking at the MAPE the seasonal gap filters and bimonthly sampling regime led to small errors in annual means of
0.1% while the 6-month gaps and seasonal sampling regime were 0.15-0.16%. When the errors are broken down by model
selection, the empirical models showed the greatest deviation from the annual means, with mean imputation having a median
error of 0.16%, MLR 0.16%, and MICE performing slightly better at 0.13%. These were followed by Kalman 0.12%, spline

interpolation and WMA at 0.11%, Stineman and linear interpolation at 0.08% in decreasing order.

The pooled residuals for interannual variability exhibited significantly more biasing and errors. The MAPE of interannual
variability for each gap scenario correlated with the percent of missing data for each gap filter. The seasonal filters had errors
of 7.9-9.3%, followed by bimonthly 12.9%, 16.3% for the 6-month winter and summer gaps, and the seasonal filter at 19.1%.
The error in interannual variability imposed by the models were highest for mean imputation at 22.5%, followed by spline
interpolation 19.3%, WMA 13.7%, Kalman 12.0%, Stineman 9.6%, linear interpolation 9.3%, MLR 10.7% and MICE at 7.9%.

4 Discussion
4.1 MLR estimation of DIC

The development of remote sensing and MLR-based approaches for carbonate chemistry have been used extensively for
extrapolating over broad spatial and temporal scales to investigate regional to basin scale phenomena (Bostock et al., 2013;
Hales et al., 2012; Evans et al., 2013; Lohrenz et al., 2018; Juranek et al., 2011; Alin et al., 2012). Remote sensing applications

have focused primarily on predicting pCO: and estimating air-sea flux in coastal waters to better understand the seasonal and
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spatial heterogeneity of carbon sources and sinks and their implications for regional and global carbon budgets (Hales et al.,
2012; Lohrenz et al., 2018). Many MLR models that predict carbonate parameters have been developed using large
observational data sets that include either dissolved oxygen (O2) (Juranek et al., 2009; Kim et al., 2010; Alin et al., 2012;
Bostock et al., 2013) or nitrate (NO3) (Evans et al., 2013) as a predictor variable along with temperature and salinity. MLR
models that incorporate O2 and NOs can perform particularly well in coastal environments where ecosystem metabolism has
a dominant effect carbonate chemistry (Alin et al., 2012, {Juranek, 2009 #1264)). However, there are currently no remotely
sensed Oz and NOs data products and the chances of glider or float data being available at a given time series site to coincide
with a gap in carbonate measurements are limited. The MLR model presented herein serves as a method for imputing missing
DIC values in time series. This MLR may be trained and implemented using remotely sensed chlorophyll with in-situ
temperature and salinity. However, for cases when in-situ temperature and salinity are concurrently unavailable during gaps
in DIC observations, model-based estimates of temperature and salinity may be used as we have shown here with the Mercator
Ocean Global Reanalysis (GLORYS). Additional data product options could include the Hybrid Coordinate Ocean Model
(HYCOM), the Climate Forecast System Reanalysis (CFSR), and the Bluelink Reanalysis (BRAN), with assessment for a
given location and included in the uncertainty budget (De Souza et al., 2020). Satellite-based estimates of sea surface
temperature and salinity may also be considered although remotely sensed salinity typically has a larger error than the

GLORYS data presented here when compared to observations (Wang et al., 2019).

The variability in the MLR model coefficients indicated that the relationships between DIC, chlorophyll, temperature and
salinity were location-specific and cannot be spatially extrapolated to different water masses and ecosystems. This was

indicated by the variability seen among the correlations of predictor variables to DIC across sites and clearly evidenced by the

differences in model performance between the coastal sites (FOT and CARIACO) and the oceanic sites. However, when the
MLR was trained with sufficient observations to capture the seasonal cycle, it can predict DIC with error that was far less than
the natural variability over seasonal and interannual time scales and was typically on the order of, or better than the variability
on monthly time scales. The RMSE of 4.85 — 10.67 pmol kg™! at the oceanic sites is consistent with other MLR studies which
have ranged from ~4-11 pmol kg! (Evans et al., 2013; Juranek et al., 2011; Bostock et al., 2013), while the RMSE at coastal
sites (FOT and CARIACO) of approximately 20 umol kg™ is larger than exhibited in a California Current study (Alin et al.,
2012). The Alin study, like others (Juranek et al., 2009; Juranek et al., 2011), estimated DIC based on Oz and density,
incorporating a multiplicative relationship. While O2 may improve the performance of MLR approaches, particularly in
biologically active coastal environments, the MLR model here only utilized remotely sensed chlorophyll and temperature and
therefore only applied to the surface layer. O2 and CO2 may become decoupled in the surface layer due to varying time scales
for air sea gas exchange, making O: a less reliable predictor variable for surface concentrations of DIC (Juranek et al., 2011).
Despite somewhat higher RMSE in coastal environments relative to the results of Alin et al. (2012), the MLR model here

exhibited predictive error that is still less than 1% at such sites. With the mean performance among oceanic sites being 8.75
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umol kg™! and within the “weather” requirements adopted by the Global Ocean Acidification Observing Network, we contend

that this is an acceptable approach for temporal interpolation (Newton, 2015).

4.2 DIC time series imputation

Despite the pervasiveness of gaps in climatological data aimed at understanding the ocean carbon cycle, there is limited
evaluation of errors and bias in reconstructed time series due to gap-filling methods outside of the spatiotemporal interpolation
in surface ocean pCOz datasets (Gregor et al., 2019). The MLR presented herein was developed as an empirical method toward
constructing gap-filled regularized DIC time series, specifically for investigating seasonal and interannual variability in the
carbon cycle within the surface layer. A thorough characterization of implementing this model beckoned the comparison to

other commonly used techniques and provided the opportunity to investigate the temporal and seasonal impacts of gap-filling.

Cross validation of the imputation models evaluated in this study indicated that each of these models have reasonably low
(typically <1%) error when imputing a single value at monthly timescales. This was similar to other comparative gap-filling
studies in the fields of soil respiration, net ecosystem exchange, and solar radiation, which focused on higher temporal
resolution data and imputing missing values over time scales from seconds to days (Moffat et al., 2007; Zhao et al., 2020;
Demirhan and Renwick, 2018). For the assessment of annual budgets in the studies of Zhao et al (2020) and Moffat et al
(2007), the error associated with the imputation methods was similar to the uncertainty in the fluxes across sites (Lavoie et
al., 2015). As a result, the choice of imputation model yielded limited improvement on the accuracy of budget estimates.
Similarly we found that the MAPE was under 0.2% for the annual means calculated from imputed time series, which was less

Jhan the relative uncertainty for annual mean concentrations in surface layer DIC were on the order of 0.5-1%. However, Fig.
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14 shows this can be biased positively or negatively depending on imputation method. While imputation resulted in limited
error in annual means, there were significant impacts on the interannual variability, which ranged from 8-19%. Such errors
would have a direct impact on the time of emergence in detecting trends (Sutton et al., 2019; Turk et al., 2019). Furthermore,
our evaluation of reconstructed DIC time series with synthetic gaps showed that selection of imputation method can have
significant effects on the calculated timing, magnitude and structure of seasonal variability as well as longer temporal trends.
The timing and duration of data gaps are important considerations, as are the research objectives for a given study and whether

seasonal or climatic variability are more heavily weighted.

The empirical models evaluated in this study performed better than others selected here to maintain all aspects of the seasonal
structure. Mean imputation, by definition, maintains the climatological seasonal structure perfectly. However, year-to year this
may lead to bias in the seasonal amplitude up or down relative to the temporal position in the time series and any long-term
trend. This is apparent in interannual variability of reconstructed timeseries showing a positive bimodal distribution of the

residuals for mean imputation (see Fig. 14), indicating larger error associated with a higher percent of missing data.
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When looking at the combined seasonal error of each model pooled for all gap scenarios, MLR performs better than twice as
well as all remaining methods and was the only model (other than mean imputation) with a median error under 10%. Looking
at the individual imputed time series, the MLR generally tracks closely with mean imputation but with added interannual
variability. This leads to less error compared to mean imputation as also seen in the distribution of residuals (see Fig. 11). The
MICE model showed considerably more variability in its prediction of DIC values, leading to higher error with a wider
distribution. This was likely due to the MICE method refitting regression models along the time series, whereas the MLR, as

presented here, is fit once using the entire time series.

While mean imputation and MLR provide the best options of the models evaluated here for maintaining the seasonal structure
in the time series, it is at the sacrifice of maintaining the observed trend. These two models led to the greatest discrepancies
between observed and reconstructed trends. Both models act to weaken the trend, pushing toward the climatological mean;
and this becomes more apparent with increasing data loss. Linear and Stineman interpolation models generally do well to
maintain the observed trend in the time series due to them constraining infilled values between existing observations along the
trending time series. This is at the sacrifice of maintaining seasonal structure as is clearly evidenced in Figs. 13 & 14. Even
under the bimonthly sampling regime, these interpolation methods lead to a lower seasonal amplitude and this impact is
worsened by longer duration gaps. Spline interpolation, WMA, Kalman filter and MICE models exhibit inconsistent impacts
on trends across sites and varied gaps. WMA and Kalman performed best at Munida with limited bias, while MICE performed
well during some gap scenarios at BATS (spring, summer, and 6-month summer gap) and KEO (spring, winter, seasonal);
likewise for spline interpolation at BATS (spring, seasonal) and HOT (spring, summer, autumn, 6-month summer gap, and

seasonal).

The impact on trend assessment does not appear correlated with the mean imputation error, bias, or mean seasonal errors;
rather, visual inspection of the imputed time series in Fig. 10 appears to indicate that the timing of data gaps relative to how a
selected model typically responds to such a gap, dictates the bias error for that gap. This bias error may then be exaggerated
for longer durations and accumulate in the reconstructed time series and ultimately impart bias on the trend, even if the mean
errors remain small. While using static month-based gap filters in our assessment, it also appears that in some cases interannual
variability in the seasonal cycle changed the gap filter window. For example, linear and Stineman interpolation applied to the
6-month winter gaps at KEO 2008-2009 and 2015-2016 lead to a higher mean DIC concentration over these windows, leading
to lower trend in these reconstructed time series than was observed. Additionally, spline interpolation was biased at HOT using
the winter gap filter due to the splines exaggerating some of the seasonal transitions 2004 — 2009. The seasonal cycles 2006 —
2009 were further exaggerated using the 6-month winter gap filter leading to bias in the other direction. The correlation

between trend error and imputation performance presents an area for further investigation.
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One-way ANOVA indicated that the distribution of RMSE resulting from each of the gap scenarios were significantly different
for each of the imputation models tested, further indicating the importance of the timing and duration of data gaps. Of the four
seasonal filters, spring data gaps had the least impact (lowest error), while autumn data gaps had the most. Given that these
correspond to the seasonal maxima and minima respectively, it is interesting that selected imputation models are generally
better at predicting the seasonal highs rather than lows. Errors associated with seasonal minima were further exacerbated by
the long 6-month winter gap tested, whereas the 6-month gap centered in summer had errors that were on the order of other

seasonal 3-month gaps. Collectively these results can help guide strategy for both sampling and the handling data gaps.

Bimonthly and seasonal sampling regimes provide economical options for data collection. The median RMSE associated with

the bimonthly and seasonal sampling regimes were 10.4 pmol kg™! and 10.7 umol kg™! respectively. These were less than the

errors associated with summer (11.3 umol kg'') and autumn (12.1 umol kg™') gap filters and similar to the spring (10.7 umol
kg!) and winter RMSE (10.4 pmol kg™). This result is encouraging despite the bimonthly and seasonal sampling regimes

equating, to twice as much data loss compared to the seasonal filters. These sampling regimes also impart similar results with
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respect to maintaining seasonal structure; although, bimonthly sampling leads to greater variance. Bimonthly sampling resulted
in a median RMSE for annual means of 4.0 umol kg'!, equal to a typical measurement uncertainty. This was only slightly
higher for seasonal sampling at 5. umol kg™'. The RMSE for interannual variability for these sampling regimes are less than 3
umol kg™!. These results are promising to indicate that these economic sampling regimes can capture the seasonal cycle with
reasonable uncertainty. However, it must be noted that these pooled errors include the performance and low errors of mean
imputation and MLR and these empirical models require multiple years of data to adequately train. Uncertainty of annual and

seasonal data based on these regimes would be higher.

The results presented here indicate that care should be taken when considering what method to use to fill data gaps in ocean
carbon time series, with criteria for selection including the percent of missing data, gap lengths and site characteristics. Of the
methods we tested, the empirical models performed better than statistical models evaluated in this study with respect to
imputation error and retaining seasonal structure. Mean imputation provides a stable and straightforward approach to filling
longer gaps but leads to greater biases in annual budgets, interannual variability and long-term trends compared to the other

methods evaluated in this study.

MICE appeared to be well suited to environmental time series data that have covariate parameters such as the correlation
between DIC, chlorophyll, temperature and salinity. This could be extended to other nutrients such as phosphate and nitrate as
well as dissolved oxygen in order to train the models used in MICE. MICE also offers the opportunity to impute data gaps

over multiple variables in larger time series data sets. MICE does well to limit biases and did best to reproduce interannual
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variability across the sties tested. MICE performed very well during cross validation but exhibited higher RMSE compared to

MLR when reconstructing the time series, perhaps due to its greater sampling sensitivity shown in Fig. 9.

Our MLR model provides a stable option that performs well over all rates of data missingness once it is sufficiently trained
with field data. This MLR performed equally well using GLORYS reanalysis temperature and salinity data. This approach
provides the benefit of utilizing remotely sensed and modelled data products in the absence of covariate field data. The low
error and uncertainty associated with this MLR approach show promise. Allowing the model to update the fit and coefficients
for the predictor variables over the time series may help reduce biasing of temporal trends while maintaining the ability to
retain seasonal structure. This MLR has potential to be trained with field data over broader spatial extents to assess regional

carbon cycles.

5 Conclusions

This study provides the first comparative assessment of several common gap-filling methods which are easy to implement and
computationally inexpensive that may be applied to ocean carbon time series. Regularized carbonate time series data are
necessary for understanding seasonal dynamics, annual budgets, interannual variability and long-term trends in the ocean
carbon cycle and changes to the ocean carbon sink, which are of particular importance in the face of global climate change.
Our assessment indicates that the amount and distribution of gaps in the data should be a determining factor in choosing an
imputation method that optimizes uncertainty while minimizing bias. Imputed values, however, cannot be treated as
measurements and the uncertainty of imputation methods must be included in the overall uncertainty budget of broader ocean
carbon analyses. The results presented above indicate the performance and behavior of select empirical and statistical
approaches and the methods used provide a simple approach for estimating uncertainty of DIC predicted by a given imputation

method.

This study provides evidence that DIC can be estimated with an empirical MLR approach that utilizes remotely sensed
chlorophyll and may be trained with either in-situ or modelled temperature and salinity depending on the intended application.
This method performs consistently well across 7 disparate ecosystems in oceanic and coastal environments, but the model
coefficients are unique to the water mass and ecosystem and further study is needed to assess the spatial extent over which
regional extrapolation is still valid. However, when using this method to impute data gaps in carbonate time series, it performs
better than several options, particularly for larger gaps. We conclude that when trained with sufficient field data (e.g., captures
the seasonal cycle and some interannual variability), this empirical MLR method predicts DIC with acceptable accuracy from
remotely sensed data and provides the most robust option from those we compared for imputing gaps over a variety of data

gap scenarios.

20

e (Deleted: tel




705

710

715

720

725

730

735

Acknowledgments, Samples, and Data

The authors thank the following for long-term contributions to ocean carbon time series and access to high quality data: the
Institute for Marine Remote Sensing team for making data from the Cariaco Basin publicly available; the members of the
Bermuda Institute of Ocean Sciences for making data from the Bermuda Atlantic Time Series publicly available; the School
of Ocean and Earth Science and Technology at the University of Hawaii Manoa for making data from the Hawaiian Ocean
Time-series publicly available; NOAA’s Pacific Marine Environmental Laboratory for making data from Ocean Station Papa
and the Kuroshio Extension Observatory publicly available; and to New Zealand’s National Institute for Water and
Atmospheric Research for providing data from the Munida Time Series and the Firth of Thames. The data sets and processing
code used for the analyses in this study can be found under the figshare project: A Comparative Assessment of Gap-filling

Techniques for Ocean Carbon Time Series, (https://figshare.com/account/home#/projects/100349). The research presented

herein was supported financially by NIWA Research Scholarship Grant C 17959. The authors declare no conflicts of interests
associated with this research. This publication is based in part upon Hawaii Ocean Time-series observations supported by the
U.S. National Science Foundation (NSF) under Award #1756517. This publication is based in part upon the CARIACO Ocean
Time Series program observations supported by the NSF, the U.S. National Aeronautics and Space Administration (NASA),
and Venezuela's Fondo Nacional de Ciencia, Tecnologia e Innovacion (FONACIT). This publication is based in part upon
Bermuda Atlantic Time-series Study observations supported by the NSF under Award # 0326885. This publication is based in
part upon the Kuroshio Extension Systems Study observations supported by the U.S. National Ocean and Atmospheric
Administration (NOAA) and the Japan Agency for Marine-Earth Science and Technology (JAMSTEC)’s Institute of

(oel

Observational Research for Global Change (IORGC). This publication is based in part upon Ocean Station Papa observations
supported by NOAA, the NSF and University of Washington._These data were provided by NOAA's Center for Satellite
Applications & Research (STAR) and the CoastWatch program and distributed by NOAA/NMFS/SWFSC/ERD. This

publication is also based in part upon observations from the WHOI-Hawaii Ocean Timeseries Site (WHOTS) mooring, which

is supported by the National Oceanic and Atmospheric Administration (NOAA) through the Cooperative Institute for Climate
and Ocean Research (CICOR) under Grant No. NA17RJ1223 and NA0O90AR4320129 to the Woods Hole Oceanographic
Institution, and by National Science Foundation grants OCE-0327513, OCE-752606, and OCE-0926766 to the University of

Hawaii for the Hawaii Ocean Time-series.

References

Alin, S. R., Feely, R. A., Dickson, A. G., Hernandez-Ayon, J. M., Juranek, L. W., Ohman, M. D., and Goericke, R.: Robust empirical
relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise
data (2005-2011), Journal of Geophysical Research: Oceans, 117, n/a-n/a, 10.1029/2011jc007511, 2012.

Astor, Y. M., Scranton, M. 1., Muller-Karger, F., Bohrer, R., and Garcia, J.: fCO2 variability at the CARIACO tropical coastal upwelling
time series station, Marine Chemistry, 97, 245-261, 10.1016/j.marchem.2005.04.001, 2005.

Astor, Y. M., Lorenzoni, L., Thunell, R., Varela, R., Muller-Karger, F., Troccoli, L., Taylor, G. T., Scranton, M. L, Tappa, E., and Rueda,
D.: Interannual variability in sea surface temperature and fCO2 changes in the Cariaco Basin, Deep Sea Research Part II: Topical Studies in
Oceanography, 93, 33-43, 10.1016/j.dsr2.2013.01.002, 2013.

21




740

745

750

755

760

765

770

775

780

785

790

Bates, N., Astor, Y., Church, M., Currie, K., Dore, J., Gonaalez-Davila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santa-
Casiano, M.: A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification,
Oceanography, 27, 126-141, 10.5670/oceanog.2014.16, 2014.

Bates, N. R., Best, M. H. P., Neely, K., Garley, R., Dickson, A. G., and Johnson, R. J.: Detecting anthropogenic carbon dioxide uptake and
ocean acidification in the North Atlantic Ocean, Biogeosciences, 9, 2509-2522, 10.5194/bg-9-2509-2012, 2012.

Bernardello, R., Marinov, 1., Palter, J. B., Sarmiento, J. L., Galbraith, E. D., and Slater, R. D.: Response of the Ocean Natural Carbon Storage
to Projected Twenty-First-Century Climate Change, Journal of Climate, 27, 2033-2053, 10.1175/jcli-d-13-00343.1, 2014.

Bostock, H. C., Mikaloff Fletcher, S. E., and Williams, M. J. M.: Estimating carbonate parameters from hydrographic data for the
intermediate and deep waters of the Southern Hemisphere oceans, Biogeosciences, 10, 6199-6213, 10.5194/bg-10-6199-2013, 2013.
Center, G. M. a. F.: GLORYS12V1 - Global Ocean Physical Reanalysis Product [dataset], 2018.

Coutinho, E. R., Silva, R. M. d., Madeira, J. G. F., Coutinho, P. R. d. O. d. S., Boloy, R. A. M., and Delgado, A. R. S.: Application of
Artificial Neural Networks (ANNs) in the Gap Filling of Meteorological Time Series, Revista Brasileira de Meteorologia, 33, 317-328,
10.1590/0102-7786332013, 2018.

Currie, K. L, Reid, M. R., and Hunter, K. A.: Interannual variability of carbon dioxide drawdown by subantarctic surface water near New
Zealand, Biogeochemistry, 104, 23-34, 10.1007/s10533-009-9355-3, 2011.

de Boyer Montégut, C.: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, Journal
of Geophysical Research, 109, 10.1029/2004jc002378, 2004.

de Souza, J. M. A. C., Couto, P., Soutelino, R., and Roughan, M.: Evaluation of four global ocean reanalysis products for New Zealand
waters—A guide for regional ocean modelling, New Zealand Journal of Marine and Freshwater Research, 55, 132-155,
10.1080/00288330.2020.1713179, 2020.

Demirhan, H. and Renwick, Z.: Missing value imputation for short to mid-term horizontal solar irradiance data, Applied Energy, 225, 998-
1012, 10.1016/j.apenergy.2018.05.054, 2018.

DeVries, T., Le Quere, C., Andrews, O., Berthet, S., Hauck, J., Ilyina, T., Landschutzer, P., Lenton, A., Lima, I. D., Nowicki, M., Schwinger,
J., and Seferian, R.: Decadal trends in the ocean carbon sink, Proc Natl Acad Sci U S A, 116, 11646-11651, 10.1073/pnas.1900371116,
2019.

Dickson, A. G., Wesolowski, D. J., Palmer, D. A., and Mesmer, R. E.: Dissociation Constant of Bisulfate Ion in Aqueous Sodium Chloride
Solutions to 250 oC, The Journal of Physical Chemistry, 94, 7978-7985, 1990.

Dickson, A. G.: The estimation of acid dissociation constants in seawater media from potentiometric titrations with strong base., Marine
Chemistry, 7, 101-109, 1979.

Dore, J. E., Lukas, R., Sadler, D. W., Church, M. J., and Karl, D. M.: Physical and biogeochemical modulation of ocean acidification in the
central North Pacific, Proc Natl Acad Sci U S A, 106, 12235-12240, 10.1073/pnas.0906044106, 2009.

Ducklow, H. W., Doney, S. C., and Steinberg, D. K.: Contributions of long-term research and time-series observations to marine ecology
and biogeochemistry, Ann Rev Mar Sci, 1, 279-302, 10.1146/annurev.marine.010908.163801, 2009.

Evans, W., Mathis, J. T., Winsor, P., Statscewich, H., and Whitledge, T. E.: A regression modeling approach for studying carbonate system
variability in the northern Gulf of Alaska, Journal of Geophysical Research: Oceans, 118, 476-489, 10.1029/2012jc008246, 2013.
Fassbender, A. J., Sabine, C. L., and Cronin, M. F.: Net community production and calcification from 7 years of NOAA Station Papa Mooring
measurements, Global Biogeochemical Cycles, 30, 250-267, 10.1002/2015gb005205, 2016.

Fassbender, A. J., Sabine, C. L., Cronin, M. F., and Sutton, A. J.: Mixed-layer carbon cycling at the Kuroshio Extension Observatory, Global
Biogeochemical Cycles, 10.1002/2016gb005547, 2017.

Fernandez, E. and Lellouche, J. M.: Product User Manual for the Global Ocean Physical Reanalysis product
GLOBAL_REANALYSIS_PHY_001_030, 2021.

Friedlingstein, P., O'Sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., Le
Quéré, C., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S., Aragdo, L. E. O. C., Arneth, A., Arora, V., Bates, N. R., Becker, M., Benoit-
Cattin, A., Bittig, H. C., Bopp, L., Bultan, S., Chandra, N., Chevallier, F., Chini, L. P., Evans, W., Florentie, L., Forster, P. M., Gasser, T.,
Gehlen, M., Gilfillan, D., Gkritzalis, T., Gregor, L., Gruber, N., Harris, L., Hartung, K., Haverd, V., Houghton, R. A, Ilyina, T., Jain, A. K.,
Joetzjer, E., Kadono, K., Kato, E., Kitidis, V., Korsbakken, J. I., Landschiitzer, P., Lefévre, N., Lenton, A., Lienert, S., Liu, Z., Lombardozzi,
D., Marland, G., Metzl, N., Munro, D. R., Nabel, J. E. M. S., Nakaoka, S.-I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P. 1., Pierrot, D.,
Poulter, B., Resplandy, L., Robertson, E., Rodenbeck, C., Schwinger, J., Séférian, R., Skjelvan, L., Smith, A. J. P., Sutton, A. J., Tanhua, T.,
Tans, P. P., Tian, H., Tilbrook, B., van der Werf, G., Vuichard, N., Walker, A. P., Wanninkhof, R., Watson, A. J., Willis, D., Wiltshire, A.
J., Yuan, W., Yue, X., and Zaehle, S.: Global Carbon Budget 2020, Earth System Science Data, 12, 3269-3340, 10.5194/essd-12-3269-2020,
2020.

Gregor, L., Lebehot, A. D., Kok, S., and Scheel Monteiro, P. M.: A comparative assessment of the uncertainties of global surface ocean
CO<sub>2</sub> estimates using a machine-learning ensemble (CSIR-ML6 version 2019a) — have we hit the wall?, Geoscientific Model
Development, 12, 5113-5136, 10.5194/gmd-12-5113-2019, 2019.

Hales, B., Strutton, P. G., Saraceno, M., Letelier, R., Takahashi, T., Feely, R., Sabine, C., and Chavez, F.: Satellite-based prediction of pCO2
in coastal waters of the eastern North Pacific, Progress in Oceanography, 103, 1-15, 10.1016/j.pocean.2012.03.001, 2012.

22



795

800

805

810

815

820

825

830

835

840

Henn, B., Raleigh, M. S., Fisher, A., and Lundquist, J. D.: A Comparison of Methods for Filling Gaps in Hourly Near-Surface Air
Temperature Data, Journal of Hydrometeorology, 14, 929-945, 10.1175/jhm-d-12-027.1, 2013.

Henson, S. A., Beaulieu, C., and Lampitt, R.: Observing climate change trends in ocean biogeochemistry: when and where, Glob Chang
Biol, 22, 1561-1571, 10.1111/gcb.13152, 2016.

James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning with Appliations in R, 2013.

Jean-Pierre Gattuso, Jean-Marie Epitalon, Heloise Lavigne, James Orr, Bernard Gentili, Mathilde Hagens, Andreas Hofmann, Jens-Daniel
Mueller, Aurélien Proye, James Rae, and Soetaert, K.: seacarb [code], 2012.

Jiang, L.-Q., Cai, W.-J., Wanninkhof, R., Wang, Y., and Liiger, H.: Air-sea CO2fluxes on the U.S. South Atlantic Bight: Spatial and seasonal
variability, Journal of Geophysical Research, 113, 10.1029/2007jc004366, 2008.

Johengen, T., Schar, D., Atkinson, M., Pinchuk, A., Purcell, H., Robertson, C., Smith, G. J., and Tamburri, M.: Performance Demonstration
Statement PMEL MAPCO2/Battelle Seaology pCO2 Monitoring System, Chesapeake Biological Laboratory, Solomons, MD, USA, 24,
2009.

Juranek, L. W., Feely, R. A., Gilbert, D., Freeland, H., and Miller, L. A.: Real-time estimation of pH and aragonite saturation state from
Argo profiling floats: Prospects for an autonomous carbon observing strategy, Geophysical Research Letters, 38, n/a-n/a,
10.1029/2011g1048580, 2011.

Juranek, L. W., Feely, R. A., Peterson, W. T., Alin, S. R., Hales, B., Lee, K., Sabine, C. L., and Peterson, J.: A novel method for determination
of aragonite saturation state on the continental shelf of central Oregon using multi-parameter relationships with hydrographic data,
Geophysical Research Letters, 36, 10.1029/2009g1040778, 2009.

Kapsenberg, L. and Hofmann, G. E.: Ocean pH time-series and drivers of variability along the northern Channel Islands, California, USA,
Limnology and Oceanography, 61, 953-968, 10.1002/Ino.10264, 2016.

Kim, T.-W., Lee, K., Feely, R. A., Sabine, C. L., Chen, C.-T. A., Jeong, H. J., and Kim, K. Y.: Prediction of Sea of Japan (East Sea)
acidification over the past 40 years using a multiparameter regression model, Global Biogeochemical Cycles, 24, n/a-n/a,
10.1029/2009gb003637, 2010.

Krissansen-Totton, J., Arney, G. N., and Catling, D. C.: Constraining the climate and ocean pH of the early Earth with a geological carbon
cycle model, Proc Natl Acad Sci U S A, 115, 4105-4110, 10.1073/pnas.1721296115, 2018.

Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., and Gattuso, J. P.: Impacts of ocean
acidification on marine organisms: quantifying sensitivities and interaction with warming, Glob Chang Biol, 19, 1884-1896,
10.1111/geb.12179, 2013.

Laruelle, G. G., Landschiitzer, P., Gruber, N., Tison, J.-L., Delille, B., and Regnier, P.: Global high-resolution monthly
<i>p</i>CO<sub>2</sub> climatology for the coastal ocean derived from neural network interpolation, Biogeosciences, 14, 4545-4561,
10.5194/bg-14-4545-2017, 2017.

Lavoie, M., Phillips, C. L., and Risk, D.: A practical approach for uncertainty quantification of high-frequency soil respiration using Forced
Diffusion chambers, Journal of Geophysical Research: Biogeosciences, 120, 128-146, 10.1002/2014jg002773, 2015.

Law, C. S., Barr, N., Gall, M., Cummings, V., Currie, K., Murdoch, J., Halliday, J., Frost, E., Stevens, C., Plew, D., Vance, J., and Zeldis,
J.: Futureproofing the green-lipped mussel aquaculture industry against ocean acidification, National Institute for Water and Atmospheric
Research/University of Otago, Wellington, New Zealand, 40, 2020.

Little, R. J. A., Rubin, D. B.: Statistical Analysis with Missing Data, 2nd, John Wiley & Sons, Inc., Hoboken, New Jersey, 381 pp.2002.
Lohrenz, S. E., Cai, W. J., Chakraborty, S., Huang, W. J., Guo, X., He, R., Xue, Z., Fennel, K., Howden, S., and Tian, H.: Satellite estimation
of coastal p CO 2 and air-sea flux of carbon dioxide in the northern Gulf of Mexico, Remote Sensing of Environment, 207, 71-83,
10.1016/j.rse.2017.12.039, 2018.

Lueker, T. J., Dickson, A. G., Keeling, C. D., : Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1
and K2 : validation based on laboratory measurements of CO2 in gas and seawater at equilibrium, Marine Chemistry, 70, 105-110, 2000.
M. Drévillon, C. R., J.M. Lellouche, G. Garric, C. Bricaud, O. Hernandez Quality Information Document for Global Ocean Reanalysis
Product GLOBAL_REANALYSIS_PHY_001_030, E.U. Copernicus Marine Service Information, 2021.

Moffat, A. M., Papale, D., Reichstein, M., Hollinger, D. Y., Richardson, A. D., Barr, A. G., Beckstein, C., Braswell, B. H., Churkina, G.,
Desai, A. R., Falge, E., Gove, J. H., Heimann, M., Hui, D., Jarvis, A. J., Kattge, J., Noormets, A., and Stauch, V. J.: Comprehensive
comparison of gap-filling techniques for eddy covariance net carbon fluxes, Agricultural and Forest Meteorology, 147, 209-232,
10.1016/j.agrformet.2007.08.011, 2007.

Moritz, S., Beielstein-Bartz, T.: imputeTS: Time Series Missing Value Imputation in R, 2017.

Newton, J. A., Feely, R. A., Jewett, E. B., Williamson, P., Mathis, J.: Global Ocean Acidification Observing Network: Requirements and
Governance Plan 2015.

O’Reilly, J. E., Maritorena, S., Mitchell, B. G., Siegel, D. A., Carder, K. L., Garver, S. A., Kahru, M., and McClain, C.: Ocean color
chlorophyll algorithms for SeaWiFS, Journal of Geophysical Research, 103, 24,937-924,953, 1998.

Orr, J. C., Epitalon, J.-M., Dickson, A. G., and Gattuso, J.-P.: Routine uncertainty propagation for the marine carbon dioxide system, Marine
Chemistry, 207, 84-107, 10.1016/j.marchem.2018.10.006, 2018.

23



850

855

860

865

870

875

880

885

890

900

Pappas, C., Papalexiou, S. M., and Koutsoyiannis, D.: A quick gap filling of missing hydrometeorological data, Journal of Geophysical
Research: Atmospheres, 119, 9290-9300, 10.1002/2014jd021633, 2014.

Reimer, J. J., Cai, W.-J., Xue, L., Vargas, R., Noakes, S., Hu, X., Signorini, S. R., Mathis, J. T., Feely, R. A., Sutton, A. J., Sabine, C.,
Musielewicz, S., Chen, B., and Wanninkhof, R.: Time series pCO2 at a coastal mooring: Internal consistency, seasonal cycles, and
interannual variability, Continental Shelf Research, 145, 95-108, 10.1016/j.csr.2017.06.022, 2017.

Riebesell, U., Fabry, V.J., Hansson, L., Gattuso, J.: Guide to best practices for ocean acidifcation research and data reporting, Publications
Office of the European Union, Luxembourg, 10.2777/66906, 2011.

Sasse, T. P., McNeil, B. I, and Abramowitz, G.: A new constraint on global air-sea CO2

fluxes using bottle carbon data, Geophysical Research Letters, 40, 1594-1599, 10.1002/grl.50342, 2013.

Sea-Bird Electronics, I.: SBE 45 MicroTSG Thermosalinograph Uer Manual Sea-Bird Electronics, Inc., Bellevue, WA, USA, 58 pp.2020.
Sea-Bird Electronics, I.: SeaFET V2 and SeapHOx V2 User Manual, Sea-Bird Electronics, Inc., Bellevue, WA, USA, 56 pp.2021.
Serrano-Notivoli, R., Tomas-Burguera, M., Begueria, S., Pefla-Angulo, D., Vicente-Serrano, S. M., and Gonzélez-Hidalgo, J.-C.: Gap Filling
of Monthly Temperature Data and Its Effect on Climatic Variability and Trends, Journal of Climate, 32, 7797-7821, 10.1175/jcli-d-19-
0244.1,2019.

Simons, R. A.: Chlorophyll-a, Aqua MODIS, NPP, L3SMI, Global, 4km, Science Quality, 2003-present (Monthly Composite),
NOAA/NMFS/SWFSC/ERD [dataset], '10.5067/AQUA/MODIS/L3M/CHL/2018', 2020a.

Simons, R. A.: 'Chlorophyll, NOAA VIIRS, Science Quality, Global, Level 3, 2012-present, Monthly', NOAA/NMFS/SWFSC/ERD
[dataset], 2020b.

Stineman, R. W.: A consistently well-behaved method of interpolation, Creative Computing, 6, 54-57, 1980.

Sutton, A. J., Feely, R. A., Maenner-Jones, S., Musielwicz, S., Osborne, J., Dietrich, C., Monacci, N., Cross, J., Bott, R., Kozyr, A.,
Andersson, A. J., Bates, N. R., Cai, W.-J., Cronin, M. F., De Carlo, E. H., Hales, B., Howden, S. D., Lee, C. M., Manzello, D. P., McPhaden,
M. J., Meléndez, M., Mickett, J. B., Newton, J. A., Noakes, S. E., Noh, J. H., Olafsdottir, S. R., Salisbury, J. E., Send, U., Trull, T. W.,
Vandemark, D. C., and Weller, R. A.: Autonomous seawater pCO2 and pH time series from 40 surface buoys and the emergence of
anthropogenic trends, Earth System Science Data, 11, 421-439, 10.5194/essd-11-421-2019, 2019.

Sutton, A. J. S., Christopher L.; Dietrich, Colin; Maenner Jones, Stacy; Musielewicz, Sylvia; Bott, Randy; Osborne, John High-resolution
ocean and atmosphere pCO2 time-series measurements from mooring KEO_145E_32N in the North Pacific Ocean (NCEI Accession
0100071) [dataset], https://doi.org/10.3334/cdiac/otg.tsm_keo 145¢_32n, 2012a.

Sutton, A. J. S., Christopher L.; Dietrich, Colin; Maenner Jones, Stacy; Musielewicz, Sylvia; Bott, Randy; Osborne, John High-resolution
ocean and atmosphere pCO2 time-series measurements from mooring Papa_145W_50N in the North Pacific Ocean (NCEI Accession
0100074) [dataset], https://doi.org/10.3334/cdiac/otg.tsm_papa_145w_50n, 2012b.

Takahashi, T., Feely, R. A., Weiss, R. F., Wanninkhof, R. H., Chipman, D. W., Sutherland, S. C., and Takahashi, T. T.: Global air-sea flux
of CO2: an estimate based on measurements of sea-air pCO2 difference, Proc Natl Acad Sci U S A, 94, 8292-8299, 1997.

Takahashi, T. and Sutherland, S. C.: Global ocean surface water partial pressure of CO2 Database: Measurements performed during 1957-
2018 (LDEO Database Version 2018), NOAA National Centers for Environmental Information, Silver Springs, MD, 2019.

Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine,
C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Kortzinger, A.,
Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B.,
Bates, N. R., and de Baar, H. J. W.: Climatological mean and decadal change in surface ocean pCO2, and net sea—air CO2 flux over the
global oceans, Deep Sea Research Part II: Topical Studies in Oceanography, 56, 554-577, 10.1016/j.dsr2.2008.12.009, 2009.

R: A Language and environment for statistical computing. : https://www.R-project.org/, last

Terlouw, G. J., Knor, L. A. C. M., De Carlo, E. H., Drupp, P. S., Mackenzie, F. T., Li, Y. H., Sutton, A. J., Plueddemann, A. J., and Sabine,
C. L.: Hawaii Coastal Seawater CO2 Network: A Statistical Evaluation of a Decade of Observations on Tropical Coral Reefs, Frontiers in
Marine Science, 6, 10.3389/fmars.2019.00226, 2019.

Turk, D., Wang, H., Hu, X,, Gledhill, D. K., Wang, Z. A., Jiang, L., and Cai, W.-J.: Time of Emergence of Surface Ocean Carbon Dioxide
Trends in the North American Coastal Margins in Support of Ocean Acidification Observing System Design, Frontiers in Marine Science,
6, 10.3389/fmars.2019.00091, 2019.

Van Buuren, S., Groothuis-Oudshoorn, K.: MICE: Multivariate Imputation by Chained Equations in R, Journal of Statistical Software, 45,
10.18637/jss.v045.i03, 2011.

Velo, A., Pérez, F. F., Tanhua, T., Gilcoto, M., Rios, A. F., and Key, R. M.: Total alkalinity estimation using MLR and neural network
techniques, Journal of Marine Systems, 111-112, 11-18, 10.1016/j.jmarsys.2012.09.002, 2013.

Wang, J., Sun, W., and Zhang, J.: Sea Surface Salinity Products Validation Based on Triple Match Method, IEEE Journal of Selected Topics
in Applied Earth Observations and Remote Sensing, 12, 4361-4366, 10.1109/jstars.2019.2945486, 2019.

White, 1. R., Royston, P., and Wood, A. M.: Multiple imputation using chained equations: Issues and guidance for practice, Stat Med, 30,
377-399, 10.1002/sim.4067, 2011.

Willcox, S., Meinig, C., Sabine, C., Lawrence-Slavas, N., Richardson, T., Hine, R., and Manley, J.: An Autonomous Mobile Platform for
Underway Surface Carbon Measurements in Open-Ocean and Coastal Waters, Seattle, WA, USA, 8, 2009.

24



905

910

915

Zeebe, R. E., Ridgwell, A., and Zachos, J. C.: Anthropogenic carbon release rate unprecedented during the past 66 million years, Nature
Geoscience, 9, 325-329, 10.1038/nge02681, 2016.

Zeldis, J. R. and Swaney, D. P.: Balance of Catchment and Offshore Nutrient Loading and Biogeochemical Response in Four New Zealand
Coastal Systems: Implications for Resource Management, Estuaries and Coasts, 41, 2240-2259, 10.1007/s12237-018-0432-5, 2018.

Zhao, J., Lange, H., and Meissner, H.: Gap-filling continuously-measured soil respiration data: A highlight of time-series-based methods,
Agricultural and Forest Meteorology, 285-286, 10.1016/j.agrformet.2020.107912, 2020.

90W 60°W

150°€ 180°€ 150°W 120W

Figure 1. Location map of seven ocean carbon time series sites utilized for estimating DIC using an empirical multiple linear
regression model and other empirical and statistical approaches for imputing carbonate time series, including Bermuda Atlantic
Time-series (BATS), Carbon Retention In A Colored Ocean (CARIACO), Firth of Thames (FOT), Hawaiian Ocean Time-series
(HOT), Kuroshio Extension Observatory (KEO), Munida Time-series (Munida), and Ocean Site Papa (Papa). See Table 1 for
additional information about each sampling site.
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Figure 2. Box and whisker plots of monthly mean concentrations of DIC (gray) and salinity normalized nDIC (white) in the mixed
layer at each site, and bar plots showing the seasonal amplitude and interannual variability of DIC (gray) and nDIC (white). Box
and whisker plots are composed of the median (solid line), lower and upper quartiles (box), the minimum and maximum values
beyond the 25" and 75" quantile but < 1.5 interquartile range (whiskers) and values > 1.5 interquartile range (dots). Values above
each box and whisker marker indicate the number of observations per month within the time series.
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930

Figure 3, Time series of DIC (black) and salinity normalized nDIC (grey) for each of the long-term data sets used to assess the
impacts of gap-filling on the seasonal and interannual variability and long-term trends. Trends in seasonally detrended DIC with
uncertainty are given for each site followed by the trend in nDIC below each value, and are shown as the corresponding dashed lines
for each time series. Note that time series BATS, CARIACO and HOT were truncated to Sept. 1997, coincident with remotely sensed
chlorophyll records and the data shown in red were excluded from analyses in this study.
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Figure 4. Composite of predicted and ed DIC using a multiple linear regression model based on measured temperature,

salinity and remotely sensed chlorophyll pooled from test sites: Bermuda Atlantic Time-series Study (BATS); Carbon Retention In
A Colored Ocean (CARIACO); Firth of Thames (FOT); Hawaiian Ocean Time-series (HOT); Kuroshio Extension Observatory
(KEO); Munida Time-series (Munida); Ocean Site Papa (Papa). Box and whisker plots for predictor variable coefficients a, B; B2
and B; are composed of the median (solid line), lower and upper quartiles (box), the minimum and maximum values beyond the 25"
and 75" quantile but < 1.5 interquartile range (whiskers) and values > 1.5 interquartile range (dots).
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Figure 5. Correlations between RMSE and (A) seasonal amplitude and (B) interannual variability across sites
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Normalized
RMSE
FOT 0.26 0.08 - anomoly
due to
variable
HOT 0.21 0.85 3.51 omission
KEO{  0.32 7.4 4.68 I s
2
MUNIDA 0 6.71 0.18 1
PAPA 0.55 - 1.14
Mean 0.48 4.47 245

Chiorophyll ~ Temperature  Salinity

Figure 6. Tile plot showing the change in RMSE per site due to the selective omission of input variables and refitting of the MLR.
945  Tiles are colored to normalized error lies for visualization of relative differences, while RMSE anomalies are given in each
tile for the effect of omitting the predictor variable at each site.
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Figure 7. Kernel density curves of the DIC residuals between gap-filled and observed time series for each imputation model using
Leave One Out Cross Validation, for all observations after Aug 1997 coinciding with availability of remotely sensed chlorophyll
data. Density curves are scaled so area under the curve equals one. Plots show the probability distribution of the residuals for each
model. Skewness and modalities away from 0 indicate biasing.
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Figure 9. (A) Boxplots of RMSE for each gap assessment corresponding to 8.33%, 16.67%, 25%, 33.33%, 41.67%, 50%, 58.33%
and 66.67% data missing rates. Box and whisker plots are composed of the median (solid line), lower and upper quartiles (box), the i
minimum and maximum values beyond the 25" and 75" quantile but < 1.5 interquartile range (whiskers) and values > 1.5 |
interquartile range (dots). Points above box and whiskers indicate the distribution of outliers for each model. (B) Loess fit (red line) :
of the median error for each gap assessment, indicating the sensitivity of the model to increasing data loss. Scales adjusted per site.

v

32

nDIC, umol kg™"




970

BATS CARIACO HOT

Jawwng Buudg

uwnjny

nDIC, umol kg'1

deg seup ow 9 deg sewwng ow 9

Apuowng

|euoseag

2000 2005 2010 2015 2000 2005 2010 2015 2000 2005 2010 2015 2020

© Kalman -+ Mean © MLR = Stineman
4 Linear x MICE v Splne * WMA

Figure 10A. Residuals between imputed and observed nDIC from BATS, CARIACO and HOT. Observations were selectively<+-

removed using eight gap filters: 3-month sequential seasonal filters for Spring, Summer, Autumn, and Winter; 6-month sequential
gaps centered on summer and winter; and bimonthly (odd months) and seasonal (1 max, 1 min. and 2 transition samples) sampling
regimes and gaps were filled using Kalman filter with a state space model, linear interpolation, mean imputation, empirical multiple
linear regression (MLR), multiple imputation by chained equations (MICE), spline interpolation, Stineman interpolation and

exponential weighted moving average (WMA).
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Figure 10B. Residuals between imputed and observed nDIC from KEO, Munida and Papa. Observations were selectively removed ; /

using eight gap filters: 3-month sequential seasonal filters for Spring, Summer, Autumn, and Winter; 6-month sequential gaps
centered on summer and winter; and bimonthly (odd months) and seasonal (1 max, 1 min. and 2 transition samples) sampling
regimes and gaps were filled using Kalman filter with a state space model, linear interpolation, mean imputation, empirical multiple
linear regression (MLR), multiple imputation by chained equations (MICE), spline interpolation, Stineman interpolation and

exponential weighted moving average (WMA),
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Figure 11, Kernel density curves of the nDIC residuals between gap-filled and observed values for each site and synthetic gap filter 11

tested (see also Fig. 10). Residuals pooled across sites are shown as the Mean column on the right-hand side. Density curves are
scaled so area under the curve equals one. Plots show the probability distribution of the residuals. Skewness and modalities away
from 0 indicate biasing.
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Figure 122. Kernel density curves of the nDIC residuals between the trends calculated from observed and gap-filled time series for .(r I 12
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Figure 13A. Residuals between climatological monthly means calculated from observed time series and reconstructed time series of<+

nDIC from BATS, CARIACO, and HOT. Monthly means were calculated from the time series (individual residuals shown in Figs.

10A-B) values infilled by the eight imputation models. Black sticks represent the combined uncertainty for the observations at each

site.
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Figure 14. Boxplots of the residuals between gap-filled and observed time series for: 1 amplitude (difference between 1 .Cl‘ | 14
maximum and minimum); the seasonal maxima and minima, and their respective timing (the month when maxima and minima are
observed); interannual variability (the standard deviation of monthly means); and the 1 means. Combined S 1 Error

represents the combined absolute percent errors of the seasonal amplitude, maximum, minimum, and timing (see Eq.10). Box and
whisker plots are composed of the median (solid line), lower and upper quartiles (box), the minimum and maximum values beyond
the 25" and 75" quantile but < 1.5 interquartile range (whiskers) and values > 1.5 interquartile range (dots). The right-hand column
shows the kernel density curves for each seasonal metric, pooled across all synthetic gap filters. Peaks in the density plots represents
modes where mean errors for each model as associated with each gap filter.
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Table 1. Information about each sampling site with ocean carbonate time series used in our analyses, including Bermuda Atlantic
Time-series (BATS), Carbon Retention In A Coloded Ocean (CARIACO), Firth of Thames (FOT), Hawaiian Ocean Time-series
(HOT), Kuroshio Extension Observatory (KEO), Munida Time-series (Munida), and Ocean Site Papa (Papa). DIC = dissolved
inorganic carbon. TA = total alkalinity. pCO; = partial pressure of carbon dioxide. pH = -log[H']. Gap rate based on expected

sampling frequency.

. Time series Sampling . Time series Sampling Gap Carbonate (Field Code Changed
Site Type Location
Site Region Duration Frequency Rate  Measurements
31.88°N, 1983 -
BATS Sargasso Sea Imonthly 4% DIC/TA
64.26°W present
22.67°N, 1988 -
HOT North Pacific Zmonthly 15% TA/pH
Sampling 158°W present
Site Cariaco 10.5°N, 1995 -
CARIACO monthly 16% TA/pH
Basin 64.67°W present
. 45.8°S 1998 - .
MUNIDA South Pacific 3bimonthly 5% pCO./TA
171.5°E present
50.13°N, 2007 -
PAPA North Pacific 3 hours 26% pH/pCO2
144.83°W present
32.25°N, 2004 -
Mooring | KEO North Pacific 3 hours 18% pH/pCO2
144.56°E present
New Zealand 36.88°S, 2015 -
FOT *15 minutes 59% pH
Coast 175.32°E present

Web addresses for site information and data access:
BATS: http://www.bios.edu/research/projects/bats/
HOT: https://hahana.soest.hawaii.edu/hot/
CARIACO: http://www.imars.usf.edu/cariaco
Munida: https://marinedata.niwa.co.nz/nzoa-on/

1070

Papa: https://www.pmel.noaa.gov/ocs/Papa 1075

KEO: https://www.pmel.noaa.gov/ocs/KEO

40

FOT: https://marinedata.niwa.co.nz/nzoa-on/

“Sampling began in 1998, mooring installed in 2015
'BATS sampling target is at least monthly

2HOT sampling target is approximately monthly

3Munida sampling is typically bimonthly, varying with
conditions and additional coordinated voyages
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Table 2. Pearson correlation coefficients between DIC and chlorophyll, temperature and salinity in the surface layer across test sites.
1085  Asterisks indicate weak correlations (threshold = 0.3).

Pearson Correlation Coefficient

Site
Chlorophyll Temperature Salinity
KEO 0.49 -0.91 0.87
BATS 0.48 -0.73 0.65
Papa -0.34 -0.97 0.73
FOT -0.22%* 0.24* 0.74
HOT 0.1%* -0.51 0.74
CARIACO 0.53 -0.77 0.58
Munida -0.37 -0.87 0.32

Table 3. Years with 12 monthly samples per site. *Actual sampling interval greater than monthly

Time-Series Site Years With 12 Monthly Samples N Years *= ( Formatted: Centred
BATS 1998, 1999, 2000, 2001, 2004, 2005, 2007, 2008, 2012, 2013 10 -« (Formatted Table
T CDeIeted: 1991, 1992, 1993, 1994, 1995, 1996, 1997,
HOT 1998, 2004, 2006 3 B,
o (Deleted: 17
CARIACO 2008 1 . ((Formatted: Centred
Munida NA 0 - k(Formatted: Centred
Papa 2015, 2016, 2017 3 <. ((Formatted: Centred
KEO 2009, 2010, 2014, 2015, 2016 5 - ( Formatted: Centred
FOT 2016 1 « ) (Formatted: Centred
(Formatted: Centred

(Formatted: Centred
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Table 4. Results of cross validated MLR model for estimating DIC at each individual site, and at grouped oceanic (BATS, HOT,
KEO, Munida, Papa) and coastal (FOT, CARIACO) sites, including the mean and standard deviation of each coefficient for N
LOOCYV iterations.
Site RMSE RRMSE R? MAE BIAS N o p1 ] P
BATS 10.67 0.52 0.6611 8.93 0.017 208 401.65£13.75 -13.48%1.56 -3.53£0.03  47.5340.36
CARIACO  20.14 0.96 0.5861 14.94 0.015 153 1446.46+40.07 2.5040.10 -10.1640.12  24.37+1.02
FOT 19.02 0.92 0.3958 15.13 0.099 28 718.32+47.59 8.30+2.53 0.4740.35 37.93£1.26
HOT 8.45 0.42 0.6178 7.40 0.029 204 276.4449.51 -82.88+2.25 -3.47£0.04  51.4440.26
KEO 8.12 0.41 0.9330 6.12 0.061 90 -208.45+16.79 -27.85+1.01 -4.61+0.03  66.36+0.48
MUNIDA 8.15 0.39 0.7564 6.48 0.029 109  1069.114+65.27 4.77+1.05 -7.69+0.08  32.00+1.89
PAPA 4.85 0.24 0.9631 3.74 0.035 94 799.13+£17.96 -16.47+0.52 -6.55+0.02  39.82+0.55
Oceanic 8.75 0.43 0.9567 7.09 0.030 671  412.044356.85 -34.86+32.81  -4.54+1.53  48.35+9.35
Coastal 19.97 0.95 0.6078 14.97 0.028 181  1333.824267.23 3.40+2.32 -8.52+3.86  26.47+5.03
1105  Table 5. Mean model results for selective omission of input variables.
Variable
Omitted RMSE RRMSE R MAE BIAS
none 12.044 0.591 0.9352 8.764 0.030
chlorophyll 12.106 0.594 0.9345 8.849 0.005
temperature 15.526 0.762 0.8923 11.871 0.013
salinity 13.998 0.687 0.9124 10.285 0.022
Table 6. Performance metrics for cross validated imputation models across all sites.
Model RMSE RRMSE R MAE BIAS
Kalman 13.22 0.65 0.9230 8.74 -0.03
Linear 13.34 0.65 0.9218 9.00 -0.02
Mean 13.91 0.68 0.9149 10.51 0.00
MICE 10.78 0.53 0.9489 717 0.07

)



MLR

Spline

Stineman

WMA

11.75
19.89
16.91
13.79

0.58
0.97
0.83
0.68

0.9392
0.8672
0.9013
0.9163

8.57
13.29
11.53

9.69

0.03
-0.43
-0.28
-0.09

1110  Table 7. Percent of missing data associated with synthetic gap filters applied to each time series, the number observations, total
months, and percent missing observations based on a monthly frequency for the time series duration tested.

6-month  6-month n % of
Site Spring  Summer Autumn Winter Summer Winter Bimonthly Seasonal Months  Missing
Obs.
Gap Gap Obs.
BATS 32% 33% 33% 29% 56% 53% 53% 71% 212 233 9%
CARIACO 42% 42% 41% 41% 62% 60% 61% 75% 160 206 22%
HOT 41% 39% 39% 39% 61% 59% 59% 74% 206 256 20%
KEO 33% 32% 35% 35% 53% 59% 57% 1% 105 119 12%
Munida 67% 67% 69% 67% 78% 79% 63% 85% 109 252 57%
Papa 30% 37% 34% 34% 55% 57% 55% 70% 118 134 12%
1115

43



