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Abstract. Regularized time series of ocean carbon data are necessary for assessing seasonal dynamics, annual budgets, 

interannual variability and long-term trends. There are, however, no standardized methods for imputing gaps in ocean carbon 15 

time series, and only limited evaluation of the numerous methods available for constructing uninterrupted time series. A 

comparative assessment of eight imputation models was performed using data from seven long-term monitoring sites. 

Multivariate linear regression (MLR), mean imputation, linear interpolation, spline interpolation, Stineman interpolation, 

Kalman filtering, weighted moving average and multiple imputation by chained equation (MICE) models were compared using 

cross-validation to determine error and bias. A bootstrapping approach was employed to determine model sensitivity to varied 20 

degrees of data gaps and secondary time series with artificial gaps were used to evaluate impacts on seasonality and annual 

summations and to estimate uncertainty. All models were fit to DIC time series, with MLR and MICE models also applied to 

field measurements of temperature, salinity and remotely sensed chlorophyll, with model coefficients fit for monthly mean 

conditions. MLR estimated DIC with a mean error of 8.8 µmol kg-1 among 5 oceanic sites and 20.0 µmol kg-1 among 2 coastal 

sites. The empirical methods of MLR, MICE and mean imputation retained observed seasonal cycles over greater amounts 25 

and durations of gaps resulting in lower error in annual budgets, outperforming the other statistical methods. MLR had lower 

bias and sampling sensitivity than MICE and mean imputation and provided the most robust option for imputing time series 

with gaps of various duration. 

1 Introduction  

Despite continued policy development aimed at combating climate change and declines in carbon dioxide (CO2) emissions by 30 

many countries over the last 10-15 years, global fossil fuel consumption continues to rise (Friedlingstein et al., 2019). We are 

now in unchartered territory, with anthropogenic carbon emissions over the last two and half centuries eclipsing that of the 

geological record of the past 66 million years, leaving the future of our marine and terrestrial ecosystems uncertain (Zeebe et 

al., 2016). Our ability to predict future conditions, affect policy and effectively manage climate change relies on understanding 
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the feedbacks between climate, ecosystems, and biogeochemical cycles.  To that end, the value of sustained time series 35 

observations have been well recognized for decades, as they are essential to characterizing processes, quantifying natural 

variability, identifying regime shifts and detecting long-term changes in our environment (Ducklow et al., 2009). Monitoring 

ocean carbon over the last three decades has revealed the decline in ocean pH concurrent with the uptake of 40% of 

anthropogenic CO2 by the global ocean (Bates et al., 2014;DeVries et al., 2017). Quantification of the ocean carbon sink and 

the impacts of ocean acidification remain actively researched given the significance of the ocean’s role in controlling climate 40 

feedbacks as well as the ecological and economical importance of our marine systems (Kroeker et al., 2013;DeVries et al., 

2019;Krissansen-Totton et al., 2018;Bernardello et al., 2014). Ocean carbon programs have led to a growth in surface pCO2 

data from 250,000 global measurements in 1997 to 13.5 million in 2019; however, continuity and coverage of this inorganic 

carbon data in space and time remains a challenge for understanding seasonal and interannual variability (Takahashi and 

Sutherland, 2019;Takahashi et al., 1997).  45 

1.1 Filling the gaps 

Consistent sampling intervals for physical and biogeochemical parameters over several decades are critical for understanding 

ocean processes, establishing variability and detecting long-term changes (Henson et al., 2016). In addition to constraints 

arising from limitations in technology, logistics and funding, ocean science takes place in a particularly harsh environment 

where data loss is a common occurrence. Whether from equipment failure, cancelled field campaigns, budget cuts, or a global 50 

pandemic, gaps in time series are ubiquitous and must be appropriately filled in order to carry out various statistical analyses 

and modelling applications which require serially complete data sets.  

Machine learning techniques such as neural network methods, regression trees, and random forests have been widely used to 

fill gaps in meteorological and some oceanographic data, including surface ocean pCO2 (Laruelle et al., 2017;Sasse et al., 

2013;Coutinho et al., 2018). While these methods are successful in the context of geospatial data, there remains little 55 

standardization in methods for imputing data gaps in oceanographic time series, particularly carbonate chemistry, at monitoring 

sites where there are not sufficiently close neighboring values (in time or space) that can be leveraged. Linear interpolation 

and mean imputation are among the most common methods for handling missing data over short to moderate time scales 

(Reimer et al., 2017;Kapsenberg and Hofmann, 2016;Currie et al., 2011), but comparative assessment and validation of 

approaches overall is lacking. Gap-filling studies and standardization have been pursued in other terrestrial and atmospheric 60 

disciplines, such as eddy covariance carbon flux, solar radiation, air temperature, surface hydrology, and soil respiration 

(Moffat et al., 2007;Demirhan and Renwick, 2018;Zhao et al., 2020;Henn et al., 2013;Pappas et al., 2014), many of which 

focused on high temporal resolution data and imputing missing values over time scales from seconds to days. However it is 
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important that the imputation method not only focuses on minimizing error but also minimizing bias, as the preservation of 

variance and trends is imperative for accurate analyses and understanding of climate (Serrano-Notivoli et al., 2019).  65 

This study aims to identify the optimal gap-filling methods for carbonate time series by establishing which techniques perform 

with sufficiently low error and bias to assess seasonal and interannual variability of carbonate biogeochemistry and the 

biological and physical processes that determine it. Here we present an empirical multiple linear regression (MLR) model for 

estimating site-specific DIC concentration in the surface ocean using remotely sensed data products to fill gaps in field 

measurement records. We compare this MLR approach to two other empirical methods and five statistical methods for time 70 

series imputation with the goal of informing best practice for gap-filling temporal ocean carbonate data. Although the focus 

here is on DIC time series, the principals of this study should extend to other carbonate parameters.  

2 Materials and Methods 

2.1 Field data 

We used data from the Bermuda Atlantic Time-series (BATS, http://www.bios.edu/research/projects/bats/), Carbon Retention 75 

In A Colored Ocean (CARIACO, http://www.imars.usf.edu/cariaco), Firth of Thames (FOT, 

https://marinedata.niwa.co.nz/nzoa-on/), Hawaiian Ocean Time-series (HOT, https://hahana.soest.hawaii.edu/hot/), Kuroshio 

Extension Observatory (KEO, https://www.pmel.noaa.gov/ocs/KEO), Munida Time-series (MUNIDA, 

https://marinedata.niwa.co.nz/nzoa-on/), and Ocean Site Papa (PAPA, https://www.pmel.noaa.gov/ocs/Papa). These time 

series present data describing significant ecological and environmental variability from different ocean basins and coastal 80 

regions (Fig. 1), which have been characterized in other studies (Bates et al., 2014;Fassbender et al., 2016;Fassbender et al., 

2017;Zeldis and Swaney, 2018). Additionally, these time series have sufficient sampling frequencies and length of record to 

assess the monthly mean climatological conditions and seasonal cycle, so to allow inclusion of empirical imputation methods 

in this comparative assessment. Table 1 lists the site details including the carbonate parameters measured, the duration of the 

time series, and the gap rate based on the expected sampling frequency for each of the seven sites.  85 

All mixed layer temperature, salinity and dissolved inorganic carbon (DIC) data were averaged to monthly means for each 

time series site. For non-moored sampling sites with bottle sampling (BATS, CARIACO, HOT, Munida), monthly values were 

treated as the monthly mean condition. For each site the mixed layer depth was determined according to the temperature profile 

and a threshold of DT > 0.2 oC relative to 10 m depth (de Boyer Montégut, 2004). For sites that did not measure DIC directly, 

the measured carbonate parameters were used with in situ temperature and salinity to calculate the DIC concentration using 90 

the function carb within the R package seacarb (Jean-Pierre Gattuso et al., 2012;Orr et al., 2018) with K1, K2 from (Lueker, 
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2000); Kf from (Dickson, 1979); and Ks from (Dickson et al., 1990); on the appropriate pH scale, where used, in R version 

3.5.2 (R Core Team, 2020). 

2.2 Remotely sensed data products 

Monthly composites of satellite-derived surface ocean chlorophyll (O’Reilly et al., 1998) from MODIS (4 km resolution) data 95 

were paired with field data from each site except FOT. The mean surface chlorophyll was taken from a ~20 km2 cell 

surrounding each of these sampling locations. For FOT, surface chlorophyll was estimated from monthly composite of VIIRS 

data (750 m resolution), with the mean from a ~ 4 km2 cell surrounding the mooring used in this case given the greater spatial 

heterogeneity in this semi-closed coastal system.  

2.3 Estimation of DIC with MLR 100 

DIC, pCO2 and other carbonate parameters have been successfully estimated in a variety of marine systems using multiple 

linear regression (MLR) approaches (Bostock et al., 2013;Velo et al., 2013;Hales et al., 2012;Lohrenz et al., 2018). In addition, 

empirical estimates of pCO2 using remotely sensed chlorophyll and sea surface temperature (SST) have proven useful for 

investigating seasonal and interannual dynamics across spatial gradients, particularly in coastal systems where sustained 

observations may be limited (Hales et al., 2012;Lohrenz et al., 2018). We investigated using an MLR model to estimate DIC 105 

from remotely sensed chlorophyll, SST and salinity in order to fill gaps in the seven monthly time series data. Parametric 

correlation matrices of DIC with remote chlorophyll, in situ SST and salinity showed significant linear correlation (Table 2), 

across most sites, with temperature having the strongest and most consistent correlation with DIC.  

DIC at time t can be estimated using MLR relationships described in the form of Equation 1. 

𝐸(𝐷𝐼𝐶!) = 	𝛼 + 𝛽"𝐶ℎ𝑙! + 𝛽#𝑇! + 	𝛽$𝑆!,        (1) 110 

where 𝐷𝐼𝐶 has units of µmuol kg-1, 𝐶ℎ𝑙 has units of mg m-3, 𝑇 has units of oC, and 𝑆 has units of psu and the coefficients 𝛼 

and 𝛽" through 𝛽$ are the regression coefficients fit using a generalized linear model with a Gaussian error distribution and 

link function. The sensitivity to each predictor variable was assessed by selectively omitting chlorophyll, temperature, and 

salinity from the model fit.   

2.4 Imputation of DIC time series 115 

Six general methods were compared for imputing DIC time series: classical, interpolation, Kalman filtering, weighted moving 

average (WMA) and regression and multiple imputation by chained equations (MICE). To apply the six methods, it was 

assumed that the gaps in the time series were data ‘Missing at Random’ (Little, 2002) that is, not missing systematically (i.e., 

as caused by seasonal sea ice cover or season-specific sampling regimes). Given this assumption, these methods can be used 

to handle data gaps with limited biasing.  120 
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The primary goal was imputing timeseries at monthly resolution to investigate variability and trends over seasonal, interannual 

and decadal timescales. Therefore, random sampling and persistence methods were not considered as these methods can lead 

to distortion of seasonal structure in the time series. Within the 6 methods chosen, 8 models were evaluated. These imputation 

models vary in complexity and flexibility and represent a range that have been widely applied to time series data, with 6 of the 125 

8 models utilizing formalized packages (Demirhan and Renwick, 2018;Moritz, 2017). These methods limit overfitting and can 

be implemented with relative ease and low computational cost. Artificial data gaps were created as described below (Section 

2.5) for the time series from each site in order to assess the performance of each method. In addition to the MLR model 

described by Equation 1, alternate models are described next. 

 130 

The classical (and simplest) method applied was mean imputation, where missing values were replaced by the monthly 

climatological average. The climatological mean was taken as the monthly averaged means across the duration of the time 

series, which was over 1-2 decades in most cases.   Linear interpolation was used to estimate missing values by drawing a 

straight line between existing values in the time series and using the slope of each of these segments to determine the value of 

DIC at a time point(s) between known values. Spline interpolation utilized piecewise cubic polynomials to fit a curve with 135 

knots at 𝜉%, K = 1,2…k, to the data, providing more flexibility with the ability to interpolate between each point of the training 

data. Stineman interpolation was developed to provide the flexibility of polynomials while reducing unrealistic estimations 

during abrupt changes in slope within the time series (Stineman, 1980) (see Demirhan and Renwick (2018) for algorithm 

details). Kalman filtering was implemented using a structural model. In this case a linear Gaussian state-space model was fit 

to the univariate time series by maximum likelihood based on decomposition (Demirhan and Renwick, 2018). A single 140 

weighted moving average model was evaluated. Missing values were replaced by weighted average of observations in the 

averaging window with size 𝑘 = ±2 and weighting was exponential such that the exponent increases linearly to the ends of 

the window, here ¼, ½… ½, ¼.  

 

Multiple Imputation by Chained Equations (MICE), also known as fully conditional specification (FCS) and sequential 145 

regression multivariate imputation, was applied to time series data with artificial gaps and fit using the mice library (Van 

Buuren, 2011) (cite1) in R version 3.5.2 (Team, 2020) (cite2), with function call mice(data = TimeSeries$data, m = 5, method 

= "pmm", maxit = 20), where m is the number of multiple imputations,  method is predictive mean matching and maxit is the 

maximum number of iterations. This method progresses through the following steps: 1) missing values are filled by random 

sampling from the observations for a given variable; 2) the first variable with missing values is regressed against all other 150 

variables, while using only those with observed values; 3) moving iteratively, the remaining variables are regressed against 

the others but now including imputed values fitted by the regression models (White et al., 2011). This process is repeated 

according to the set iterations, in this case 20, to allow stabilization and convergence of the results. Regression models used in 

MICE allow for both linear and nonlinear relationships across variables, making this method very flexible.  
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2.5 Model performance and comparison 155 

Each imputation model was evaluated using two schemes that assessed model performance and sampling sensitivity.  

2.5.1 Cross validation 

Leave one out cross validation (LOOCV) was chosen to assess the predictive error of the MLR model as well as the standard 

error for each imputation method. In this approach a single observation (𝐷𝐼𝐶!&") is held out for validation while the remaining 

observations (𝐷𝐼𝐶!&#…𝐷𝐼𝐶!&') are used for training the model. This process is repeated n-1 times, allowing each data point 160 

in the time series to be treated as both training data and testing data, thus maximizing the efficiency when the data sets are of 

modest sampling size. Predicted DIC values and model parameters determined in each iteration were collated for the time 

series and performance statistics were evaluated on the total output.  

2.5.2 Bootstrap sampling sensitivity 

A bootstrapping approach was used to evaluate the sensitivity of the imputation models to the amount of data gaps in each 165 

time series. For each year of input data in the time series, artificial gaps were created by random removal of 1:8 monthly 

samples resulting in data gaps of 8.33%, 16.67%, 25.00%, 33.33%, 41.67%, 50.00%, and 66.67%. Random sampling was 

replicated 1000 times for each gap amount to ensure that an even distribution of sampling combinations was evaluated to 

assess the impacts of degree of data gaps on imputation error. Only years with 12 monthly samples were used to evaluate the 

sampling sensitivity in order to ensure consistency. It should be noted that most data sets used in this study do not have monthly 170 

mean data available for all years. Table 3 shows which years of data were used from each site and the distribution of years 

across sites.  

2.5.3 Statistical performance metrics 

The performance of each model was evaluated by comparing the predicted DIC values to the observed DIC measurements. 

The performance metrics included the coefficient of (multiple) determination (𝑅#) for indicating correlation; the root mean 175 

square error (RMSE), the relative root mean square error (RRMSE), and the mean absolute error (MAE) for establishing the 

distribution of individual errors; and the bias error (BIAS) for indicating bias induced on annual sums. Performance metrics 

were calculated according to Equations 2-6, where 𝑜( and 𝑝( denote the individual observed and predicted values respectively.  

𝑅# =	 {∑(,!-	,̅)(1!-12)}
"

∑(,!-	,̅)"∑(1!-12)"
           (2) 

𝑅𝑀𝑆𝐸 =	9"
4
∑(𝑝( − 𝑜()#            (3) 180 

𝑅𝑅𝑀𝑆𝐸 =	9∑(,!-1!)"

∑(1!)"
           (4) 
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𝑀𝐴𝐸 =	 "
4
∑|𝑝( − 𝑜(|           (5) 

𝐵𝐼𝐴𝑆 = "
4
∑(𝑝( − 𝑜()	           (6) 

2.6 Error propagation, seasonality and annual summation 

To evaluate the propagation of error associated with each imputation model we calculated the net annual air-sea CO2 flux at 185 

BATS and compared the observed and imputed time series using 3 synthetic gap schemes: bimonthly, as well as 3-month and 

6-month sequential gaps. We used a Monte Carlo method to estimate combined uncertainty of the net annual CO2 flux 

(Fassbender et al., 2016).  

2.6.1 Calculation of air-sea CO2 flux 

The flux of CO2 (µmol m-2 d-1) across the air-sea interface where a positive value denotes flux from the sea to the air was 190 

calculated according to Equation 7: 

𝐹56" = 𝑘	 × 	𝐾7 × 	[𝑝𝐶𝑂#,	19:;' − 	𝑝𝐶𝑂#,	;!<]        (7) 

Where	𝑘 is the gas transfer velocity coefficient (Wanninkhof, 1992), 𝐾7 is the temperature- and salinity-dependent solubility 

of CO2 in seawater (Weiss, 1974), 𝑝𝐶𝑂#,	19:;' and 𝑝𝐶𝑂#,	;!< are the partial pressure of CO2 in the surface ocean and the 

atmosphere respectively. The ocean 𝑝𝐶𝑂# was calculated from DIC and TA collected at BATS using the R package seacarb 195 

(see Section 2.1). The 𝑝𝐶𝑂#,;!< was calculated according to Equation 8:  

 

𝑝𝐶𝑂#,;!< = 𝑥𝐶𝑂#,;!<F𝑝=;>1 − 𝑝?"6G         (8) 

Where 𝑥𝐶𝑂#,;!< is the atmospheric concentration of CO2, 𝑝=;>1 is the barometric pressure at sea level and 𝑝?"6 is the vapor 

pressure of water at the sea surface temperature and salinity (Zeebe and Wolf-Gladrow, 2001).  200 

 

The monthly mean molar fraction of atmospheric CO2 was measured at Mauna Loa 

(https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html). Wind speed was calculated from the mean zonal and meridional 

components of the NCEP reanalysis of daily surface winds across a 20 km2 cell 

(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.pressure.html). The vapor pressure of water was calculated using 205 

barometric pressure by taking the daily mean of the 6-hourly FNMOC Sea Level Pressure data product across a 100 km2 cell 

(https://data.noaa.gov/dataset/dataset/fnmoc-sea-level-pressure-360x180-6-hourly1). 

2.6.2 Monte Carlo simulations 

Given that the air-sea CO2 flux depends non-linearly on the sea surface temperature and salinity, the wind speed, barometric 

pressure, and the 𝑝𝐶𝑂# in the atmosphere and the surface ocean,  a Monte Carlo approach provides a straightforward means 210 
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of determining uncertainty. We followed the approach of (Fassbender et al., 2016) in which the independent input values were 

varied randomly in a Gaussian distribution about the given time series values ±3𝑢9, where 𝑢9 is the standard uncertainty of 

the input variable. This standard uncertainty was taken as either the measurement uncertainty or the combined standard 

uncertainty that accounted for measurement uncertainty and uncertainty associated with derived values, such as 𝑝𝐶𝑂# from 

DIC and TA, and the imputed DIC values. The calculations of the air-sea flux were performed n = 1000 iterations using these 215 

input values and the overall combined uncertainty was taken as 𝑈9,! = 3𝜎!, where 𝜎! is the standard deviation of the outputs 

for each point in the time series.  

3 Results 

3.1 Seasonal and interannual variability across sites 

Box and whisker plots (Fig. 2) show the seasonal climatology and interannual variability for DIC across the sites tested. The 220 

bar plots in Fig. 2 show the seasonal amplitude, which was taken as the difference between maxima and minima of the 

climatological monthly means, and the interannual variability, which was taken as the standard deviation of the monthly means. 

The amplitude of the seasonal cycle of DIC spanned 11 – 90 µmol across sites, while interannual variability ranged from 8 – 

22 µmol. The seasonal cycles, including amplitude, timing and interannual variability illustrate diversity among the test sites 

so enabling robust assessment of the empirical MLR model for surface layer DIC and other imputation methods.  225 

3.2 DIC estimation by MLR 

Fig. 3 shows the performance of the MLR model to estimate DIC using the available time series data from each site (N = 897). 

The cross validated MLR exhibited an R2 of 0.9352 with an RMSE of 12.04 µmol kg-1, RRMSE of 0.59%, MAE of 8.76 µmol 

kg-1 and bias of 0.030 µmol kg-1. The high R2 and low error and bias indicate that the MLR model worked well for prediction 

of DIC from remotely sensed chlorophyll, temperature, and salinity across different ecosystems. The predictions and errors 230 

for the data from each site are provided in Table 4, which includes the means of the model coefficients and their standard 

deviations for the N iterations of LOOCV per site.  

 

The MLR performed best at PAPA with a RMSE of 4.85 µmol kg-1. The greatest error was associated with the CARIACO and 

FOT coastal sites, however, most of the predicted values still fell within 1% of observed DIC. When the sites were separated 235 

into oceanic (BATS, HOT, KEO, PAPA and MUNIDA) and coastal (CARIACO, FOT) categories, the RMSE was 8.75 µmol 

kg-1and 19.97 µmol kg-1 respectively. When comparing the predictive accuracy of the MLR to the DIC variability at each site 

(Fig. 4), the interannual variability is strongly correlated ((R) = 0.8532, p < .02) to the RMSE while the seasonal amplitude 

has no apparent impact ((R)= 0.0771, p > .8), meaning the error in the predictions is most strongly related to interannual 

variability at each site. 240 
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To assess the sensitivity of the MLR to the predictor variables, the model was adjusted by selectively removing predictor 

variables and refitting the model. The changes in RMSE per site due to the omission of a given variable are shown as an 

anomaly in the tile plot of Fig. 5. BATS exhibited the greatest sensitivity to chlorophyll relative to other sites; FOT, HOT and 

KEO were relatively more sensitive to the effect of salinity; and temperature omission had the greatest impact for CARIACO, 245 

KEO, MUNIDA, and PAPA. The mean effects of variable omissions are given in Table 5, which indicates that collectively 

temperature had the greatest impact among the predictor variables on the predictive error. This was consistent with the 

expectations resulting from the correlation matrix provided in Table 2. The selective omission of predictor variables indicates 

that salinity contributes the most to the bias error although the bias error was low (<0.1) across all sites. 

3.3 Performance of imputation methods 250 

The results of the LOOCV (Fig. 6 and Table 6) indicated that each of the imputation models performed reasonably well with 

only 12% of all residuals exceeding 1% error and zero estimated DIC values exceeding 5% error. Differences in the 

performance of the models to fill singular gaps were generally minor. Table 6 shows the performance metrics for the cross 

validated models across all sites. Overall, the MICE and MLR models exhibited the highest R2 and lowest error (MAE, RMSE 

and RRMSE), followed by Linear Interpolation, Mean Imputation, Stineman Interpolation, Kalman Filtering, Weighted 255 

Moving Average and Spline Interpolation in order of increasing RMSE. MLR exhibited the least amount of bias, while Mean 

Imputation exhibited the greatest amount of bias.  

 

There was considerable variability among the performance of each method across sites. The key in Fig. 7 indicates the RMSE 

normalized to the mean value for comparing the relative error across sites and methods. The individual cross-validated errors 260 

for each imputation method per site are given as the numerical value in each tile of the figure. Fig. 7 provides further evidence 

that CARICO and FOT exhibit the greatest error overall, while BATS and HOT exhibit the lowest error.  

3.4 Sampling sensitivity 

Sampling sensitivity was assessed by the RMSE for randomized artificial gaps totaling 8.33%, 16.67%, 25.00%, 33.33%, 

41.67%, 50.00%, and 66.67%. The randomized approach resulted in a mixture of sequential and non-sequential gaps, while 265 

bootstrapping achieved equivalent representation of all months for each assessment. Fig. 8a shows boxplots of the RMSE for 

each imputation method as a function of percent of data missing at each site. Spline interpolation resulted in much greater error 

and necessitated separate scaling. There was significant variability in both the performance of different imputation methods 

within sites and within imputation methods across different sites. In general, mean imputation and MLR converge on a 

maximum error once data gaps reached 20-40%, whereas the error for other imputation models is positively correlated with 270 

the percent of data missing. While the performance of the cross validated Kalman filtering model did not differ greatly from 

the other interpolation methods, Fig. 8A indicates it leads to a greater number of outliers overall, in particular at BATS, KEO 
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and PAPA. Spline interpolation also resulted in a high number of outliers, with the most extreme error over other methods. 

Fig. 8B shows the median error as a function of the percent of data missing with a loess fit. The general lack of a strong 

correlation shown by Mean imputation and MLR exhibit the least amount of sensitivity to the number of data gaps in the time 275 

series. The MICE model shows the highest level of sensitivity to the percent of data missing despite performing very well 

under the LOOCV and low numbers of data gaps.  

3.5 Time series gaps 

The imputed secondary time series synthesized with artificial gaps at bimonthly, and sequential 3-month and 6-month durations 

that were used for assessing imputation error on seasonality and annual sums are shown in Fig. 9a. The time series indicated 280 

that most methods performed well to impute bimonthly data gaps. The positive bias error exhibited by mean imputation in the 

LOOCV analysis was evident in the bimonthly timeseries as well, and it had the highest RMSE at 7.90 µmol kg-1. The MICE 

model, which outperformed other methods in the LOOCV analysis, including at BATS, had the second highest error at 7.10 

µmol kg-1 for bimonthly imputation. However, mean imputation and MICE performed equally well, with the second lowest 

RMSE for the 3-month gap time series. One-way ANOVA indicated that the differences in imputation error between methods 285 

for both the bimonthly and 3-month gap time series are not significant (Table 7). However, it is notable that the MLR model 

exhibited an RMSE that was less than half of the other methods at 3.10 µmol kg-1. The 3-month gap length does not result in 

significant divergence from seasonal variability when using linear, spline and Stineman interpolation and also Kalman filtering 

and weighted moving average.  

 290 

There was however greater variability among imputation errors across methods for the 6-month gap time series (Fig. 9b). This 

was further evidenced by the 1-way ANOVA, with a p-value < 0.0001. The MLR model had the lowest imputation error at 

5.02 µmol kg-1 followed by mean imputation and MICE with errors of 7.95 and 8.19 µmol kg-1 respectively. Spline 

interpolation exhibited the greatest error at 29.18 µmol kg-1, while the remaining models had errors of approximately 20 µmol 

kg-1 (Table 7). The 6-month gap length appears long enough to force linear, spline and Stineman interpolation as well as 295 

Kalman filtering and weighted moving average models to diverge from the seasonal variability observed in the time series. 

Spline interpolation dramatically overestimated the maximum DIC and seasonal signal in 1998 in the 6-month gap time series.  

3.6 Annual summation of air-sea CO2 fluxes at BATS 

Fig. 10 shows the net annual air-sea CO2 fluxes calculated form BATS observations collected 1998-2001 compared to the CO2 

flux calculated from time series imputed using each of the models for the bimonthly, 3-month gap and 6-month gap secondary 300 

time series. In general, the models tended to overestimate the flux when the observed sums were lower (1998-1999) and 

underestimate the flux when the observed sums were higher (2000-2001). The anomaly observed from the poor fit using the 
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spline interpolation model for the 6-month gap time series resulted in a large positive flux which was opposite in sign but 

nearly equal in magnitude to the observations during 1998.  

 305 

The absolute percent difference in the annual summation of air-sea CO2 flux using each imputation model for the bimonthly, 

3-month gap and 6-month gap time series are shown in Fig. 11. The relative error of the MLR was similar to MICE and mean 

models for 6-month gaps but was consistently lowest across all other time series. However, consistent with the time series 

imputation, 1-way ANOVA indicates that only the mean errors for the 6-month gap time series are significantly different. At 

this gap duration, the MICE method, mean imputation and MLR model perform significantly better than other approaches.  310 

3.7 Error propagation and uncertainty 

Fig. 12 shows the uncertainty of the air-sea CO2 flux as a function of the estimated flux value. The distribution of the values 

for each imputation method indicated little difference for bimonthly gaps. However, the dependence of uncertainty on 

imputation method increased for 3-month and 6-month gaps. Here, the MLR had the least sensitivity of uncertainty to the 

magnitude of the flux and performed twice as well as all other methods over the 3-month gaps. Mean imputation and MICE 315 

performed nearly as well as MLR over 6-month gaps. 

4 Discussion 

4.1 MLR estimation of DIC 

The development of remote sensing and MLR-based approaches for carbonate chemistry have been used extensively for 

extrapolating over broad spatial and temporal scales to investigate regional to basin scale phenomena (Bostock et al., 320 

2013;Hales et al., 2012;Evans et al., 2013;Lohrenz et al., 2018;Juranek et al., 2011;Alin et al., 2012). Remote sensing 

applications have focused primarily on predicting pCO2 and estimating air-sea flux in coastal waters to better understand the 

seasonal and spatial heterogeneity of carbon sources and sinks and their implications for regional and global carbon budgets 

(Hales et al., 2012;Lohrenz et al., 2018). Many MLR models that predict carbonate parameters have been developed using 

large observational data sets that include either dissolved oxygen (O2) (Juranek et al., 2009;Kim et al., 2010;Alin et al., 325 

2012;Bostock et al., 2013) or nitrate (NO3) (Evans et al., 2013) as a predictor variable along with temperature and salinity. 

MLR models that incorporate O2 and NO3 can perform particularly well in coastal environments where ecosystem metabolism 

has a dominant effect the carbonate chemistry (Alin et al., 2012, Juranek et al., 2009). However, there are currently no remotely 

sensed O2 and NO3 data products and the chances of glider or float data being available at a given time series site to coincide 

with a gap in carbonate measurements are limited. The MLR model presented herein serves as a method for imputing missing 330 

DIC values in time series using remotely sensed chlorophyll and temperature and in-situ salinity. Model-based estimates of 

salinity could be used when in-situ data are not available; however, the error associated with reanalysis salinity data products, 

such as the Mercator Ocean Global Reanalysis (GLORYS), the Hybrid Coordinate Ocean Model (HYCOM), the Climate 
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Forecast System Reanalysis (CFSR), and the Bluelink Reanalysis (BRAN), would need to be assessed for a given location and 

included in the uncertainty budget (de Souza et al., 2020) 335 

 

The variability in the MLR model coefficients indicated that the relationships between DIC, chlorophyll, temperature and 

salinity were location-specific and cannot be spatially extrapolated to different water masses and ecosystems. This was 

indicated by the variability seen among the correlations of predictor variables to DIC across sites and clearly evidenced by the 

differences in model performance between the coastal sites (FOT and CARIACO) and the oceanic sites. However, when the 340 

MLR was trained with sufficient observations to capture the seasonal cycle, it could predict DIC with error that was far less 

than the natural variability over seasonal and interannual time scales and was typically on the order of, or better than the 

variability on monthly time scales. The RMSE of 4.85 – 10.67 µmol kg-1 at the oceanic sites is consistent with other MLR 

studies which have ranged from ~4-11 µmol kg-1 (Evans et al., 2013;Juranek et al., 2011;Bostock et al., 2013), while the RMSE 

at coastal sites (FOT and CARIACO) of approximately 20 µmol kg-1 is larger than exhibited in a California Current study 345 

(Alin et al., 2012). The Alin study, like others (Juranek et al., 2009;Juranek et al., 2011), estimated DIC based on O2 and 

density, incorporating a multiplicative relationship. While O2 may improve the performance of MLR approaches, particularly 

in biologically active coastal environments, the MLR model here only utilized remotely sensed chlorophyll and temperature 

and therefore only applied to the surface layer. O2 and CO2 may become decoupled in the surface layer due to varying time 

scales for air sea gas exchange, making O2 a less reliable predictor variable for surface concentrations of DIC (Juranek et al., 350 

2011). Despite somewhat higher RMSE in coastal environments relative to the results of Alin et al. (2012), the MLR model 

here exhibited predictive error that is still less than 1% at such sites. We contend that this is an acceptable error in such 

environments for the purposes of gap filling and temporal extrapolation.    

4.2 DIC time series imputation 

Cross validation of the imputation models evaluated in this study indicated that each of these models have reasonably low 355 

(typically <1%) error when imputing a single value at monthly timescales. This was similar to other comparative gap-filling 

studies that focused on higher temporal resolution data and imputing missing values over time scales from seconds to days 

(Moffat et al., 2007;Zhao et al., 2020;Demirhan and Renwick, 2018). For the assessment of annual budgets in the studies of 

(Zhao et al., 2020;Moffat et al., 2007), the error associated with the imputation methods was similar to the uncertainty in the 

fluxes across sites (Lavoie et al., 2015). As a result, the choice of imputation model yielded limited improvement on the 360 

accuracy of budget estimates. By contrast, we found that the relative uncertainty for annual air-sea CO2 fluxes at BATS (3.5%) 

was much less than the percent error for the annual flux values associated with each imputation method (Fig. 11), indicating 

the importance of the choice of imputation model for a given data set. Evaluation of the BATS time series with synthetic gaps 

showed that selection of imputation method can have significant effects on the calculated timing, magnitude and structure of 

seasonal variability.  365 
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While all methods had similar performance imputing a bimonthly time series, which was consistent with the cross-validation 

analysis, at a sequential gap duration of 3 months the linear, spline, and Stineman interpolation, Kalman filtering and weighted 

moving average methods all began to affect the shape and timing of calculated seasonal DIC dynamics. Despite the mean 

errors and 1-way ANOVA indicating that there was no significant difference in the performance of these methods with gaps 370 

of 3 months or less, it is clear visually that mean imputation, MICE and MLR did better in reproducing the timing of seasonal 

changes. This became even more apparent for the time series with 6-month gaps, where important seasonal dynamics were 

lost or misrepresented using the linear, spline, and Stineman interpolation, Kalman filtering and weighted moving average 

methods.  

 375 

In addition to the importance of retaining seasonal dynamics, the timing of the gap within a given year had significant impact 

on the error in the annual sum of the CO2 flux. For example, in 1998, the 3-month gap was associated with the seasonal 

maximum and resulted in an underestimate of the DIC and an overestimate of CO2 flux. However, the 3-month gaps in 1999-

2001 were associated with the shoulder seasons and did not have as large an impact on the flux error. As noted above, at the 

6-month gap duration, the timing within the year had a greater impact on the over- and underestimation of DIC for most 380 

methods, resulting in much greater error in the CO2 flux.  The annual fluxes in Fig. 10 show the stability of mean imputation, 

MICE and MLR compared to other methods evaluated in this study. This was further supported by the fact that the mean 

absolute percent error for these three techniques increased less than with other methods, when the sequential gap length was 

increased (Fig. 11). This was also evidenced by the uncertainty of the CO2 fluxes that were determined from time series imputed 

using mean imputation, MICE and MLR remained much lower than other methods when gap durations increased (Fig. 12).  385 

 

The stability of mean imputation, MICE and MLR was expected, because they are based on climatological and empirical 

relationships rather than the other statistical approaches evaluated here. The bootstrapping assessment of sampling sensitivity 

for each method provided additional insight into how the imputation methods performed at randomized data missingness rates. 

Linear and Stineman interpolation, and weighted moving average had responses similar to each other in terms of the median 390 

error and range of outliers in response to varied rates of missingness in the data, while spline interpolation produced a far 

greater range of outliers for all sites (over 5 times greater at FOT and CARIACO). This was also exhibited in the BATS time 

series assessment where the flexibility of the spline interpolation led to a tendency to overestimate seasonal maxima and 

minima, as observed in other comparative studies (North and Livingstone, 2013). Stineman interpolation performed better than 

basic spline interpolation by providing greater constraint, but no better than linear interpolation, despite the increased 395 

flexibility. Interestingly, MICE performed very well at lower percentages of data missing and led to relatively low error in 

estimating the annual budget, yet it is highly sensitive to the percent of data missingness. However, outliers produced by MICE 

were constrained by the observational range because it is an empirical model. Outliers were most tightly constrained when 

using mean imputation and MLR given these empirical approaches are based on the climatology. This was shown in Fig. 8A 

which illustrated how error variability decreased with increasing percentages of data missing for mean imputation and MLR. 400 
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Though the sampling sensitivity for each imputation model varied across sites (Fig. 8B), MLR exhibited the lowest sensitivity 

and overall error and bias for imputing missing DIC data.  

 

The results presented here indicate that care should be taken when considering what method to use to fill data gaps in ocean 

carbon time series, with criteria for selection including the percent of missing data, gap lengths and site characteristics. In 405 

general, the empirical models performed better than statistical models evaluated in this study. Mean imputation provides a 

stable and straightforward approach to filling longer gaps but may lead to higher bias in annual budgets, possibly impacting 

the interpretation of interannual variability and long-term trends. MICE appeared to be well suited to environmental time series 

data that have covariate parameters such as the correlation between DIC, chlorophyll, temperature and salinity. This could be 

extended to other nutrients such as phosphate and nitrate as well as dissolved oxygen in order to train the models used in 410 

MICE. MICE also offers the opportunity to impute data gaps over multiple variables in larger time series data sets. Our MLR 

model provides a stable option that performs well over all rates of data missingness once it is sufficiently trained with field 

data. This MLR approach also provides the benefit of utilizing remotely sensed and modelled data products in the absence of 

covariate field data. This MLR model consistently performed with lower error and uncertainty than other models in this study 

and should be considered when assessing best practices for imputing ocean carbon time series.  415 

5 Conclusions 

This study provides the first comparative assessment of several gap-filling methods that may be applied to ocean carbon time 

series. Regularized carbonate time series data are necessary for understanding seasonal dynamics, annual budgets, interannual 

variability and long-term trends in the ocean carbon cycle and changes to the ocean carbon sink, which are of particular 

importance in the face of global climate change. Our assessment indicates that the amount and distribution of gaps in the data 420 

should be a determining factor in choosing an imputation method that optimizes uncertainty. Imputed values, however, cannot 

be treated as measurements and the uncertainty of imputation methods must be included in the overall uncertainty budget of 

broader ocean carbon analyses. The results presented above indicate the performance and behavior of select empirical and 

statistical approaches and the methods used provide a simple approach for estimating uncertainty using the RMSE of DIC 

predicted by a given imputation method.  425 

 

This study provides evidence that DIC can be estimated with an empirical MLR approach that uses remotely sensed chlorophyll 

and temperature, and in-situ salinity. This method performs consistently well across 7 disparate ecosystems in oceanic and 

coastal environments, but the model coefficients are unique to the water mass and ecosystem and further study is needed to 

assess the spatial extent over which regional extrapolation is still valid. However, when using this method to impute data gaps 430 

in carbonate time series, it performs better than several options, particularly for larger gaps. We conclude that when trained 

with sufficient field data (e.g., captures the seasonal cycle and some interannual variability), this empirical MLR method 
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accurately predicts DIC from remotely sensed data and provides the most robust option for imputing gaps over a variety of 

data gap scenarios. 
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 575 
Figure 1. Location map of seven ocean carbon time series sites utilized for estimating DIC using an empirical multiple linear 
regression model and other empirical and statistical approaches for imputing carbonate time series, including Bermuda Atlantic 
Time-series (BATS), Carbon Retention In A Colored Ocean (CARIACO), Firth of Thames (FOT), Hawaiian Ocean Time-series 
(HOT), Kuroshio Extension Observatory (KEO), Munida Time-series (MUNIDA), and Ocean Site Papa (PAPA).  See Table 1 for 
additional information about each sampling site.  580 
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Figure 2. Box and whisker plots of monthly mean DIC concentration in the mixed layer at each site, and bar plots showing the 
seasonal amplitude and interannual variability. Box and whisker plots are composed of the median (solid line), lower and upper 
quartiles (box), the minimum and maximum values beyond the 25th and 75th quantile but < 1.5 interquartile range (whiskers) and 
values > 1.5 interquartile range (dots).  585 
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Figure 3. Comparison of predicted and measured DIC using a multiple linear regression model based on measured temperature, 
salinity and remotely sensed chlorophyll from sites: Bermuda Atlantic Time-series Study (BATS); Carbon Retention In A Colored 
Ocean (CARIACO); Firth of Thames (FOT); Hawaiian Ocean Time-series (HOT); Kuroshio Extension Observatory (KEO); 
Munida Time-series (MUNIDA); Ocean Site Papa (PAPA). Box and whisker plots for predictor variable coefficients a, b1 b2 and b3 590 
are composed of the median (solid line), lower and upper quartiles (box), the minimum and maximum values beyond the 25th and 
75th quantile but < 1.5 interquartile range (whiskers) and values > 1.5 interquartile range (dots).  
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 595 
Figure 4. Correlations between RMSE and (A) seasonal amplitude and (B) interannual variability across sites.  

 
Figure 5. Tile plot showing the change in RMSE per site due to the selective omission of input variables and refitting of the MLR.  

(A) (B) 
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Figure 6. Estimates of DIC based on each imputation model using Leave One Out Cross Validation, for all years >1997 containing 600 
>4 monthly samples. 
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Figure 7. Tile plot showing the RMSE (white text in tiles) for each cross validated imputation methods at each site. Tiles are colored 
according to RMSE normalized to the mean value across all methods and sites.  605 

https://doi.org/10.5194/bg-2021-78
Preprint. Discussion started: 1 April 2021
c© Author(s) 2021. CC BY 4.0 License.



24 
 

 
Figure 8. (A) Boxplots of RMSE for each gap assessment corresponding to 8.33%, 16.67%, 25%, 33.33%, 41.67%, 50%, 58.33% 
and 66.67% data missing rates. Box and whisker plots are composed of the median (solid line), lower and upper quartiles (box), the 
minimum and maximum values beyond the 25th and 75th quantile but < 1.5 interquartile range (whiskers) and values > 1.5 
interquartile range (dots). (B) Loess fit (red line) of the median error for each gap assessment.  610 
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Figure 9. (A) Time series of DIC measurements at BATS (black) with artificial gaps representing bimonthly sampling, 3-month and 
6-month sequential gaps. Predicted DIC values for each artificial gap are shown (red) for each imputation model. (B) Box and 
whisker plots of the absolute imputation error for each method are composed of the median (solid line), lower and upper quartiles 
(box), the minimum and maximum values beyond the 25th and 75th quantile but < 1.5 interquartile range (whiskers) and values > 615 
1.5 interquartile range (dots). 

(A) 
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Figure 10. Annual summation of air-sea CO2 flux using observations (grey) and imputed bimonthly, 3-month gap and 6-month gap 
time series using each model (black).  
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 620 
Figure 11. Absolute percent difference between annual CO2 flux observed at BATS 1998-2001 and the flux estimated from imputed 
DIC values over bimonthly, 3-month and 6-month sequential gaps per year.  
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Figure 12. Flux uncertainty for mean monthly air-sea CO2 flux estimates for imputed bimonthly, 3-month gap and 6-month gap 
time series at BATS over the period 1998-2001.  625 
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Table 1. Information about each sampling site with ocean carbonate time series used in our analyses, including Bermuda Atlantic 
Time-series (BATS), Carbon Retention In A Coloded Ocean (CARIACO), Firth of Thames (FOT), Hawaiian Ocean Time-series 
(HOT), Kuroshio Extension Observatory (KEO), Munida Time-series (MUNIDA), and Ocean Site Papa (PAPA).  DIC = dissolved 
inorganic carbon. TA = total alkalinity. pCO2 = partial pressure of carbon dioxide. pH = -log[H+]. Gap rate based on expected 
sampling frequency.  645 

 
Web addresses for site information and data access:  
BATS: http://www.bios.edu/research/projects/bats/ 
HOT: https://hahana.soest.hawaii.edu/hot/ 
CARIACO: http://www.imars.usf.edu/cariaco 650 
Munida: https://marinedata.niwa.co.nz/nzoa-on/ 
Papa: https://www.pmel.noaa.gov/ocs/Papa 
KEO: https://www.pmel.noaa.gov/ocs/KEO 

FOT: https://marinedata.niwa.co.nz/nzoa-on/ 
*Sampling began in 1998, mooring installed in 2015 655 
1BATS sampling target is at least monthly 
2HOT sampling target is approximately monthly 
3Munida sampling is typically bimonthly, varying with 
conditions and additional coordinated voyages  

 660 

 

 

 

 

 665 

 

 

Site Type 
Time series  

Site 
Sampling 

Region 
Location 

Time series 
Duration 

Sampling 
Frequency 

Gap 
Rate 

Carbonate 
Measurements 

Sampling 

Site 

BATS Sargasso Sea 
31.88oN, 

64.26oW 

1983 - 

present 
1monthly 4% DIC/TA 

HOT North Pacific 
22.67oN, 

158oW 

1988 - 

present 
2monthly 15% TA/pH 

CARIACO 
Cariaco 

Basin 

10.5oN, 

64.67oW 

1995 - 

present 
monthly 16% TA/pH 

MUNIDA South Pacific 
45.8oS 

171.5oE 

1998 - 

present 
3bimonthly 5% pCO2/TA 

Mooring 

PAPA North Pacific 
50.13oN, 

144.83oW 

2007 - 

present 
3 hours 26% pH/pCO2 

KEO North Pacific 
32.25oN, 

144.56oE 

2004 - 

present 
3 hours 18% pH/pCO2 

FOT 
New Zealand 

Coast 

36.88oS, 

175.32oE 

2015 - 

present 
15 minutes 59% pH 

 1 
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Table 2. Pearson correlation coefficients between DIC and chlorophyll, temperature and salinity in the surface layer across test sites. 
Asterisks indicate weak correlations (threshold = 0.3).  

Site 
Pearson Correlation Coefficient 

Chlorophyll Temperature Salinity 

KEO 0.49 -0.91 0.87 

BATS 0.48 -0.73 0.65 

PAPA -0.34 -0.97 0.73 

FOT -0.22* 0.24* 0.74 

HOT 0.1* -0.51 0.74 

CARIACO 0.53 -0.77 0.58 

MUNIDA -0.37 -0.87 0.32 

 670 
Table 3. Years with 12 monthly samples per site. *Actual sampling interval greater than monthly 

Time-Series Site Years With 12 Monthly Samples N Years 

BATS 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 

2004, 2005, 2007, 2008, 2012, 2013 
17 

HOT 1998, 2004, 2006 3 

CARIACO 2008 1 

MUNIDA NA* 0 

PAPA 2015, 2016, 2017 3 

KEO 2009, 2010, 2014, 2015, 2016 5 

FOT 2016 1 

 

 

 

 675 
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Table 4. Results of cross validated MLR model for estimating DIC at each individual site, and at grouped oceanic (BATS, HOT, 
KEO, MUNIDA, PAPA) and coastal  (FOT, CARIACO) sites, including the mean and standard deviation of each coefficient for N 
LOOCV iterations.  685 

 
Table 5. Model results for selective omission of input variables. 

Variable 

Omitted 
RMSE RRMSE R2 MAE BIAS 

none 12.044 0.591 0.9352 8.764 0.030 

chlorophyll 12.106 0.594 0.9345 8.849 0.005 

temperature 15.526 0.762 0.8923 11.871 0.013 

salinity 13.998 0.687 0.9124 10.285 0.022 

 
Table 6. Performance metrics for cross validated imputation models across all sites.  

Model RMSE RRMSE R2 MAE BIAS 

Mean 15.07 0.74 0.905 11.65 2.586 

Linear 14.79 0.72 0.895 10.09 -0.141 

Spline 17.64 0.86 0.874 12.21 -0.252 

Stineman 15.28 0.75 0.900 10.51 -0.036 

Kalman 15.40 0.76 0.896 10.49 0.570 

WMA 15.50 0.76 0.896 11.01 0.069 

MLR 12.04 0.59 0.935 8.76 0.030 

MICE 10.92 0.54 0.949 7.08 -0.297 

 690 

 

Site RMSE RRMSE R2 MAE BIAS N a b1  b2 b3 

BATS 10.67 0.52 0.6611 8.93 0.017 208 401.65±13.75 -13.48±1.56 -3.53±0.03 47.53±0.36 
CARIACO 20.14 0.96 0.5861 14.94 0.015 153 1446.46±40.07 2.50±0.10 -10.16±0.12 24.37±1.02 
FOT 19.02 0.92 0.3958 15.13 0.099 28 718.32±47.59 8.30±2.53 0.47±0.35 37.93±1.26 
HOT 8.45 0.42 0.6178 7.40 0.029 204 276.44±9.51 -82.88±2.25 -3.47±0.04 51.44±0.26 
KEO 8.12 0.41 0.9330 6.12 0.061 90 -208.45±16.79 -27.85±1.01 -4.61±0.03 66.36±0.48 
MUNIDA 8.15 0.39 0.7564 6.48 0.029 109 1069.11±65.27 4.77±1.05 -7.69±0.08 32.00±1.89 
PAPA 4.85 0.24 0.9631 3.74 0.035 94 799.13±17.96 -16.47±0.52 -6.55±0.02 39.82±0.55 
Oceanic  8.75 0.43 0.9567 7.09 0.030 671 412.04±356.85 -34.86±32.81 -4.54±1.53 48.35±9.35 
Coastal 19.97 0.95 0.6078 14.97 0.028 181 1333.82±267.23 3.40±2.32 -8.52±3.86 26.47±5.03 

 1 
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Table 7. RMSE for each imputed time series and p-value from 1-way ANOVA for each time series.  

Missingness Kalman Linear Mean MICE MLR Spline Stineman WMA p 

Bimonthly 5.59 5.59 7.90 7.10 5.99 6.36 5.55 5.65 0.591 

3-month gap 6.63 7.86 6.41 6.41 3.10 8.04 7.36 7.86 0.207 

6-month gap 19.31 19.31 7.95 8.19 5.02 29.18 18.90 20.80 <0.0001 

 

 

 695 
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