
Dear Reviewers, 

Thank you for giving us the opportunity to submit a revised draft of the manuscript “Unveiling spatial 
and temporal heterogeneity of a tropical forest canopy using high-resolution NIRv, FCVI, and NIRvrad 
from UAS observations” for publication in Biogeosciences. We appreciate the time and effort required to 
provide feedback on our manuscript and are grateful for the insightful comments that have led to 
valuable improvements to our paper. We have incorporated most of the suggestions made and 
highlighted those within the manuscript. Please see below for a point-by-point response to the 
reviewers’ comments and concerns with line numbers noted and, following that, a copy of the 
manuscript with changes highlighted as well. 

Please accept our sincerest thanks. 

On behalf of all authors, 

Trina Merrick 

BG Reviewer Comments: 
RC1: 'Comment on bg-2021-95', Anonymous Referee #1, 04 May 2021 
Summary of the research and my overall impression 

Merrick and coauthors present a novel dataset of remotely sensed vegetation indices (VIs) 
(NDVI, EVI, NIRv, NIRvrad, FCVI) from an UAS in a tropical forest canopy in Panama. They 
explore both spatial and temporal variability between indices and highlight potential uses 
for these indices at those varying scales. Specifically, the authors explore temporal 
correlations between GPP and VIs over the course of a day, diurnal changes in the spatial 
variation between Vis, and dominant spatial scales for variability in VI signals. 

The paper is generally well written and structured and provides exciting insights on how 
VIs relate to each other. Both the dataset and the comparison are novel and within the 
scope of BG. Additionally, such direct comparisons between VIs are highly valuable 
because they provide insight in a field saturated with different VIs as to which VIs are most 
applicable for certain questions and specific strengths and limitations of each. The data 
collection approach is largely appropriate for the study, however, the temporal resolution 
of measurements is a major limitation. Additionally, the authors make claims about their 
findings in relation to SIF measurements that are not sufficiently substantiated. These 
major concerns are outlined with more specifics below. 

Overall, this an interesting study that will be of interest to the scientific community but 
needs some revisions to clarify what their findings are vs. what their findings imply. 
Therefore, I recommend this paper be accepted with major revisions. 

Major Concerns 

• The methods section is quite dense and difficult to follow. This makes it challenging for 
the reader to connect measurement approach to the presented results. I recommend the 
authors present some sort of conceptual figure showing their measurement approach 



and processing. I think this will be highly beneficial, particularly for a study that explores 
spatial variability. 

Thank you for this suggestion. We have included a methods and materials summary 
diagram in Section 2 as a new Figure 1 (Lines 512-521). 

• Only one day of GPP data is available. This has led to two specific issues: 
o I am concerned about the validity of a single day’s worth of GPP data. I feel as though 

the statistics used to partition GPP from NEE may be insufficient with only one day 
available. It’s worth some discussion about the limitations of this approach at a 
minimum. I believe Matteo uses more data to estimate GPP but we only present one 
day. Ask him to explain and fill in this response?  

§ Thank you for pointing out the ambiguity in our description of the GPP 
from eddy covariance. The GPP estimates were derived from eddy 
covariance system data continuing several months, from which we 
extracted the one day of data. Unfortunately, due to a power issue, 
these data were not available for the first day corresponding with the 
hyperspectral and lidar data collection. 

o In section 3.1, the authors explore the diurnal trend in VI, PAR, and GPP data. They 
use this trend to draw conclusions over the utility of NIRvrad as a proxy for GPP. 
However, I do not believe one day of data is sufficient to draw such strong 
conclusions. Additionally, there is insufficient discussion over how potential physical 
(illumination, viewing direction, etc.) or environmental effects (drought, seasonality, 
etc.) may impact these conclusions and the limitations posed by one day of data. 
Finally, Figure 1 appears to show a higher correlation between GPP and PAR than 
between GPP and NIRvrad – therefore significantly undercutting the authors main 
claim in this section – that NIRvrad is an appropriate proxy for GPP over short 
temporal scales. To me, this section would be better off as a discussion of how 
NIRvrad in fact does not sufficiently capture diurnal variability in GPP – and moreso 
reflects changes in PAR. I also recommend the authors provide a bit of additional 
commentary on why the other VIs show low correlations with GPP data. 

§ Thank you for the suggestion for added clarity and purpose. We 
address the limitations of using one day of data throughout the 
manuscript, specifically in lines 488; 490-492, 534-538, 704-706, 735-
737.  Throughout the manuscript we have made changes to carefully 
state that there is greater potential for NIRvrad as a proxy for GPP 
compared to the reflectance-based vegetation indicators (indices). 
The reflectance-based indicators, NDVI, EVI, NIRv, and FCVI, have 
been shown to trend seasonally with GPP in most biomes, but by 
virtue of calculating reflectances, these omit short timescale changes 
in incoming, scattered, and reflected radiation. NIRvrad, in contrast to 
reflectance-based indicators, includes the incoming, scattered, and 
reflected radiation in the NIR region. For this reason, recent studies 
(e.g. Wu et al 2020) and our study are pointing to the potential of 
NIRvrad to trend with GPP on short timescales through a joint 



relationship between NIRvrad, PAR and GPP. We have added more 
text in the introduction, results, discussion and conclusion, to address 
of this for clarity, lines 192-195, 506-509, 532-540, 866-869, and 954-
955. 

• The authors repeatedly draw the conclusion that presented VI data is suitable for 
separating out the physiological from the structural component of the SIF signal when 
SIF measurements are available. However, the authors are not presenting SIF data and 
therefore not substantiating this claim with sufficient results or appropriate citations. 
Specific comments are included in specific examples. I feel that much of the SIF 
discussion in fact takes away from the authors main conclusions and novelty of their 
other results as it focuses the discussion on what they aren’t doing (normalizing SIF with 
VI data). In particular, the majority of the introduction focuses on SIF. I recommend the 
authors cut down on this discussion significantly and make it more clear what 
conclusions they are drawing from their results vs. potential directions for future work. 

o The authors appreciate these suggestions regarding the overemphasis on 
SIF in the discussion and introduction. Based on this thoughtful review, we 
have modified the manuscript extensively to focus the introduction on the 
quantities measured in the study and minimize the text and references to SIF 
and how the quantities may relate to SIF. Specifically, we removed almost all 
of Lines 52-101 from the original submission. We maintained mentioning SIF 
in the Introduction only as the studies presented compared NIRv, FCVI, or 
NIRvrad specifically to GPP and SIF (Lines 193-201), and in the Results and 
Discussion (Lines 729-731) and Conclusion (Lines 865-869 to make 
comparisons between measurement techniques for reflectance-based 
indices and SIF as well as emphasizing how this study might be relevant to 
SIF, which is an emerging, important potential measurement of GPP. 

Specifics: 

• Lines 16-18: The statement ‘presented here for the first time’ is a bit misleading since 
you are not presenting these VI’s for the first time, you’re presenting them at this specific 
field site for the first time. Additionally, this opening does not make it clear the scientific 
question or problem you are trying to address or appropriate background information.  

o Thank you for assisting with clearer wording for this part of the abstract. We 
have removed the phrase “presented here for the first time” and modified the 
text (lines 16-23, 593-596) to clarify the purpose of the study. We see that 
the previous phrasing suggested the vegetation indicators were presented 
for the first time, when we only intended to point out these indicators 
specifically from UAV data are novel. 

• Line 38: Unoccupied might be a more appropriate term, as presumably the UAS was 
piloted (just not with someone on board).  

o We have updated to use the term ‘unoccupied’, as it is more appropriate 
(Lines 24 and 59). 

• Line 57: ‘SIF is mechanistically linked to photosynthesis of plants, and thereby, has also 
been shown to be more sensitive to changes in forest canopy function and structure 



than RIs’ – this deserves a citation. I also don’t think you can say it’s more sensitive to 
changes in forest canopy structure (although function yes). See the following for 
comparisons between SIF and VI’s (among others): 
o Cheng, R., Magney, T. S., Dutta, D., Bowling, D. R., Logan, B. A., Burns, S. P., 

Blanken, P. D., Grossmann, K., Lopez, S., Richardson, A. D., Stutz, J., & Frankenberg, 
C. (2020). Decomposing reflectance spectra to track gross primary production in a 
subalpine evergreen forest. Biogeosciences, 17(18), 4523–4544. 
https://doi.org/10.5194/bg-17-4523-2020 

o Magney, T. S., Bowling, D. R., Logan, B. A., Grossmann, K., Stutz, J., Blanken, P. D., 
Burns, S. P., Cheng, R., Garcia, M. A., KÓ§hler, P., Lopez, S., Parazoo, N. C., Raczka, 
B., Schimel, D., & Frankenberg, C. (2019). Mechanistic evidence for tracking the 
seasonality of photosynthesis with solar-induced fluorescence. Proceedings	of	the	
National	Academy	of	Sciences	of	the	United	States	of	America, 116(24), 11640–11645. 
https://doi.org/10.1073/pnas.1900278116 

o Pierrat, Z., Nehemy, M. F., Roy, A., Magney, T., Parazoo, C., Laroque, C., Pappas, C., 
Sonnentag, O., Bowling, D. R., Seibt, U., Ramirez, A., Helgason, W., Barr, A., & Stutz, 
J. (2021). Tower-based remote sensing reveals mechanisms behind a two-phased 
spring transition in a mixed-species boreal forest. Journal	of	Geophysical	Research:	
Biogeosciences. https://doi.org/10.1029/2020JG006191. 

§ Thank you for this comment. Based on this and the earlier 
suggestions, this portion of the manuscript was removed and portions 
of the manuscript referring to SIF significantly more focused on how 
the vegetation indicators measured related specifically to SIF. These 
references, however are valuable for our future work and are greatly 
appreciated. 

• Line 87-89: It’s worth mentioning which ecosystem types because this is not true across 
all ecosystems/some types show much better performance than others. The citations 
you have all have ecosystem type information.  

o We have updated this text to include the ecosystem or coverage of data, i.e., 
global, from the literature. This portion now appears in lines 82-84, but 
portions of the paragraph after these lines has also been updated to include 
more specifics (Line 85, Lines 88-92, Lines 94-98), 

• Lines 99-101: Again it’s worth mentioning ecosystem type here (ie: specifically tropical in 
your case) – this doesn’t necessarily apply for all ecosystems/we don’t have enough 
studies testing this across varied vegetation cover.  

o Thank you for pointing out this omission. We have now included text to 
clarify the data used in previous studies, which helps us highlight the tropical 
forest on which we focused (lines 94-98). 

• Lines 111-113: This deserves a citation (or several).  
o Thank you for pointing out this ambiguous statement. We have removed 

references to using the emerging indices to potentially separate the SIF 



signal into physiological and physical components, as we did not test this. 
As a part of this process, this particular phrase was removed.  

• Line 124: The introduction deserves some final statement about the broader aims of this 
work. What ultimate goal this information provides.  

o Thank you for this suggestion. We added a sentence at the beginning of the 
last paragraph of the introduction (Lines 99-104) to state the broader aims. 

• Line 146: there’s a period . typo after 12 ms.  
o Thank you, this error has been corrected (Line 129). 

• Line 160: As mentioned above there should be additional discussion on the limitations of 
only one day of data.  

o Thank you for reminder here. We have addressed this in lines 488; 490-492, 
534-538, 704-706, 735-737. 

• Line 173: I believe the original citation for NDVI is: 
o Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring 

vegetation. Remote	Sensing	of	Environment, 8(2), 127–150. 
https://doi.org/10.1016/0034-4257(79)90013-0.  

§ Thank you for pointing out this oversight, we have inserted this 
citation (Line 158). 

• Figure 1: There appears to be some sort of accidental grid to the side of panel d? 

Thank you for catching our oversight. The figure has been corrected (Now Fig. 2, 
Line 218). 

• Lines 236-238: ‘Our results demonstrate that UAS-based data are suitable for 
normalizing SIF at high spatial resolution in addition to recording structural heterogeneity 
of a tropical forest’ – your results don’t really demonstrate this because you don’t have 
SIF data. Maybe if you say they have ‘the potential’ however I still think this distracts 
here from the other findings.  

o Thank you, we agree and we have removed this reference to normalizing SIF 
and focused this portion of the manuscript on NIRv, FCVI, and NIRvrad 
instead (Lines 229-234). 

• Line 239: ‘Because NIRv and NIRvrad use NDVI, these results also indicate that 
including NIR reflectance or NIR radiance is the largest contributing factor to this 
variability’ – This is built into the definitions of NIRv and NIRvrad so I would rephrase this 
to reflect that.  

o Thank you. Lines 233-234 have been updated to clarify this point. 
• Lines 250-251: rephrase for clarity to ‘The low variability and high means at midday of 

NIRv, FCVI, and NIRVrad indicate that…’ T 
o These lines, now Lines 247-250 have been revised to make this point more 

clearly. Thank you for suggesting a change in wording here. 



• Line 266: ‘strong peak’ is a bit of an overstatement, it seems much more rounded to me.  
o Thank you, we have rephrased to “distinct” to avoid overstating the shape of 

the peak (Line 262). 
• Line 277: remove ‘note how’.  

o We have removed this part of the sentence (Line 272). 
• Lines 286-297: This discussion of SIF is much better because it acknowledges the 

potential, but also notes that SIF measurements are not available. This however also 
deserves some citations.  

o Thank you. We have included the appropriate citations for this statement in 
the revised version (Lines 290-298). 

• Line 313: Remove ‘for the first time’ – it’s confusing as you’re not presenting new 
indices, you’re presenting new data at this particular location.  

o Thank you, we removed this from that line (now Line 315), and created a new 
sentence (Lines 315-316) to clarify that we think we are the first to use such 
high spatial resolution data of NIRv, FCVI, and NIRvrad (from UAS). Based 
on this helpful suggestion, we think this more correctly asserts the claim. 

• Line 317: I do not believe you can draw this conclusion with one day of data (see my 
major concern above).  

o We appreciate this suggestion and we re-worded this sentence (now Lines 
317-318) to discuss the potential, as well as throughout the manuscript.  

• Lines 334-337: SIF discussion here is distracting from your main points.  
o We see this now and agree. We have removed references to SIF and SIF 

disaggregation from the conclusions. 
• Lines 345-346: You do not show that these measurements can be used to separate the 

components of a SIF signal and you’re also not really showing how to use it as an 
estimate of fPAR, APAR, or GPP. Also worth noting this is for a tropical ecosystem.  

o We have also removed these and updated this portion of the manuscript to 
reflect this helpful advice. Instead, we discuss the importance of future work 
using these vegetation indicators in tropical ecosystems and beyond to 
explore vegetation structure and function (Lines 337-344).  

  



RC2: 'Comment on bg-2021-95', Anonymous Referee #2, 13 May 2021 

• General Comments 

o The authors present a very interesting and novel dataset of high-resolution vegetation 
indices (VI) in a tropical forest. They present correlations of the VIs to the gross 
primary productivity (GPP) of this forest and show how the VIs compare in capturing 
GPP for a given day. The authors also present a comparison of the VIs in their ability 
to capture structural heterogeneity of the forest. I found the study to be relevant and 
current given the emerging VIs used in this study. The spatial component of this study 
is very interesting as well. Here the authors show that NIRv and FCVI can capture 
more spatial heterogeneity in this forest in the reflection and absorption of radiation. 
My comments mostly focus on encouraging enhancement of the discussion that could 
provide more context for the analysis that was done and reducing the discussion of 
distracting concepts that were not tested. To tie the introduction and discussion to the 
analysis and results, the discussion and the introduction could better explain why 
NIRv_rad would be correlated to GPP with a clearer explanation of the GPP and NIRv 
(reflectance or radiance based) relationship and a reduced discussion of the role of 
the VIs in the SIF-GPP relationship. The paper could benefit from discussing the 
connections between canopy structure (height, size of tree clusters) and function 
(GPP) rather than the links between VIs and SIF. Below are some specific comments. 

• Specific comments 
o The Light-Use Efficiency (LUE) model is the most widely used model to explain the 

relationship between GPP and vegetation indices such as NDVI as mentioned by the 
authors in line 42. I find the description of the LUE model to be inadequate in this 
paper considering it plays such a key role in understanding why vegetation indices 
correlate with GPP. Thinking of NIRv as an indicator of fPAR x f_esc could serve an 
analysis which includes observed SIF, but for the current analysis, it would be better 
to discuss NIRv_rad as an indicator for APAR. I would encourage the authors to 
present either: the equation for the LUE model with an explanation of the terms or a 
written description of the LUE logic and a description of its terms. Medlyn (1998) and 
Yuan et al. (2014) provide overviews of the LUE model and its terms. Presenting the 
LUE model can help readers understand exactly where vegetation indices fit in 
estimating GPP when one does not have SIF observations and would help clarify 
vague sentences like “thus a joint relationship between a remote sensing vegetation 
quantity, PAR, and GPP.” (lines 206 – 207) 

§ This insight is particularly helpful to clarify our message for the 
readers. We have updated the manuscript to remove the emphasis on 
fPAR x fesc and to include information about the links to LUE (Lines 
58-62). Additionally, based on this comment, others by this reviewer, 
and those made by other reviewers, we have significantly cut the 
introductory material related to the SIF~GPP~vegetation indicator 
descriptions and links because we did not measure SIF. We feel as if 
this provided a clearer background for our study focusing on 
traditional RS vegetation indicators and emerging indicators. 



o Since the study focuses solely on vegetation indices, can the authors expand more on 
why near-infrared reflectance or reflected near-infrared radiation and the vegetation 
indices that are built from it have shown good correlations with GPP? 

§ We fine-tuned the introduction to the vegetation indicators and GPP 
to provide links, especially based on previous studies in Lines 62-70. 
We follow this portion of the manuscript with a careful description of 
the traditional and emerging vegetation indicators without pulling in 
tertiary information not related to what we are testing, such as SIF. 
We feel this now provides a better basis for our study. 

o Making a clearer link between spatial canopy heterogeneity and GPP in the discussion 
can also help tie both the correlation and the power spectrum analysis together.  

§ Thank you for this suggestion. We have updated the introduction, 
results and discussion to include better links between canopy spatial 
heterogeneity and GPP Lines 38-44, 49-55, 228-234, 289-297. 

o I find the discussion of SIF here to be a bit too extensive given that SIF was not 
actually tested. The authors have covered an important point in mentioning the use of 
NIRv to capture the structural component of observed SIF and it is worth mentioning 
in a sentence or two, but I think an analysis which is not focused on a comparison 
between SIF and VIs does not need to explain how VIs are related to SIF as 
extensively as has been done. Instead, a focus on how near-infrared reflectance of 
vegetation, canopy structure, and light capture/absorption is related to GPP could 
help address the actual comparison being made. If the authors want to focus on how 
NIRv can be used in the GPP-SIF relationship, then the links between NIRv, SIF, and 
GPP need to be discussed further to allow a reader to understand what role NIRv 
plays in estimating GPP through the GPP-SIF relationship. Expanding the fPAR x 
f_esc equation to show the full GPP equation could help in this area. However, again, 
since the NIRv-GPP relationship was tested, the LUE model without SIF is a better 
conceptual glue for this analysis. 

§ Thank you for these helpful and very detailed suggestions. Based on 
this reviewer’s perspective, we updated the manuscript, especially 
the introduction, to increase the focus on NIRv, FCVI, and NIRvrad 
and reduce the focus on SIF. Specifically, we removed paragraph 2 
from the introduction, as well as extraneous references to SIF in 
Paragraph 3 (Lines 52-101). We only retained a reference to SIF in 
regard to comparing techniques for measurement (Lines 78-81), 
measurements of FCVI  in our study related to SIF (Lines 88-90), 
studies specifically comparing the vegetation indices to GPP and SIF 
(Line 96), and in the discussion regarding uses for emerging 
vegetation indices (Lines 295-296 and 316-319).   

o Line 113: Can the authors expand on why NIRv needs to serve as a proxy for SIF if it 
can serve as a proxy for GPP and a radiance based NIRv can serve as a proxy for 
APAR? Using NIRv for addressing the structural component of the SIF-GPP 
relationship makes sense, but the utility of using NIRv as a proxy for SIF is not as 
clear.  



§ We agree that stressing the connection between NIRv, NIRvrad, and 
SIF takes away from the central message that these metrics from 
UAS provide fine-scale structural information that may help address 
gaps in understanding GPP. Based on this helpful suggestion, we 
have scaled back references to SIF, and specifically removed the 
references in Line 113. 

o R in equation 3 and equation 4 is not explained until after equation 5. It can be clearer 
to explain what R represents after equation 3 and 4.  

§ Apologies for this oversight. We have now corrected this omission 
(Lines 158-161). 

o It is unclear how this analysis supports the claim at line 236 since normalizing SIF with 
the UAS data was not done in this study.  

§ Thank you, we have removed this reference to normalizing SIF as a 
part of focusing the manuscript more clearly on NIRv, FCVI, and 
NIRvrad (Lines 230). 

o Claims made at the following lines need citations: line 32 – 33, lines 56 – 57, lines 75 – 
76, lines 78 – 80, lines 91 – 94  

§ We added appropriate citations for lines 32-33 (now Lines 41-42). 
Due to modifications related to decreasing the discussions of SIF in 
the introduction, Lines 52-101 were removed from the manuscript. 
Thank you for pointing out these omissions. 

• Technical Corrections 
o Line 49 – 50: consider changing “and questions linger about their ability to track 

green-up with RIs in tropical regions” to “and questions linger about the ability to 
track green-up with RIs in tropical regions” or “and questions linger about their ability 
to track green-up in tropical regions”  

§ Thank you for this helpful suggestion, we have reworded according to 
your advice (lines 49-53. 

o Line 84: consider changing “SIF signal or used to independently as” to “SIF signal or 
used independently as”. 

§ This is a helpful suggestion, but this sentence has been removed in 
this revision. 
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 Thank you for bringing these references to our attention. We have corrected this 
omission and included the information and appropriate references (Lines 59, 61, 68, 556-
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Abstract. Recently, remotely-sensed measurements of the near-infrared reflectance (NIRv) of vegetation, the 18 

fluorescence correction vegetation index (FCVI), and radiance (NIRvrad) of vegetation, have emerged as indicators 19 

of vegetation structure and function with potential to enhance or improve upon commonly used indicators, such as the 20 

normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). The applicability of these 21 

remotely sensed indices to tropical forests, key ecosystems for global carbon and biodiversity, have been limited. In 22 

particular, fine-scale spatial and temporal heterogeneity of structure and physiology may contribute to variation in 23 

these indices and the properties, such as gross primary productivity (GPP) and absorbed photosynthetically active 24 

radiation (APAR), that are presumed to be measured by these indices.  In this study, fine-scale (15cm and greater) 25 

tropical forest heterogeneity represented by NIRv, FCVI, and NIRvrad, is investigated using unoccupied aerial 26 

systems (UAS) data, and compared to NDVI, EVI, and Lidar. By exploiting near-infrared signals, emerging vegetation 27 

indicators captured the greatest spatiotemporal variability, followed by the enhanced vegetation index (EVI), then the 28 

normalized difference vegetation index (NDVI). Wavelet analyses showed the dominant spatial scale of variability of 29 

all indicators is driven by tree clusters and larger-than-tree-crown size gaps rather than individual tree crowns. 30 

Emerging indices and EVI captured variability at smaller spatial scales (~50 m) than NDVI (~90 m) and lidar (~70 31 

m). We show that spatial and temporal patterns of NIRv and FCVI are virtually identical for a dense green canopy, 32 

confirming predictions in earlier studies. Furthermore, we show that NIRvrad, which does not require separate 33 

irradiance measurements, correlated more strongly with GPP and PAR than did other indicators. These emerging 34 

indicators, which are related to canopy structure and the radiation regime of vegetation canopies, are promising tools 35 

to improve understanding of tropical forest canopy structure and function. 36 



2 
 

1 Introduction 37 

Important spatial and temporal heterogeneity in structurally complex and species-rich tropical forests are not 38 

well characterized. Many factors, including varying microclimate, light conditions, topography, crown structure, and 39 

patterns of tree mortality and regeneration, contribute to high heterogeneity that underlies coarse scale gross primary 40 

production (GPP) measurements in tropical forest (e.g., Xu et al., 2015; Guan et al., 2015; Morton et al., 2014; 41 

Bohlman and Pacala, 2012; Laurance et al., 2012; Clark et al., 2008; Huete et al., 2008). Improving knowledge of 42 

tropical forest dynamics at multiple scales is crucial to monitoring and predicting resilience of tropical ecosystems 43 

and productivity under climate change (Liu et al., 2021; Clark et al., 2017; Laurance et al., 2012; Malhi, 2012; Wright, 44 

2010; Saatchi et al., 2010; Lewis et al., 2009). Remote sensing (RS) measurements have been employed to uncover 45 

vegetation patterns of structure and productivity from local to global scales, often with a focus on filling gaps in 46 

knowledge regarding variation and uncertainties in GPP estimates (e.g., Jung et al., 2011; Glenn et al., 2008; Huete et 47 

al., 2002; Ryu et al., 2018; Yang et al., 2017; Jiang et al., 2008; Zhao et al., 2010; Heinsch et al., 2006; Running et al., 48 

2004; Turner et al., 2003). Yet, there is a spatial mismatch between satellite data (e.g., 30 m to 1 km pixel resolution), 49 

which provides observations across large extents at repeat intervals, and site-specific plot level data (e.g., 0.1 – 1 50 

hectare) that contributes to uncertainties in GPP estimates (Gelybó et al., 2013; Zhang et al., 2020). There is a lack of 51 

high spatial and temporal resolution data that can capture fine-grained heterogeneity of tropical forests (Clark et al., 52 

2017; Mitchard, 2018; Saatchi et al., 2011; Lewis et al., 2009). Unoccupied aerial systems (UAS) with hyperspectral 53 

imaging sensors present an opportunity to collect tropical forest canopy data at high spatial resolution, which could 54 

address unknowns related to the high heterogeneity of tropical forests.  55 

Traditional reflectance-based indices (RI) using RS data, such as the normalized difference vegetation index 56 

(NDVI) and enhanced vegetation index (EVI), are known to capture structural changes that are coincident with 57 

changes in GPP. RIs have provided optical methods using RS to track GPP via the light use efficiency (LUE) model 58 

(J.L.Monteith, 1977; Yuan et al., 2014; B. E. Medlyn, 1998). In the most commonly used formulation of the LUE 59 

model for RS, GPP is the product of the absorbed photosynthetically active radiation (APAR) and the efficiency (!) 60 

with which the target vegetation converts the radiation to carbon (Gamon, 2015;Yuan et al., 2014; Running et al., 61 

2004). APAR is derived from the incoming photosynthetically active radiation (PAR) times the fraction of PAR 62 

(fPAR). RIs commonly used in the LUE model of GPP as well as direct proxies for GPP are NDVI and EVI, because 63 

of a strong relationship to fPAR (Springer et al., 2017; Morton et al., 2015; Gamon et al., 2015; Porcar-Castell et al., 64 

2014; Glenn et al., 2008; Gao et al., 2007; Huete et al., 2002; Zarco-Tejada et al., 2013). NDVI and EVI are typically 65 

used as proxies on seasonal timescales, or, when used to examine changes on shorter timescales, they have been 66 

multiplied by photosynthetically active radiation (PAR) to account for changes in radiation (incoming, absorbed, and 67 

scattered) which better align with GPP changes (Springer et al., 2017; Yuan et al., 2014).  However, RIs alone have 68 

often not shown enough sensitivity to capture more fine-scale or rapid changes in vegetation, such as those in tropical 69 

forests, and questions linger about the ability to track green-up with RIs in tropical regions (Liu et al., 2021; Yang et 70 

al., 2018a; Lee et al., 2013; Xu et al., 2015; Morton et al., 2014; Samanta et al., 2010; Sims et al., 2008). 71 

Recently, three emerging vegetation indicators have been shown to track with GPP more closely than traditional 72 

RIs. These indicators are the near-infrared reflectance of vegetation (NIRv) (Badgley et al., 2017), the fluorescence 73 
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correction vegetation index (FCVI) (Yang et al., 2020) and the near-infrared radiance of vegetation (NIRvrad) (Wu et 74 

al., 2020). Because they exploit additional information from the NIR region of the spectrum, NIRv, FCVI, and 75 

NIRvrad do not saturate in dense canopies or suffer the same level of contamination from senesced vegetation and 76 

soils as traditional RIs (Baldocchi et al., 2020; Badgley et al., 2017).  Additionally, these emerging indicators require 77 

only moderate spectral resolution data and are similarly straightforward to measure and calculate as RIs, making them 78 

accessible in a broad range of studies. In contrast, SIF measurements require very high spectral resolution and multiple 79 

instruments. Therefore, NIRv, FCVI, and NIRvrad could be employed as valuable indicators of canopy structure and 80 

function (Badgley et al., 2019; Badgley et al., 2017; Dechant et al., 2020) and have practical advantages over making 81 

SIF measurements.  82 

NIRv, the product of NDVI and the near-infrared reflectance (NIR), from moderate spectral resolution 83 

satellite imagery and field spectrometers has been shown to empirically track measured and modelled GPP globally 84 

(with highest uncertainties in the tropics) at monthly to seasonal timescales presumably because changes in canopy 85 

phenology influence light capture and these changes coincide with changes in GPP (Badgley et al., 2019; Badgley et 86 

al., 2017; Dechant et al., 2020). FCVI, derived from radiative transfer theory rather than an empirical relationship, is 87 

calculated from RS data by subtracting the reflectance in the NIR from the reflectance in the visible range (Yang et 88 

al., 2020). Yang et al. (2020) demonstrated that FCVI, by capturing structure and radiation information from a 89 

vegetated canopy, tracked GPP and solar-induced fluorescence (SIF; a radiance-based indicator of GPP) in field 90 

experiments with crops and in numerical experiments. Yet FCVI showed differences from NIRv due to exposed soil 91 

within the vegetated study areas. In previous studies, FCVI and NIRv were similar for dense green canopies where 92 

soils have less of an impact, but this has not yet been tested in the tropics (Wang et al., 2020; Badgley et al., 2019; 93 

Dechant et al., 2020). NIRvrad was proposed as a proxy for GPP on half-hourly and daily timescales, in contrast to 94 

NIRv and FCVI which track changes on longer timescales (Wu et al., 2020; Dechant et al., 2020; Baldocchi et al., 95 

2020; Zeng et al., 2019). NIRvrad is calculated by multiplying NDVI by the NIR radiance, and because the radiance 96 

of NIR accounts for incoming radiation at short timescales, has tracked GPP and SIF on half-hourly and diurnal scales 97 

as well as seasonally in crops and, to a limited extent, natural grass and savanna ecosystems (Dechant et al., 2020; 98 

Baldocchi et al., 2020; Zeng et al., 2019; Wu et al., 2020).  99 

Readily available UAS-based hyperspectral sensors are capable of robust measurements of NIRv, FCVI, and 100 

NIRvrad at ultra-high spatial scales, i.e. in tens of centimeters. In this regard, UAS-based data have the potential to 101 

improve our understanding of tropical forest structure and function over a range of scales that are poorly resolved by 102 

other RS platforms.  Here, we use high spatial resolution UAS measurements to characterize spatial and temporal 103 

variation in a semi-deciduous tropical forest canopy during the dry season, and compare commonly used spectral 104 

indices (NDVI and EVI) to newer vegetation indicators (NIRv, NIRvrad, and FCVI) by (i) examining correlations 105 

between GPP and vegetation indicators using mean values across the canopy throughout the day, (ii) evaluating the 106 

distribution of fine spatial resolution values (~15 cm) across the canopy and examining changes in this spatial variation 107 

throughout the course of two days, and finally (iii) identifying the dominant spatial scale driving variation across our 108 

10 ha study region. 109 
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2 Materials and Methods 110 

2.1 Study Area 111 

Barro Colorado Island (BCI), Panama, is a 1560 ha island (approximately 15 km2) in Gatun Lake, which was formed 112 

by the construction of the Panama Canal. The Smithsonian Tropical Research Institute manages the preserved area 113 

specifically for research. This semi-deciduous moist tropical forest receives approximately 2640 mm mean annual 114 

precipitation and has a mean temperature of 26oC with a dry season from approximately January through April (Detto 115 

et al., 2018). There is high species diversity, with approximately 500 tree species, approximately 60 species per ha, 116 

and about 6.3% of trees at >30cm diameter at breast height (dbh) (Bohlman and O'Brien, 2006; Condit et al., 2000). 117 

The UAS and ground measurements were focused on an area approximately 10 ha within the footprint of an eddy 118 

covariance tower near the center of the island (9.156440°, -79.848210°).  119 

2.2 Data collection 120 

The GatorEye Unmanned Flying Laboratory is a hardware and software system built for sensor fusion 121 

applications, and which includes hyperspectral, thermal, and visual cameras and a Lidar sensor, coupled with a 122 

differential GNSS, internal hard drives, computing systems, and an Inertial Motion Unit (IMU). Hardware and 123 

processing details, as well as data downloads, are available at www.gatoreye.org. The GatorEye flew 13 missions on 124 

January 30 and 31, 2019 over the forest canopy within the eddy covariance tower footprint at an average height of 120 125 

m above ground level (AGL) and at 12 m/s (Fig. 1). In this study, we used radiometrically calibrated flight transects 126 

from the Nano VNIR 270 spectral band hyperspectral sensor (Headwall Photonics, Fitchburg, MA, USA) which 127 

covered approximately 1 ha per flight within the EC footprint in this study. The Nano spectrally samples at 128 

approximately 2.2 nm and 12-bit radiometric resolution from 400 to 1050 nm. The frame rate was set to 100 fps, with 129 

an integration time of 12 ms and provided a pixel resolution of approximately 15x15 cm. The Nano was calibrated to 130 

radiance by the manufacturer before the field campaign and pixel drift was removed by dark images collection, which 131 

was corrected for during the conversion from digital number to radiance. The hyperspectral transects were equally 132 

subset for each flight in ENVI + IDL (Harris Geospatial, Boulder, CO). Each flight resulted in 1920 transects of 133 

approximately 400 m length composing three blocks discretized in 2500 data points. Simultaneous lidar was collected 134 

using a VLP-32c ultra puck (Velodyne, San Jose, CA), which was processed to a 0.5x0.5 m resolution digital surface 135 

model (DSM). 136 

Turbulent fluxes and meteorological variables were measured from a 40 m Eddy Covariance (EC) flux tower 137 

(Fig. 1). The eddy covariance system includes a sonic anemometer (CSAT3, Campbell Scientific, Logan, UT) and an 138 

open-path infrared CO2/H2O gas analyzer (LI7500, LiCOR. Lincoln, NE). High-frequency (10Hz) measurements 139 

were acquired by a datalogger (CR1000, Campbell Scientific) and stored on a local PC. Other measurements made at 140 

the tower include air temperature and relative humidity (HC2S3, Rotronic, Hauppauge New York), and 141 

photosynthetically active radiation (PAR; BF5, Delta-T Devices, UK).  EC data were processed with a custom program 142 

using a standard routine described in Detto et al. (2010). GPP was derived from daytime values of NEE by adding the 143 

corresponding mean daily ecosystem respiration obtained as the intercept of the light response curve (Lasslop et al., 144 
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2010).  Due to a power issue, data corresponding to the January 30 flights was not collected, so only January 30 GPP 145 

were available.  146 

An HH2 Pro Spectroradiometer (HH2; ASD/Panalytical/Malvern, Boulder, CO) fitted with a diffuse cosine 147 

receptor was used on the ground in full sun at the forest edge to record incoming irradiance on January 30 and 31, 148 

2019 (~ 3nm FWHM and spectral sampling at 1nm). HH2 irradiance was resampled to match the Nano hyperspectral 149 

sensor and used to calculate reflectance. A calibrated reference tarp was placed in full sun at the forest edge and the 150 

UAS flew over and recorded the tarp each UAS flight. Reflectance was calculated separately using the HH2 and tarp 151 

data and resulting reflectance values compared as a method to vicariously cross-calibrate reflectance from the 152 

hyperspectral data (<7.0% difference for all data in the study). In addition, PAR was calculated with the HH2 data and 153 

compared to the tower-mounted PAR measurement (approximately 1.5 km apart) to help understand any differences 154 

in the sky conditions during flight times. PAR differences across the site for each flight time for the duration of flights 155 

(approximately 10-15 minutes in length each) ranged between 4.0% and 10.3%. A summary of materials and methods 156 

is provided in Fig.1 at the end of Section 2. 157 

 158 

2.3 Vegetation indicators 159 

We calculated NDVI and EVI as (Tucker, 1979; Huete et al., 2002; Rouse JR et al., 1974): 160 

"#$% = 	())*+,** − (./*+.)*())*+,** + (./*+.)*
  (1) 

and 161 

1$% = 	 2.5(())*+,** − (./*+.)*)
())*+,** + 6 × (./*+.)* − 6 × (9.*+9): + 1

 
 (2) 

where R is reflectance and the subscripts indicate wavelengths. Here, we used the averages of 770-800 nm for NIR, 162 

630-670 nm for red reflectance, and 460-475 nm for blue bands reflectance and normalized to reduce noise.  163 

We further calculated the near-infrared vegetation index NIRv as: 164 

"%(<	 = 	"#$% ×R770-800 (3) 

where R770-800 is the NIR reflectance (Badgley et al., 2017). The fluorescence correction vegetation index (FCVI) 165 

was calculated from spectral data by subtracting the reflectance in the visible range (R400-700) from the NIR 166 

reflectance (Yang et al., 2020) as follows 167 

=>$%	 =	R770-800-R400-700 (4). 

The near-infrared radiance of vegetation (NIRvrad) was calculated similarly to the NIRv, except NDVI was multiplied 168 

by the radiance, rather than reflectance, from the NIR region (Rad770-800) (Wu et al., 2020) as follows: 169 

"%(<?@A	 = 	"#$% ×Rad770-800 (5). 

2.4 Data Analysis 170 

We examined mean values across the canopy over the course of one day by creating a diurnal time series of 171 

scatterplots of the tower-based PAR data, tower-based GPP data, and means of all spectral vegetation indicators, on 172 
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Jan 31, 2019, and ran comparisons using Pearson’s correlation coefficients to examine correlations. At fine spatial 173 

scales, i.e. pixel level of ~15 cm, we created density plots, calculated the coefficient of variation (CV), and calculated 174 

the means of all vegetation indicators (NDVI, EVI, NIRv, FCVI, NIRvrad) for each flight to compare spatial and 175 

temporal variability (Fig. 1). To determine which spatial scales dominate the variability of each vegetation quantity, 176 

we ran power spectrum wavelet analysis using code created in the Matlab programming language (Mathworks, Natick, 177 

Massachusetts). For each vegetation quantity and each flight, and for the lidar elevation model representing canopy 178 

height, we computed the Morlet wavelet power spectrum of individual transects (Torrence and Compo, 1998). All 179 

power spectra from the wavelet analysis were normalized to unit variance. An ensemble power spectrum for each 180 

vegetation indicator was created by averaging across all the transects of each flight and then across flights. We then 181 

compared the power spectra for each vegetation indicator and lidar data to compare the spatial scales at which the 182 

quantities captured variability as well as the spatial scale at which the lidar-based elevation model captured variability. 183 

For illustration purposes, Fig. S3 is an example of two signals, a higher and lower noise signal created with fractals 184 

(Signal A and B, respectively, Fig. A1) and the corresponding power spectra which decay differently at smaller spatial 185 

scales (Power Spectra, Fig. A1). Initial UAS data processing was carried out in Interactive Data Language (IDL) and 186 

Environment for Visualizing Images (ENVI) (Harris Geospatial, Boulder, CO). Other analysis, including graphical 187 

illustrations, were carried out using the R open source environment with libraries dplyr, ggplot, and tidyverse (R 188 

Development Core Team, 2010; Wickham et al., 2018; Wickham, 2017, 2016) and Matlab (Mathworks, Natick, 189 

Massachusetts).  190 

 191 

 192 
Figure 1. Summary of methods. Concept of diurnal GPP and UAS flights (far left). Platforms and instrumentation (blue) 193 
consisted of the Analytical Spectral Devices (ASD) Handheld Spectroradiometer Pro 2 (HH2), the GatorEye Flying 194 
Laboratory, and the Tower at Barro Colorado Island (BCI). Data collected included Irradiance, Hyperspectral, Lidar, 195 
Eddy Covariance System (EC), and Photosynthetically Active Radiation (PAR). Calculations made were PAR with the HH2 196 
(PARHH2), the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Fluorescence 197 
Correction Vegetation Index (FCVI), the Near Infrared Vegetation Index (NIRv), the Near Infrared Radiance of Vegetation 198 
(NIRvrad), the Digital Surface Model (DSM), Gross Primary Productivity (GPP)and PAR from the PAR Sensor on the 199 
Tower (PARtower). An overview of the data analysis at each scale is provided in the right of the diagram.   200 
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3 Results and discussion 201 

3.1 Diurnal trend in spectral vegetation indicators, PAR, and GPP 202 

The degree to which remote sensing vegetation indicators represent changes in GPP depend largely on canopy 203 

structure-dependent light absorption and scattering processes, that is, a joint relationship between a remote sensing 204 

vegetation quantity, PAR or APAR, and GPP. Fig. 2 shows GPP, PAR, and the mean value of each vegetation quantity 205 

at each flight time over the course of January 31, the day on which we had overlapping data between the UAS and 206 

eddy covariance system (Fig. 2a-d). Additionally, Pearson correlation coefficients among mean NIRv, FCVI, 207 

NIRvrad, EVI, and NDVI for each flight time and the GPP and PAR values at the flight times are shown in Fig. 2d. 208 

NIRv is significantly and strongly positively correlated to both FCVI (r=0.9, p<0.001) and EVI (r=0.9, p<0.01). 209 

NIRvrad is the only vegetation quantity with a significant correlation to PAR and GPP, with a strong positive 210 

relationship (0.9 and 0.81, respectively, p-values <0.05; Fig. 2d).  Mean NIRvrad values also have the greatest relative 211 

diurnal change among the vegetation indicators (Fig. 2c and d). These results demonstrate that a shared correlation of 212 

NIRvrad and GPP to PAR results in mean NIRvrad tracking diurnal changes in GPP to a greater degree than NIRv, 213 

FCVI, NDVI or EVI, because NIRvrad takes incoming radiation into account whereas the other vegetation indicators 214 

do not. This evidence – albeit based on only one day of data – supports the proposed use of NIRvrad as a proxy for 215 

changes in GPP on short timescales.  NIRvrad is also a more efficient measurement of GPP in the sense that a separate 216 

instrument to measure PAR is not needed (Wu et al., 2020; Zeng et al., 2019). Given that the relationship between 217 

NIRvrad and GPP depends on PAR, it is unclear if the association between NIRvrad and GPP would weaken during 218 

the wet season when low light or diffuse light conditions are more common (Berry and Goldsmith, 2020).  219 
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 220 
Fig. 2. Diurnal time series of a) GPP b) PAR c) NIRvrad d) NIRv, FCVI, NDVI, and EVI e) comparisons of quantities using 221 
Pearson correlations color indicates strength of relationship, * = p-value<0.05, ** = p-value <0.01, *** = p-value <0.001. 222 

3.2 Tropical forest canopy variation 223 

Spatial distributions and CV of all pixels of NIRv, FCVI, and NIRvrad are generally similar to one another 224 

and show considerable variation spatially across the canopy and temporally over the course of a day and across days 225 

(Fig. 3a-c, Table A2). NIRv, FCVI, and NIRvrad distributions are distinct from EVI and NDVI (Fig. 3a-e, Table A2, 226 

and Table A2). NIRv, FCVI, and NIRvrad have the highest CV at each flight time (between 39.78% and 91.54%, 227 

Table A1), followed by EVI (between 20.24% and 37.24%, Table A2) and NDVI varied the least at any flight time 228 

(between 9.83% and 12.82%, Table A2). For some indices, mean values across the canopy fail to capture extreme 229 

high (NIRv, NIRvrad, and FCVI) or low values (NDVI) during morning and afternoon hours. This pattern suggests 230 

“hot” and “cool” spots of activity related to heterogeneity in forest structure and low sun angles. In previous studies, 231 

the directional effects on NIRv have been examined on coarse spatial scales (i.e. satellites) and have been proposed 232 

as a means of improving understanding of NIRv agreement to GPP  (Hao et al., 2021; Dechant et al., 2020; Baldocchi 233 

et al., 2020; Zhang et al., 2020). Our results demonstrate that NIRv, FCVI, and NIRvrad capture fine-grained 234 

heterogeneity of this tropical forest canopy, which was obscured by EVI and NDVI (Fig. 3a-e). NIRv and NIRvrad 235 

use NDVI, thus, by definition, NIR is the largest contributing factor to the heterogeneity captured (Fig. 3a, c, and e). 236 

While NIRv and NIRvrad distributions are generally similar, they diverge in the afternoons when PAR declines, which 237 

likely why NIRvrad is better correlated with GPP. EVI variability was higher than NDVI variability, but lower than 238 



9 
 

that of NIRv, FCVI, and NIRvrad, indicating that EVI has a different level of sensitivity to viewing geometry and 239 

canopy components (potentially understory), light absorption and scattering regime of the canopy than the other 240 

indices (Table A1and Table A2). We also show empirically that NIRv and FCVI are virtually the same in a dense 241 

tropical forest presumably due to both indices similarly representing the radiation regime of the tropical forest canopy, 242 

i.e. light capture and scattering, in conditions with little background soil, supporting the predictions of earlier studies 243 

(Dechant et al., 2020; Zeng et al., 2019; Yang et al., 2018b; Wu et al., 2020).  244 

Midday distributions of NIRv, FCVI, and NIRvrad on Jan. 30 at 12:00 and 1330 and Jan. 31 at 12:30 are less 245 

skewed than at other times of the day whereas morning and afternoon distributions are skewed toward lower values, 246 

except for Jan. 31 at 15:30 (Fig. 3a-c).  On both days, when mean values peak at midday, the variation for all vegetation 247 

indicators is lowest (Jan 30, 1200 CV between 47.6 and 49.2 and Jan 31, 1230 CV between 45.6 and 47.2) (Fig. 3, 248 

Table A1). The highest variability occurred in the afternoon on both days (Jan 30, 1630 CV between 91.3% and 91.5 249 

and Jan 31, 1430 CV between 83.3% and 83.8% for all quantities) (Fig. 3, Table A2).  At midday, NIRv, FCVI, and 250 

NIRvrad variability was low and means were high, indicating that viewing and sun geometry drive the higher and 251 

lower values during morning and afternoon. This effect is greater in the afternoon than the morning (Fig. 3, Table 252 

A2). However, a different pattern is apparent on Jan. 31 during the 1530 flight time when mean values increased from 253 

the 1430 flight time means and the CV values were the lowest of any flight observations in the study and this influence 254 

appears to be greatest on EVI. It is possible that this was due to another type of effect on illumination geometry, such 255 

as wind influencing the UAS, diffuse radiation effects, or hotspot effects. 256 
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 257 
Fig. 3. NIRv (a), FCVI (b), and NIRvrad (c) density plots for each flight time on January 30, 2019 (column 1each panel) 258 
and January 31 (column 2 each panel). Colours of distributions indicate the flight time and day. 259 

3.3 Power Spectrum Analysis 260 

Power spectrum analysis was used to identify the dominant spatial scales driving variability across the canopy 261 

(Fig. 4).  In Fig. 4, the area beneath the curve is proportional to the variance because it is the spectrum divided by the 262 

corresponding scale and then plotted as a function of the log of the scale (example signals and power spectra provided 263 

Fig. A1).  Similar to their spatial distributions (Fig. 3), NIRvrad and FCVI are indistinguishable in their dominant 264 

scales of spatial variability (Fig. 3) (Dechant et al., 2020; Zeng et al., 2019).  Power spectrum analysis shows a distinct 265 

peak around 50 m spatial scale for NIRv, NIRvrad, FCVI, and EVI, whereas NDVI peaks at approximately 90 m. The 266 

largest tree crown sizes on BCI are on the order of 20-30 m in diameter and the most common crown sizes are between 267 

4-10 m (Fig. A2). Thus, the spatial variability of the vegetation indicators is strongly influenced by larger forest 268 

structures, such as forest gaps and tree clusters, rather than individual tree crowns.  269 

This larger scale of variability is also confirmed by the power spectrum of the lidar-derived canopy surface 270 

model, which displays a peak at 70 m scale, indicating that larger than tree crown scales produce the most variability 271 
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in canopy height.  In other words, UAS-based lidar data also show that canopy heights within a 70 m spatial scale 272 

create strong spatial features on the landscape. Vegetation indicators and the lidar canopy surface model appear less 273 

effective at capturing smaller scale differences within a canopy (leaves or leaf clumps) or among the most frequent 274 

tree crown sizes on BCI (4-10 m sunlit tree crown sizes determined by stereophotos; Fig. A2). However, the peaks in 275 

the vegetation indicators are broader than the peak in the lidar data, showing that smaller features of the canopy are 276 

still contributing to the total spatial signal in the power spectra.  These results suggest that satellite data with a spatial 277 

resolution greater than ~50 m may miss important variation in diverse tropical forest canopies. NDVI displays a 278 

different shape with a slower decay at small scales, indicating less distinguishable spatial structures from the canopy, 279 

and a peak shifted to the larger scales (Fig. 4), i.e. NDVI does not distinguish smaller spatial structures. At much larger 280 

scales (>100-200 m), the vegetation indicators decline smoothly, while NDVI and especially lidar show an increase 281 

in variance probably associated with topographic heterogeneity. 282 

One reason why vegetation indicators and LiDAR captured variability at spatial scales larger than the most 283 

common tree crown sizes on BCI is that canopy heights tend to be more uniform on BCI compared to other tropical 284 

forests, possibly due to wind (Bohlman and O'Brien, 2006). For example, Dipterocarpus dominated South-East Asian 285 

forests have emergent trees, unlike BCI, which can reach up to 60 m in height. Additionally, tree crowns on BCI tend 286 

to be more flat-topped than conical or rounded, and trees can be found clumped in similar heights, which could explain 287 

why the most often detected unit is larger than the mean of a single crown. On the other end of the spectrum, forest 288 

gaps can be larger than a single crown because treefall often affects neighbouring trees.  289 

Vegetation indicators and the Lidar-derived surface model represent the spectral and structural properties most 290 

broadly of the upper canopy, and thus it is conceivable that they display similar spatial variability. However, NIRv, 291 

FCVI, NIRvrad, and EVI discriminated details at a different spatial scale from NDVI and LiDAR. These results 292 

parallel the variability detected in their distributions (Fig. 3 and Table A1), where NDVI patterns were distinct from 293 

the other vegetation indicators. Taken together, these results show that NIRv, FCVI, and NIRvrad have a smoother 294 

spatial pattern and peak at finer scales than NDVI, which is known to saturate at high green biomass (Zhu and Liu, 295 

2015; Huete et al., 2002), whereas the emerging vegetation indicators should better correlate with aspects of 296 

photosynthetic capacity. Thus, these emerging indicators should measure finer resolution spatial heterogeneity and 297 

should be more adept at monitoring changes in structure and function of the canopy than NDVI. Additionally, the 298 

emerging indicators can potentially disaggregate the physiological and structural component of SIF when SIF 299 

measurements are available since changes in structure of the forest coincide with changes in GPP (Wang et al., 2020; 300 

Wu et al., 2020; Yang et al., 2020; Dechant et al., 2020). Emerging indicators’ heightened ability to differentiate the 301 

fine-scale spatial variability in the canopy is likely due to the influence of high upwelling of NIR from the canopy and 302 

understory, particularly in the dry season, which tend to blur the signal of the upper canopy for NDVI. Notably, EVI 303 

and NDVI, two common indicators of vegetation greenness, show differences in their power spectrum, in particular 304 

the slope of the curve for scales less than 20 m. EVI was designed to better capture vegetation changes by exploiting 305 

variability in the reflectance in the blue range, especially effective in dense green canopies. This may help explain the 306 

scale of variability in this canopy where variation in the blue may be expected to manifest, especially because 307 
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deciduous crowns, which have high reflectance in blue wavelengths compared to fully leaved crowns, are present on 308 

BCI. 309 

 310 

 311 

Fig. 4. Ensemble wavelet power spectra for all the quantities used in this study and a LiDAR-derived digital 312 
surface model (DSM). Note that FCVI and NIRv are similar, thus the NIRv curve is obscured by the FCVI. 313 
Ensembles were created by averaging the spectrum of individual transects, then averaging across flights. Note 314 
that in this representation, the spectrum divided by the corresponding scale as a function of the log of the scale, 315 
the area beneath the curve is proportional to the variance. 316 

4 Conclusions 317 
We examined NIRv, FCVI, and NIRvrad, emerging vegetation indicators related to fPAR and the scattering of 318 

SIF photons, of a semi-deciduous tropical forest canopy using UAS-based hyperspectral data. Our findings 319 

demonstrate that NIRvrad has greater potential to track GPP over the course of a day than the non-radiance-based 320 

indices as evidenced by a shared correlation among NIRvrad, PAR, and GPP. Thus NIRvrad is a potential proxy for 321 

tracking GPP on short timescales without the need for separate measurements of incoming irradiance, which SIF 322 

requires. Also, NIRv, FCVI, and NIRvrad at high spatial resolution (~15cm) unveil greater spatial and diurnal 323 

variability of BCI’s tropical forest canopy versus EVI or NDVI, which may pave the way to improve our understanding 324 

of the relationship between GPP and remote sensing observations. The dominant scale driving spatial variability of 325 

spectral measurements and lidar data are larger forest structures occurring on BCI, such as groups of similar trees or 326 

forest gaps. Yet, smaller, broader peaks in the power spectra of NIRv, FCVI, NIRvrad, and EVI indicate these four 327 

indices incorporate smaller scale information compared to NDVI. Taken together, the demonstrated potential to track 328 

GPP, measure spatial heterogeneity and variability, and capture forest structural characteristics of BCI open greater 329 

possibilities to examine structure and function within and across this tropical forest.  330 
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Because remote sensing advancements are making it possible to capture physiological responses of vegetation, 331 

the importance of improved techniques to examine the radiation regime, for instance estimating fPAR or APAR, can 332 

be overlooked. However, recent studies have highlighted the importance and difficulties of measuring fPAR and 333 

APAR, the strong dependence of measurements on illumination and viewing geometry, as well as the need for 334 

increased understanding of structure-related radiation regime information more generally e.g. (Hao et al., 2021; 335 

Dechant et al., 2020; Baldocchi et al., 2020; Rocha et al., 2021; Zhang et al., 2020). For NIRv, FCVI, and NIRvrad, 336 

inclusion of the NIR spectral region makes the emerging indices more sensitive to incoming, absorbed, and scattered 337 

radiation, which can be influenced by illumination and viewing geometry, changes in canopy leaf angles or associated 338 

structure changes. In the case of NIRvrad, which was most strongly associated with GPP, changes in light regime and 339 

associated photosynthetic capacity can even be captured diurnally. This study highlights the importance of 340 

understanding the incoming solar radiation, absorbed and scattered radiation, and illumination and viewing geometry 341 

of any remote sensing data, but it also encourages exploiting RS observations to improve our ability to measure 342 

structure-related light capture and scattering patterns. It is in this role, we show these measurements should be further 343 

investigated as valuable tools to improve our understanding of complex tropical forest canopies and potentially as an 344 

improved estimate of fPAR, APAR, or GPP. While this study focuses on BCI, these techniques could be applied more 345 

broadly for the purposes of defining the dominant scale of spatial variability, tracking structural changes, monitoring 346 

coincident changes in GPP or light regime, or as inputs to vegetation models of tropical forest structure and function. 347 
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5 Appendix 348 

 349 

Figure A1. Sample signals with relatively higher noise (Signal A) and lower noise (Signal B) and their corresponding 350 
Power Spectra ensemble plotted as normalized on log scale. Note the representation of the variance by area under the curve 351 
is preserved by multiplying the Power (S(f)) by the frequency (f). In this way the area beneath the curve is still proportional 352 
to the variance.   353 

 354 
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 355 
Figure A2. Distribution of tree crown sizes on BCI in a sample ~10 ha plot taken from digitized high spatial resolution 356 
stereo photos that were linked to stems in the field (Bohlman and Pacala 2012). This ~10 ha plot does not coincide with the 357 
~10 ha area sampled by the UAS near the eddy covariance tower in this study.  358 

 359 

Table A1. Mean, standard deviation (Sdev) and coefficient of variation (CV) of NIRv, NIRvrad, and FCVI measurements 360 
for the study. 361 

 362 

Flight Time 

Mean 

NIRv 

SDev 

NIRv 

CV 

NIRv 

(%) 
Mean 

NIRvrad 

SDev 

NIRvrad 

CV 

NIRvrad 

(%) 
Mean 

FCVI 

SDev 

FCVI 

CV 

FCVI 

(%) 

Jan30_1000 0.26 0.16 61.36 0.60 0.36 60.54 0.29 0.18 59.69 

Jan30_1100 0.24 0.15 61.48 0.54 0.33 60.56 0.27 0.16 60.89 

Jan30_1200 0.29 0.15 49.20 0.82 0.39 47.59 0.34 0.16 47.88 

Jan30_1330 0.28 0.14 50.46 0.81 0.40 49.24 0.32 0.16 49.16 

Jan30_1430 0.27 0.15 55.46 0.70 0.38 54.38 0.31 0.17 54.22 

Jan30_1530 0.21 0.14 65.10 0.63 0.41 64.71 0.25 0.16 64.01 

Jan30_1630 0.16 0.14 91.54 0.32 0.30 91.54 0.17 0.15 91.39 

Jan31_0900 0.22 0.14 66.31 0.52 0.34 65.25 0.25 0.16 66.01 

Jan31_1000 0.24 0.14 59.43 0.66 0.39 58.29 0.27 0.16 59.04 

Jan31_1230 0.30 0.14 47.17 1.09 0.50 45.63 0.35 0.16 45.91 

Jan31_1330 0.22 0.14 61.91 0.82 0.51 61.47 0.25 0.15 60.53 

Jan31_1430 0.16 0.14 85.32 0.50 0.42 83.81 0.19 0.16 83.83 
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Jan31_1530 0.86 0.08 9.83 0.61 0.12 20.24 0.53 0.04 8.15 

 363 
Table A2. Mean, standard deviation (Sdev) and coefficient of variation (CV) of NDVI and EVI measurements for the study. 364 

 365 

Flight Time 

Mean 

NDVI 

SDev 

NDVI 

CV NDVI 

(%) 

Mean 

EVI SDev EVI 

CV EVI 

(%) 

Jan30_1000 0.86 0.10 11.64 0.57 0.18 31.54 

Jan30_1100 0.88 0.09 10.15 0.57 0.14 24.40 

Jan30_1200 0.85 0.09 10.38 0.52 0.15 28.48 

Jan30_1330 0.85 0.09 10.60 0.59 0.15 25.24 

Jan30_1430 0.85 0.09 10.35 0.61 0.16 26.84 

Jan30_1530 0.85 0.11 12.52 0.54 0.19 35.21 

Jan30_1630 0.93 0.06 6.69 0.49 0.18 36.90 

Jan31_0900 0.87 0.10 11.54 0.51 0.19 37.24 

Jan31_1000 0.87 0.10 11.08 0.55 0.19 34.66 

Jan31_1230 0.85 0.08 9.82 0.66 0.15 22.72 

Jan31_1330 0.85 0.09 10.70 0.55 0.19 33.80 

Jan31_1430 0.85 0.09 10.58 0.42 0.18 43.07 

Jan31_1530 0.86 0.08 9.83 0.61 0.12 20.24 

 366 
 367 
 368 
 369 

 370 
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