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Abstract. Glacial meltwater from the western Antarctic Ice Sheet is hypothesized to be an important source of cryospheric 

iron, fertilizing the Southern Ocean, yet its trace metal composition and factors which control its dispersal remain poorly 

constrained. Here we characterize meltwater iron sources in a heavily glaciated western Antarctic Peninsula (WAP) fjord. 

Using dissolved and particulate ratios of manganese-to-iron in meltwaters, porewaters, and seawater, we show that glacial 

melt and subglacial plumes contribute to the seasonal cycle of bioavailable iron within a fjord still relatively unaffected by 15 

climate change-induced glacial retreat. Organic ligands derived from the phytoplankton bloom and the glaciers bind 

dissolved iron and facilitate the solubilization of particulate iron downstream. Using a numerical model, we show that 

plumes generated by outflow from the subglacial hydrologic system, enriched in labile particulate trace metals derived from 

a chemically-modified crustal source, can supply the surface through vertical mixing, and that prolonged katabatic wind 

events enhance export of meltwater out of the fjord. Thus, we identify an important atmosphere-ice-ocean coupling 20 

intimately tied to coastal iron biogeochemistry and primary productivity along the WAP. 

1 Introduction 

Warm temperatures are accelerating glacial retreat and increasing meltwater discharge, rapidly changing Earth’s cryosphere 

(Mouginot et al., 2019; Rignot et al., 2013). Ranging from diffuse flows to waterfalls and streams, cryospheric meltwaters 

deliver dissolved and particulate material, altering coastal ocean biogeochemistry. Glacial meltwater enters the ocean 25 

through surface runoff, direct melting of glacial ice (including icebergs), and discharge from liquid water reservoirs beneath 

glaciers, carrying iron (Fe) and other trace metals weathered from continental crust. In the surface ocean, the delivery of new 

Fe is critical for the growth of phytoplankton; and when enhanced, naturally or artificially, carbon is sequestered by the 

biological pump (Boyd et al., 2019). However, direct measurements of Fe in heavily glaciated fjords reveal that up to 90-

99% of dissolved Fe (dFe) originating from glaciers is removed upon mixing with seawater due to estuarine-type removal 30 

processes, including: precipitation of insoluble oxyhydroxides, adsorption to the surfaces of existing particles, and 
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aggregation of colloids and particles (Boyle et al., 1977; Schroth et al., 2014). Together, these processes are known as 

scavenging and constitute a major control on the distribution of Fe in the ocean by converting soluble forms of Fe into 

colloidal aggregates and particles (Wu et al. 2001). Constraints on the flux of newly delivered glacial Fe that escapes this 

sink and is transported across continental shelves will enable better predictions of open ocean primary production and carbon 35 

sequestration, especially in oceanic regimes where Fe is a limiting nutrient. 

Evidence for Fe delivery from the cryosphere is historically based on geochemical analysis of endmember glacial discharge 

(Hawkings et al., 2014; Raiswell and Canfield 2012; Hodson et al., 2017; Hawkings et al., 2020), and discrete sampling of 

glacial ice (e.g. Hopwood et al. 2018) and seawater adjacent to marine-terminating glaciers and ice sheets (Hopwood et al., 

2016; Annett et al., 2015; Gerringa et al., 2015; Alderkamp et al., 2012; Sherrell et al., 2018). Trace metal studies at the ice-40 

ocean interface have previously been conducted in fjords experiencing intense seasonal melt, such as in Alaska, Greenland, 

and Svalbard (Hopwood et al., 2016; Kanna et al., 2020; Schroth et al., 2014; Zhang et al., 2015). These temperate and high 

Arctic coastal waters experience large freshwater and sediment fluxes as a result of increased glacial discharge, which in turn 

create extreme physical and geochemical gradients. Ultimately, such dramatic changes in turbidity disturb local primary 

production by decreasing light availability within the water column and reduced macronutrient supply (Meire et al., 2017). 45 

Even with high particulate and dissolved Fe contents, meltwaters from these fjords do not feed directly into offshore waters 

without significant scavenging, mixing and dilution (Hopwood et al., 2015), bringing into question the effectiveness with 

which glacial meltwater-derived Fe may fertilize the surrounding ocean. 

In Antarctica, fjords are less well-studied than their Arctic counterparts, but are also locations of intense seasonal blooms 

with comparable or higher primary production relative to the adjacent continental shelves, and high sequestration efficiencies 50 

of organic carbon (Vernet et al., 2008; Grange and Smith 2013; Taylor, DeMaster, and Burdige 2020). Along the western 

Antarctic Peninsula (WAP), 674 marine-terminating glaciers drain into the coastal ocean, primarily in fjords (Cook et al., 

2016). The vast majority of these marine-terminating glaciers are retreating due to intrusions of warm deep water from the 

shelf, but many still remain cold-based (that is, local ocean temperatures are too cold to melt the glacier terminus), 

particularly in the northern WAP where Weddell Water from the eastern side mixes with the Bransfield Strait (Cook et al., 55 

2016; Pritchard and Vaughan, 2007). These glaciers are thought to have relatively small subglacial meltwater discharge, with 

suspended sediment signatures that spread laterally in the coastal ocean (Domack and Ishman, 1993; Domack and Williams, 

2011). This makes cold glacio-marine Antarctic fjords unique locations for sampling subglacial discharge with minimal 

alteration. 

Subglacial environments distinguish themselves from other cryospheric sources of Fe to the oceanic euphotic zone. Within 60 

the subglacial cavity, anoxia develops due to enhanced microbial respiration processes, high weathering rates, and limited 

diffusion of oxygen and exchange with the coastal ocean (Mikucki et al., 2009). The result is increased solubility of iron as 

Fe(II), and other redox sensitive elements, such as manganese (Mn). Meltwater discharge from beneath marine-terminating 

glaciers enters the ocean in the subsurface but may be mixed into the surface due to its positive buoyancy relative to 

seawater. Enhanced vertical shear occurs episodically in the Antarctic coastal ocean as cooled dense parcels of air accelerate 65 
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down ice sheets, generating the strongest coastal winds on Earth (>30 m s-1), near the coast. These episodic katabatic wind 

events could also be important for enhancing the supply of subsurface meltwaters to the surface (Jackson et al., 2014; 

Lundesgaard et al., 2019). The subglacial meltwater source represents a large uncertainty in the supply of cryospheric Fe to 

the ocean given the challenge of acquiring samples of the subglacial hydrologic system directly or with minimal alteration, 

particularly in Arctic environments with intense seasonal melt flows and associated sediment turbidity (Straneo and 70 

Cenedese, 2015). 

We present trace metal results from two expeditions (December 2015 and April 2016) to Andvord Bay, a cold glacio-marine 

fjord located mid-latitude along the WAP. This study is part of the FjordEco project which assessed the ecosystem function 

and seasonality of Andvord Bay (Pan et al., 2019; Pan et al., 2020; Ziegler et al., 2020; Eidam et al., 2019; Lundesgaard et 

al., 2020, 2019; Hahn-Woernle et al., 2020). The WAP is host to the most extensive collection of glaciomarine fjords on the 75 

Antarctic continent, and its shelf waters are subject to ongoing biogeochemical and ecological alteration linked to large-scale 

changes to the western Antarctic Ice Sheet (Henley et al., 2020). We present a detailed picture of fjord Fe biogeochemistry 

and seasonality prior to significant glacier retreat, for which few ocean measurements exist.  

2 Methods 

2.1 Oceanographic setting and sampling 80 

Andvord Bay is a glacio-marine fjord located mid-latitude along the west Antarctic Peninsula (WAP). This site was chosen 

because it has been identified as a productivity “hotspot” (Grange and Smith, 2013), and because of its proximity to long-

standing ecological research programs (Palmer Long Term Ecological Research program). This location is characterized by 

converging deep water masses with distinct physical properties (relatively warm modified Upper Circumpolar Deep Water, 

cold Weddell Water). Bordering Andvord Bay are 11 marine-terminating glaciers (Fig. 1) with Moser and Bagshawe glaciers 85 

responsible for the majority of the solid ice flux. These glaciers are cold-based (-1 to -0.5 °C) resulting in weak meltwater 

signatures within the fjord (Lundesgaard et al., 2020). Observations and sampling of Andvord Bay were conducted during 

two cruises as part of the FjordEco program during two cruises: LMG15-10 from 27 November to 22 December 2015 (late 

Spring) on R/V Laurence M. Gould, NBP16-03 from 4 April to 26 April (Fall) aboard R/V Nathaniel B. Palmer. On 

December 11, 2015 a strong katabatic wind event, with peak along-fjord velocities of 30 m s-1, was observed and lasted for 5 90 

days. Atmospheric observations by two automatic weather stations (Neko Harbor, Useful Island) recorded episodes of high 

velocity katabatic winds between field seasons, showing that these are common events in this study region. 
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Figure 1. Regional map of study region (red box, inset right) and model domain (dashed red box) with nearby Palmer Station and 
shelf station (Stn B). Bathymetric map of Andvord Bay with important stations labeled (GS = Gerlache Strait, AC = Aguirre 95 
Channel, EC = Errera Channel, OB = Outer Basin, S4 = Sill 4, S3 = Sill 3, MB = Middle Basin, IBA = Inner Basin A, IBB = Inner 
Basin B) and the surrounding tidewater glaciers numbered (4 = Moser Glacier, 7 = Bagshawe Glacier). The locations for sediment 
cores collected in January 2016 and included in this study are indicated by the star. The dashed yellow line indicates the transect 
along which vertical sections are plotted. Blue outline (inset right) shows glacial fronts where meltwater is introduced in the model. 

 100 

A total of 18 stations per season were sampled for Fe geochemical variables using acid-cleaned 12 L GO-Flo bottles 

(General Oceanics) suspended in series on a clean hydroline (Amsteel) and triggered with acid-cleaned Teflon messengers 

designed by Ken Bruland (UC Santa Cruz). This sampling effort coincided with concurrent CTD stations. Once on board, 

GO-Flo bottle tops and bottoms were covered with plastic and placed on a wooden rack located within the trace metal clean 

shipboard plastic “bubble”, which was positively-pressurized with HEPA-filtered air. Samples for dFe analysis were 105 

pressure-filtered (high purity N2 gas) directly from GO-Flo bottles through 0.2 µm Acropak 200 capsule filters (VWR 

International), into low-density polyethylene bottles (Nalgene) and acidified to pH 1.7 to 1.8 using HCl (Optima grade, 

Fisher Scientific). Samples for Fe-binding ligands were similarly filtered in-line but collected in fluorinated high-density 

polyethylene (Nalgene) bottles, unacidified, and frozen at -20ºC until laboratory analysis back on land. In brief, sample 

bottles were soaked in a soap detergent overnight with heat applied (60ºC), followed by a one-week soak in 3N HNO3 (trace 110 

metal grade) at room temperature, and finally, a one-week soak in a 3N HCl (trace metal grade) bath at room temperature. 

Rinsing with ultrapure MilliQ water occurred after each step. This sampling protocol followed established trace-metal clean 

methods to the standards of the GEOTRACES program to avoid metal contamination. In addition to the filtered samples, 

unfiltered seawater was sampled directly from the GO-Flo bottles and acidified to pH 1.8 and stored for >6 months (up to 2 

years) and filtered prior to analysis in order to determine total dissolvable Fe (TDFe). Labile particulate Fe (LpFe) is 115 
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calculated as the difference between TDFe and dFe. Prior to analysis in the laboratory, these unfiltered acidified samples 

were vacuum filtered using acid-cleaned 0.4 µm polycarbonate (PC) filters in a Teflon filtration apparatus. Particulate 

samples were collected on 0.4 µm PC filters and stored at -20°C until complete digestion using an HNO3/HF mixture. The 

digestion method employed is described in Planquette and Sherrell (2013) and was applied to the US GEOTRACES GP16 

total particulate trace metal sample set (Fitzsimmons et al., 2017).  120 

Acute attention to cleanliness was applied when sampling icebergs during small boat deployments in the fjord. Floating 

icebergs were sampled using a clean stainless-steel pickaxe and rust-free stainless-steel screwdriver and plastic mallet for 

chiseling pieces of ice. Samples were collected by slowly (engine idled) approaching the target piece of floating ice from 

downwind, limiting the chance of engine exhaust contamination. Each piece of ice was collected above freeboard (sea 

surface), to reduce the chance the ice was altered by seawater and rinsed with MilliQ prior to placing into acid-cleaned 2 125 

gallon Ziploc polyethylene bags and storing at -4°C until sample processing. Prior to filtration, ice samples were removed 

from the freezer and left to melt at ambient shipboard temperatures. Once completely melted, a small incision was made on 

the Ziploc bags using a clean stainless-steel razor and contents poured into the Teflon filtration manifold or directly into 

sample bottles, thus collecting samples for dissolved, total dissolvable and particulate trace metal fractions. 

2.2 Trace metal concentrations 130 

Stored acidified filtered seawater samples were analyzed for Fe at Scripps Institution of Oceanography using flow injection 

with chemiluminescence methods described by Lohan et al. (Lohan et al., 2006). Dissolved Fe in the samples was oxidized 

to iron(III) for 1 h with 10 mM Q-H2O2, buffered in-line with ammonium acetate to pH ~3.5 and selectively pre-concentrated 

on a chelating column packed with a resin (Toyopearl® AF-Chelate-650M). Dissolved Fe was eluted from the column using 

0.14 M HCl (Optima grade, Fisher Scientific) and the chemiluminescence was recorded by a photomultiplier tube (PMT, 135 

Hamamatsu Photonics). The manifold was modified based on Lohan et al. (2006). Standardization of Fe was carried out with 

a matrix-matched standard curve (0, 0.4, 0.8, 3.2, 10 nmol kg-1 added high purity Fe metal ICP spectrometry standard in 2% 

HNO3) using low-Fe open ocean seawater. Standards were treated identically to samples. Accuracy was assessed by repeated 

measurements of GEOTRACES coastal and Pacific Ocean reference seawater samples. Our measurements of GSC gave Fe 

= 1.391±0.115 (n = 19, over a three-month period, consensus 1.535±0.115). Our measurements of GSP gave Fe = 140 

0.164±0.024 (n = 8, over a one-month period, consensus 0.155±0.045). Consensus values are from the most recent July 2019 

compilation (geotraces.org). Precision, determined by replicated analyses of an in-house large-volume reference seawater 

sample within each analytical session, was typically ±5% or better. For the duration of these analyses, the average LOD 

(defined as 3x the standard deviation of the blank) was 0.036 (n = 10). 

A subset of the seawater samples and all freshwater samples were run for Fe and Mn at Rutgers University using isotope 145 

dilution-inductively coupled plasma mass spectrometry (ICP-MS) methods based on Lagerström et al. (2013) and similar to 

those described in Annett et al. (2017). Briefly, 10 mL aliquots of seawater samples were extracted using a commercially 
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available automated SeaFAST pico system (Elemental Scientific, Inc.) after online buffering to pH approximately 6.5 using 

ammonium acetate buffer, achieving a 25-fold pre-concentration after column elution in 0.4 mL 1.6 M ultrapure nitric acid 

(Optima grade, Fisher Scientific)(Lagerström et al., 2013). Isotope dilution was used to standardize Fe, while Mn was 150 

standardized using external matrix-matched standard treated identically to samples. The analysis of the concentrate was 

performed on an Element 2 sector-field ICP-MS (Thermo Fisher Scientific). Accuracy and precision (±3%, 1SD, for Fe and 

Mn) was assessed by repeated measurements of in-house large-volume reference seawater samples within each analytical 

session. Blanks averaged 51 pmol kg-1 for Fe (n = 59; LOD = 48 pmol kg-1) and 4 pmol kg-1 for Mn (n = 69; LOD = 4 pmol 

kg-1) for all analytical runs. A comparison of the seawater analysis methods employed here is shown in Fig. S1. In general, 155 

there is good agreement (average 11% and 6% difference late Spring and Fall, respectively) between the chemiluminescence 

and ICP-MS methods, comparable to the uncertainty of GEOTRACES consensus values from the intercalibration of 13 trace 

metal laboratories (for Fe, RSD 10%, https://www.geotraces.org/standards-and-reference-materials/). Total dissolvable trace 

metals and particle digests were analyzed using direct-injection ICP-MS methods using external standards and added In as a 

matrix and instrument drift corrector for the quantification of particulate Fe, Mn, aluminum (Al), and titanium (Ti) 160 

concentrations (Annett et al., 2017). 

2.3 Sediment cores and diffusive flux 

Cores for this study were collected using a 12-barrel Megacore multi-coring device aboard the R/V Nathaniel B. Palmer 

cruise NBP16-01 in January 2016. See Taylor et al. (2020) for a complete account of coring efforts and Komada et al. 

(2016) for a description of the pore water sampling procedures. Porewater dFe and dMn was determined colorimetrically 165 

using the ferrozine and formaldoxime techniques, respectively (Armstrong et al., 1979; Burdige and Komada, 2020). For 

dFe, hydroxylamine-HCl (0.2% final concentration) was added to the samples before analysis, to reduce any dissolved 

Fe(III) in the samples to Fe(II). For dMn, a solution of hydroxylamine solution was added to an acidified (pH ~1-2) sample, 

and an EDTA solution was added to remove interference from a colored Fe complex. Porewater oxygen concentrations were 

measured using a polarographic microelectrode (Brendel and Luther 1995; Luther et al. 1998, 2008). A sequential extraction 170 

technique (Goldberg et al., 2012; Poulton and Canfield, 2005) was used to determine sediment Fe speciation for the 

following fractions: Feox (highly reactive, poorly crystalline iron oxides), Femag (magnetite), Feprs (Fe in poorly reactive sheet 

silicates), FeT (total sediment Fe), Fepyr (Fe in pyrite), and finally FeU (unreactive pool under all treatments = FeT – (Feox + 

Femag + Feprs + Fepyr)). All extracts were analyzed for Fe by flame Atomic Absorption Spectrometry (for details see Burdige 

and Komada 2020). 175 

In this study, we investigate the potential for efflux of dissolved trace metals as a source to the overlying water column. 

Using equation 1, we can estimate the approximate sediment diffusive flux (Jsed) for dissolved porewater species. 

𝐽!"# = −𝜙𝐷!"#
#$
#%
	 	 	 	 	 	 	 	 	 	 	 (1)	
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In this equation, 𝜙 is the porosity of the sediments, and was found to be on average 0.9 near the sediment surface. Porewater 

analyses of dissolved Fe and Mn in the Outer Basin (OB) cores reveal high variability in the top-of-core gradient (#$
#%

) in 180 

porewater Fe and Mn (Fig. S2). An average of two cores gives a gradient of ~21.9 µM cm-1 dissolved Fe and ~3.6 µM cm-1 

dissolved Mn. Assuming a diffusion coefficient for Fe and Mn in free solution for seawater (DSW) at 0°C to be 3.15x10-10 m2 

s-1 for Fe(II) and 3.02x10-10 m2 s-1 for Mn(II), we can then estimate the diffusion coefficient in the sediments (Dsed) by the 

following relationship (van Duren and Middelburg, 2001; Halbach et al., 2019): 

𝐷!"# =	
&!"

'()*+,
	 	 	 	 	 	 	 	 	 	 	 	 (2)	185 

2.4 Iron-binding ligands 

A subset of seawater samples was analyzed for dFe-binding ligands using single analytical window methods. The methods 

applied here are described extensively in Buck et al. 2016 (Buck et al., 2018). Briefly, natural seawater samples were titrated 

with dFe (0-35 nM) in order to fully saturate the natural ligands. Following a 2 hour equilibration with the added Fe, a well-

characterized ligand (salicylaldoxime, SA) was added to compete with natural dFe-binding ligands. The concentration of SA 190 

used in this study to examine ligands was 25.0 µmol L-1 (𝛼-"(/0)# = 115). After at least 15 minutes of equilibration, the 

Fe(SA)x electroactive complex was measured using adsorptive cathodic stripping voltammetry (ACSV) on a hanging 

mercury drop electrode (BioAnalytical Systems, Incorporated). Peak heights were measured using ECDSOFT and sensitivity 

was optimized in ProMCC (Omanović et al., 2015). A combination of traditional linearization techniques was used to 

determine the concentrations and strengths of natural ligands within the seawater sample using ProMCC (Omanović, 195 

Garnier, and Pižeta 2015). The uncertainty on modeled complexation parameters was optimized using single or multiple 

ligand fitting. These methods were applied successfully to the GEOTRACES speciation data sets (Buck et al., 2015, 2018).  

We calculate the capacity for the free ligand pool to bind Fe at equilibrium (Fitzsimmons et al., 2015), or aFeL', defined as: 

𝛼-"2$ = 1 + ([𝑒𝐿] × 𝐾),	 	 	 	 	 	 	 	 	 	 	 (3)	

where eL is the difference between the total ligand concentration (Lt) and the dFe concentration, and K is the conditional 200 

stability constant. 

2.5 Numerical model simulations 

Based on Hahn-Woernle et al. (2020), the ocean in the Andvord Bay region is modeled with the primitive-equation, finite-

difference Regional Ocean Model System (ROMS, Haidvogel et al., 2008). The grid has a horizontal resolution of ~350 m 

and a terrain-following vertical coordinate system with 25 depth layers. Due to the changing terrain, the fixed number of 205 

layers, and surface intensified resolution, the maximum thickness for deeper layers is 84.6 m and the minimum thickness for 

surface layers is 0.5 m (to better resolve e.g. the surface currents). The domain has 3 open boundaries: the western end of 
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Bismark Strait, a passage to the continental shelf in the northwest, and along Gerlache Strait to the northeast (Fig. 1). 

Boundary and initial conditions were derived from CTD and ADCP observations. The model is forced with tidal and 

meteorological data (from TPXO8 Egbert and Erofeeva 2002 [updated] and RACMO van Wessem et al., 2014, respectively) 210 

and run from November 2015 for 5 months. After one month, the transient effects, based on dynamics and thermodynamics, 

were found to no longer be present, and the system was consistent. Only the final four sea-ice free months were analyzed 

(December through March). Processes like melting of icebergs and floating sea ice are not modeled directly, therefore such 

local freshwater sources are captured in a surface intensified meltwater input applied along the glacial boundaries. These 

new freshwater sources include also surface runoff and local melt of glacial ice, while precipitation and snowfall are 215 

represented in the meteorological forcing. The applied volume transport of meltwater is a rough estimate based on few 

modeled results and observed data and results in an intensified meltwater input at the glacial fronts (for further details see 

Hahn-Woernle et al., 2020). To represent the seasonal cycle of temperature-induced melting the volume flux of inflowing 

meltwater follows a bell-shaped temporal distribution peaking at the end of January. 

We use this model to identify the potential supply pathways and estimate the hydrographic export of three Fe-rich sources in 220 

Andvord Bay: surface glacial meltwater, subsurface subglacial plume, and deep water masses located within the inner basin. 

For this purpose, we designed three model experiments with numerical “dyes” to track potential iron pathways: one, to track 

the current seasonal input of meltwater from glaciers in Andvord Bay (surface meltwater dye experiment) released along the 

glacial fronts in the inner fjord at 0-50 m depth (Fig. 1); and two additional experiments involving subsurface water masses 

in front of Bagshawe Glacier in Inner Basin A (IBA, 64° 53’ 36’’ S, 62° 34’ 48’’ W) at two different depths, one at ~100 m 225 

and the other at ~300 m (subsurface and deep dye experiments, respectively). Due to the model geometry, the mean depths 

the subsurface and deep dyes were released were 107 (94-120 m) and 314 m (290-342 m), respectively. Covering two 

horizontal grid cells each (with different thickness), the subsurface and deep dyes had initial volumes of 5 x 106 and 11.3 x 

106 m3, respectively. It follows from the experiment setup that the meltwater dye has a continuous source while the total 

amount of the other two dyes is a constant as long as they do not leave through the open boundaries of the model domain. 230 

3 Results 

We present seasonal results of Fe and Mn concentration and speciation, including a first assessment of Fe-binding ligands in 

a cold-based Antarctic fjord. Using porewater measurements on sediment cores collected in the fjord, we also present 

porewater Fe speciation and estimate the sedimentary efflux of dFe and dMn. Finally, the dispersal of Fe-rich sources is 

modeled to identify pathways for Fe supply and important dynamics contributing to their dispersal.  235 

3.1 Seasonality and hydrography in Andvord Bay 

In Andvord Bay (Fig. 1), seasonal changes in phytoplankton biomass were documented, as indicated by the proxy 

Chlorophyll-a, which shows a 10-fold concentration decrease across all taxonomic classes between the late spring and fall 
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cruises (Pan et al., 2020). Associated with these changes in primary production, depletion of the surface macronutrients 

nitrate (N) and silicic acid (Si) were observed (Ekern, 2017). Increased Si concentrations within the inner fjord could be 240 

driven by sedimentary processes, or weathering of the bedrock by contact with the 11 marine-terminating glaciers feeding 

into Andvord Bay (Hawkings et al., 2018; Ng et al., 2020). Surface stocks of macronutrients were never exhausted (Fig. 2). 

The phytoplankton community was dominated by small size classes, with very few large diatoms (Pan et al., 2020). The 

microplankton class was sparingly present in the Fall, however, benthic cameras captured a large sedimentation event of 

marine aggregates indicative of a large diatom bloom in late-January. The export of biogenic particles from the surface also 245 

showed a distinct seasonality indicated by increased Chlorophyll-a pigment content in seafloor sediment cores (Ziegler et al., 

2020), as well as higher respiration rates from chamber incubation experiments in the Fall compared to Spring (data not 

shown), although no indication of sulfate reduction was observed in sediment box and Kasten cores (2.3 m long), suggesting 

that oxygen, nitrate, and metal oxides were sufficient to oxidize organic matter within the upper sediments (C. Smith pers. 

comm.). 250 
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Figure 2. Seasonal phytoplankton, macro-, micronutrient, temperature, and meltwater distributions plotted as sections extending 
from the inner basin (IB, left) towards Gerlache Strait (GS, right). Plots were made with Ocean Data View visualization software 
(Schlitzer, 2002, Ocean Data View, last access: 1 February 2021). 
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 255 

Derived glacial meltwater fractions (MWf, Fig. 2), based on salinity and oxygen isotopes of seawater, ranged from 0.75-2% 

in late Spring, and from 0.5-2.5% in the Fall (Pan et al., 2019). The fjord also exhibited a gradient in meltwater content, with 

highest MWf at the glacier terminus. Using a simple mass balance for the surface layer in Andvord Bay, we estimate an 

approximate meltwater input of 23600 m3 d-1 in order to account for the observed changes in oxygen isotope ratios. This 

estimate is within the derived estimates of surface meltwater flux generated by warm atmospheric temperatures (1.4 x 104 to 260 

1.2 x 105 m3 d-1; Lundesgaard et al., 2020). MWf is strongly correlated with phytoplankton abundance within Andvord Bay; 

for a detailed discussion see Pan et al. (2019). We find that glacial meltwater impacts phytoplankton within the fjord, but the 

geographical influence of meltwater can extend across the shelf, hundreds of kilometers from the coastal inputs (Dierssen et 

al., 2002; Meredith et al., 2017).  

Physical properties measured in the study region showed the dominant water masses in the fjord were Antarctic Surface 265 

Water (cold fresh) and Bransfield Strait water (cold and salty) (Lundesgaard et al., 2020). However, during late Spring, 

greater influence of modified Upper Circumpolar Deep Water was observed outside of the fjord, indicated by its distinctly 

higher temperature at depth, but this water mass is prevented from entering the fjord due to a shallow sill near the fjord 

mouth in the Gerlache Strait (Fig. 2). Optical measurements recorded a change in the particle concentration and assemblage 

between the two cruises. Profiles of beam attenuation coefficient and particulate backscattering coefficient showed strong 270 

seasonality (see Fig. 4 and discussion in Pan et al., 2019). Pan et al. interpreted these optical signatures in the upper water 

column as a change from a surface biogenic-dominated assemblage in late Spring to a subsurface lithogenic-dominated 

assemblage in the Fall, composed of fine suspended particles contained within plumes. An important feature observed within 

the fjord was a subsurface neutrally-buoyant plume (~100 m) characterized by a point source of relatively cold and particle-

laden water emanating from the terminus of Bagshawe Glacier and extending several kilometers over the inner basin (Fig. 275 

S3). 

Strong buoyant plumes can drive circulation in fjords via the “meltwater pump”, but without estimates of volume flux at the 

glacier grounding line, it is not possible to determine the effect of small amounts of basal and subglacial melt on circulation 

in Andvord Bay. While this process is described in-depth for Arctic glaciers, Andvord Bay differs in that ocean temperatures 

are approximately -1 °C at depth, too cold to ablate the glacier terminus, and neutral buoyancy is reached below the surface 280 

layer (indicated by subsurface sediment plumes, Domack and Ishman 1993). However, two important consequences of these 

plumes are a flux of suspended particulate matter within subsurface “layers” as indicated by high beam attenuation 

coefficient and optical backscatter (Fig. S3 in Pan et al., 2019), and general mid-water cooling found in the inner fjord 

(Figure 8 in Lundesgaard et al., 2020). Downstream mixing mechanisms, such as flow over topographic features or wind 

induced upwelling, could displace plume water closer to the euphotic zone. 285 
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3.2 Water column trace metals 

Dissolved Fe concentrations in the surface, defined as the upper ~20 m based on similar mixed layer depths (MLD) for both 

seasons (Lundesgaard et al., 2020), changed seasonally with an overall increase in dFe concentration in the Fall (Fig. 3). The 

average surface concentration during late Spring was 2.47±0.92 nM (n = 21), while in Fall it was 6.67±1.41 nM (n = 19). 

Water column trace metals are presented in Table S1. These concentrations are within the ranges of dFe determined in prior 290 

studies (1-31 nM) in the northern WAP region but indicate that large temporal variability exists in surface waters in this 

region (Hatta et al. 2013; Sanudo-Wilhelmy et al. 2002; Ardelan et al. 2010; Martin et al. 1990). The smaller range of 

surface concentrations during late Spring suggests that dFe was more tightly controlled by phytoplankton uptake, whereas in 

the Fall, patchiness among stations arises due to varying proximity to Fe sources and the effects of circulation and mixing. 

Vertical profiles of dFe showed a steep increase to values greater than 10 nM at the deepest depths sampled during late 295 

Spring, especially at stations located within the inner fjord and basins (Fig. 2, 4). In the subsurface (50-150 m), an enriched 

dFe source was present with average concentrations 3.68±1.52 nM in late Spring and 7.38±2.49 nM in the Fall. Deep water 

masses greater than 150 m deep had the highest average concentrations of dFe but a seasonal decrease in concentration was 

observed (8.79±4.75 nM in late Spring, 6.37±2.38 nM in Fall). The greatest concentrations of dFe were found in the inner 

fjord and basin stations, with the exception of one station located at the mouth of the fjord near Aguirre Channel (station AC 300 

in Fig. 1). Water column concentrations were lower in the Gerlache Strait and fjord mouth. The general shapes of the 

profiles in late Spring are characteristic of a stratified water column, with dramatic ferriclines below the surface. 
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Figure 3. Surface (<20m) dissolved Fe (top) and meltwater fraction (bottom) for late Spring (left two panels) and Fall (right two 
panels). Plots were made with Ocean Data View visualization software (Schlitzer, 2002, Ocean Data View, last access: 1 February 305 
2021). 
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Figure 4. Depth profiles of dissolved Fe [nM] sampled in the Andvord Bay region for December 2015 (A) and April 2016 (B). The 
colored lines indicate highlighted profiles: the geometric mean of the linearly interpolated data points within Andvord Bay (black), 
Station B on the continental shelf (red, see Fig. 1), Station GS (Gerlache Strait, blue) and Station S3 (green).  Other Andvord Bay 310 
stations are shown in grey. The dashed line is the average bottom depth within the fjord. 

 

In the Fall, surface dMn was more than double that observed in the late Spring, but surface dFe showed a greater seasonal 

increase, such that the dissolved Mn:Fe ratio decreased overall and was more variable than in late Spring, when 

concentrations of dMn remained below 4.5nM, even at depth. Labile particulate Mn (LpMn = TDMn – dMn) showed strong 315 

co-variation with LpFe and beam attenuation coefficient c(660). The comparatively high surface dissolved Mn:Fe ratios in 

late Spring were presumably due to intense biological drawdown of Fe during the vernal bloom, evidenced from low 

concentrations of dFe where phytoplankton biomass (as Chl-a) was highest (Fig. 5a). In the late Spring, dFe is anti-

correlated with MWf (Fig. 5c), whereas there was no significant trend between dFe, biomass and MWf variables in the Fall 

(Fig. 5b,d). The correlation between dMn and dFe was stronger in the Fall, however, compared to the late Spring (Fig. 5e,f). 320 

Labile particulate iron (LpFe = TDFe - dFe) concentrations were elevated in the inner basins in the late Spring and Fall, and 

strongly correlated with suspended particle concentrations, indicated by optical beam attenuation coefficient c(660) m-1 (Fig. 

5n, 6). Average LpFe concentrations in the surface were comparable to surface waters in Ryder Bay (southern Antarctic 

Peninsula), where TDFe varied temporally from 57 to 237 nM (Annett et al., 2015). This comparison between LpFe and 

TDFe is valid since TDFe is much greater than dFe in these two coastal locations, hence it is a good approximation of LpFe. 325 

The LpFe maxima were associated with high turbidity in the inner basins, reaching as high as 900 nM at 300m depth in the 

Fall (Fig. 6). Dissolved Fe and LpFe were highly correlated (r2 = 0.48 late Spring n = 19; 0.77 Fall n = 28), implying active 

exchange between these pools (Fig. 5g,h). On average, dFe made up 3.1% (late Spring) and 4.6% (Fall) of the total 

(a) (b)
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dissolvable pool. The LpMn concentrations displayed similar seasonality to LpFe and similar association with total particles, 

but were more strongly correlated in the Fall (Fig. 5l). Dissolved Mn and LpMn were highly correlated (r2 = 0.70 late Spring 330 

n = 19; 0.79 Fall n = 28; Fig. 5i,j). On average, dMn composed 52% (late Spring) and 57% (Fall) of the total dissolvable 

pool. 

 
Figure 5. Dissolved trace metals plotted against observed and derived variables for December 2015 (a, c, e) and April 2016 (b, d, f). 
Dissolved Fe (a-b) versus logChlorophyll-a concentrations. Dissolved Fe (c-d) versus meltwater fraction. Dissolved Mn (e-f) versus 335 
dissolved Fe. Least-squares regression lines are shown where they are statistically significant (p < 0.005). 

(b)(a)

(c) (d)

(e) (f)
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Figure 5 (cont’d). Dissolved Fe and Mn concentrations versus labile particulate Fe and Mn for each season. Dissolved Fe (g-h), 
labile particulate Mn (k-l), and beam attenuation coefficient (m-n) versus labile particulate Fe. Dissolved Mn (i-j) versus labile 
particulate Mn. Least-squares regression lines are shown where they are statistically significant (p < 0.005). 340 
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Figure 6. Total dissolvable trace metals and beam attenuation coefficient c(660) for both seasons. The transects are plotted as 
distance from the Bagshawe Glacier terminus. Plots were made with Ocean Data View visualization software (Schlitzer, 2002, 
Ocean Data View, last access: 1 February 2021). 

 345 

3.3 Glacial ice and plume trace metals 

Glacial ice and plume samples were analyzed for Fe, Mn, Al, and Ti concentrations, which are presented in Table 1. Three 

glacial ice samples were analyzed for dFe (71.52±121.31 nM) and dMn (49.43±82.64 nM). Visual inspection of Glacial Ice 3 

and 4 showed these pieces contained low particle loads, while Glacial Ice 1 and 2 had a comparatively high content of dark 

colored coarse-grained particles. Hence, these and the “clean” glacial ice samples are indicative of the variability of trace 350 

metal concentrations in icebergs found in Andvord Bay. Labile particulate trace metal concentrations were two orders of 

magnitude higher than the dissolved fraction based on two ice samples (40.71±85.58 µM LpFe, 3.64±5.06 µM LpMn). We 

did not determine labile particulate trace metals for Glacial Ice 3 and 4, thus these average labile particulate concentrations 
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are skewed toward a high value. Total particulate trace metals showed similar concentration variability to the dissolved 

fraction (94.87±181.08 µM TpFe, 2.66±5.06 µM TpMn). For Glacial Ice 3 and 4, the concentration of dMn was greater than 355 

TpMn. The ratios of labile and total particulate Mn:Fe were 0.061±0.002 mol:mol and 0.028±0.004 mol:mol, respectively. 

Dissolved Al and Ti were not analyzed for these ice samples, but total dissolvable and total particulate samples were 

analyzed for Glacial Ice 1 and 2, and 1-4, respectively. We defined the refractory particulate trace metal concentration as the 

difference between the total particulate and total dissolvable fractions (RpTM = TpTM - TDTM). Total dissolvable Al and 

Ti average concentrations were skewed due to the heavy particle load present within Glacial Ice 1 and 2 (603.2±715.68 µM 360 

TDAl, 20.75±27.06 µM TDTi). Total particulate Al and Ti had similar variability to the total dissolvable fraction and 

included all four glacial ice samples with averages of 428.11±790.46 µM TpAl and 13.41±25.68 µM TpTi, therefore the 

average total particulate concentrations were lower than the average determined for total dissolvable Al and Ti in Glacial Ice 

1 and 2. We found the labile particulate concentration to be a valid comparison to total dissolvable since dFe concentration 

was on average 1.8±1.5% of TpFe concentration. Thus, the particulate fraction dominated trace metal speciation of total Fe, 365 

Mn, Al, and Ti in glacial ice. 
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Table 1. Glacial ice and seawater samples analyzed for dissolved, labile, and total particulate trace metals. Crustal averages from 
Taylor and McClellen (1995): Mn:Fe (0.017 mol:mol), Fe:Al (0.2), and Al:Ti (35). 370 

 

Four seawater samples were collected from 100-110 m depth, corresponding to the core of the subsurface turbidity plume 

within IBA. Average concentrations of dissolved metals were 8.75±2.25 nM dFe and 5.52±0.62 nM dMn. LpFe 

(350.70±147.92 nM) and LpMn (8.23±2.68 nM) were statistically indistinguishable from the total particulate fractions 

(415.84±93.01 nM TpFe, 9.52±2.05 nM TpMn) within measurement error, including filter splitting and sample distribution 375 

uncertainties. The average ratio of labile particulate Mn:Fe was 0.024±0.003 mol:mol. Particles collected from the plume 

had high concentrations of Al and Ti, but with distinctly different lability from that of Mn and Fe. The TDAl was 

894.09±68.48 nM while TpAl was 1734.32±368.79 nM. Similarly, TDTi was 14.06±0.45 nM and TpTi was 45.08±10.69 

nM. The total dissolvable Al:Ti ratio was 64±6 mol mol-1 and the total particulate Al:Ti ratio was 39±1 mol mol-1. The Al:Ti 

ratio is elevated above the crustal ratio (35 mol mol-1) in the total dissolvable fraction, suggesting a larger adsorbed fraction 380 

for Al than for Ti. 
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3.4 Glacial sediments 

Solid phase Fe speciation of one sediment core from the outer basin station (OB, 64° 46’ 46’’ S, 62° 43’ 57’’ W, ~500 m, 

collected in January 2016), showed an enrichment of authigenic Fe oxides at the surface. Chemical treatments of the 

sediments with HCl dissolves poorly crystalline Fe oxy(hydr)oxides (ferrihydrite and lepidocrocite), which are found to be 385 

10% of the total particulate Fe of the surface sediments in this location, compared to an average of 2% below 1.5 cm (Fig. 

S4). In the surficial sediments, a larger portion of the Fe is associated with poorly labile sheet silicates (e.g. structural Fe(III) 

in clays, 36%), and a comparable fraction is refractory and is not liberated by any of the solution treatments (31%). Other 

fractions of particulate Fe are associated with more crystalline and thus less labile Fe oxides (goethite, hematite) and the 

minerals magnetite and pyrite. Porewater analyses were performed on two OB cores using colorimetric methods, revealing 390 

high concentrations of dFe and dMn. Below the well-oxygenated layer (upper ~0.5 cm), but within the upper 10 cm, dFe 

reaches its peak concentration of 80 µM, while maximum dMn is 6 µM. Down-core from the peak, concentrations tend to 

decrease for both trace metals, but there is considerable variability between 15 and 25 cm, including several deeper local 

maxima. The average porewater concentration of dFe in the top 2.5 cm is 26 µM (Fig. S2). There is considerable difference 

in the porewater concentrations of the two OB cores indicating bioturbation of the sediments resulting in large variability on 395 

small scales. Points excluded from the oxygen profiles were below the detection limit, while several samples were lost from 

the porewater profiles, represented as gaps in the vertical traces of dFe and dMn. 

3.5 Fe-binding organic ligands 

To gain insight into the speciation of dFe with the fjord, we analyzed seawater samples for Fe-binding ligands and to identify 

comparative strengths of organic Fe complexes (See Methods). Analysis of the ligands within Andvord Bay shows a down-400 

fjord gradient in both quantity and quality (all ligand data presented in Table 2). In the late Spring, strong ligands 

(𝐿𝑜𝑔𝐾-"2,-"$
45+# ≥ 12.0) were detected in the surface at stations located within the fjord at concentration levels ranging from 

4.06±1.74 nM at Inner Basin A (IBA) to 7.27±1.97 nM at Sill 3 (S3), while only weak ligands (𝐿𝑜𝑔𝐾-"2,-"$
45+# < 12.0) were 

detected in the Gerlache Strait (GS; 5.72±2.21 nM). An excess of strong ligands, relative to dFe, was detected in the inner 

basins. A gradient in concentration of undersaturated ligands (eL in Table 2) is observed towards the GS, with increasing eL. 405 

Within the fjord, weak ligands were detected at Inner Basin B (IBB), closest to Moser Glacier. In the Fall, total ligand 

concentrations (Lt) were elevated everywhere within the fjord, but the surface ligands were somewhat weaker compared to 

the late Spring. The greatest concentrations of ligands were found closest to the glaciers (range 11.18 – 15.42 nM) and in the 

GS (12.00±2.94 nM). For both seasons, weak ligands were detected in the subsurface, but a greater concentration in the Fall 

suggested that these ligands have a local source within the fjord. Compared to other stations in the Fall, we found the plume 410 

to contain a small excess of weak ligands (IBA, 110 m). Interestingly, the highest concentration of strong ligands 

(17.44±1.12 nM) among all sites was in deep water of Station IBA, at 280 m. This is the deepest depth sampled for Fe-
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binding ligands and the IBA bottom depth was 382 m. We found a down-fjord gradient in ligand strength at the surface, 

decreasing with distance from the inner basins (𝐿𝑜𝑔𝐾-"2,-"$
45+#  = 11.95 at IBA, 11.03 at GS). 

 415 
Table 2. Ligand concentrations and equilibrium constants detected in seawater samples. Fe’ is the free (unbound) iron 
concentration. Lt is the total ligand concentration. logK is the conditional stability constant. eL is the excess ligand concentration 
(eL = Lt – [dFe]). logaFeL’ is the complexation capacity. RFeL’ is the ratio of Fe’ of reoccupied stations, expressed as a percentage. 

 

We determined the free (uncomplexed) Fe concentration (Fe' in Table 2) within samples analyzed for Fe-binding ligands. In 420 

the surface, a greater concentration of Fe' was found in the Fall (8.74±6.43 pM, n = 7) compared to the late Spring 

(2.44±2.18 pM, n = 7). Water below the surface showed similar concentrations for each season (5.8±0.21 pM late Spring, 

4.61±2.22 pM Fall). The greatest concentrations of Fe’ were observed mid-fjord at the surface (18.7 pM Fe' at MB, 15.67 

pM Fe' at S3) in the Fall. 
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3.6 Dye experiments 425 

To study the transport pathways for dFe, we use numerical passive dyes in the Hahn-Woernle et al. (2020) regional model of 

Andvord Bay (see Fig. 1 in Hahn-Woernle et al., 2020) to track three potential sources of dFe: surface glacial meltwater (0-

50 m) from Bagshawe and Moser Glacier termini, neutrally-buoyant subsurface plume (100 m), and deep water located in 

IBA (300 m; as in Section 2.5). Due to numerous inputs and complex biogeochemical processes which result in observed 

dFe distributions in time and space, we simplify the problem by assuming no removal over the duration of simulated dye 430 

experiments. We use this approach to illustrate the multiple transport pathways for dFe supply to the fjord and surrounding 

ocean from December through March (St-Laurent et al., 2017). The results are presented first for the surface meltwater 

experiment, followed by two fixed-volume experiments, referred to as subsurface and deep dye experiments. 

Most of the surface glacial meltwater dye remains in the upper 100 m throughout the model run, and due to its proximity to 

the surface, it is quickly dispersed over a large region by relatively rapid surface currents. It takes about 10-15 days for the 435 

surface meltwater to exit the fjord mouth, where most ends up in the central and northern Gerlache Strait after 120 days (Fig. 

S5a). 

The subsurface dye (100 m) is spread more rapidly than the deep dye (300 m). After 8 days, the subsurface dye reaches the 

fjord mouth, which is 4 days before the deep dye, implying it has a shorter residence time within the fjord compared to the 

deep dye. We loosely define residence time as the model timestamp at which a fixed fraction of dye remains within the fjord 440 

domain. After 22 days, 25% of the subsurface dye has left the fjord, while it takes the deep dye almost twice as long (43 

days). At the end of the 120 days long model run, less than 18% of the subsurface dye and over 30% of the deep dye remain 

in the fjord domain (Fig. S6a). Looking at the whole model domain in Fig. 1, which includes Andvord Bay and Gerlache 

Strait, only 59% of the subsurface dye and 75% of the deep dye are still present after 120 days. The missing 41% (25%) has 

mainly left the model domain through the Gerlache Strait to the north, where these waters mix with Bransfield Strait water 445 

and subsequently with the southern Antarctic Circumpolar Front waters. 

We analyzed the vertical distribution of the subsurface and deep dyes along the fjord mouth and horizontally over different 

depth layers. Within the first day, the subsurface dye spreads over the depth range of 20 to 125 m and the deep dye over 125 

to 500 m (>1% of dye per depth layer). The subsurface dye leaves the fjord mainly within the upper 200 m. After 8 days, as 

the subsurface dye reaches the fjord mouth (Fig. S5b), the maximum concentration is still found close to its release depth at 450 

100-125m. Over the next few days, surface layer concentrations (<20m) increase, but the highest concentration is soon found 

below 125m (after 2 weeks) (Fig. S6a). 

The deep dye remains mainly below 200 m as it passes the fjord mouth (maximum water depth at the fjord mouth is 360 m). 

After 12 days, as the deep dye reaches the fjord mouth, the maximum concentration is found below 300 m depth. In contrast 

to the subsurface dye, the deep dye remains longer in the proximity of the fjord mouth and on several occasions, re-enters the 455 

fjord leading to a longer residence time within the fjord (Fig. S5c). The majority of the deep dye leaves the fjord at depths 

below 100 m and along the southwestern coastline. Both dyes, subsurface and deep, have low concentrations in the upper 
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100 m of the northeastern flank of the fjord mouth. This is due to the inflow of external water from the GS along the 

northeastern coastline. Throughout the run, the deep dye is confined to the inner basins of the fjord. In all cases, the dyes 

remain at higher concentrations and for longer periods in the subsurface fjord waters than in the surface layer, which shows 460 

faster transport out of the fjord. 

4 Discussion 

4.1 Iron sources in a heavily glaciated fjord 

Due to the proximity to glaciers and influence of ice within Andvord, we hypothesized meltwaters to be an important source 

of Fe. We focus on quantifying dissolved, total dissolvable and particulate Fe and Mn, as well as total dissolvable and 465 

particulate Al and Ti. Ratios of these elements are treated as proxies for contributions of various endmembers. Candidate 

endmembers include reducing sediments, weathered crustal material, and biogenic particles (Taylor and McLennan 1995; 

Twining et al., 2004). Where possible, we estimate fluxes of dFe. We begin by examining the relationship between glacial 

meltwater and dFe. 

4.2 Role of surface glacial meltwater 470 

Glacial meltwater at the surface has the potential to be a significant source of Fe to phytoplankton. There exists a weakly 

negative correlation between derived MWf and dFe at the start of the melt season (late Spring: r2 = 0.29, n = 30; early-Fall: 

r2 = 0.05, n = 13; Fig. 5c,d). One possible explanation is that increased meltwater at the surface leads to greater stratification 

and limits upwelling of Fe-rich deep water, with the effect augmented by removal processes, such as biological drawdown 

and scavenging of dFe onto sinking particles. Indeed, higher rates of primary production are associated with greater fractions 475 

of meltwater in Andvord Bay (Pan et al., 2020). Since glacial meltwater is restricted to the surface, it constitutes a significant 

input of Fe to the surface throughout the growth season. While we observe high concentrations of dissolved and particulate 

trace metals within glacial ice, we note that the icebergs within Andvord were predominantly “clean” ice, with little sediment 

embedded in the ice, indicated by relatively low dFe and TpFe (for instance, Glacial Ice 3 and 4 in Table 1). Based on Fe:Al 

ratios in particles and average values for continental crust  (Taylor and McLennan 1995), we estimate 87±22% (n = 4) of the 480 

particulate Fe contained within Andvord icebergs is terrigenous in origin. This is consistent with mechanical weathering of 

continental crust followed by inclusion of the particles into the ice (freeze-in, Raiswell et al., 2018). Low Fe:Ti and Al:Ti 

ratios also reflect a continental crust source, but it is worth noting that Glacial Ice 2 had significantly more Mn and Al, 

relative to continental Fe and Ti. Further, Mn and Al solid speciation suggests there are high concentrations of Mn- and Al-

oxides, which may be formed when crustal material is altered (Raiswell et al., 2018). It is also possible that fjord sediments 485 

were the source of particulate matter within Glacial Ice 2, which would correspondingly have higher Mn content (and higher 

Mn:Fe) than what is found in basal ice interacting with the subglacial environment (Hawkings et al., 2020). Continental crust 
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material delivered to the ocean would contain a relatively low Mn content compared to Fe (Fe is 4% w/w in crustal material, 

while Mn is 0.08% w/w, Rudnick and Gao 2013). 

Visual inspection suggests that the majority of the ice within Andvord has relatively low concentrations of particles, whereas 490 

basal ice, with dark layers of sediment (Glacial Ice 1 in Table 1), will likely skew the average towards high values 

(Hopwood et al., 2019). A compilation of TDFe in icebergs in Antarctica estimated an average concentration of 24 µM 

(Hopwood et al., 2019). Our two measurements of LpFe in glacial ice are different (average for this study is 61±70 µM 

LpFe, n = 2) but are within the range of concentrations determined in the previous study. Thus, we use our average 

concentration (Table 1) as indicative of the glacial ice composition in Andvord to compute the following meltwater fluxes. 495 

Using a range of estimated surface glacial meltwater volume inputs (2.4 x 104 m3 d-1 for this study based on oxygen stable-

isotope mass balance; 1.8 x 104 to 1.2 x 105 m3 d-1 Lundesgaard et al., 2020; 1.1 x 106 m3 d-1 Hahn-Woernle et al., 2020 

including other freshwater sources that are not precipitation) and assuming the input of meltwater is distributed evenly over 

the fjord surface layer, we calculate fluxes on the order of 15.1 to 704 nmol m-2 d-1 for dFe and 10.4 to 487 nmol m-2 d-1 for 

dMn. Based on modeling work in this paper, it will become evident that meltwater released to Andvord does not stay within 500 

the fjord. Additionally, significant metal loss might result from scavenging processes, transferring Fe to depth on sinking 

particle surfaces, rendering it inaccessible for phytoplankton uptake. Still, the availability of excess macronutrients within 

Andvord Bay (Fig. 2) means that substantial increases in the supply of trace metals from glacial meltwater would stimulate 

growth in the euphotic zone, if light were not limiting. 

4.3 The nature of Fe in subglacial plumes 505 

The inner basins consistently show higher beam attenuation and particle backscattering coefficients than mid-fjord and shelf 

stations (see Figure 3 in Supplementary Information in Pan et al. 2019). These signals are attributed to ultra-fine suspended 

sediments (<0.7-0.8 µm). The high particle backscattering coefficient in the surface at all stations in late Spring is due to the 

high concentrations of biogenic particles associated with the vernal bloom. Inner basins also show local maxima in beam 

attenuation coefficients at 70-150 m, as well as approaching the benthic boundary layer (Fig. 6). Sediments that originate 510 

near the glacier terminus are carried upward in buoyant turbulent plumes, and spread laterally. This is consistent with the 

presence of glacial meltwater plumes, or “cold tongues”, which originate at the glacier grounding line (described in Domack 

and Williams 2011), entrain deep water masses, and suspend sediments (Straneo and Cenedese, 2015). Since ocean 

temperatures remained below 0°C in Andvord (see Fig. 2), there is little to suggest basal melting of the ice, as is observed 

further south along the WAP. It appears reasonable on the basis of the evidence given above, that the subsurface plume 515 

signature is subglacial in origin. 

Total digestion and subsequent analyses of marine particles collected within the plume reveal high concentrations of 

weathered crustal sediments (82-86% of TpFe, 61-64% of TpMn), and also ingrowth of authigenic particles most likely 

consisting of precipitated Fe- and Mn-oxide phases (16-18% TpFe, 36-39% TpMn). These results suggest that the origin of 

plume particles is a chemically-altered crustal source. Labile particulate Fe is 82-100% of TpFe (Table 1). The Fe:Al and 520 
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Fe:Ti in plume particles (0.24±0.01 mol mol-1 and 9.25±0.24 mol mol-1, respectively) were elevated above the average 

crustal ratios (0.2 mol mol-1 Fe:Al, 7 mol mol-1 Fe:Ti), which implies these samples are enriched in Fe relative to both crustal 

Al and Ti. In agreement with these results, particulate Al:Ti (39±1 mol mol-1) was elevated above crustal ratios (35 mol mol-

1), indicating a large oxide fraction is associated with this particulate matter. This substantiates our claim that most of the Fe 

found in the plume is weakly adsorbed to particles and recently precipitated, since dilute HCl leaches liberate the most labile 525 

forms of Fe, most likely as oxy(hydr)oxides (e.g. ferrihydrite) in addition to some Fe from clays. This could include oxides 

directly precipitated from the anoxic subglacial source, as well as a potential fraction of oxides derived from fjord sediments 

and porewaters entrained at the grounding line.  

Cold-based glaciers are locations where the subglacial environment flows directly into the fjord with minimal mixing with 

seawater. We find elevated concentrations of dMn emanating from the inner fjord, indicative of the reducing conditions 530 

beneath Moser and Bagshawe glaciers, consistent with other studies of subglacial environments (Henkel et al., 2018; Zhang 

et al., 2015). We report relatively low concentrations of dFe within the plume (8.75±2.25 nM) <1 km away from the glacier 

terminus. If we assume a MWf of 0.01 for the plume, the subglacial meltwater endmember would have a dFe concentration 

of 875 nM, which is higher than the mean value for TDFe measured within the plume (346.95±160.40 nM) suggesting 

settling loss through flocculation is likely occurring even within 1 km of the grounding line. The subglacial endmember dFe 535 

is lower than the range used to parameterize subglacial inputs from ice shelves to the SO (3 – 30 µM in Death et al., 2014). 

This perhaps indicates a major difference between glaciers containing large volumes of subglacial meltwater that accumulate 

the products of more extensive reductive chemical weathering, and smaller glaciers situated on steep topography and which 

feed into fjords, such as those along the WAP. The long residence time and enhanced chemical weathering beneath large 

glaciers in west Antarctica (PIG, Thwaites Glacier) could result in large accumulations of dissolved trace metals in 540 

subglacial outflow. However, subglacial discharge occurs at some distance from the open continental shelf waters because of 

the broad floating horizontal ice shelves, which make up about 45% of the Antarctic coastline and can extend 10s – 100s km 

from the shelf (Schodlok et al., 2016). Our results suggest that assuming such high export efficiency to the coastal ocean 

(i.e., using endmember concentrations from glacial runoff and groundwaters as in Death et al., 2014) potentially 

overestimates dFe supply from anoxic subglacial environments because dFe rapidly precipitates after mixing with seawater. 545 

4.4 Role of sediments 

Analyses of Andvord Bay sediments reveal they are compositionally distinct from temperate fjords consisting of poorly 

sorted fine silt and clay, many dropstones, suspension deposits and ice-rafted debris (Eidam et al., 2019). Sediment 

accumulation rates are spatially variable, but a weak along-fjord gradient is present. These deposits suggest sluggish 

circulation, allowing for the deposition of sediments close to their source, likely through flocculation processes (Cowan and 550 

Powell, 1990).  

Profiles of beam attenuation coefficient show highest concentration of particles in the inner basins compared to other station 

locations (see Figure 4 in Pan et al., 2019). There is little evidence for mechanical resuspension through gravity flows (i.e., 
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turbidites) along the steep basin walls, yet such processes could be responsible for the near-bottom elevation in water column 

particles (Eidam et al., 2019). The presence of elevated particles in the inner basins is accompanied by the greatest 555 

concentrations of dissolved and labile particulate Fe and Mn (Fig. 6), demonstrating the potential of resuspended fjord 

sediments as a source of dissolved trace metals. 

Based on the core top porewater profiles, we estimate the sedimentary efflux to be 43.7 µmol m-2 d-1 for dFe and 7.2 µmol m-

2 d-1 for dMn, due to diffusion alone (Fig. S2). This magnitude of flux was also observed in the shelf sediments in the 

vicinity of South Georgia Island in the SO (Schlosser et al., 2018). Abundant epibenthic fauna were observed within 560 

Andvord Bay, which mix the sediments through bioturbation while consuming labile organic matter. The result is deviation 

from results based on diffusion alone. Taylor et al. (2020) used 234Th as a proxy to investigate the effect of bioturbation on 

short timescales and found Andvord Bay sediments possess a high mixing coefficient down to 5 cm (Db = 36 cm2 yr-1) 

consistent with greater deposition and subsequent utilization of organic carbon in the sediments. We believe this accurately 

reflects the conditions in this fjord: bioturbation by dense aggregations of epibenthic fauna within the basins. 565 

These results are not surprising when compared to a global compilation of in situ measurements of sedimentary efflux of 

dFe, which is on average ~12 µmol m-2 d-1 for water masses located on continental margins and with O2 concentrations 

greater than 63 µmol L-1 (Dale et al., 2015). The bottom water oxygen concentration in Andvord Bay always exceeded 230 

µmol L-1. The bottom water O2 concentration for OB at the time sediments were cored, was 270 µmol L-1. In the Ross Sea, 

Marsay et al. (2014) estimated spatially variable efflux spanning 0.028-8.2 µmol m-2 d-1 based on water column dFe profiles 570 

(Marsay et al., 2014). Abundant epibenthic fauna found within Andvord (Ziegler et al. 2017, 2020) would introduce oxygen 

to the upper few centimeters of the sediments through bioturbation and reduce the efflux of reduced metals (Severmann et 

al., 2010). Taylor et al. (2020) found the upper 5 centimeters of Andvord Bay sediments possessed a high mixing coefficient 

relative to open shelf stations and Palmer Deep. Additionally, high inventories of 210Pb relative to open shelf and Palmer 

Deep stations indicate a high mixing coefficient for sediments between 7 and 22 cm depth on timescales of 100 years 575 

(Taylor, DeMaster, and Burdige 2020). The effect of this process is mixing of oxide- and organic carbon-rich surficial 

sediments further down in the core on short- to long-timescales. These flux estimates, together with solid phase speciation 

results, highlight the importance of rapid oxidation and precipitation occurring at the seawater interface, which effectively 

retain Fe as oxy-hydroxides within the sediments (Burdige and Komada, 2020; Laufer-Meiser et al., 2021). The Fe oxides 

are enriched within the penetration depth of oxygen (~0.5 cm, Fig. S2 inset) and once bioturbated downward, could be a 580 

source of dFe following microbial cycling. Multiple local maxima of porewater dFe were observed deeper in the cores. 

While dissimilatory iron reduction (henceforth, DIR) would be a source for Fe, oxidation of Fe with bottom water O2 and 

Mn(IV) are important sinks and exert a control on the dFe concentration of deep water masses. The deep inner basin water 

column samples had high dFe concentrations concomitant with high LpFe concentrations (Fig. 2, 6), suggesting some loss of 

porewater dFe to the water column and rapid formation of authigenic Fe mineral particles. Therefore, the fluxes calculated 585 
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from porewater profiles upper limit estimates because they do not account for oxidative losses at the sediment-water 

interface (e.g., Burdige and Komada 2020). 

Due to weak midwater circulation, low tidal energy, and stratification of the surface, a disconnect between deep water 

masses enriched in dFe and the surface of Andvord Bay persists during prolonged quiescent periods. For these reasons, we 

believe most sedimentary-sourced Fe is restricted to deep water masses and therefore plays a minor role in dFe 590 

concentrations within the upper water column. There is potential, however, for re-suspension and entrainment of surface 

sediments where subglacial meltwater discharges at the grounding line. Due to the low inferred volume of discharge this is 

likely a small contribution to the total particulate mass within the plume. 

The Mn:Fe ratio is a useful signature of the source of dissolved and particulate trace metals in Antarctica and has been 

applied to the PAL LTER data set (Annett et al., 2017). Applying this same framework to our study, we find that water 595 

column dissolved trace metals are heavily influenced by surface glacial ice melt and subglacial meltwater, and to a lesser 

extent, sediment sources within the fjord, irrespective of season, depth, and meteoric water input (Fig. 7). Due to the shorter 

residence time of dFe relative to dMn (i.e., inorganic oxidation of Mn is 107 times slower than Fe, Sherrell et al., 2018), we 

would expect the porewater dissolved Mn:Fe ratio to tend towards higher values once exposed to the seawater oxidative 

front. We therefore cannot rule out porewaters as a source of dMn to the water column. A similar process occurs within the 600 

plume, where the elevated dissolved Mn:Fe (0.65 mol mol-1) relative to labile particulate Mn:Fe (0.024 mol mol-1) shows the 

effect of rapid conversion of Fe to authigenic mineral particles. Although we do not have comparable measurements for 

sedimentary labile particulate Mn, based on labile particulate Mn:Fe, we find that the water column labile particulate Mn:Fe 

ratio is precisely the same ratio as particles found within the subglacial plume, again irrespective of when and where the 

sample was taken (Fig. 8), suggesting plume particles remain suspended throughout the fjord water column. 605 
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Figure 7. Dissolved Fe and Mn plotted for water column samples. The colorbar shows depth (top panel) or meltwater fraction 
(bottom panel). For both panels, December 2015 cruise is indicated by filled circles and the April 2016 cruise is indicated by filled 
diamonds. The lines indicate the average Mn:Fe ratio for each candidate source.   
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 610 
Figure 8. Labile particulate Fe and Mn plotted for water column samples. The colorbar shows the influence of depth (top panel) or 
meltwater fraction (bottom panel). For both panels, December 2015 cruise is indicated by filled circles and the April 2016 cruise is 
indicated by filled diamonds. The lines indicate the average ratio of Mn:Fe determined from candidate sources. 

 

4.5 Organic speciation of dissolved Fe 615 

It has been hypothesized that excess ligands (eL = [Lt] – [dFe]) increase the solubility of particulate Fe phases (Gledhill and 

Buck, 2012; Tagliabue et al., 2019; Thuróczy et al., 2011; Wagener et al., 2012). The persistence of exchangeable pools of 

dFe would therefore be controlled primarily by particle assemblage and organic ligand complements, where pFe dominates 

total Fe speciation. We observe a modest increase between late Spring and Fall in the relative contribution of dFe to total Fe 

(4% to 5% of TDFe, respectively), implying dFe is controlled by scaling closely to LpFe (Fig. 5g,h) since both pools have 620 
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large interseason differences. This corresponds to an increase in eL between seasons (average 2.1±1.3 nM late Spring n = 9, 

6.0±3.2 nM Fall n = 12). The ligands are likely produced during microbial high-affinity uptake or remineralization processes 

following the termination of a bloom (Gledhill and Buck, 2012; Hogle et al., 2016). The only subsurface sample to contain 

strong Fe-binding ligands is the deep inner basin adjacent to Bagshawe Glacier (IBA), possibly indicating these ligands have 

a sedimentary source. It appears, based on these results, ligands in Andvord Bay have the capacity to complex additional Fe 625 

input, as well as prevent significant loss due to scavenging (Thuróczy et al., 2012). The nature of these ligands, taken 

together with the low concentration of dFe and abundance of LpFe within the plume, leads us to speculate that Fe minerals 

are the target for ligand-mediated mineral dissolution and perhaps microbial uptake, previously found to occur in deep-sea 

hydrothermal vent plumes (Li et al., 2014). 

While we observe a seasonal increase in the excess ligand concentration, there is no significant change in the ratio of Lt:dFe 630 

(late Spring 1.8±0.5, Fall 2.0±0.7). In the Amundsen sector, Thuróczy et al. (2012) found waters heavily influenced by the 

Pine Island Glacier to have Lt:dFe ratios <2.5 throughout the water column, with relatively weaker ligands compared with 

those found in the highly productive surface waters of the polynya. We too identify weaker Fe-binding ligands associated 

with the glaciers, and only at MB and Sill 3 did we observe elevated Lt:dFe (3.13, and 2.99 respectively, in the Fall). In the 

coastal zone of a remote island in the Bransfield Strait, an excess of strong Fe-binding ligands was observed, hypothesized to 635 

indicate Fe-limiting conditions (Buck et al., 2010). Temperature and salinity profiles show a strong signature of Bransfield 

Strait water within Andvord (Lundesgaard et al., 2020). The presence of excess strong Fe-binding ligands at IBA and S3 

during the bloom onset also correspond to elevated NO3-:dFe (data not shown) above the threshold for potential Fe-limitation 

of coastal diatoms in the California Current transition zone (~10-12 µmol nmol-1 King and Barbeau 2011). The presence of 

strong Fe-binding ligands suggests an active microbial strategy in this coastal region to sequester additional Fe from 640 

particulate phases during the bloom initiation. 

The intense seasonality in primary production and the presence of an undersaturated ligand pool could further increase the 

bioavailability of particles for downstream communities, where particles within the water column are rare. We calculated the 

capacity for the free Fe-binding ligands to bind Fe (aFeL' = 1 + (eL • K)). Calculations of aFeL' are included for each sample in 

Table 2 as well as the Fe' inter-seasonal percent change for reoccupied stations (RFe'). We find the aFeL' increased between 645 

late Spring and Fall at IBA, and Sill 4, while a decrease was found at IBB, Sill 3, and Gerlache Strait stations. While all 

reoccupied stations show an increase in the Fe' concentration (RFe'), the percent change is greatest where aFeL' decreased in 

the Fall. Thus, the seasonal increase in Fe' reflects the increase in dFe concentrations as well as lower complexation 

coefficient of weaker Fe-ligand complexes, which contribute most to dFe speciation in the Fall and are associated with 

surface waters adjacent to glaciers. 650 

These first results of organic speciation of dFe in an Antarctic fjord highlight the importance of seasonal ligand sources in 

establishing the solubility of new Fe entering the coastal ocean. Seasonality in the ligand pool is not currently represented 

within SO biogeochemical models (Death et al., 2014; Oliver et al., 2019; St-Laurent et al., 2019; Raiswell et al., 2018; 

Person et al., 2019). Ligand-mediated complexation has the potential to greatly expand the spatial extent in which 
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solubilization of particulate Fe occurs and could be critical for sustaining productivity over a larger geographical region 655 

(Ardiningsih et al., 2020). Thus, the size, sinking rate, and composition of particles is critical to their lateral transport and 

reactivity over time with excess ligands. Our understanding of how cryospheric Fe is transformed after entering the coastal 

ocean is an important step towards understanding its impact on marine productivity and global biogeochemical cycles with 

associated feedbacks on climate. For the marine Fe cycle, these geochemical transformations control the bioavailability of 

Fe, while vertical advection and mixing supply this critical micronutrient to the surface ocean and the euphotic zone. 660 

4.6 Using dye experiments to explore Fe sources and export 

Rapid communication between the surface and subsurface water masses occurs during katabatic wind events. While mixing 

can be more pronounced in the presence of icebergs, the large magnitude of vertical shear initializes an upwelling cell close 

to the inner basins of the fjord. Using an idealized model of a fjord, Lundesgaard et al. (2018) found that katabatic winds 

export the surface layer efficiently, for which several factors are considered important, including the wind velocity, elapsed 665 

time of the event, and whether the wind is along-fjord versus off-axis. Within this idealized model of the fjord, the forcing 

event leads to outcropping of deeper isohalines (up to 0.3 PSU greater) at the surface along the northern flank of the fjord, 

corresponding to upwelling (see Figure 11 in Lundesgaard et al., 2019). Wind-induced overturning circulation, along with 

deepening of the mixed layer by up to 25 m, would increase surface dFe concentrations. These general model results showed 

that wind forcing caused water at depths of 50-150 m to upwell rapidly (within 24 hours) near the glacier termini. This is an 670 

important consequence we explore further in the highly-resolved model representation of the study region by Hahn-Woernle 

et al. (2020). 

The results of the dye experiments allow for the determination of fluxes, either prescribed (in the case of glacial meltwater) 

or as a result of wind forcing. St. Laurent et al. applied similar methods in the Amundsen Sea with explicit coupling of sea 

ice – ice sheet – ocean interactions (St-Laurent et al., 2017). In a more rigorous biogeochemical model, which included 675 

ocean interactions with both sea ice and ice shelves, as well as parameterized Fe reactions, the productive waters in the 

Amundsen Sea Polynya were supplied by an advected source of dFe from the “meltwater pump” and coastal currents, but 

this model lacked explicit contributions of subglacial Fe (St-Laurent et al., 2019). These prior modeling results highlight the 

importance of lateral exchange of surface water masses, and so the export of the surface out of the fjord mouth is explored in 

the subsequent section. 680 

4.6.1 Surface meltwater sources and export 

The surface glacial meltwater flux was estimated in a previous section, assuming the meltwater produced by warm air 

temperatures and solar irradiance is distributed evenly over the entire fjord area. We compared the observed and modeled 

contributions of surface glacial meltwater and subsurface sources to the surface dFe inventory at two key stations, Sill 3 (S3) 

and Gerlache Strait (GS). We assume that the concentration of dFe is a composite signature of three water masses (surface 685 

meltwater dye, subsurface dye, deep dye), with varying relative contributions to the surface inventory. For example, in the 
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late Spring, at S3, we observed a MWf of 0.0155 and the surface concentration of dFe was 2.49 nM (Fig. 3). Assuming a 

meltwater end member concentration of 71.52 nM (Table 1), we find that glacial meltwater contributes 1.09 nM (44% of 

surface stock) to the surface inventory. In the Fall, the MWf at S3 increased to 0.0226 (Figure 3d), which corresponds to a 

meltwater contribution of 1.59 nM dFe (35% of surface stock). In the GS, the same analysis reveals that in the late Spring, 690 

the surface had a MWf of 0.0193, which contributed 1.38 nM dFe (105% of surface stock) and in Fall had a MWf of 0.0169, 

or 1.21 nM dFe (24% of surface stock). It could be the case that the meltwater signature observed in the late Spring in the GS 

did not originate from Andvord Bay, and thus, might have a different dFe content, but the dearth of measurements of dFe in 

Antarctic glacial ice prevents us from testing this. These results, apart from those for GS in the late Spring, suggest that one 

or several other sources contribute to the surface inventory of dFe, or, alternatively, that the glacial end member 695 

concentration is too low. Given that the MWf varies from 1-2.5% within Andvord Bay during the time of sampling, it is 

expected that the input of glacial meltwater throughout the melt season would supply some dFe to the surface. 

When we examine the time series derived from the model, we find the model consistently underestimates the contribution of 

meltwater to the surface (Fig. S7). The MWf does not exceed 0.0013 at either S3 or GS stations, and its seasonal maximum 

of 0.0046 is found at IBB in early February. Since processes like melting of drifting icebergs and sea ice cannot be captured 700 

in the model, the applied meltwater flux is based on a simplified representation of all new freshwater sources except for 

precipitation in Andvord Bay. These sources include, for example, surface runoff and local melt of glacial ice exposed to the 

atmosphere. The flux which best recreates observed salinity and temperature profiles in Andvord Bay was achieved by a 

meltwater input of 0.15 GT over 4 months (Hahn-Woernle et al., 2020). 

The overall low modeled meltwater fraction is likely a consequence of multiple factors of which we discuss three. First, the 705 

meltwater was tracked only for the field season. The generally low salinity in the upper layer at the beginning of the season 

and the presence of meltwater dye at the end of the summer season (fjord average of 0.0003 MWf in upper 20m) suggested 

that meltwater can reside for multiple years in the fjord and cannot be fully captured by our meltwater dye. Second, local 

melt of glacial ice, e.g. floating icebergs, caused by a summertime surface heat flux, can have a strong impact on the MWf in 

the surface layer and is likely to be underestimated and not well-represented with the parameterization of the modeled 710 

meltwater input. Third, only meltwater from the inner Andvord Bay is tracked and other sources are neglected. Based on 

other modeled meltwater dyes that track sources just outside Andvord Bay, the impact of the external sources is minor 

(maximum of 0.0003 MWf in early February) compared to the local sources, but they still contribute to the seasonal increase 

in MWf. 

We extracted vertical profiles of MWf from the model at both stations and found that glacial meltwater originating from 715 

Bagshawe and Moser glaciers reaches maximum concentration during the summer bloom (late-January 2016) at Sill 3, 

relatively constrained to the upper 25m (Fig. S8b). In early February, when the bloom was terminated, glacial meltwater 

concentrations in the fjord decreased due to a weakening meltwater input and lateral dispersal. The weakening input is 

supposed to reflect the seasonal cycle of ice melting. Ocean circulation dispersed the meltwater into the Gerlache Strait, as 

shown by a progressive increase in meltwater in the upper water column throughout the melt season (Fig. S8a). If the volume 720 
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flux of meltwater input is indeed correlated to the seasonal air temperature cycle, as it is parameterized in the model, the 

results in Fig. 3 would reaffirm that meltwater is an important control on the accumulation of phytoplankton biomass within 

Andvord Bay (Pan et al., 2020). 

The effect of the wind in driving vertical fluxes will vary with wind direction and location within the fjord. The vertical 

velocity is analyzed for the observation site at Sill 3 and in front of Bagshawe Glacier (IBA). The latter site is an example 725 

location for which katabatic winds are expected to lead to intensified upwelling and is also the location of the subsurface and 

deep dye experiments. Figure 9 (a) and (b) depict the relationship between the katabatic wind events and vertical velocities at 

20m: landward-blowing wind generally leads to downwelling, while seaward-blowing katabatic wind leads to upwelling. 

Based on observations of dFe from the late Spring prior to a wind event on December 11 ([dFe] at 20 m: 1.967 nM at S3, 

2.006 nM at IBA), and the modeled maximum vertical velocities during the wind event (2.094 x 10-5 m s-1 at S3, 5.083 x 10-5 730 

m s-1 at IBA), we computed the upwelling flux of dFe into the surface (20m) at Sill 3 and IBA to be 3.54 µmol m-2 d-1 and 

8.81 µmol m-2 d-1, respectively. These results shed light on the spatial heterogeneity of upwelling conditions within the fjord. 

Model results for Sill 3 are supported by late Spring observations of elevated dFe and low meltwater fraction at this station 

(Fig. 3). We argue that these punctuated periods of upwelling could be a substantial source of dFe to surface waters in 

Andvord Bay. Further, this supply, together with the flux of glacial meltwater, provides dFe to fuel phytoplankton 735 

community growth. 

The efficiency with which wind events export the fjord surface water is explored in the glacial meltwater dye experiment. To 

account for the changing amount of meltwater in the fjord, export across the fjord mouth in Fig. 9c is given as the percentage 

of the total amount of dye present within the fjord to resolve the effect of katabatic winds on dispersal dynamics of Fe-rich 

sources. The meltwater dye experiences up to a 28-fold increased export into the Gerlache Strait during periods of strong 740 

along-fjord wind, primarily through the surface. To analyze the correlation between along-fjord wind velocity and the 

relative meltwater export, we first apply a 24-hr Gaussian filter to the relative export of glacial meltwater (Fig. 9), to exclude 

tidal signals. Applying the same filter to the wind time series, we find the wind and export data are positively correlated (r = 

0.628). The correlation between export and along-fjord winds supports the results by Lundesgaard et al. (2019) who found 

that katabatic winds control the export of fjord water. This has important implications for the dispersal of Fe-rich waters 745 

downstream, which eventually mix with Fe-poor waters located on the continental shelf (Annett et al., 2017). 
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Figure 9. (a) Modeled vertical velocities at 20 m for the following locations: Bagshawe Glacier (IBA), Sill 3 and the fjord region 
average. 24 hr gaussian filter applied to time series of along-fjord wind velocity (b) and relative meltwater export out of the fjord 
(c). Wind events exceeding an absolute velocity of 8 m s-1 are indicated by vertical dashed lines. Wind speed data is based on bias-750 
corrected RACMO model output for the center of the fjord, used to force the ROMS model. The transport of meltwater dye is 
shown relative to the total amount of meltwater dye within Andvord Bay to focus on the physical dynamics and not the changes in 
volume of dye present in the fjord. 

 

4.6.2 Subsurface and deep sources and export 755 

Periods of vertical mixing are shown to occur during katabatic wind events (Lundesgaard et al., 2019, 2020). This could be 

an important mechanism for supplying additional dFe from the subglacial plume to the surface within the fjord. Prior to the 

wind event on December 11, the subsurface dye increases gradually in the upper 20m (Fig. S6b). With the onset of the wind 

event, the vertical transport of the subsurface dye into the upper 20 m intensifies and reaches a maximum of 32.7 x 103 m3 d-

1. In comparison, the deep dye does not enter the upper 20 m prior to the wind event and its maximum vertical transport is 760 

(a)

(b)

(c)

https://doi.org/10.5194/bg-2021-79
Preprint. Discussion started: 8 April 2021
c© Author(s) 2021. CC BY 4.0 License.



35 
 

only 4.2 x 103 m3 d-1. It follows that katabatic wind events increase mixing in front of Bagshawe Glacier and have a 

particularly strong effect on water masses at intermediate depth. Assuming a mean concentration of 8.75 nM dFe for the 

subsurface plume (Table 1) and 8.68 nM dFe for deep (~300 m) IBA waters in the late Spring, these periods of vertical 

mixing correspond to dFe fluxes of up to 2.81 nmol dFe m-2 d-1 and 0.36 nmol m-2 d-1 (3.17 nmol m-2 d-1 combined) based on 

the subsurface dye and deep dye, respectively. Following the katabatic wind event, which lasted approximately 11 days, 765 

model results show that 36% of the subsurface dye has shoaled above 75 m, with 10% of dye found within the surface layer 

(<20 m, Fig. S6b). Of the deep water dye, less than 1% is found within the surface layer. The behavior of the deep water 

masses contrasts with that of the subsurface water, which corroborates the geochemical data suggesting an insignificant 

contribution of deep water masses to the surface hydrography and thus, to surface dFe inventory. The vertical fluxes 

estimated in this section are interpreted as a lower-bound for the contribution of the subsurface plume, since the modeled 770 

subglacial plume is a fixed volume, when in reality, subglacial meltwater might be supplied continually throughout the melt 

season. Compared to the flux of surface glacial meltwater input, and the flux due to subsurface and deep water mixing, the 

upwelling flux generated by wind events is the largest by an order of magnitude. 

The quicker export of the subsurface dye, and therefore the low surface concentration, is mainly due to its proximity to the 

ocean surface (Fig. S5b). The upper ocean is more subject to changes in the upper ocean dynamics and wind stress. In 775 

contrast, the deep dye is exported more slowly and is more continuously released into the Gerlache Strait (Fig. S5c). These 

modeling results provide evidence for the flushing of fjord water to the Gerlache Strait which coincides with periods of 

intensified winds. Thus, katabatic winds are important both for replenishing the surface Fe concentrations from the 

subglacial plume as well as exporting Fe-rich surface waters. It is reasonable to assume that in the absence of a strengthened 

buoyancy-driven overturning circulation, sources from fjord sediments are limited in supplying the surface with dFe in 780 

Andvord Bay. 

5 Conclusion: Andvord Bay as a source of Fe 

We have shown that in the absence of buoyancy-driven upwelling, the interaction of the ice sheet, atmosphere, and surface 

ocean, is important for resupplying the surface waters with Fe throughout the summer season, leading to enhanced 

productivity and sedimentation of carbon. Katabatic wind events result in pulsed export of the surface layer, while upwelling 785 

and vertical mixing entrains subglacial plume water in the inner fjord. Observed surface concentrations of dFe in Fall lend 

support to the modeled dynamics (see Fig. 3). We summarize the findings of this study in a conceptual diagram showing 

important seasonal sources of Fe during the growth and melt season (Fig. 10). We highlight important processes in the 

diagram using circled number notation. We found ocean temperatures are cold 1 and do not melt the fronts of glaciers, but 

warm summer atmospheric temperatures contribute to the surface melting of glacial ice 2. Variability in dissolved and 790 

particulate concentrations in glacial ice produces large uncertainties in the calculated flux. The speciation of Fe within 

glacial ice is mostly accounted for by refractory Fe-bearing particles 3. Only a fraction may be stabilized by excess organic 
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ligands. Another source is fjord sediments 4, though there is considerable uncertainty shown in the magnitude of this flux 

because evidence indicates that a significant fraction of porewater Fe rapidly precipitates at the oxidative front forming a rich 

surface layer of Fe oxyhydroxides 5. Intense bioturbation of fjord sediments mixes the surface sediments downwards 795 

fueling dissimilatory reduction processes. The dFe that escapes this sink enriches deep waters within the fjord. Small 

amounts of subglacial meltwater discharge enter the ocean and form turbid subsurface plumes 6. Within the plume, 

speciation is dominated by high concentrations of labile authigenic Fe-bearing particles that can be solubilized by Fe-binding 

organic ligands 7. Seaward-blowing katabatic winds 8 occur episodically and cause upwelling and vertical mixing 

supplying additional Fe to the surface phytoplankton community. These intense energetic periods facilitate the dispersion 800 

and export of surface Fe and meltwater away from the fjord where it is advected downstream in the Gerlache Strait 9. 

Given that the west Antarctic Peninsula hosts the greatest number of glaciomarine fjords on the continent, and multiple 

katabatic wind events occur throughout the year, single wind events can play a crucial role for the export of Fe. The modeled 

export of meltwater integrated over the week after the wind event on December 11 is 38x107 m3, which is about 43% of the 

meltwater input during the same time. For comparison, during the following week, with relatively calm wind conditions, 805 

only 20% of the meltwater input is exported. We estimate the Fe export to be 272 mol dFe week-1 for this event. However, 

the warming climate may lessen the likelihood for pulsed export of meltwater-derived Fe by intensifying coastal currents due 

to declines in sea ice (Moffat et al., 2008), and reduced surface cooling, decreasing the velocity and frequency of katabatic 

winds over the west Antarctic Ice Sheet (Bintanja et al., 2014). 
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 810 
Figure 10. Conceptual diagram showing the important seasonal sources of new Fe during the growth and melt season. The red 
arrows indicate the major fluxes (in [µM m-2 d-1]), with the size ranges showing the uncertainty in the measurement – some fluxes 
are difficult to quantify. These fluxes also vary from season to season and from location to location and may even be going through 
long-term changes due to human influences, such as climate change, though this is not shown here. The small arrows show internal 
transformations of Fe, which play an important role in the supply of Fe to phytoplankton. See text for a description of important 815 
processes highlighted by circled numbers. 

 

The large variability in inferred dFe content of glacial meltwaters along the WAP (Annett et al., 2017) means that supply 

likely depends on fjord-specific processes and future changes in ice volume. Advected sources of dFe remain the largest 

contribution (~50%) to the inventory on the productive continental shelves (De Jong et al., 2015). Therefore, we believe that 820 

a latitudinal assessment of WAP fjords could begin to address variable responses to ocean and atmospheric forcing in these 
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productive ecosystems. Indeed, less than 160 km to the south of Andvord Bay, observations of warm modified UCDW 

intrusions and an invigorated “meltwater pump” present an alternative mechanism for sustaining local primary production 

(Cape et al., 2019). 

The scope of our results should be highlighted. If we assume Andvord Bay is representative of a typical cold-based fjord, 825 

and similarly, Barilari Bay is representative of a warm-based fjord (6% MWf at surface, Cape et al., 2019) then we can 

estimate the glacial meltwater export resulting from a single wind event for the entire western coast of the WAP (see 

Appendix A). A total of 3.6 x 1010 m3 (36 km3) of surface glacial meltwater is exported seaward, which corresponds to 2.0 x 

106 mol dFe. A modelling study estimated a total meltwater discharge for all of Antarctica to be 32.5 – 97.5 km3 yr-1 (Pattyn 

2010). Thus, katabatic winds are highly efficient at delivering surface meltwater produced near the coast to the continental 830 

shelves. However, this is small compared to the total basal melt production rate due to warm ocean temperatures for the 

largest ice shelves. Using highly accurate remote sensing topographic measurements Adusumilli et al. (2020) found that the 

major ice sheets have a steady-state meltwater production value of 1100±60 km3 yr-1. In a different modeling study, it was 

estimated 300 – 800 km3 yr-1 enters the SO accounting for observed trends in SO sea surface temperature, sea ice expansion, 

and sea surface height (Rye et al., 2020). The WAP feeds most directly into the Antarctic Circumpolar Current (ACC), 835 

which advects modified coastal waters downstream to the productive Scotia Sea region, potentially magnifying the 

ecological impact of WAP fjord meltwater production. As the next wave of ocean biogeochemical models incorporate 

processes at the ice-ocean interface, better predictions of Fe supply to the ACC will be made. 

In Andvord Bay, primary production will be sensitive to future changes in subglacial discharge as Antarctic glaciers continue 

to melt in response to oceanic and atmospheric warming (Smith et al., 2020). A greater flux of sediment is expected to be 840 

released into the fjord, reducing light quality for primary producers, as part of a natural tidewater glacier cycle (Brinkerhoff 

et al., 2017). A key question outside the scope of this research is how the quantity and quality of Fe-binding ligands will 

change in the future. To a first approximation, decreased ligand concentrations associated with the phytoplankton bloom are 

expected to reduce efficacy of solubilization of particulate Fe and natural fertilization downstream resulting from this leaky 

fjord. This climatic trend is not yet realized within Andvord Bay (Eidam et al., 2019), but is expected to decrease dFe export 845 

through increased scavenging and sedimentation, further resembling high-Arctic and temperate fjords (Hopwood et al., 

2016).  

Appendices 

Appendix A: Estimating total meltwater export from WAP fjords 

In order to estimate the meltwater export resulting from a single katabatic wind event along the WAP, we first 850 

identify two fjord types: 1) fjords where waters are below the freezing temperature (cold-based); and 2) fjords where 

intrusions of modified UCDW reach the glacier terminus and cause melting. This distinction leads to different MWf 

production rates. We use data collected from Andvord Bay as a basis for the amount of export occurring in cold-based fjords. 
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In this instance, a maximum MWf or 0.025 was observed, which corresponded to an export of 38x107 m3 glacial meltwater 

and is based on the glacial meltwater dye export across the mouth of Andvord Bay integrated over the duration of a week-855 

long katabatic wind event. 

Meltwater runoff from glaciers due to warm atmospheric temperatures is parameterized as a function of number of 

days above a temperature threshold (Smith et al., 1998). The area of the glacier in contact with the atmosphere predicts how 

much meltwater is generated. We use this simple relationship with surface area and relate it to the MWf we observe, 

allowing us to estimate the fractional contribution from each glacier in Andvord Bay. As an example, Bagshawe Glacier has 860 

an area of 250 km2, which is 48% of the total glacier area for this fjord, and so would be responsible for producing 48% of 

the surface glacial meltwater (~18.4 x 107 m3). By dividing the total surface glacial meltwater export for a single katabatic 

wind event by the total area of glaciers in Andvord Bay, we calculate the export rate of meltwater in Andvord Bay glaciers to 

be 7.4 x 105 m3 km-2 assuming glaciers have an equal rate of meltwater production per unit area. We use this rate as 

representative for cold-based type glaciers. 865 

Since warm atmospheric temperatures in contact with the glacier surface cause production of meltwater, which 

enters the ocean as surface runoff, this seems a reasonable assumption. Additionally, intrusions of modified UCDW can 

reach the glacier terminus, causing slightly higher fractions of meltwater at the surface (~0.06 in Barilari Bay). Our general 

model results showed exchange with water outside of the fjord occurred during katabatic wind events, including inflow of 

water masses at depth located from outside of the fjord. Thus, these events are likely to enhance delivery of modified UCDW 870 

to the glacier terminus (Jackson et al., 2014). We scale the meltwater export to the meltwater fraction since both Barilari and 

Andvord Bays had similar mixed layer depths. Also, ~40% export of meltwater during katabatic wind events in our model is 

reasonable compared to estimates for Arctic fjords (10-50%, Jackson et al., 2014). Based on the area of glaciers in Barilari, 

we calculate an export rate of meltwater for representative warm-based glaciers to be 10.2 x 105 m3 km-2. We extrapolate 

these rough estimates for all glaciers on the western coast of the WAP identified by Cook et al. (2016). All glaciers to the 875 

south of Andvord Bay are considered warm-based, while those to the north are cold-based (Fig. A1). The area of each of the 

glaciers used here is published in Cook et al. (2016). 
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Figure A1. Map showing all 432 glaciers (blue dots) located on the western coast of the WAP (from Cook et al., 2016). The yellow 
line indicates the region of convergence of two intermediate water masses; cold Weddell Water to the north and warm modified 880 
UCDW to the south. Image was produced using © Google Maps, 10 January 2021. 

 

Summing the entire volume export of surface glacial meltwater, we find that if all surface waters along the western 

coast of the WAP experienced a single katabatic wind event, reminiscent of the one recorded in Andvord Bay, a total of 3.6 

x 1010 m3 (36 km3) of surface glacial meltwater is exported towards the continental shelf (5 km3 from cold-based glaciers; 31 885 

km3 from warm-based glaciers). This latitudinal difference is consistent with greater meltwater fractions found on the 

continental shelf in the southern lines of the PAL LTER grid (Annett et al. 2017). Based on a recent compilation of TDFe 

content in icebergs from Antarctica (Hopwood et al. 2019), and including two measurements from our study, we use a 

median concentration of 544 nM (n = 57). We then assume a conservative solubility of 10% of TDFe as the dissolved phase, 

which yields a dFe content of glacial meltwater to be 54.4 nM. This is close to our average dFe measured for three glacial ice 890 

pieces in this study (~71 nM). We estimate a single wind event lasting one week on the western coast of the WAP 

corresponds to an export of 2.0 x 106 mol dFe. 

Andvord Bay 

Barilari Bay 
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We realize this analysis does not take in to account the impact of shallow sills in fjords that might be important for 

restricting UCDW from entering the fjord mouth and interacting with glaciers. Invigorated upwelling due to buoyant plumes 

originating at the glacier face is expected to have a positive feedback on the melting of the glacier terminus by increasing the 895 

delivery of modified UCDW to glaciers and enhancing melt (Cape et al., 2019). This may be driven by warm ocean 

temperatures, directly melting the face of the glaciers, or atmospheric warming could increase drainage of surface melt to the 

base of the glacier, resulting in subglacial discharge and buoyant plumes driving circulation. Directionality of the katabatic 

winds is an important parameter for wind forcing in fjords surrounded by steep topographic features (Lundesgaard et al., 

2018). We have explored the possibility when one katabatic wind event per year occurs in the along-fjord direction 900 

(seaward) for the entire western coast of the WAP. These mechanisms are fjord specific and deserve further attention due to 

the complex interactions between the ice, ocean, and atmosphere. We also concede that areal extent of glaciers may not be 

the most representative measure for meltwater production, when in fact glacier flow velocities might better correlate with 

meltwater production rates, and thus, meltwater export rates. However, the interplay between surface melt and the subglacial 

hydrological system, and thus flow rates could mean this is a sufficient, albeit rough assumption. Finally, large uncertainties 905 

exist for the average glacial ice content of dFe and the degree to which TDFe may be solubilized and made bioavailable. 

This analysis does not take into account the large quantities of solid ice (i.e., icebergs) exported via this mechanism. 
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