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Abstract. Regularized time series of ocean carbon data are necessary for assessing seasonal dynamics, annual budgets, and 

interannual and climatic variability. There are, however, no standardized methods for filling data gaps, and limited evaluation 

of the impacts on uncertainty in the reconstructed time series when using various imputation methods. Here we present an 

empirical multivariate linear regression (MLR) model to estimate the concentration of dissolved inorganic carbon (DIC) in the 

surface ocean, that can utilize remotely sensed and modelled data to fill data gaps. This MLR was evaluated against seven 20 

other imputation models using data from seven long-term monitoring sites in a comparative assessment of gap-filling 

performance and resulting impacts on variability in the reconstructed time series. Methods evaluated included three empirical 

models: MLR, mean imputation, and multiple imputation by chained equation (MICE); and five statistical models: linear, 

spline, and Stineman interpolation, exponential weighted moving average and Kalman filtering with a state space model. Cross 

validation was used to determine model error and bias, while a bootstrapping approach was employed to determine sensitivity 25 

to varying data gap lengths. A series of synthetic gap filters, including 3-month seasonal gaps (spring, summer, autumn winter), 

6-month gaps (centered on summer and winter) as well as bimonthly and seasonal (4 samples per year) sampling regimes were 

applied to each time series to evaluate the impacts of timing and duration of data gaps on seasonal structure, annual means, 

interannual variability and long-term trends. All models were fit to time series of monthly mean DIC, with MLR and MICE 

models also applied to both measured and modelled temperature and salinity with remotely sensed chlorophyll. Our MLR 30 

estimated DIC with a mean error of 8.8 µmol kg-1 among 5 oceanic sites and 20.0 µmol kg-1 for 2 coastal sites. The MLR 

performance indicated reanalysis data, such as GLORYS, can be utilized in the absence of field measurements without 

increasing error in DIC estimates. Of the methods evaluated in this study, empirical models did better than statistical models 

in retaining observed seasonal structure, but led to greater bias in annual means, interannual variability and trends compared 

to statistical models. Our MLR proved to be a robust option for imputing data gaps over varied durations and may be trained 35 

with either in-situ or modelled data depending on application. This study indicates that the number and distribution of data 
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gaps are important factors in selecting a model that optimizes uncertainty while minimizing bias and subsequently enables  

robust strategies for observational sampling.  

 

1 Introduction  40 

Despite continued policy development aimed at combating climate change and declines in carbon dioxide (CO2) emissions by 

many countries over the last 10-15 years, global fossil fuel consumption continues to rise (Friedlingstein et al., 2020). We are 

now in unchartered territory, with anthropogenic carbon emissions over the last two and half centuries eclipsing that in the 

geological record of the past 66 million years, leaving the future of our marine and terrestrial ecosystems uncertain (Zeebe et 

al., 2016). Our ability to predict future conditions, affect policy and effectively manage climate change relies on understanding 45 

the feedbacks between climate, ecosystems, and biogeochemical cycles.  To that end, the value of sustained time series 

observations has been well recognized for decades, as they are essential to characterizing processes, quantifying natural 

variability, identifying regime shifts and detecting long-term changes in our environment (Ducklow et al., 2009). Monitoring 

ocean carbon over the last three decades has revealed the decline in ocean pH concurrent with the uptake of 25% of 

anthropogenic CO2 by the global ocean (Friedlingstein et al., 2020). Quantification of the ocean carbon sink and the impacts 50 

of ocean acidification remain actively researched given the significance of the ocean’s role in controlling climate feedbacks as 

well as the ecological and economical importance of our marine systems (Kroeker et al., 2013; Devries et al., 2019; Krissansen-

Totton et al., 2018; Bernardello et al., 2014). Ocean carbon programs have led to a growth in surface pCO2 data from 250,000 

global measurements in 1997 to 13.5 million in 2019; however, continuity and coverage of this inorganic carbon data in space 

and time remains a challenge for understanding seasonal and interannual variability (Takahashi and Sutherland, 2019; 55 

Takahashi et al., 1997).  

1.1 Filling the gaps 

Consistent sampling intervals for physical and biogeochemical parameters over several decades are critical for understanding 

ocean processes, establishing variability and detecting long-term changes (Henson et al., 2016). In addition to constraints 

arising from limitations in technology, logistics and funding, ocean science takes place in a particularly harsh environment 60 

where data loss is a common occurrence. Whether from equipment failure, cancelled field campaigns, budget cuts, or a global 

pandemic, gaps in time series are ubiquitous and must be appropriately filled in order to carry out various statistical analyses 

and modelling applications which require serially complete data sets.  

Machine learning techniques such as neural network methods, regression trees, and random forests have been widely used to 

fill gaps in meteorological and some oceanographic data, including surface ocean pCO2 (Laruelle et al., 2017; Sasse et al., 65 

2013; Coutinho et al., 2018). While these methods are successful in the context of geospatial data, there remains little 
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standardization in methods for imputing data gaps in oceanographic time series, particularly carbonate chemistry, at monitoring 

sites where there are not sufficiently close neighboring values (in time or space) that can be leveraged. Linear interpolation 

and mean imputation are among the most common methods for handling missing data over short to moderate time scales 

(Reimer et al., 2017; Kapsenberg and Hofmann, 2016; Currie et al., 2011), but comparative assessment and validation of 70 

approaches overall is lacking. Gap-filling studies and standardization have been pursued in other terrestrial and atmospheric 

disciplines, such as eddy covariance carbon flux, solar radiation, air temperature, surface hydrology, and soil respiration 

(Moffat et al., 2007; Demirhan and Renwick, 2018; Zhao et al., 2020; Henn et al., 2013; Pappas et al., 2014), many of which 

focused on high temporal resolution data and imputing missing values over time scales from seconds to days. However it is 

important that the imputation method not only focuses on minimizing error but also minimizing bias, as the preservation of 75 

variance and trends is imperative for accurate analyses and understanding of climate (Serrano-Notivoli et al., 2019).  

Here we present an empirical multiple linear regression (MLR) model for estimating site-specific DIC concentration in the 

surface ocean using remotely sensed data products to fill gaps in field measurement records. We compare this MLR approach 

to other commonly used and computationally inexpensive methods, including two empirical and five statistical methods. Using 

established carbonate time series from varied ecosystem types, we evaluate the sensitivity, error, and bias of these select 80 

methods and investigate the impacts of gap-filling on seasonal and interannual variability and long-term trends. Although the 

focus here is on DIC time series, the principles of this study should extend to other carbonate parameters.  

2 Materials and Methods 

2.1 Field data 

We used data from the Bermuda Atlantic Time-series [BATS] (adapted from Bates et al., 2012), Carbon Retention In A 85 

Colored Ocean [CARIACO] (Astor et al., 2005; Astor et al., 2013), Firth of Thames [FOT] (adapted from Law et al., 2020), 

Hawaiian Ocean Time-series [HOT] (adapted from Dore et al., 2009), Kuroshio Extension Observatory [KEO] (Sutton, 2012a; 

Fassbender et al., 2017), Munida Time-series [Munida] (adapted from Currie et al., 2011), and Ocean Site Papa [Papa] (Sutton, 

2012b; Fassbender et al., 2016). These time series present data describing significant ecological and environmental variability 

from different ocean basins and coastal regions (Fig. 1), which have been characterized in other studies (Bates et al., 2014; 90 

Fassbender et al., 2016; Fassbender et al., 2017; Zeldis and Swaney, 2018). Additionally, these time series have sufficient 

sampling frequencies and length of record to assess the monthly mean climatological conditions and seasonal cycle, so to allow 

inclusion of empirical imputation methods in this comparative assessment. Table 1 lists the site details including the carbonate 
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parameters measured, the duration of the time series, and the gap rate based on the expected sampling frequency for each of 

the seven sites.  95 

All mixed layer temperature, salinity and dissolved inorganic carbon (DIC) data were averaged to monthly means for each 

time series site. For non-moored sampling sites with bottle sampling (BATS, CARIACO, HOT, Munida), monthly values were 

treated as the monthly mean condition. For each site the mixed layer depth was determined according to the temperature profile 

and a threshold of DT > 0.2 oC relative to 10 m depth (De Boyer Montégut, 2004). For sites that did not measure DIC directly 

(Papa, KEO, FOT), the measured carbonate parameters were used with in situ temperature and salinity to calculate the DIC 100 

concentration and the uncertainty of calculation using the functions carb and errors, respectively within the R package seacarb 

(Jean-Pierre Gattuso et al., 2012; Orr et al., 2018) with K1, K2 from Lueker (2000); Kf from Dickson (1979); and Ks from 

Dickson et al. (1990); on the appropriate pH scale, where used, in R version 3.5.2 (R Core Team, 2020). DIC at Papa and KEO 

was calculated from measured pCO2 and estimated total alkalinity (TA) based on the salinity-alkalinity relationships 

determined by Fassbender et al. (2016) and (2017) respectively. DIC at FOT was calculated from measured pH (SeaFet) and 105 

estimated TA based on the salinity-alkalinity relationship at that site (see supplemental material for more detail).  

2.2 Remotely sensed and modelled data products 

Monthly composites of satellite-derived surface ocean chlorophyll (O’Reilly et al., 1998) from MODIS data (Simons, 2020a) 

were paired with field data from each site except FOT. The mean surface chlorophyll was taken from a ~20 km2 cell 

surrounding each of these sampling locations. For FOT, surface chlorophyll was estimated from monthly composite of VIIRS 110 

data (Simons, 2020b), with the mean from a ~ 4 km2 cell surrounding the mooring used in this case given the greater spatial 

heterogeneity in this semi-closed coastal system. VIIRS also showed greater daily coverage of the FOT mooring location 

compared to MODIS, indicating a better representation of the monthly mean condition (see Supplemental Material).  

 

Modelled monthly mean temperature and salinity profiles for each site were extracted from the GLORYS12V1 Global Ocean 115 

Physical Reanalysis Product (Global Monitoring and Forecasting Center, 2018; Fernandez and Lellouche, 2021; M. Drévillon, 

2021). Temperature and salinity were averaged for the mixed layer depth in a ~20 km2 cell surrounding each sampling location. 

GLORYS temperature and salinity were used only with empirical models where observations were either not available or 

synthetically removed for testing purposes. GLORYS temperature and salinity values were regressed against synchronized 

observations to quantify errors for each site (see Supplemental Materials).  120 

2.3 Estimation of DIC with MLR 

DIC, pCO2 and other carbonate parameters have been successfully estimated in a variety of marine systems using multiple 

linear regression (MLR) approaches (Bostock et al., 2013; Velo et al., 2013; Hales et al., 2012; Lohrenz et al., 2018). In 
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addition, empirical estimates of pCO2 using remotely sensed chlorophyll and sea surface temperature (SST) have proven useful 

for investigating seasonal and interannual dynamics across spatial gradients, particularly in coastal systems where sustained 125 

observations may be limited (Hales et al., 2012; Lohrenz et al., 2018). We investigated using an MLR model to estimate DIC 

from remotely sensed chlorophyll, SST and salinity in order to fill gaps in the seven monthly time series data. Parametric 

correlation matrices of DIC with remote chlorophyll, in situ SST and salinity showed significant linear correlation (Table 2), 

across most sites, with temperature having the strongest and most consistent correlation with DIC.  

DIC at time t can be estimated using MLR relationships described in the form of Equation 1. 130 

𝐸(𝐷𝐼𝐶!) = 	𝛼 + 𝛽"𝐶ℎ𝑙! + 𝛽#𝑇! + 	𝛽$𝑆!,        (1) 

where 𝐷𝐼𝐶 has units of µmuol kg-1, 𝐶ℎ𝑙 has units of mg m-3, 𝑇 has units of oC, and 𝑆 has units of psu and the coefficients 𝛼 

and 𝛽" through 𝛽$ are the regression coefficients fit using a generalized linear model with a Gaussian error distribution and 

link function. The sensitivity to each predictor variable was assessed by selectively omitting chlorophyll, temperature, and 

salinity from the model fit.   135 

 

The MLR model was also fit using GLORYS temperature and salinity data for each site to investigate its use for imputing 

gaps in observations, assuming no in situ measurements are available.  

2.4 Imputation of DIC time series 

Six general methods were compared for imputing DIC time series: classical, interpolation, Kalman filtering, weighted moving 140 

average (WMA) and regression and multiple imputation by chained equations (MICE). To apply the six methods, it must be 

assumed that the gaps in the time series are data ‘Missing at Random’, i.e. not missing systematically (Little, 2002). Given this 

assumption, these methods can be used to handle data gaps with limited biasing. This is suitable in our study where synthetic 

gaps are created using random number generators. However, this may not always be appropriate such as when data gaps are 

the result of systematic field site issues such as seasonal sea ice cover, season-specific sampling regimes, or seasonal 145 

biofouling.  

 

The primary goal was imputing timeseries at monthly resolution to investigate variability and trends over seasonal, interannual 

and decadal timescales. Therefore, random sampling and persistence methods were not considered as these methods can lead 

to distortion of seasonal structure in the time series. Within the 6 methods chosen, 8 models were evaluated. These imputation 150 

models vary in complexity and flexibility and represent a range that have been widely applied to time series data, with 6 of the 

8 models utilizing formalized packages (Demirhan and Renwick, 2018; Moritz, 2017). These methods limit overfitting and 

can be implemented with relative ease and low computational cost. Artificial data gaps were created as described below 

(Section 2.5) for the time series from each site in order to assess the performance of each method. In addition to the MLR 

model described by Equation 1, alternate models are described next. 155 
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The classical (and simplest) method applied was mean imputation, where missing values were replaced by the monthly 

climatological average. The climatological mean was taken as the monthly averaged means across the duration of the time 

series, which was over 1-2 decades in most cases.   Linear interpolation was used to estimate missing values by drawing a 

straight line between existing values in the time series and using the slope of each of these segments to determine the value of 160 

DIC at a time point(s) between known values. Spline interpolation utilized piecewise cubic polynomials to fit a curve with 

knots at 𝜉%, K = 1,2…k, to the data, providing more flexibility with the ability to interpolate between each point of the training 

data. Stineman interpolation was developed to provide the flexibility of polynomials while reducing unrealistic estimations 

during abrupt changes in slope within the time series (Stineman, 1980) (see Demirhan and Renwick (2018) for algorithm 

details). Kalman filtering was implemented using a structural model. In this case a linear Gaussian state-space model was fit 165 

to the univariate time series by maximum likelihood based on decomposition (Demirhan and Renwick, 2018). A single 

weighted moving average model was evaluated. Missing values were replaced by weighted average of observations in the 

averaging window with size 𝑘 = ±2 and weighting was exponential such that the exponent increases linearly to the ends of 

the window, here ¼, ½… ½, ¼.  

 170 

Multiple Imputation by Chained Equations (MICE), also known as fully conditional specification (FCS) and sequential 

regression multivariate imputation, was applied to time series data with artificial gaps and fit using the mice library (Van 

Buuren, 2011) in R version 3.5.2 (R Core Team, 2020), with function call mice(data = TimeSeries$data, m = 5, method = 

"pmm", maxit = 20), where m is the number of multiple imputations,  method is predictive mean matching and maxit is the 

maximum number of iterations. This method progresses through the following steps: 1) missing values are filled by random 175 

sampling from the observations for a given variable; 2) the first variable with missing values is regressed against all other 

variables, while using only those with observed values; 3) moving iteratively, the remaining variables are regressed against 

the others but now including imputed values fitted by the regression models (White et al., 2011). This process is repeated 

according to the set iterations, in this case 20, to allow stabilization and convergence of the results. Regression models used in 

MICE allow for both linear and nonlinear relationships across variables, making this method very flexible.  180 

2.5 Model performance and comparison 

Each imputation model was evaluated using two schemes that assessed model performance and sampling sensitivity.  

2.5.1 Cross validation 

Leave one out cross validation (LOOCV) was chosen to assess the predictive error of the MLR model as well as the standard 

error for each imputation method. In this approach a single observation (𝐷𝐼𝐶!&") is held out for validation while the remaining 185 

observations (𝐷𝐼𝐶!&#…𝐷𝐼𝐶!&') are used for training the model. This process is repeated n-1 times, allowing each data point 

in the time series to be treated as both training data and testing data, thus maximizing the efficiency when the data sets are of 
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modest sampling size. Predicted DIC values and model parameters determined in each iteration were collated for the time 

series and performance statistics were evaluated on the total output.  

2.5.2 Bootstrap sampling sensitivity 190 

A bootstrapping approach was used to evaluate the sensitivity of the imputation models to the amount of data gaps in each 

time series. For each year of input data in the time series, artificial gaps were created by random removal of 1:8 monthly 

samples resulting in data gaps of 8.33%, 16.67%, 25.00%, 33.33%, 41.67%, 50.00%, and 66.67%. Random sampling was 

replicated 1000 times for each gap amount to ensure that an even distribution of sampling combinations was evaluated to 

assess the impacts of degree of data gaps on imputation error. Only years with 12 monthly samples were used to evaluate the 195 

sampling sensitivity in order to ensure consistency. It should be noted that most data sets used in this study do not have monthly 

mean data available for all years. Table 3 shows which years of data were used from each site and the distribution of years 

across sites.  

2.5.3 Statistical performance metrics 

The performance of each model was evaluated by comparing the predicted DIC values to the observed DIC measurements. 200 

The performance metrics included the coefficient of (multiple) determination (𝑅#) for indicating correlation; the root mean 

square error (RMSE), the relative root mean square error (RRMSE), and the mean absolute error (MAE) for establishing the 

distribution of individual errors; and the bias error (BIAS) for indicating bias induced on annual sums. Percent error (PE) and 

mean absolute percent error (MAPE) were used to evaluate particular metrics for assessing impacts of imputation on seasonal 

structure and long-term trends. Performance metrics were calculated according to Equations 2-8, where 𝑜( and 𝑝( denote the 205 

individual observed and predicted values respectively.  

𝑹𝟐 =	 {∑(𝒑𝒊.	𝒑0)(𝒐𝒊.𝒐0)}
𝟐

∑(𝒑𝒊.	𝒑0)𝟐∑(𝒐𝒊.𝒐0)𝟐
           (2) 

𝑹𝑴𝑺𝑬 =	<𝟏
𝑵
∑(𝒑𝒊 − 𝒐𝒊)𝟐           

 (3) 

𝑹𝑹𝑴𝑺𝑬 =	<∑(𝒑𝒊.𝒐𝒊)𝟐

∑(𝒐𝒊)𝟐
           (4) 210 

𝑴𝑨𝑬 =	 𝟏
𝑵
∑|𝒑𝒊 − 𝒐𝒊|           (5) 

𝑩𝑰𝑨𝑺 = 𝟏
𝑵
∑(𝒑𝒊 − 𝒐𝒊)	           (6) 

𝑷𝑬 =	 F𝒑𝒊.𝒐𝒊
𝒐𝒊
F ∙ 𝟏𝟎𝟎%            (7) 

𝑴𝑨𝑷𝑬 =	 𝟏𝟎𝟎
𝑵
∑ F𝒑𝒊.𝒐𝒊

𝒐𝒊
F            (8) 
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2.6 Imputation effects on seasonal structure, interannual variability and long-term trends  215 

To evaluate the impacts of imputation errors on seasonal structure, interannual variability and long-term trends we 

 compared the observed and imputed time series using 8 synthetic gap schemes. Firstly, spring, summer, autumn, and winter 

seasonal gaps were evaluated by selectively removing 3-month windows from the DIC time series. Two longer 6-month 

sequential gaps scenarios were also used, one centered on winter and the other on summer. Lastly, two economical sampling 

schemes were evaluated, bimonthly (odd months only) and seasonal, in which only January, April, July and October were 220 

retained.  

 

To evaluate the impacts on seasonal cycles and long-term trends, DIC was first normalized to the mean salinity (𝑆8) at each 

site per Equation 9.  

𝒏𝑫𝑰𝑪𝒕 =	
𝑺𝟎
𝑺𝒕
	 ∙ 𝑫𝑰𝑪𝒕            (9) 225 

The 8 imputation methods were applied to each of these 8 synthetic gap schemes for the full time series of nDIC at BATS, 

CARIACO, HOT, KEO, Munida, and Papa. Trends in the observed and imputed data were determined by least squares linear 

regression of the seasonally detrended time series, where the seasonal signal in each time series was removed according to 

Equation 10, following the methods in (Takahashi et al., 2009). 

𝒏𝑫𝑰𝑪𝒕,𝒅𝒆𝒔𝒆𝒂𝒔𝒐𝒏𝒆𝒅 =	𝒏𝑫𝑰𝑪𝒕 −	N𝒏𝑫𝑰𝑪𝒕OOOOOOOO −	𝒏𝑫𝑰𝑪PPPPPPPQ,        230 
 (10) 

where 𝑛𝐷𝐼𝐶!OOOOOOOO is the climatological monthly mean and 𝑛𝐷𝐼𝐶PPPPPPP is the climatological mean. FOT was not included in the evaluation 

because the time series of measured pH at this site is limited to 2015. To test the realistic application of the MLR and MICE 

models, it was assumed that measurement gaps resulted in missing observations of temperature and salinity along with DIC. 

While this may not always be the case, this allowed us to test using these empirical models to estimate DIC using a combination 235 

of remotely sensed chlorophyll data and modelled temperature and salinity in cases where all measurements are unavailable 

due to operational or logistical issues.  

 

The PE of the time-regressed trends in nDIC were evaluated for each imputed time series compared to the observed trend in 

the data sets from each site. The mean seasonal cycle was evaluated as the monthly averages of the observed and imputed time 240 

series. Seasonal maximum and minimum concentrations of nDIC and their associated timing (which month) were compared. 

The seasonal amplitude, which was taken as the difference between maxima and minima of the climatological monthly means, 

and the interannual variability, which was taken as the standard deviation of the monthly means were also compared. Seasonal 

errors were combined according to Equation 11 for the purpose of comparing the overall impacts of each imputation method 

on seasonal structure. 245 

𝑷𝑬(𝒔𝒆𝒂𝒔𝒐𝒏𝒂𝒍) = 	<𝑷𝑬𝒂𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆𝟐 +𝑷𝑬𝒎𝒂𝒙𝟐 +𝑷𝑬𝒎𝒊𝒏𝟐 +𝑷𝑬𝒎𝒂𝒙		𝒕𝒊𝒎𝒊𝒏𝒈𝟐 +𝑷𝑬𝒎𝒊𝒏	𝒕𝒊𝒎𝒊𝒏𝒈𝟐      (11) 
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2.7 Uncertainty budget 

The sources of uncertainty accounted for here include measurement uncertainty, natural variability and the effect of monthly 

averaging, the effect of salinity normalization and the uncertainty associated with gap-filling. While individual measurement 

uncertainties may vary, measurement uncertainties across all sites in this study were treated as the following:  salinity: 0.005 250 

psu, temperature: 0.002 oC; pH: 0.05 units; pCO2: 3 µatm; TA: 3 µmol kg-1; DIC: 3 µmol kg-1. These values were based upon 

reported uncertainties for  in-situ temperature, salinity and pH (Sea-Bird Electronics, 2020, 2021) and pCO2 (Jiang et al., 2008; 

Willcox et al., 2009; Johengen et al., 2009), and lab-based measurements of DIC and TA (Riebesell, 2011). Additional sources 

of uncertainty include: (1) estimation of monthly means, (2) estimation of TA from salinity (sALK), (3) calculation of DIC 

from sALK/pCO2, (4) calculation of DIC from sALK/pH, and (5) salinity normalization of DIC (nDIC). Uncertainty associated 255 

with the calculation of DIC from other carbonate measurements combinations (e.g. sALK/pCO2) was determined using the R 

package seacarb as described above. Uncertainty in TA estimated by salinity was taken as the 1.96 × RMSE of the S-TA 

regression and propagated into DIC where needed.  

 

Since the moored data here is averaged to monthly means for comparison with other observational time series, the uncertainty 260 

associated with this averaging must be accounted for. Additionally, the observational time series used in this study were treated 

as monthly means and the uncertainty associated with the natural variability at these sites must be estimated. The uncertainty 

associated with the averaging of monthly means was calculated by Equation 12.  

𝒖𝒙0 =	
𝝈𝒙&𝒕𝒙&
E𝒏𝒙&

             (12) 

where 𝜎F̅ is the standard deviation of the measurements within a month, 𝑡F̅ is the t-statistic, the ratio of the difference between 265 

the estimated and hypothesized value to the standard error, and n is the number of measurements within a month (James, 2013). 

Uncertainty associated with monthly averaging was assessed directly for moored sites KEO and Papa. Because HOT represents 

a monthly sampled site, moored sensors data from 2016-2017 at WHOT (Terlouw et al., 2019) were used to evaluate the daily 

variability at this site and estimate the uncertainty associated with treating HOT samples as monthly averages. Uncertainty 

associated with monthly averaging for KEO, Papa, and WHOT ranged between 3-4 µmol kg-1 for DIC and 0.03 – 0.05 psu for 270 

salinity and the upper limits of 4.00 µmol kg-1 and 0.05 psu were applied as  𝑢F̅ in the combined uncertainty for DIC to all 

sites. 

 

The uncertainty imposed from salinity normalization of DIC is calculated by taking the partial derivative of DIC with respect 

to salinity in Equation 8 and accounting for the uncertainty in salinity measurements and monthly averaging as given in 275 

Equation 13.  

𝒖𝒏𝑫𝑰𝑪𝒊 =	<]
−𝑺𝟎
𝑺𝒊𝟐
^
𝟐
+ 𝒖𝑺𝟎

𝟐 + 𝒖𝑺𝒊
𝟐            (13) 
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Uncertainty in long-term trends was evaluated on the slope of the linear regression of the time series data according to Equation 

14.  

𝒖𝒎 = 𝒎<
𝟏
𝑹𝟐I .𝟏

𝒏.𝟐
             (14) 280 

where 𝑚 is the slope and 𝑅 is the coefficient of correlation. Combined uncertainty for imputed DIC values was evaluated by 

adding the sources of uncertainty in quadrature shown in equation 15.  

𝒖𝒄(𝑫𝑰𝑪) =	<𝒖𝑫𝑰𝑪𝒊
𝟐 + 𝒖𝑫𝑰𝑪NNNNNN

𝟐 + 𝒖𝒏𝑫𝑰𝑪𝒊
𝟐 +𝑹𝑴𝑺𝑬𝒎𝒆𝒕𝒉𝒐𝒅𝟐          (15) 

3 Results 

3.1 Seasonal cycles, interannual variability and long-term trends across sites 285 

Box and whisker plots (Fig. 2) show the seasonal climatology and interannual variability for DIC and nDIC across the sites 

tested. The bar plots in Fig. 2 show the seasonal amplitude, which was taken as the difference between maxima and minima 

of the climatological monthly means, and the interannual variability, which was taken as the standard deviation of the monthly 

means. The amplitude of the seasonal cycle of DIC spanned 11.5 – 90.1 µmol kg-1 across sites, while interannual variability 

ranged from 8.3– 22.6 µmol kg-1. When the DIC is normalized to salinity the ranges of the seasonal cycles and interannual 290 

variability for nDIC become 12.7– 65.8 µmol kg-1 and 7.6– 20.9 µmol kg-1 respectively. The seasonal cycles, including 

amplitude, timing and interannual variability illustrate diversity among the test sites so enabling robust assessment of the 

empirical MLR model for surface layer DIC and other imputation methods. Figure 3 shows the long-term trends in DIC and 

nDIC time series from each site except FOT. Interestingly, with seasonal detrending, Papa uniquely exhibits a decline in DIC 

over the 10-year record used herein. Note here that BATS, CARIACO, and HOT time series were truncated to start at Sep 295 

1997 when remotely sensed chlorophyll can be utilized in the empirical models (MLR and MICE) and compared to the other 

statistical approaches. 

3.2 DIC estimation by MLR 

Fig. 4 shows the performance of the MLR model to estimate DIC using the available time series data from each site (N = 897). 

The cross validated MLR exhibited an R2 of 0.93 with an RMSE of 11.75 µmol kg-1, RRMSE of 0.57%, MAE of 8.57 µmol 300 

kg-1 and bias of 0.030 µmol kg-1. The high R2 and low error and bias indicate that the MLR model worked well for prediction 

of DIC from remotely sensed chlorophyll, and in situ temperature, and salinity across different ecosystems. The predictions 

and errors for the data from each site are provided in Table 4, which includes the means of the model coefficients and their 

standard deviations for the N iterations of LOOCV per site.  

 305 
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The MLR performed best at Papa with a RMSE of 4.85 µmol kg-1. This appears to be driven in part by low interannual variably 

and seasonal thermal stratification as discussed for reasons discussed below. The greatest error was associated with the 

CARIACO and FOT coastal sites, however, most of the predicted values still fell within 1% of observed DIC. When the sites 

were separated into oceanic (BATS, HOT, KEO, Papa and Munida) and coastal (CARIACO, FOT) categories, the RMSE was 

8.75 µmol kg-1and 19.97 µmol kg-1 respectively. When comparing the predictive accuracy of the MLR to the DIC variability 310 

at each site (Fig. 5), the interannual variability is strongly correlated ((R) = 0.8532, p < .02) to the RMSE while the seasonal 

amplitude has no apparent impact ((R)= 0.0771, p > .8), meaning the error in the predictions is most strongly related to 

interannual variability at each site.  

 

To assess the sensitivity of the MLR to the predictor variables, the model was adjusted by selectively removing predictor 315 

variables and refitting the model. The changes in RMSE per site due to the omission of a given variable are shown as an 

anomaly in the tile plot of Fig. 6. BATS exhibited the greatest sensitivity to chlorophyll relative to other sites; FOT, HOT and 

KEO were relatively more sensitive to the effect of salinity; and temperature omission had the greatest impact for CARIACO, 

KEO, Munida, and Papa. The mean effects of variable omissions are given in Table 5, which indicates that collectively 

temperature had the greatest impact among the predictor variables on the predictive error. This was consistent with the 320 

expectations resulting from the correlation matrix provided in Table 2. The selective omission of predictor variables indicates 

that salinity contributes the most to the bias error although the bias error was low (<0.1) across all sites. 

 

Comparing the GLORYS physical reanalysis data to the observations, the pooled RMSE was 0.68 oC for temperature and 0.18 

psu for salinity with R2 values of 0.9899 and 0.9841 respectively. The MLR performed similarly when GLORYS temperature 325 

and salinity values were used (R2 = 0.9453, RMSE = 11.24 µmol kg-1, RRMSE = 0.55%, MAE = 8.18 µmol kg-1, and bias of 

0.00000 µmol kg-1; see the Supplemental Materials for more details).  

3.3 Performance of imputation methods 

Table 6 shows the pooled performance metrics for each cross validated model. These pooled results of the LOOCV indicate 

that each of the imputation models performed reasonably well with only 11% of all residuals exceeding 1% error and only 1 330 

of 7424 estimated DIC values exceeded 5% error.  

 

Overall, the MICE and MLR models exhibited the highest R2 and lowest error (MAE, RMSE and RRMSE), followed by 

Kalman Filtering, Linear Interpolation, Exponential Weighted Moving Average, Mean Imputation, Stineman Interpolation, 

and Spline Interpolation in order of increasing RMSE. Mean exhibited the least amount of bias, while Spline Imputation 335 

exhibited the greatest amount of bias. Fig. 7 shows the kernel density curves of the residuals from the LOOCV of each 

imputation model with individual results from each site. Kernel density plots provide the probability distribution of the 
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residuals, where skewness and modalities (peaks) away from zero indicate biasing. Fig. 7 illustrates the error distribution 

varied greatly across sites when applying a selected model.  

 340 

This considerable variability among the performance of each method across sites is further evidenced in Fig. 8. The tile colors 

in Fig. 8 indicate the RMSE and R2 normalized to their pooled mean values for comparing the relative error and correlation 

across sites and methods. The individual cross-validated errors and R2 values for each imputation method per site are given as 

the numerical value in each tile of the figure. Generally, Fig. 8 provides further evidence that CARICO and FOT exhibit the 

greatest error overall, while KEO and Papa exhibit the lowest error. The R2 panel in Fig.8 indicates that while some imputation 345 

errors may be low (<1%), they may still show poor correlation with observations. This is the case for statistical models at 

MUNDIA as well as mean imputation and spline interpolation models at HOT. The error and correlation across sites are 

consistent with the interannual variability shown in Fig.2 and with the MLR behavior shown in Fig. 5. 

3.4 Sampling sensitivity 

Sampling sensitivity was assessed by the RMSE for randomized artificial gaps totaling 8.33%, 16.67%, 25.00%, 33.33%, 350 

41.67%, 50.00%, and 66.67%. The randomized approach resulted in a mixture of sequential and non-sequential gaps, while 

bootstrapping achieved equivalent representation of all months for each assessment. Fig. 9a shows boxplots of the RMSE for 

each imputation method as a function of percent of data missing at each site. Spline interpolation resulted in much greater 

magnitude and frequency of outliers and necessitated separate scaling. There was significant variability in both the 

performance of different imputation methods within sites and within imputation methods across different sites. In general, 355 

mean imputation and MLR converge on a maximum error once data gaps reached 20-40%, whereas the error for other 

imputation models is positively correlated with the percent of data missing. While the performance of the cross validated 

Kalman filtering model did not differ greatly from the other interpolation methods, Fig. 9A indicates it leads to a greater 

number of outliers overall, in particular at BATS, KEO and Papa. Spline interpolation also resulted in a high number of outliers, 

with the most extreme error over other methods. Fig. 9B shows the median error as a function of the percent of data missing 360 

with a loess fit. The general lack of a strong correlation shown by Mean imputation and MLR exhibit the least amount of 

sensitivity to the number of data gaps in the time series. The MICE model shows the highest level of sensitivity to the percent 

of data missing despite performing very well under the LOOCV and low numbers of data gaps.  

3.5 Time series gaps and trend assessment  

The imputed secondary time series synthesized with the 8 artificial gap scenarios, including sequential 3-month seasonal 365 

durations, 6-month durations centered on summer and winter, and bimonthly and seasonal sampling simulations are shown in 

the Fig. 10. Note that time series from each of the sites tested contained data gaps in the observations and synthetic gap 

scenarios were applied to the observed time series as-is. Extended gaps were observed at CARIACO (Apr 2001 – Feb 2002), 

KEO (Jan 2011 – Oct 2011), and Papa (Aug 2008 – May 2009).  Thirteen 3-month, three 4-month and one 5-month data gaps 
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present in the Muninda time series. Table 7 shows the number of observations for the total number of months in the time series 370 

at each site and the percent of data missing for each gap scenario tested.  

 

Fig. 10 indicates a significant variability in the performance of each imputation method for the tested gap durations and timing 

within the datasets from each site. Note some outliers produced by spline interpolation were cropped in order to maintain 

appropriate scaling of the y-axes. Overall, spline interpolation shows the highest propensity for creating outliers, as was also 375 

seen the in the assessment of sampling sensitivity. WMA shows a tendency for exaggerating seasonal minima and maxima, 

except in the cases of extended gaps, such as those seen at KEO and Papa. However, WMA remained within the observed 

range of annual seasonal cycles at Munida. Kalman filtering performed similarly to WMA. The empirical models (Mean, 

MLR, and MICE) better represent consistent seasonal cycles compared to other methods, as expected. However, these do not 

perform as well when data deviate significantly from mean seasonal cycle, such as at HOT and CARIACO where the ratio of 380 

interannual variability to seasonal amplitude are high (84% and 46% respectively for nDIC). This is most clear in the high DIC 

concentrations observed at HOT during 2012-2013 and low DIC concentrations observed at CARIACO in 2003. KEO and 

Papa have the lowest ratio of interannual variability to seasonal amplitude (13%, and 14% respectively) and empirical models 

perform well here. This was consistent with the correlation between error and interannual variability evidenced by the LOOCV. 

Fig. 11 shows the kernel density curves of the residuals between the infilled and observed nDIC values. The pooled residuals 385 

shown on the right-hand side of Fig. 11 indicate the time and duration of gaps has a significant impact on the error distribution.  

 

Fig. 12 shows the kernel density curves of the residuals between the observed and reconstructed trends in nDIC over time for 

each site, method, and gap scenario. Trends from imputed time series that were significantly different than the observed trend 

(taken here as a difference in trend that is beyond the uncertainty in the slope) are identified with a black asterisk in Fig. 12. 390 

Synthetic gap filters were applied by prescribed months across all sites rather than site-specific seasonal cycles and thus the 

impacts from each filter vary across sites. Generally, the mean imputation and MLR models led to reduced apparent trends 

across all sites by pushing the imputed values toward the climatological means. The exception to this was at Papa, where the 

bias was positive, in contrast to the apparent trend in the observations at that site. While this is inherent in mean imputation, it 

is implicit in this MLR because it utilizes climatological relationships between the predictor variables rather than year-to-year 395 

variations. Linear and Stineman interpolation had the least impact on time series trends because values produced by these 

models are constrained to the range of the observations bracketing the gap and they tend more to preserve the trend as the 

observed values change through time. Except for KEO and Munida, Kalman and WMA models generally resulted in a reduced 

trends but with less error than the empirical models. The state space approach in the Kalman model attempts to describe the 

dynamics through decomposition of the time series resulting in imputation values that are determined from prior observations, 400 

generally resulting predictions that are within the observed seasonal range. The tendency of the exponential weighting in the 

WMA is to overestimate when predicting values near maxima and minima (see Supplemental Material for additional figures). 

This is less apparent at Munida where the lower frequency of observations leads to weighting toward the annual means. This 
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balance in the WMA behavior explains its tendency for lower impact on the apparent trend. KEO exhibits both the strongest 

trend in nDIC and largest seasonal amplitude and the Kalman and WMA models exaggerated the apparent trend here in all 405 

gap scenarios. Spline interpolated values of the extended gap at CARIACO were well below the seasonal minima from previous 

years in the time series and were extreme enough to inflate the trend in most of the gap scenarios.  

 

The impacts on trends were greater for the 6-month gaps, bimonthly and seasonal scenarios than for the seasonal filters across 

all models (see Supplemental Material for additional figures). This result is consistent with greater error being associated with 410 

higher percentages of missing data, however, there was no direct correlation between imputation errors and the magnitude and 

direction of changes in trends. The greatest impacts were observed when using mean imputation and MLR with the seasonal 

sampling regime. This appears to be driven by the high percentage of data being replaced with climatological values. 

Interestingly, MICE did not result in the same level of discrepancies with observed trends as the other empirical models. This 

is likely due to the increased flexibility in the MICE model due to the inclusion of time fields (e.g. month as a predictor 415 

variable) and the fact that the chained equation approach will allow for refitting throughout the time series allowing for year-

to-year variability in the relationships between predictor variables.   

3.6 Seasonal cycles, annual means and interannual variability 

The monthly means of the imputed time series and their associated uncertainties are shown in Fig. 13. These monthly series 

more clearly illustrate the typical behavior of each imputation model described for each time series above. While deviations 420 

from climatological monthly means are apparent across all sites, few of these fell outside of the uncertainty associated with 

the observed monthly means, which is represented here by the combined sources of uncertainty in measurements and 

calculation of the monthly mean nDIC and does not include the interannual variability of the monthly means.  

 

The effects of imputation on the seasonal maxima and minima, their respective timing and amplitude are shown in Fig. 14, 425 

which also includes residuals for interannual variability, annual means and the combined seasonal error pooled across sites. 

Two-way ANOVA of each of these seasonal residuals indicated that the distribution of errors among the different models was 

significantly different for seasonal amplitude, maxima, minima, while the difference between gap scenarios was significant 

for the timing of seasonal minima. The combined seasonal error was significantly different among both imputation models 

and gap scenarios. The residuals of annual means were also significantly different among both imputation models and gap 430 

scenarios, while only model selection resulted in significantly different interannual variability.  

 

The weakening of seasonal amplitude from linear imputation methods is evident in the residuals for all gap scenarios, as is the 

tendency for the Kalman and WMA models to increase seasonal amplitude. The autumn gap filter resulted in the greatest 

amount error in seasonal amplitude. This was driven by the larger residuals in the seasonal minima since most of the test sites 435 

experience seasonal minima during autumn months. This also affected the timing of seasonal minima with residuals of up to 
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3 months.  The distribution of the seasonal residuals among the imputation models for the 6-month winter gap were similar to 

those for the autumn gap, although the residuals for seasonal minima, maxima and amplitude were largest with the 6-month 

winter gap filter. 

 440 

The combined seasonal errors indicate that next to mean imputation, MLR does the best out of the other methods tested to 

retain the climatological seasonal structure observed at each site. The combined seasonal MAPE was 7.2% MLR, followed by 

14.2% for spline interpolation, 15.1% for MICE, 19.2% for Stineman, 19.8% for Kalman, 19.9% for linear interpolation, and 

21.1% for WMA. The autumn gap filter resulted in a combined seasonal MAPE of 20.9%. This was just over double that of 

all other seasonal gap filters which resulted in error that ranged 8.8 – 9.9%.  The seasonal error was largest for the 6-month 445 

winter gap with a median error of 26.4%. Interestingly, the bimonthly sampling regime resulted in a seasonal MAPE of 16.8%, 

which was greater than 6-month summer gap (15.1%) and the spring, summer, and winter seasonal gaps, despite greater 

dispersed data coverage across seasons compared to these other scenarios. The seasonal MAPE for the seasonal sampling 

regime was 12.7% and lower than that exhibited by the more frequently bimonthly sampling.  

 450 

The pooled residuals for annual means were mostly normally distributed about a median of 0 µmol kg-1 with some biasing. 

When looking at the MAPE the seasonal gap filters and bimonthly sampling regime led to small errors in annual means of 

0.1% while the 6-month gaps and seasonal sampling regime were 0.15-0.16%. When the errors are broken down by model 

selection, the empirical models showed the greatest deviation from the annual means, with mean imputation having a median 

error of 0.16%, MLR 0.16%, and MICE performing slightly better at 0.13%. These were followed by Kalman 0.12%, spline 455 

interpolation and WMA at 0.11%, Stineman and linear interpolation at 0.08% in decreasing order.  

 

The pooled residuals for interannual variability exhibited significantly more biasing and errors. The MAPE of interannual 

variability for each gap scenario correlated with the percent of missing data for each gap filter. The seasonal filters had errors 

of 7.9-9.3%, followed by bimonthly 12.9%, 16.3% for the 6-month winter and summer gaps, and the seasonal filter at 19.1%. 460 

The error in interannual variability imposed by the models were highest for mean imputation at 22.5%, followed by spline 

interpolation 19.3%, WMA 13.7%, Kalman 12.0%, Stineman 9.6%, linear interpolation 9.3%, MLR 10.7% and MICE at 7.9%.  

4 Discussion 

4.1 MLR estimation of DIC 

The development of remote sensing and MLR-based approaches for carbonate chemistry have been used extensively for 465 

extrapolating over broad spatial and temporal scales to investigate regional to basin scale phenomena (Bostock et al., 2013; 

Hales et al., 2012; Evans et al., 2013; Lohrenz et al., 2018; Juranek et al., 2011; Alin et al., 2012). Remote sensing applications 

have focused primarily on predicting pCO2 and estimating air-sea flux in coastal waters to better understand the seasonal and 
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spatial heterogeneity of carbon sources and sinks and their implications for regional and global carbon budgets (Hales et al., 

2012; Lohrenz et al., 2018). Many MLR models that predict carbonate parameters have been developed using large 470 

observational data sets that include either dissolved oxygen (O2) (Juranek et al., 2009; Kim et al., 2010; Alin et al., 2012; 

Bostock et al., 2013) or nitrate (NO3) (Evans et al., 2013) as a predictor variable along with temperature and salinity. MLR 

models that incorporate O2 and NO3 can perform particularly well in coastal environments where ecosystem metabolism has 

a dominant effect carbonate chemistry (Alin et al., 2012, {Juranek, 2009 #1264)). However, there are currently no remotely 

sensed O2 and NO3 data products and the chances of glider or float data being available at a given time series site to coincide 475 

with a gap in carbonate measurements are limited. The MLR model presented herein serves as a method for imputing missing 

DIC values in time series. This MLR may be trained and implemented using remotely sensed chlorophyll with in-situ 

temperature and salinity. However, for cases when in-situ temperature and salinity are concurrently unavailable during gaps 

in DIC observations, model-based estimates of temperature and salinity may be used as we have shown here with the Mercator 

Ocean Global Reanalysis (GLORYS). Additional data product options could include the Hybrid Coordinate Ocean Model 480 

(HYCOM), the Climate Forecast System Reanalysis (CFSR), and the Bluelink Reanalysis (BRAN), with assessment for a 

given location and included in the uncertainty budget (De Souza et al., 2020). Satellite-based estimates of sea surface 

temperature and salinity may also be considered although remotely sensed salinity typically has a larger error than the 

GLORYS data presented here when compared to observations (Wang et al., 2019).  

 485 

The variability in the MLR model coefficients indicated that the relationships between DIC, chlorophyll, temperature and 

salinity were location-specific and cannot be spatially extrapolated to different water masses and ecosystems. This was 

indicated by the variability seen among the correlations of predictor variables to DIC across sites and clearly evidenced by the 

differences in model performance between the coastal sites (FOT and CARIACO) and the oceanic sites. However, when the 

MLR was trained with sufficient observations to capture the seasonal cycle, it can predict DIC with error that was far less than 490 

the natural variability over seasonal and interannual time scales and was typically on the order of, or better than the variability 

on monthly time scales. The RMSE of 4.85 – 10.67 µmol kg-1 at the oceanic sites is consistent with other MLR studies which 

have ranged from ~4-11 µmol kg-1 (Evans et al., 2013; Juranek et al., 2011; Bostock et al., 2013), while the RMSE at coastal 

sites (FOT and CARIACO) of approximately 20 µmol kg-1 is larger than exhibited in a California Current study (Alin et al., 

2012). The Alin study, like others (Juranek et al., 2009; Juranek et al., 2011), estimated DIC based on O2 and density, 495 

incorporating a multiplicative relationship. While O2 may improve the performance of MLR approaches, particularly in 

biologically active coastal environments, the MLR model here only utilized remotely sensed chlorophyll and temperature and 

therefore only applied to the surface layer. O2 and CO2 may become decoupled in the surface layer due to varying time scales 

for air sea gas exchange, making O2 a less reliable predictor variable for surface concentrations of DIC (Juranek et al., 2011). 

Despite somewhat higher RMSE in coastal environments relative to the results of Alin et al. (2012), the MLR model here 500 

exhibited predictive error that is still less than 1% at such sites. With the mean performance among oceanic sites being 8.75 
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µmol kg-1 and within the “weather” requirements adopted by the Global Ocean Acidification Observing Network, we contend 

that this is an acceptable approach for temporal interpolation (Newton, 2015).    

4.2 DIC time series imputation 

Despite the pervasiveness of gaps in climatological data aimed at understanding the ocean carbon cycle, there is limited 505 

evaluation of errors and bias in reconstructed time series due to gap-filling methods outside of the spatiotemporal interpolation 

in surface ocean pCO2 datasets (Gregor et al., 2019). The MLR presented herein was developed as an empirical method toward 

constructing gap-filled regularized DIC time series, specifically for investigating seasonal and interannual variability in the 

carbon cycle within the surface layer. A thorough characterization of implementing this model beckoned the comparison to 

other commonly used techniques and provided the opportunity to investigate the temporal and seasonal impacts of gap-filling.    510 

 

Cross validation of the imputation models evaluated in this study indicated that each of these models have reasonably low 

(typically <1%) error when imputing a single value at monthly timescales. This was similar to other comparative gap-filling 

studies in the fields of soil respiration, net ecosystem exchange, and solar radiation, which focused on higher temporal 

resolution data and imputing missing values over time scales from seconds to days (Moffat et al., 2007; Zhao et al., 2020; 515 

Demirhan and Renwick, 2018). For the assessment of annual budgets in the studies of Zhao et al (2020) and Moffat et al 

(2007),  the error associated with the imputation methods was similar to the uncertainty in the fluxes across sites (Lavoie et 

al., 2015). As a result, the choice of imputation model yielded limited improvement on the accuracy of budget estimates. 

Similarly we found that the MAPE was under 0.2% for the annual means calculated from imputed time series, which was less 

than the relative uncertainty for annual mean concentrations in surface layer DIC were on the order of 0.5-1%. However, Fig. 520 

14 shows this can be biased positively or negatively depending on imputation method. While imputation resulted in limited 

error in annual means, there were significant impacts on the interannual variability, which ranged from 8-19%. Such errors 

would have a direct impact on the time of emergence in detecting trends (Sutton et al., 2019; Turk et al., 2019). Furthermore, 

our evaluation of reconstructed DIC time series with synthetic gaps showed that selection of imputation method can have 

significant effects on the calculated timing, magnitude and structure of seasonal variability as well as longer temporal trends. 525 

The timing and duration of data gaps are important considerations, as are the research objectives for a given study and whether 

seasonal or climatic variability are more heavily weighted.  

 

The empirical models evaluated in this study performed better than others selected here to maintain all aspects of the seasonal 

structure. Mean imputation, by definition, maintains the climatological seasonal structure perfectly. However, year-to year this 530 

may lead to bias in the seasonal amplitude up or down relative to the temporal position in the time series and any long-term 

trend. This is apparent in interannual variability of reconstructed timeseries showing a positive bimodal distribution of the 

residuals for mean imputation (see Fig. 14), indicating larger error associated with a higher percent of missing data.   
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When looking at the combined seasonal error of each model pooled for all gap scenarios, MLR performs better than twice as 535 

well as all remaining methods and was the only model (other than mean imputation) with a median error under 10%. Looking 

at the individual imputed time series, the MLR generally tracks closely with mean imputation but with added interannual 

variability. This leads to less error compared to mean imputation as also seen in the distribution of residuals (see Fig. 11). The 

MICE model showed considerably more variability in its prediction of DIC values, leading to higher error with a wider 

distribution. This was likely due to the MICE method refitting regression models along the time series, whereas the MLR, as 540 

presented here, is fit once using the entire time series.  

 

While mean imputation and MLR provide the best options of the models evaluated here for maintaining the seasonal structure 

in the time series, it is at the sacrifice of maintaining the observed trend. These two models led to the greatest discrepancies 

between observed and reconstructed trends. Both models act to weaken the trend, pushing toward the climatological mean; 545 

and this becomes more apparent with increasing data loss. Linear and Stineman interpolation models generally do well to 

maintain the observed trend in the time series due to them constraining infilled values between existing observations along the 

trending time series. This is at the sacrifice of maintaining seasonal structure as is clearly evidenced in Figs. 13 & 14. Even 

under the bimonthly sampling regime, these interpolation methods lead to a lower seasonal amplitude and this impact is 

worsened by longer duration gaps. Spline interpolation, WMA, Kalman filter and MICE models exhibit inconsistent impacts 550 

on trends across sites and varied gaps. WMA and Kalman performed best at Munida with limited bias, while MICE performed 

well during some gap scenarios at BATS (spring, summer, and 6-month summer gap) and KEO (spring, winter, seasonal); 

likewise for spline interpolation at BATS (spring, seasonal) and HOT (spring, summer, autumn, 6-month summer gap, and 

seasonal).  

 555 

The impact on trend assessment does not appear correlated with the mean imputation error, bias, or mean seasonal errors; 

rather, visual inspection of the imputed time series in Fig. 10 appears to indicate that the timing of data gaps relative to how a 

selected model typically responds to such a gap, dictates the bias error for that gap. This bias error may then be exaggerated 

for longer durations and accumulate in the reconstructed time series and ultimately impart bias on the trend, even if the mean 

errors remain small. While using static month-based gap filters in our assessment, it also appears that in some cases interannual 560 

variability in the seasonal cycle changed the gap filter window. For example, linear and Stineman interpolation applied to the 

6-month winter gaps at KEO 2008-2009 and 2015-2016 lead to a higher mean DIC concentration over these windows, leading 

to lower trend in these reconstructed time series than was observed. Additionally, spline interpolation was biased at HOT using 

the winter gap filter due to the splines exaggerating some of the seasonal transitions 2004 – 2009. The seasonal cycles 2006 – 

2009 were further exaggerated using the 6-month winter gap filter leading to bias in the other direction. The correlation 565 

between trend error and imputation performance presents an area for further investigation.  
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One-way ANOVA indicated that the distribution of RMSE resulting from each of the gap scenarios were significantly different 

for each of the imputation models tested, further indicating the importance of the timing and duration of data gaps. Of the four 

seasonal filters, spring data gaps had the least impact (lowest error), while autumn data gaps had the most. Given that these 570 

correspond to the seasonal maxima and minima respectively, it is interesting that selected imputation models are generally 

better at predicting the seasonal highs rather than lows. Errors associated with seasonal minima were further exacerbated by 

the long 6-month winter gap tested, whereas the 6-month gap centered in summer had errors that were on the order of other 

seasonal 3-month gaps. Collectively these results can help guide strategy for both sampling and the handling data gaps.  

 575 

Bimonthly and seasonal sampling regimes provide economical options for data collection. The median RMSE associated with 

the bimonthly and seasonal sampling regimes were 10.4 µmol kg-1 and 10.7 µmol kg-1 respectively. These were less than the 

errors associated with summer (11.3 µmol kg-1) and autumn (12.1 µmol kg-1) gap filters and similar to the spring (10.7 µmol 

kg-1) and winter RMSE (10.4 µmol kg-1). This result is encouraging despite the bimonthly and seasonal sampling regimes 

equating to twice as much data loss compared to the seasonal filters. These sampling regimes also impart similar results with 580 

respect to maintaining seasonal structure; although, bimonthly sampling leads to greater variance. Bimonthly sampling resulted 

in a median RMSE for annual means of 4.0 µmol kg-1, equal to a typical measurement uncertainty. This was only slightly 

higher for seasonal sampling at 5. µmol kg-1. The RMSE for interannual variability for these sampling regimes are less than 3 

µmol kg-1. These results are promising to indicate that these economic sampling regimes can capture the seasonal cycle with 

reasonable uncertainty. However, it must be noted that these pooled errors include the performance and low errors of mean 585 

imputation and MLR and these empirical models require multiple years of data to adequately train. Uncertainty of annual and 

seasonal data based on these regimes would be higher.  

 

The results presented here indicate that care should be taken when considering what method to use to fill data gaps in ocean 

carbon time series, with criteria for selection including the percent of missing data, gap lengths and site characteristics. Of the 590 

methods we tested, the empirical models performed better than statistical models evaluated in this study with respect to 

imputation error and retaining seasonal structure. Mean imputation provides a stable and straightforward approach to filling 

longer gaps but leads to greater biases in annual budgets, interannual variability and long-term trends compared to the other 

methods evaluated in this study.  

 595 

MICE appeared to be well suited to environmental time series data that have covariate parameters such as the correlation 

between DIC, chlorophyll, temperature and salinity. This could be extended to other nutrients such as phosphate and nitrate as 

well as dissolved oxygen in order to train the models used in MICE. MICE also offers the opportunity to impute data gaps 

over multiple variables in larger time series data sets. MICE does well to limit biases and did best to reproduce interannual 



20 
 

variability across the sties tested. MICE performed very well during cross validation but exhibited higher RMSE compared to 600 

MLR when reconstructing the time series, perhaps due to its greater sampling sensitivity shown in Fig. 9.  

 

Our MLR model provides a stable option that performs well over all rates of data missingness once it is sufficiently trained 

with field data. This MLR performed equally well using GLORYS reanalysis temperature and salinity data. This approach 

provides the benefit of utilizing remotely sensed and modelled data products in the absence of covariate field data. The low 605 

error and uncertainty associated with this MLR approach show promise. Allowing the model to update the fit and coefficients 

for the predictor variables over the time series may help reduce biasing of temporal trends while maintaining the ability to 

retain seasonal structure. This MLR has potential to be trained with field data over broader spatial extents to assess regional 

carbon cycles.  

5 Conclusions 610 

This study provides the first comparative assessment of several common gap-filling methods which are easy to implement and 

computationally inexpensive that may be applied to ocean carbon time series. Regularized carbonate time series data are 

necessary for understanding seasonal dynamics, annual budgets, interannual variability and long-term trends in the ocean 

carbon cycle and changes to the ocean carbon sink, which are of particular importance in the face of global climate change. 

Our assessment indicates that the amount and distribution of gaps in the data should be a determining factor in choosing an 615 

imputation method that optimizes uncertainty while minimizing bias. Imputed values, however, cannot be treated as 

measurements and the uncertainty of imputation methods must be included in the overall uncertainty budget of broader ocean 

carbon analyses. The results presented above indicate the performance and behavior of select empirical and statistical 

approaches and the methods used provide a simple approach for estimating uncertainty of DIC predicted by a given imputation 

method.  620 

 

This study provides evidence that DIC can be estimated with an empirical MLR approach that utilizes remotely sensed 

chlorophyll and may be trained with either in-situ or modelled temperature and salinity depending on the intended application. 

This method performs consistently well across 7 disparate ecosystems in oceanic and coastal environments, but the model 

coefficients are unique to the water mass and ecosystem and further study is needed to assess the spatial extent over which 625 

regional extrapolation is still valid. However, when using this method to impute data gaps in carbonate time series, it performs 

better than several options, particularly for larger gaps. We conclude that when trained with sufficient field data (e.g., captures 

the seasonal cycle and some interannual variability), this empirical MLR method predicts DIC with acceptable accuracy from 

remotely sensed data and provides the most robust option from those we compared for imputing gaps over a variety of data 

gap scenarios. 630 
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 850 
Figure 1. Location map of seven ocean carbon time series sites utilized for estimating DIC using an empirical multiple linear 
regression model and other empirical and statistical approaches for imputing carbonate time series, including Bermuda Atlantic 
Time-series (BATS), Carbon Retention In A Colored Ocean (CARIACO), Firth of Thames (FOT), Hawaiian Ocean Time-series 
(HOT), Kuroshio Extension Observatory (KEO), Munida Time-series (Munida), and Ocean Site Papa (Papa).  See Table 1 for 
additional information about each sampling site.  855 
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Figure 2. Box and whisker plots of monthly mean concentrations of DIC (gray) and salinity normalized nDIC (white) in the mixed 
layer at each site, and bar plots showing the seasonal amplitude and interannual variability of DIC (gray) and nDIC (white). Box 
and whisker plots are composed of the median (solid line), lower and upper quartiles (box), the minimum and maximum values 
beyond the 25th and 75th quantile but < 1.5 interquartile range (whiskers) and values > 1.5 interquartile range (dots). Values above 860 
each box and whisker marker indicate the number of observations per month within the time series.  
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Figure 3, Time series of DIC (black) and salinity normalized nDIC (grey) for each of the long-term data sets used to assess the 
impacts of gap-filling on the seasonal and interannual variability and long-term trends. Trends in seasonally detrended DIC with 865 
uncertainty are given for each site followed by the trend in nDIC below each value, and are shown as the corresponding dashed lines 
for each time series. Note that time series BATS, CARIACO and HOT were truncated to Sept. 1997, coincident with remotely sensed 
chlorophyll records and the data shown in red were excluded from analyses in this study.  

 
Figure 4. Composite of predicted and measured DIC using a multiple linear regression model based on measured temperature, 870 
salinity and remotely sensed chlorophyll pooled from test sites: Bermuda Atlantic Time-series Study (BATS); Carbon Retention In 
A Colored Ocean (CARIACO); Firth of Thames (FOT); Hawaiian Ocean Time-series (HOT); Kuroshio Extension Observatory 
(KEO); Munida Time-series (Munida); Ocean Site Papa (Papa). Box and whisker plots for predictor variable coefficients a, b1 b2 
and b3 are composed of the median (solid line), lower and upper quartiles (box), the minimum and maximum values beyond the 25th 
and 75th quantile but < 1.5 interquartile range (whiskers) and values > 1.5 interquartile range (dots).  875 
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Figure 5. Correlations between RMSE and (A) seasonal amplitude and (B) interannual variability across sites 

 880 
Figure 6. Tile plot showing the change in RMSE per site due to the selective omission of input variables and refitting of the MLR. 
Tiles are colored to normalized error anomalies for visualization of relative differences, while RMSE anomalies are given in each 
tile for the effect of omitting the predictor variable at each site.  

(A) (B) 
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Figure 7. Kernel density curves of the DIC residuals between gap-filled and observed time series for each imputation model using 885 
Leave One Out Cross Validation, for all observations after Aug 1997 coinciding with availability of remotely sensed chlorophyll 
data. Density curves are scaled so area under the curve equals one. Plots show the probability distribution of the residuals for each 
model. Skewness and modalities away from 0 indicate biasing.  
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 890 
Figure 8. Tile plots showing (A) the RMSE (black text in tiles) for each cross validated imputation methods at each site. Tiles are 
colored according to RMSE normalized to the mean value across all methods and sites; and (B) the same format but for the squared 
correlation coefficient. Note errors at or below average performance do not equate to correlation that are average or better, e.g. 
Munida and HOT.  
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 895 
Figure 9. (A) Boxplots of RMSE for each gap assessment corresponding to 8.33%, 16.67%, 25%, 33.33%, 41.67%, 50%, 58.33% 
and 66.67% data missing rates. Box and whisker plots are composed of the median (solid line), lower and upper quartiles (box), the 
minimum and maximum values beyond the 25th and 75th quantile but < 1.5 interquartile range (whiskers) and values > 1.5 
interquartile range (dots). Points above box and whiskers indicate the distribution of outliers for each model. (B) Loess fit (red line) 
of the median error for each gap assessment, indicating the sensitivity of the model to increasing data loss. Scales adjusted per site.  900 
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Figure 10A. Residuals between imputed and observed nDIC from BATS, CARIACO and HOT. Observations were selectively 
removed using eight gap filters: 3-month sequential seasonal filters for Spring, Summer, Autumn, and Winter; 6-month sequential 
gaps centered on summer and winter; and bimonthly (odd months) and seasonal (1 max, 1 min. and 2 transition samples) sampling 905 
regimes and gaps were filled using Kalman filter with a state space model, linear interpolation, mean imputation, empirical multiple 
linear regression (MLR), multiple imputation by chained equations (MICE), spline interpolation, Stineman interpolation and 
exponential weighted moving average (WMA).  
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Figure 10B. Residuals between imputed and observed nDIC from KEO, Munida and Papa. Observations were selectively removed 910 
using eight gap filters: 3-month sequential seasonal filters for Spring, Summer, Autumn, and Winter; 6-month sequential gaps 
centered on summer and winter; and bimonthly (odd months) and seasonal (1 max, 1 min. and 2 transition samples) sampling 
regimes and gaps were filled using Kalman filter with a state space model, linear interpolation, mean imputation, empirical multiple 
linear regression (MLR), multiple imputation by chained equations (MICE), spline interpolation, Stineman interpolation and 
exponential weighted moving average (WMA). 915 
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Figure 11.  Kernel density curves of the nDIC residuals between gap-filled and observed values for each site and synthetic gap filter 
tested (see also Fig. 10).  Residuals pooled across sites are shown as the Mean column on the right-hand side. Density curves are 
scaled so area under the curve equals one. Plots show the probability distribution of the residuals. Skewness and modalities away 
from 0 indicate biasing. 920 
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Figure 12. Kernel density curves of the nDIC residuals between the trends calculated from observed and gap-filled time series for 
each site and synthetic gap filter tested (see also Figs 10-11).  Residuals pooled across sites are shown as the Mean column on the 
right-hand side. Residuals that exceeded the uncertainty bounds for the observed trend are denoted with a black asterisk. Peaks to 925 
either side of 0 indicate positive or negative biasing in the imputation method resulting in changes in the apparent trend for the 
reconstructed time series.  
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Figure 13A. Residuals between climatological monthly means calculated from observed time series and reconstructed time series of 
nDIC from BATS, CARIACO, and HOT. Monthly means were calculated from the time series (individual residuals shown in Figs. 930 
10A-B) values infilled by the eight imputation models. Black sticks represent the combined uncertainty for the observations at each 
site. 
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Figure 14. Residuals between climatological monthly means calculated from observed time series and reconstructed time series of 
nDIC from KEO, Munida, and Papa. Monthly means were calculated from the time series (individual residuals shown in Figs. 10A-935 
B) values infilled by the eight imputation models. Black sticks represent the combined uncertainty for the observations at each site.  
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Figure 14. Boxplots of the residuals between gap-filled and observed time series for: seasonal amplitude (difference between seasonal 
maximum and minimum); the seasonal maxima and minima, and their respective timing (the month when maxima and minima are 940 
observed); interannual variability (the standard deviation of monthly means); and the annual means. Combined Seasonal Error 
represents the combined absolute percent errors of the seasonal amplitude, maximum, minimum, and timing (see Eq.10).  Box and 
whisker plots are composed of the median (solid line), lower and upper quartiles (box), the minimum and maximum values beyond 
the 25th and 75th quantile but < 1.5 interquartile range (whiskers) and values > 1.5 interquartile range (dots). The right-hand column 
shows the kernel density curves for each seasonal metric, pooled across all synthetic gap filters. Peaks in the density plots represents 945 
modes where mean errors for each model as associated with each gap filter.  
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Table 1. Information about each sampling site with ocean carbonate time series used in our analyses, including Bermuda Atlantic 
Time-series (BATS), Carbon Retention In A Coloded Ocean (CARIACO), Firth of Thames (FOT), Hawaiian Ocean Time-series 960 
(HOT), Kuroshio Extension Observatory (KEO), Munida Time-series (Munida), and Ocean Site Papa (Papa).  DIC = dissolved 
inorganic carbon. TA = total alkalinity. pCO2 = partial pressure of carbon dioxide. pH = -log[H+]. Gap rate based on expected 
sampling frequency.  

 
Web addresses for site information and data access:  965 
BATS: http://www.bios.edu/research/projects/bats/ 
HOT: https://hahana.soest.hawaii.edu/hot/ 
CARIACO: http://www.imars.usf.edu/cariaco 
Munida: https://marinedata.niwa.co.nz/nzoa-on/ 
Papa: https://www.pmel.noaa.gov/ocs/Papa 970 
KEO: https://www.pmel.noaa.gov/ocs/KEO 

FOT: https://marinedata.niwa.co.nz/nzoa-on/ 
*Sampling began in 1998, mooring installed in 2015 
1BATS sampling target is at least monthly 
2HOT sampling target is approximately monthly 975 
3Munida sampling is typically bimonthly, varying with 
conditions and additional coordinated voyages  

 

Site Type 
Time series  

Site 
Sampling 

Region 
Location 

Time series 
Duration 

Sampling 
Frequency 

Gap 
Rate 

Carbonate 
Measurements 

Sampling 

Site 

BATS Sargasso Sea 
31.88oN, 

64.26oW 

1983 - 

present 
1monthly 4% DIC/TA 

HOT North Pacific 
22.67oN, 

158oW 

1988 - 

present 
2monthly 15% TA/pH 

CARIACO 
Cariaco 

Basin 

10.5oN, 

64.67oW 

1995 - 

present 
monthly 16% TA/pH 

MUNIDA South Pacific 
45.8oS 

171.5oE 

1998 - 

present 
3bimonthly 5% pCO2/TA 

Mooring 

PAPA North Pacific 
50.13oN, 

144.83oW 

2007 - 

present 
3 hours 26% pH/pCO2 

KEO North Pacific 
32.25oN, 

144.56oE 

2004 - 

present 
3 hours 18% pH/pCO2 

FOT 
New Zealand 

Coast 

36.88oS, 

175.32oE 

2015 - 

present 
*15 minutes 59% pH 

 1 
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Table 2. Pearson correlation coefficients between DIC and chlorophyll, temperature and salinity in the surface layer across test sites. 
Asterisks indicate weak correlations (threshold = 0.3).  

Site 
Pearson Correlation Coefficient 

Chlorophyll Temperature Salinity 

KEO 0.49 -0.91 0.87 

BATS 0.48 -0.73 0.65 

Papa -0.34 -0.97 0.73 

FOT -0.22* 0.24* 0.74 

HOT 0.1* -0.51 0.74 

CARIACO 0.53 -0.77 0.58 

Munida -0.37 -0.87 0.32 

 
Table 3. Years with 12 monthly samples per site. *Actual sampling interval greater than monthly 

Time-Series Site Years With 12 Monthly Samples N Years 

BATS 1998, 1999, 2000, 2001, 2004, 2005, 2007, 2008, 2012, 2013 10 

HOT 1998, 2004, 2006 3 

CARIACO 2008 1 

Munida NA* 0 

Papa 2015, 2016, 2017 3 

KEO 2009, 2010, 2014, 2015, 2016 5 

FOT 2016 1 
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Table 4. Results of cross validated MLR model for estimating DIC at each individual site, and at grouped oceanic (BATS, HOT, 
KEO, Munida, Papa) and coastal (FOT, CARIACO) sites, including the mean and standard deviation of each coefficient for N 
LOOCV iterations.  

Site RMSE RRMSE R2 MAE BIAS N 𝜶 𝜷𝟏 𝜷𝟐 𝜷𝟑 

BATS 10.67 0.52 0.6611 8.93 0.017 208 401.65±13.75 -13.48±1.56 -3.53±0.03 47.53±0.36 

CARIACO 20.14 0.96 0.5861 14.94 0.015 153 1446.46±40.07 2.50±0.10 -10.16±0.12 24.37±1.02 

FOT 19.02 0.92 0.3958 15.13 0.099 28 718.32±47.59 8.30±2.53 0.47±0.35 37.93±1.26 

HOT 8.45 0.42 0.6178 7.40 0.029 204 276.44±9.51 -82.88±2.25 -3.47±0.04 51.44±0.26 

KEO 8.12 0.41 0.9330 6.12 0.061 90 -208.45±16.79 -27.85±1.01 -4.61±0.03 66.36±0.48 

Munida 8.15 0.39 0.7564 6.48 0.029 109 1069.11±65.27 4.77±1.05 -7.69±0.08 32.00±1.89 

Papa 4.85 0.24 0.9631 3.74 0.035 94 799.13±17.96 -16.47±0.52 -6.55±0.02 39.82±0.55 

Oceanic 8.75 0.43 0.9567 7.09 0.030 671 412.04±356.85 -34.86±32.81 -4.54±1.53 48.5±9.35 

Coastal 19.97 0.95 0.6078 14.97 0.028 181 1333.82±267.23 3.40±2.32 -8.52±3.86 26.47±5.03 
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Table 5. Mean model results for selective omission of input variables. 

Variable 

Omitted 
RMSE RRMSE R2 MAE BIAS 

none 12.044 0.591 0.9352 8.764 0.030 

chlorophyll 12.106 0.594 0.9345 8.849 0.005 

temperature 15.526 0.762 0.8923 11.871 0.013 

salinity 13.998 0.687 0.9124 10.285 0.022 

 
Table 6. Performance metrics for cross validated imputation models across all sites.  

Model RMSE RRMSE R2 MAE BIAS 

Kalman 13.22 0.65 0.9230 8.74 -0.03 

Linear 13.34 0.65 0.9218 9.00 -0.02 
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Mean 13.91 0.68 0.9149 10.51 0.00 

MICE 10.78 0.53 0.9489 7.17 0.07 

MLR 11.75 0.58 0.9392 8.57 0.03 

Spline 19.89 0.97 0.8672 13.29 -0.43 

Stineman 16.91 0.83 0.9013 11.53 -0.28 

WMA 13.79 0.68 0.9163 9.69 -0.09 
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Table 7. Percent of missing data associated with synthetic gap filters applied to each time series, the number observations, total 
months, and percent missing observations based on a monthly frequency for the time series duration tested.  

Site Spring Summer Autumn Winter 
6-month  
Summer 

Gap 

6-month  
Winter 

Gap 
Bimonthly Seasonal n 

Obs. Months 
% of 

Missing 
Obs. 

BATS 32% 33% 33% 29% 56% 53% 53% 71% 212 233 9% 

CARIACO 42% 42% 41% 41% 62% 60% 61% 75% 160 206 22% 

HOT 41% 39% 39% 39% 61% 59% 59% 74% 206 256 20% 

KEO 33% 32% 35% 35% 53% 59% 57% 71% 105 119 12% 

Munida 67% 67% 69% 67% 78% 79% 63% 85% 109 252 57% 

Papa 30% 37% 34% 34% 55% 57% 55% 70% 118 134 12% 
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