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Abstract. Recently, remotely-sensed measurements of the near-infrared reflectance (NIRv) of 18 

vegetation, the fluorescence correction vegetation index (FCVI), and radiance (NIRvrad) of 19 

vegetation, have emerged as indicators of vegetation structure and function with potential to 20 

enhance or improve upon commonly used indicators, such as the normalized difference 21 

vegetation index (NDVI) and the enhanced vegetation index (EVI). The applicability of these 22 

remotely sensed indices to tropical forests, key ecosystems for global carbon cycling and 23 

biodiversity, have been limited. In particular, fine-scale spatial and temporal heterogeneity of 24 

structure and physiology may contribute to variation in these indices and the properties that are 25 

presumed to be tracked by them, such as gross primary productivity (GPP) and absorbed 26 

photosynthetically active radiation (APAR) .  In this study, fine-scale (approx.15cm and greater) 27 

tropical forest heterogeneity represented by NIRv, FCVI, and NIRvrad, and by lidar-derived 28 

height is investigated and compared to NIRV and EVI using unoccupied aerial system (UAS)-29 

based hyperspectral and lidar sensors. By exploiting near-infrared signals, NIRv, FCVI, and 30 

NIRvrad emerging vegetation indicators captured the greatest spatiotemporal variability, 31 

followed by the enhanced vegetation index (EVI), then the normalized difference vegetation 32 

index (NDVI). Wavelet analyses showed the dominant spatial scale of variability of all indicators 33 

wais driven by tree clusters and larger-than-tree-crown size gaps rather than individual tree 34 

crowns. NIRv, FCVI, NIRvradEmerging indices,  and EVI captured variability at smaller spatial 35 

scales (~50 m) than NDVI (~90 m) and lidar-based surface model (~70 m). We show that spatial 36 

and temporal patterns of NIRv and FCVI weare virtually identical for a dense green canopy, 37 

confirming predictions in earlier studies. Furthermore, we show that NIRvrad, which does not 38 

require separate irradiance measurements, correlated more strongly with GPP and PAR than did 39 

other indicators. These NIRv, FCVI, and NIRvrademerging indicators, which are related to 40 

canopy structure and the radiation regime of vegetation canopies, are promising tools to improve 41 

understanding of tropical forest canopy structure and function. 42 
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1 Introduction 43 

Important spatial and temporal heterogeneity in structurally complex and species-rich tropical forests isare not 44 

well characterized. Many factors contributing to this heterogeneity, including varying microclimate, light conditions, 45 

topography, crown structure, and patterns of tree mortality and regeneration, contribute tocan produce high variability 46 

in carbon fluxes, ultimately affecting coarse-scale gross primary production (GPP) measurements in 47 

forestheterogeneity that underlies gross primary production (GPP)s (e.g., Xu et al., 2015; Guan et al., 2015; Morton 48 

et al., 2014; Bohlman and Pacala, 2012; Laurance et al., 2012; Clark et al., 2008; Huete et al., 2008). Improving 49 

knowledge of tropical forest dynamics at multiple scales is crucial to monitoring and predicting resilience of tropical 50 

ecosystems and productivity under climate change (Liu et al., 2021; Clark et al., 2017; Laurance et al., 2012; Malhi, 51 

2012; Wright, 2010; Saatchi et al., 2010; Lewis et al., 2009). Remote sensing (RS) measurements have been employed 52 

to uncover vegetation patterns of structure and productivity from local to global scales, often with a focus on filling 53 

gaps in knowledge regarding variation and uncertainties in GPP estimates (e.g., Jung et al., 2011; Glenn et al., 2008; 54 

Huete et al., 2002; Ryu et al., 2018; Yang et al., 2017; Jiang et al., 2008; Zhao et al., 2010; Heinsch et al.,  2006; 55 

Running et al., 2004; Turner et al., 2003). Yet, the spatial mismatch between satellite data (e.g., 30 m to 1 km pixel 56 

resolution), which provides observations across large extents at repeat intervals, and site-specific plot level data (e.g., 57 

0.1 – 1 hectare), is in part responsible for the uncertainties in GPP estimates Yet, there is a spatial mismatch between 58 

satellite data (e.g., 30 m to 1 km pixel resolution), which provides observations across large extents at repeat intervals, 59 

and site-specific plot level data (e.g., 0.1 – 1 hectare), is in part responsible for the that contributes to uncertainties in 60 

GPP estimates (Gelybó et al., 2013; Zhang et al., 2020). A way to solve this problem is to acquirehere is a lack of high 61 

spatial and temporal resolution data that can capture fine-grained heterogeneity of tropical forests (Clark et al., 2017; 62 

Mitchard, 2018; Saatchi et al., 2011; Lewis et al., 2009). Unoccupied aerial systems (UAS) with hyperspectral imaging 63 

sensors offerpresent an opportunity to collect tropical forest canopy data at high spatial resolution and, which could 64 

address unknowns related to the high heterogeneity of tropical forests.  65 

Traditional reflectance-based indices (RI) using RS data, such as the normalized difference vegetation index 66 

(NDVI) and enhanced vegetation index (EVI), are known to capture structural changes that are coincident with 67 

changes in GPP. RIs have provided optical methods using RS to track GPP via the light use efficiency (LUE) model 68 

(J.L.Monteith, 1977; Yuan et al., 2014; B. E. Medlyn, 1998). In the most commonly used formulation of the LUE 69 

model for RS, GPP is 70 

𝐺𝑃𝑃 =  𝐴𝑃𝐴𝑅 𝑥 𝜀   (1) 

 71 

where APAR is the absorbed photosynthetically active radiation and (𝜀)  is the efficiency with which the target 72 

vegetation converts the radiation to carbon (Gamon, 2015;Yuan et al., 2014; Running et al., 2004). APAR is derived 73 

from  74 

𝐴𝑃𝐴𝑅 =  𝑃𝐴𝑅 𝑥 𝑓𝑃𝐴𝑅  (2) 

where PAR is the incoming photosynthetically active radiation and fPAR is the fraction of absorbed PAR. RIs 75 

commonly used in the LUE model of GPP as well as direct proxies for GPP are NDVI and EVI, because of a strong 76 

relationship to fPAR (Springer et al., 2017; Morton et al., 2015; Gamon et al., 2015; Porcar-Castell et al., 2014; Glenn 77 
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et al., 2008; Gao et al., 2007; Huete et al., 2002; Zarco-Tejada et al., 2013). NDVI and EVI are typically used as 78 

proxies on seasonal timescales. W, or, when used to examine changes on shorter timescales, they have been multiplied 79 

by photosynthetically active radiation (PAR) to account for changes in radiation (incoming, absorbed, and scattered) 80 

which better align with GPP changes (Springer et al., 2017; Yuan et al., 2014).  However, RIs alone have often not 81 

shown enough sensitivity to capture more fine-scale or rapid changes in vegetation, such as those in tropical forests, 82 

and questions linger about the ability to track green-up with RIs in evergreen regions (Liu et al., 2021; Yang et al., 83 

2018a; Lee et al., 2013; Xu et al., 2015; Morton et al., 2014; Samanta et al., 2010; Sims et al., 2008). 84 

Recently, three emerging vegetation indicators have been shown to track with GPP more closely than traditional 85 

RIs. These indicators are the near-infrared reflectance of vegetation (NIRv) (Badgley et al., 2017), the fluorescence 86 

correction vegetation index (FCVI) (Yang et al., 2020) and the near-infrared radiance of vegetation (NIRvrad) (Wu et 87 

al., 2020). Because they exploit additional information from the NIR region of the spectrum, NIRv, FCVI, and 88 

NIRvrad do not saturate in dense canopies or suffer the same level of contamination from senesced vegetation and 89 

soils as traditional RIs (Baldocchi et al., 2020; Badgley et al., 2017).  Additionally, these emerging indicators require 90 

only moderate spectral resolution data and are similarly straightforward to measure and calculate as RIs, making them 91 

accessible in a broad range of studies. . In contrast, SIF measurements require very high spectral resolution and 92 

multiple instruments. Therefore, NIRv, FCVI, and NIRvrad could be employed as valuable indicators of canopy 93 

structure and function (Badgley et al., 2019; Badgley et al., 2017; Dechant et al., 2020) and have practical advantages 94 

over making SIF measurements.  95 

NIRv is  the product of NDVI and the total near-infrared scene reflectance (NIR). NIRv  from moderate 96 

spectral resolution satellite imagery and field spectrometers has been shown to empirically track both measured and 97 

modelled GPP globally, although  with highest uncertainties in the tropics. The NIRv~GPP relationship holds at 98 

monthly to seasonal timescales presumably because due to co-incident changes in canopy phenology,  influence light 99 

capture and scattering, and these changes coincide with changes in GPP (Badgley et al., 2019; Badgley et al., 2017; 100 

Dechant et al., 2020). FCVI, derived from radiative transfer theory rather than an empirical relationship, is calculated 101 

from RS data by subtracting the reflectance in the NIR from the reflectance in the visible range (Yang et al., 2020). 102 

Yang et al. (2020) demonstrated that FCVI tracked GPP and solar-induced fluorescence (SIF; a radiance-based 103 

indicator of GPP), by capturing structure and radiation information from a vegetated canopy, tracked GPPin field 104 

experiments with crops and in numerical experiments. Yet FCVI showed differences from NIRv due to exposed soil 105 

within the vegetated study areas. In previous studies, FCVI and NIRv were similar for dense green canopies where 106 

soils have less of an impact, but this has not yet been tested in the tropics (Wang et al., 2020; Badgley et al., 2019; 107 

Dechant et al., 2020). The product of NDVI and the NIR radiance, called NIRvrad, was proposed as a proxy for GPP 108 

on half-hourly and daily timescales. , Iin contrast,  to NIRv and FCVI  which track changes on longer timescales (Wu 109 

et al., 2020; Dechant et al., 2020; Baldocchi et al., 2020; Zeng et al., 2019). NIRvrad is calculated by multiplying 110 

NDVI by the NIR radiance Because the radiance of NIR accounts for incoming radiation at short timescales, NIRvrad 111 

has tracked GPP and SIF on half-hourly and diurnal scales as well as seasonally in crops and, to a limited extent, 112 

natural grass and savanna ecosystems (Dechant et al., 2020; Baldocchi et al., 2020; Zeng et al., 2019; Wu et al., 2020).  113 
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Readily available UAS-based hyperspectral sensors are capable of robust measurements of NIRv, FCVI, and 114 

NIRvrad at ultra-high spatial scales, i.e. in tens of centimeters or less. In this regard, UAS-based data have the potential 115 

to improve our understanding of tropical forest structure and function over a range of scales that are poorly resolved 116 

by other RS platforms.  Here, we use high spatial resolution UAS measurements to characterize spatial and temporal 117 

variation in a semi-deciduous tropical forest canopy during the dry season, and compare commonly used spectral 118 

indices (NDVI and EVI) to newer vegetation indicators (NIRv, NIRvrad, and FCVI) by (i) examining correlations 119 

between GPP and vegetation indicators using mean values across the canopy throughout the day, (ii) evaluating the 120 

distribution of fine spatial resolution values (~15 cm) across the canopy and examining changes in this spatial variation 121 

throughout the course of two days, and finally (iii) identifying the dominant spatial scale driving variation across our 122 

10 ha study region. 123 

2 Materials and Methods 124 

2.1 Study Area 125 

Barro Colorado Island (BCI), Panama, is a 1560 ha island (approximately 15 km2) in Gatun Lake, which was formed 126 

by the construction of the Panama Canal. The Smithsonian Tropical Research Institute manages the preserved area 127 

specifically for research. This semi-deciduous moist tropical forest receives approximately 2640 mm mean annual 128 

precipitation and has a mean temperature of 26oC with a dry season from approximately January through April (Detto 129 

et al., 2018). There is high species diversity, with approximately 500 tree species, approximately 60 species per ha, 130 

and about 6.3% of trees at >30cm diameter at breast height (dbh) (Bohlman and O'Brien, 2006; Condit et al., 2000). 131 

The UAS and ground measurements were focused on an area approximately 10 ha within the footprint of an eddy 132 

covariance tower near the center of the island (9.156440°, -79.848210°).  133 

2.2 Data collection 134 

The GatorEye Unmanned Flying Laboratory is a hardware and software system built for sensor fusion 135 

applications, and which includes hyperspectral, thermal, and visual cameras and a Lidar sensor, coupled with a 136 

differential GNSS, internal hard drives, computing systems, and an Inertial Motion Unit (IMU). Hardware and 137 

processing details, as well as data downloads, are available at www.gatoreye.org. The GatorEye flew 13 missions on 138 

January 30 and 31, 2019 over the forest canopy within the eddy covariance tower footprint at an average height of 120 139 

m above ground level (AGL) and at 12 m/s (Fig. 1). In this study, we used radiometrically calibrated flight transects 140 

from the Nano VNIR 270 spectral band hyperspectral sensor (Headwall Photonics, Fitchburg, MA, USA) which 141 

covered approximately 1 ha per flight within the EC footprint in this study. The Nano sensor spectrally samples at 142 

approximately 2.2 nm and 12-bit radiometric resolution from 400 to 1050 nm. The frame rate was set to 100 fps, with 143 

an integration time of 12 ms and provided a pixel resolution of approximately 15x15 cm. The Nano was calibrated to 144 

radiance by the manufacturer before the field campaign and pixel drift was removed by dark images collection, which 145 

was corrected for during the conversion from digital number to radiance. The hyperspectral transects were equally 146 

subset for each flight in ENVI + IDL (Harris Geospatial, Boulder, CO). Each flight resulted in 1920 transects of 147 

http://www.gatoreye.org/
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approximately 400 m length composing three blocks discretized in 2500 data points. Simultaneous lidar was collected 148 

using a VLP-32c ultra puck (Velodyne, San Jose, CA), which was processed to a 0.5x0.5 m resolution digital surface 149 

model (DSM). 150 

Turbulent fluxes and meteorological variables were measured from a 40 m Eddy Covariance (EC) flux tower 151 

(Fig. 1). The eddy covariance system includes a sonic anemometer (CSAT3, Campbell Scientific, Logan, UT) and an 152 

open-path infrared CO2/H2O gas analyzer (LI7500, LiCOR. Lincoln, NE). High-frequency (10Hz) measurements 153 

were acquired by a datalogger (CR1000, Campbell Scientific) and stored on a local PC. Other measurements made at 154 

the tower include air temperature and relative humidity (HC2S3, Rotronic, Hauppauge New York), and 155 

photosynthetically active radiation (PAR; BF5, Delta-T Devices, UK).  EC data were processed with a custom program 156 

using a standard routine described in Detto et al. (2010). GPP was derived from daytime values of net ecosystem 157 

exchange (NEE) by adding the corresponding mean daily ecosystem respiration obtained as the intercept of the light 158 

response curve (Lasslop et al., 2010).  Due to a power issue, EC data corresponding to the were not available onduring 159 

the January 30 flights was not collected,; so only January 301 GPP were available.  160 

An HH2 Pro Spectroradiometer (HH2; ASD/Panalytical/Malvern, Boulder, CO) fitted with a diffuse cosine 161 

receptor was used on the ground in full sun at the forest edge to record incoming irradiance on January 30 and 31, 162 

2019 (~ 3nm FWHM and spectral sampling at 1nm). HH2 irradiance was resampled to match the Nano hyperspectral 163 

sensor and used to calculate reflectance. A calibrated reference tarp was placed in full sun at the forest edge and the 164 

UAS flew over and recorded the tarp each UAS flight. Reflectance was calculated separately using the HH2 and tarp 165 

data and resulting reflectance values compared as a method to vicariously cross-calibrate reflectance from the 166 

hyperspectral data (<7.0% difference for all data in the study). In addition, PAR was calculated with the HH2 data and 167 

compared to the tower-mounted PAR measurement (approximately 1.5 km apart) to help understand any differences 168 

in the sky conditions during flight times. PAR differences across the site for each flight time for the duration of flights 169 

(approximately 10-15 minutes in length each) ranged between 4.0% and 10.3%. . 170 

 171 

2.3 Vegetation indicators 172 

We calculated NDVI and EVI as (Tucker, 1979; Huete et al., 2002; Rouse JR et al., 1974): 173 

𝑁𝐷𝑉𝐼 =  
𝑅770−800 − 𝑅630−670

𝑅770−800 + 𝑅630−670

 
 (1) 

and 174 

𝐸𝑉𝐼 =  
2.5(𝑅770−800 − 𝑅630−670)

𝑅770−800 + 6 × 𝑅630−670 − 6 × 𝑅460−475 + 1
 

 (2) 

where R is reflectance and the subscripts indicate wavelengths. Here, we used the averages of 770-800 nm for NIR, 175 

630-670 nm for red reflectance, and 460-475 nm for blue bands reflectance and normalized to reduce noise.  176 

We further calculated the near-infrared vegetation index NIRv as: 177 

𝑁𝐼𝑅𝑣 =  𝑁𝐷𝑉𝐼 ×R770-800 (3) 
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where R770-800 is the NIR reflectance (Badgley et al., 2017). The fluorescence correction vegetation index (FCVI) 178 

was calculated from spectral data by subtracting the reflectance in the visible range (R400-700) from the NIR 179 

reflectance (Yang et al., 2020) as follows 180 

𝐹𝐶𝑉𝐼 = R770-800-R400-700 (4). 

The near-infrared radiance of vegetation (NIRvrad) was calculated similarly to the NIRv, except NDVI was multiplied 181 

by the radiance, rather than reflectance, from the NIR region (Rad770-800) (Wu et al., 2020) as follows: 182 

𝑁𝐼𝑅𝑣𝑟𝑎𝑑 =  𝑁𝐷𝑉𝐼 ×Rad770-800 (5). 

2.4 Data Analysis 183 

A workflow summarizing data analyses is provided in Fig.1. We examined mean values across the canopy 184 

over the course of one day by creating a diurnal time series of scatterplots of the tower-based PAR data, tower-based 185 

GPP data, and means of all spectral vegetation indicators, on Jan 31, 2019, and ran comparisons using Pearson’s 186 

correlation coefficients to examine correlations. Results are provided in Section 3.1 and Fig. 2.. At fine spatial scales, 187 

i.e. pixel sizes level of ~15 cm, we created density plots, calculated the coefficient of variation (CV), and calculated 188 

the means of all vegetation indicators (NDVI, EVI, NIRv, FCVI, NIRvrad) for each flight to compare spatial and 189 

temporal variability. Results are provided in Section 3.2 and Fig. 3. To determine which spatial scales dominate the 190 

variability of each vegetation quantity, we ran power spectrum wavelet analysis using code created in the Matlab 191 

programming language (Mathworks, Natick, Massachusetts). For each vegetation quantity and each flight, and for the 192 

lidar elevation model representing canopy height, we computed the Morlet wavelet power spectrum of individual 193 

transects (Torrence and Compo, 1998). All power spectra from the wavelet analysis were normalized to unit variance. 194 

An ensemble power spectrum for each vegetation indicator was created by averaging across all the transects of each 195 

flight and then across flights. We then compared the power spectra for each vegetation indicator and lidar data to 196 

compare the spatial scales at which the quantities captured variability as well as the spatial scale at which the lidar-197 

based elevation model captured variability. Results are provided in Section 3.3 and Fig. 4. For illustration purposes, 198 

Fig. S3 is an example of two synthetic signals generated with fractal Brownian motion algorithm and different level 199 

of noise-to-signal ratio two signals, a higher and lower noise signal created with fractals (Signal A and B, respectively, 200 

Fig. A1) and the corresponding power spectra which decay differently at smaller spatial scales (Power Spectra, Fig. 201 

A1). Initial UAS data processing was carried out in Interactive Data Language (IDL) and Environment for Visualizing 202 

Images (ENVI) (Harris Geospatial, Boulder, CO). Other analyseis, including graphical illustrations, were carried out 203 

using the R open source environment with libraries dplyr, ggplot, and tidyverse (R Development Core Team, 2010; 204 

Wickham et al., 2018; Wickham, 2017, 2016) and Matlab R2019a (Mathworks, Natick, Massachusetts).  205 

 206 
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 207 

Figure 1. Summary of methods. Diagram representing discrete flight times for UAS and near-continuous EC-estimated 208 
GPP (far left). Platforms and instrumentation (blue) consisted of the Analytical Spectral Devices (ASD) Handheld 209 
Spectroradiometer Pro 2 (HH2), the GatorEye Flying Laboratory, and the tTower at Barro Colorado Island (BCI). Data 210 
collected included iIrradiance, hHyperspectral, Lidar, Eddy Covariance System (EC), and Photosynthetically Active 211 
Radiation (PAR). Calculations made were PAR with the HH2 (PARHH2), the Normalized Difference Vegetation Index 212 
(NDVI), Enhanced Vegetation Index (EVI), Fluorescence Correction Vegetation Index (FCVI), the Near Infrared 213 
Vegetation Index (NIRv), the Near Infrared Radiance of Vegetation (NIRvrad), the Digital Surface Model (DSM), Gross 214 
Primary Productivity (GPP) and PAR from the PAR Sensor on the tTower (PARtower). An overview of the data analysis 215 
at each scale is provided in the right of the diagram.   216 

3 Results and discussion 217 

3.1 Diurnal trend in spectral vegetation indicators, PAR, and GPP 218 

The degree to which remote sensing vegetation indicators represent changes in GPP depend largely on canopy 219 

structure-dependent light absorption and scattering processes, that is, exploiting relationships a joint relationship 220 

between a remote sensing vegetation quantity, PAR or APAR, and GPP. Fig. 2 shows GPP, PAR, and the mean value 221 

of each vegetation quantity at each flight time over the course of January 31, the day on which we had overlapping 222 

data between the UAS and eddy covariance system (Fig. 2a-d). Additionally, Pearson correlation coefficients among 223 

mean NIRv, FCVI, NIRvrad, EVI, and NDVI for each flight time and the GPP and PAR values at the flight times are 224 

shown in Fig. 2d. NIRv is significantly and strongly positively correlated to both FCVI (r=0.9, p<0.001) and EVI 225 

(r=0.9, p<0.01). NIRvrad is the only vegetation quantity with a significant correlation to PAR and GPP, with a strong 226 

positive relationship (0.9 and 0.81, respectively, p-values <0.05; Fig. 2d).  Mean NIRvrad values also have the greatest 227 

relative diurnal change among the vegetation indicators (Fig. 2c and d). These results demonstrate that a shared 228 

correlation of NIRvrad and GPP to PAR results in mean NIRvrad tracking diurnal changes in GPP to a greater degree 229 

than NIRv, FCVI, NDVI or EVI, because NIRvrad takes incoming radiation into account whereas the other vegetation 230 

indicators do not. The ability of NIRvrad to track APAR is notable alone. However, our This evidence  supports the 231 

proposed use of NIRvrad as a proxy for changes in GPP on short timescales – albeit based on only one day of data.  232 

NIRvrad is also a more practicalefficient measurement proxy of GPP than SIF in the sense that a separate instrument 233 

to measure PAR is not needed (Wu et al., 2020; Zeng et al., 2019). GGiven that the relationship between NIRvrad and 234 
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GPP depends on PAR, it is unclear if the association between NIRvrad and GPP would weaken during the wet season 235 

when low light or diffuse light conditions are more common (Berry and Goldsmith, 2020).  236 

 237 

Fig. 2. Diurnal time series smoothed with a LOESS filter of a) GPP b) PAR c) NIRvrad d) NIRv, FCVI, NDVI, and EVI e) 238 
comparisons of quantities using Pearson correlations color indicates strength of relationship, * = p-value<0.05, ** = p-value 239 
<0.01, *** = p-value <0.001. 240 

3.2 Tropical forest canopy variation 241 

Spatial distributions and the coefficient of variation (CV) of all pixels of NIRv, FCVI, and NIRvrad are 242 

generally similar to one another and show considerable variation spatially across the canopy and temporally over the 243 

course of a day and across days (Fig. 3a-c, Table A2). NIRv, FCVI, and NIRvrad distributions are distinct from EVI 244 

and NDVI (Fig. 3a-e, Table A2, and Table A2). NIRv, FCVI, and NIRvrad have the highest CV at each flight time 245 

(between 39.78% and 91.54%, Table A1), followed by EVI (between 20.24% and 37.24%, Table A2) and NDVI 246 

varied the least at any flight time (between 9.83% and 12.82%, Table A2). For some indices, mean values across the 247 

canopy fail to capture extreme high (NIRv, NIRvrad, and FCVI) or low values (NDVI) during morning and afternoon 248 

hours. This pattern suggests “hot” and “cool” spots of activity related to heterogeneity in forest structure and low sun 249 

angles. In previous studies, the directional effects on NIRv have been examined on coarse spatial scales (i.e. satellites) 250 

and have been proposed as a means of improving understanding of  NIRv agreement to GPP  (Hao et al., 2021; Dechant 251 

et al., 2020; Baldocchi et al., 2020; Zhang et al., 2020). Our results demonstrate that NIRv, FCVI, and NIRvrad capture 252 

fine-grained heterogeneity of this tropical forest canopy, which was obscured by EVI and NDVI (Fig. 3a-e). NIRv 253 
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and NIRvrad use NDVI, thus, by definition, NIR is the largest contributing factor to the heterogeneity captured (Fig. 254 

3a, c, and e). While NIRv and NIRvrad distributions are generally similar, they diverge in the afternoons when PAR 255 

declines, which likely is why NIRvrad is better correlated with GPP. EVI variability was higher than NDVI variability, 256 

but lower than that of NIRv, FCVI, and NIRvrad, indicating that EVI has a different level of sensitivity to viewing 257 

geometry and canopy components (potentially understory), light absorption and scattering regime of the canopy than 258 

the other indices (Table A1and Table A2). We also show empirically that NIRv and FCVI are virtually the same in a 259 

dense tropical forest presumably due to both indices similarly representing the radiation regime of the tropical forest 260 

canopy, i.e. light capture and scattering, in conditions with little background soil, supporting the predictions of earlier 261 

studies (Dechant et al., 2020; Zeng et al., 2019; Yang et al., 2018b; Wu et al., 2020).  262 

Midday distributions of NIRv, FCVI, and NIRvrad on Jan. 30 at 12:00 and 1330 and Jan. 31 at 12:30 are less 263 

skewed than at other times of the day whereas morning and afternoon distributions are skewed toward lower values, 264 

except for Jan. 31 at 15:30 (Fig. 3a-c).  On both days, when mean values peak at midday, the variation for all vegetation 265 

indicators is lowest (Jan 30, 1200 CV between 47.6 and 49.2 and Jan 31, 1230 CV between 45.6 and 47.2) (Fig. 3, 266 

Table A1). The highest variability occurred in the afternoon on both days (Jan 30, 1630 CV between 91.3% and 91.5 267 

and Jan 31, 1430 CV between 83.3% and 83.8% for all quantities) (Fig. 3, Table A2).  At midday, NIRv, FCVI, and 268 

NIRvrad variability was low and means were high, indicating that viewing and sun geometry drive the higher and 269 

lower values during morning and afternoon. This effect is greater in the afternoon than the morning (Fig. 3, Table 270 

A2). However, a different pattern is apparent on Jan. 31 during the 1530 flight time when mean values increased from 271 

the 1430 flight time means and the CV values were the lowest of any flight observations in the study and this influence 272 

appears to be greatest on EVI. It is possible that this was due to another type of effect on illumination geometry, such 273 

as wind influencing the UAS, diffuse radiation effects, or hotspot effects. 274 
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 275 

Fig. 3. NIRv (a), FCVI (b), and NIRvrad (c) density plots for each flight time on January 30, 2019 (column 1each panel) 276 
and January 31 , 2019(column 2 each panel). Colours of distributions indicate the flight time and day. 277 

3.3 Power Spectrum Analysis 278 

Power spectrum analysis was used to identify the dominant spatial scales driving variability across the canopy 279 

(Fig. 4).  In Fig. 4, the area beneath the curve is proportional to the variance because it is the spectrum divided by the 280 

corresponding scale and then plotted as a function of the log of the scale (example signals and power spectra provided 281 

Fig. A1).  Similar to their spatial distributions (Fig. 3), NIRvrad and FCVI are indistinguishable in their dominant 282 

scales of spatial variability (Fig. 3) (Dechant et al., 2020; Zeng et al., 2019).  Power spectrum analysis shows a distinct 283 

peak around 50 m spatial scale for NIRv, NIRvrad, FCVI, and EVI, whereas NDVI peaks at approximately 90 m. The 284 

largest tree crown sizes on BCI are on the order of 20-30 m in diameter and the most common crown sizes are between 285 

4-10 m (Fig. A2). Thus, the spatial variability of the vegetation indicators is strongly influenced by larger forest 286 

structures, such as forest gaps and tree clusters, rather than individual tree crowns.  287 

This larger scale of variability is also confirmed by the power spectrum of the lidar-derived canopy surface 288 

model, which displays a peak at 70 m scale, indicating that larger than tree crown scales produce the most variability 289 

in canopy height.  In other words, UAS-based lidar data also show that canopy heights within a 70 m spatial scale 290 

create strong spatial features on the landscape. Vegetation indicators and the lidar canopy surface model appear less 291 

effective at capturing smaller scale differences within a canopy (leaves or leaf clumps) or among the most frequent 292 

tree crown sizes on BCI (4-10 m sunlit tree crown sizes determined by stereophotos; Fig. A2). However, the peaks in 293 

the vegetation indicators are broader than the peak in the lidar data, showing that smaller features of the canopy are 294 

still contributing to the total spatial signal in the power spectra.  These results suggest that satellite data with a spatial 295 

resolution greater than ~50 m may miss important variation in diverse tropical forest canopies. NDVI displays a 296 
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different shape with a slower decay at small scales, indicating less distinguishable spatial structures from the canopy, 297 

and a peak shifted to the larger scales (Fig. 4), i.e. NDVI does not distinguish smaller spatial structures. At much larger 298 

scales (>100-200 m), the vegetation indicators decline smoothly, while NDVI and especially lidar show an increase 299 

in variance probably associated with topographic heterogeneity. 300 

One reason why vegetation indicators and LiDAR captured variability at spatial scales larger than the most 301 

common tree crown sizes on BCI is that canopy heights tend to be more uniform on BCI compared to other tropical 302 

forests, possibly due to wind (Bohlman and O'Brien, 2006). For example, Dipterocarpus dominated South-East Asian 303 

forests have emergent trees, unlike BCI, which can reach up to 60 m in height. Additionally, tree crowns on BCI tend 304 

to be more flat-topped than conical or rounded, and trees can be found clumped in similar heights, which could explain 305 

why the most often detected unit is larger than the mean of a single crown. On the other end of the spectrum, forest 306 

gaps can be larger than a single crown because treefall often affects neighbouring trees.  307 

Vegetation indicators and the Lidar-derived surface model represent the spectral and structural properties most 308 

broadly of the upper canopy, and thus it is conceivable that they display similar spatial variability. However, NIRv, 309 

FCVI, NIRvrad, and EVI discriminated details at a different spatial scale from NDVI and LiDAR. These results 310 

parallel the variability detected in their distributions (Fig. 3 and Table A1), where NDVI patterns were distinct from 311 

the other vegetation indicators. Taken together, these results show that NIRv, FCVI, and NIRvrad have a smoother 312 

spatial pattern and peak at finer scales than NDVI, which is known to saturate at high green biomass (Zhu and Liu, 313 

2015; Huete et al., 2002), whereas the emerging vegetation indicatorsNIRv, FCVI, and NIRvrad should better correlate 314 

with aspects of photosynthetic capacity. Thus, these emerging indicators should measure finer resolution spatial 315 

heterogeneity and should be more adept at monitoring changes in structure and function of the canopy than NDVI. 316 

Additionally, the emerging indicators can potentially disaggregate the physiological and structural component of SIF 317 

when SIF measurements are available since changes in structure of the forest coincide with changes in GPP (Wang et 318 

al., 2020; Wu et al., 2020; Yang et al., 2020; Dechant et al., 2020). Emerging indicators’ heightened ability to 319 

differentiate the fine-scale spatial variability in the canopy is likely due to the influence of high upwelling of NIR 320 

from the canopy and understory, particularly in the dry season, which tend to blur the signal of the upper canopy for 321 

NDVI. Notably, EVI and NDVI, two common indicators of vegetation greenness, show differences in their power 322 

spectrum, in particular the slope of the curve for scales less than 20 m. EVI was designed to better capture vegetation 323 

changes by exploiting variability in the reflectance in the blue range, especially effective in dense green canopies. 324 

This may help explain the scale of variability in this canopy where variation in the blue may be expected to manifest, 325 

especially because deciduous crowns, which have high reflectance in blue wavelengths compared to fully leaved 326 

crowns, are present on BCI (Bohlman, 2008). 327 

 328 
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 329 

Fig. 4. Ensemble wavelet power spectra for all the quantities used in this study and a LiDAR-derived digital 330 

surface model (DSM). Note that FCVI and NIRv are similar, thus the NIRv curve is obscured by the FCVI. 331 

Ensembles were created by averaging the spectrum of individual transects, then averaging across flights. Note 332 

that in this representation, the spectrum divided by the corresponding scale as a function of the log of the scale, 333 

the area beneath the curve is proportional to the variance. 334 

4 Conclusions 335 

We examined NIRv, FCVI, and NIRvrad, emerging vegetation indicators related to fPAR and the scattering of 336 

SIF photons, of a semi-deciduous tropical forest canopy using UAS-based hyperspectral data. Our findings 337 

demonstrate that NIRvrad has greater potential to track GPP over the course of a day than the non-radiance-based 338 

indices as evidenced by a shared correlation among NIRvrad, PAR, and GPP. Thus, NIRvrad is a potential proxy for 339 

tracking GPP on short timescales without the need for separate measurements of incoming irradiance. Also, NIRv, 340 

FCVI, and NIRvrad at high spatial resolution (~15cm) unveil greater spatial and diurnal variability of BCI’s tropical 341 

forest canopy versus EVI or NDVI, which may pave the way to improve our understanding of the relationship between 342 

GPP and remote sensing observations. For instance, by benchmarking changes of vegetation function and structure 343 

that underlie a GPP measurement representing the whole EC footprint, fine scale NIRv, FCVI, or NIRvrad 344 

measurements may reveal highly differential behaviors of tropical species diurnally to seasonally.  The dominant scale 345 

driving spatial variability of spectral measurements and lidar data are larger forest structures occurring on BCI, such 346 

as groups of similar trees or forest gaps. Yet, smaller, broader peaks in the power spectra of NIRv, FCVI, NIRvrad, 347 

and EVI indicate these four indices incorporate smaller scale information compared to NDVI. Taken together, the 348 

demonstrated potential to track GPP, measure spatial heterogeneity and variability, and capture forest structural 349 

characteristics of BCI open greater possibilities to examine structure and function within and across this tropical forest.  350 

Because remote sensing advancements are making it possible to capture physiological responses of vegetation, 351 

the importance of improved techniques to examine the radiation regime, for instance estimating fPAR or APAR, can 352 



13 

 

be overlooked. However, recent studies have highlighted the importance and difficulties of measuring fPAR and 353 

APAR, the strong dependence of measurements on illumination and viewing geometry, as well as the need for 354 

increased understanding of structure-related radiation regime information more generally e.g. (Hao et al., 2021; 355 

Dechant et al., 2020; Baldocchi et al., 2020; Rocha et al., 2021; Zhang et al., 2020) . For NIRv, FCVI, and NIRvrad, 356 

inclusion of the NIR spectral region makes the emerging indices more sensitive to incoming, absorbed, and scattered 357 

radiation, which can be influenced by illumination and viewing geometry, changes in canopy leaf angles or associated 358 

structure changes. In the case of NIRvrad, which was most strongly associated with GPP, changes in light regime and 359 

associated photosynthetic capacity can even be captured diurnally. Furthermore, NIRv, FCVI, and NIRvrad 360 

measurements, especially at high spatial and temporal resolution can help inform our understanding of one another, 361 

traditional reflectance-based indices, and other measurements such as SIF. This study highlights the importance of 362 

understanding the incoming solar radiation, absorbed and scattered radiation, and illumination and viewing geometry 363 

of any remote sensing data, but it also encourages exploiting RS observations to improve our ability to measure 364 

structure-related light capture and scattering patterns. It is in this role, we show these measurements should be further 365 

investigated as valuable tools to improve our understanding of complex tropical forest canopies and potentially as an 366 

improved estimate of fPAR, APAR, or GPP. While this study focuses on BCI, these techniques could be applied more 367 

broadly for the purposes of defining the dominant scale of spatial variability, tracking structural changes, monitoring 368 

coincident changes in GPP or light regime, or as inputs to vegetation models of tropical forest structure and function. 369 
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5 Appendix 370 

 371 

Figure A1. Sample signals with relatively higher noise (Signal A) and lower noise (Signal B) and their corresponding 372 

Power Spectra ensemble plotted as normalized on log scale. Note the representation of the variance by area under the curve 373 
is preserved by multiplying the Power (S(f)) by the frequency (f). In this way the area beneath the curve is still proportional 374 
to the variance.   375 

 376 
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 377 

Figure A2. Distribution of tree crown sizes on BCI in a sample ~10 ha plot taken from digitized high spatial resolution 378 

stereo photos that were linked to stems in the field (Bohlman and Pacala 2012). This ~10 ha plot does not coincide with the 379 
~10 ha area sampled by the UAS near the eddy covariance tower in this study.  380 

 381 

Table A1. Mean, standard deviation (Sdev) and coefficient of variation (CV) of NIRv, NIRvrad, and FCVI measurements 382 
for the study. 383 

 384 

Flight Time 

Mean 

NIRv 

SDev 

NIRv 

CV 

NIRv 

(%) 

Mean 

NIRvrad 

SDev 

NIRvrad 

CV 

NIRvrad 

(%) 

Mean 

FCVI 

SDev 

FCVI 

CV 

FCVI 

(%) 

Jan30_1000 0.26 0.16 61.36 0.60 0.36 60.54 0.29 0.18 59.69 

Jan30_1100 0.24 0.15 61.48 0.54 0.33 60.56 0.27 0.16 60.89 

Jan30_1200 0.29 0.15 49.20 0.82 0.39 47.59 0.34 0.16 47.88 

Jan30_1330 0.28 0.14 50.46 0.81 0.40 49.24 0.32 0.16 49.16 

Jan30_1430 0.27 0.15 55.46 0.70 0.38 54.38 0.31 0.17 54.22 

Jan30_1530 0.21 0.14 65.10 0.63 0.41 64.71 0.25 0.16 64.01 

Jan30_1630 0.16 0.14 91.54 0.32 0.30 91.54 0.17 0.15 91.39 

Jan31_0900 0.22 0.14 66.31 0.52 0.34 65.25 0.25 0.16 66.01 

Jan31_1000 0.24 0.14 59.43 0.66 0.39 58.29 0.27 0.16 59.04 

Jan31_1230 0.30 0.14 47.17 1.09 0.50 45.63 0.35 0.16 45.91 

Jan31_1330 0.22 0.14 61.91 0.82 0.51 61.47 0.25 0.15 60.53 

Jan31_1430 0.16 0.14 85.32 0.50 0.42 83.81 0.19 0.16 83.83 
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Jan31_1530 0.86 0.08 9.83 0.61 0.12 20.24 0.53 0.04 8.15 

 385 

Table A2. Mean, standard deviation (Sdev) and coefficient of variation (CV) of NDVI and EVI measurements for the study. 386 

 387 

Flight Time 

Mean 

NDVI 

SDev 

NDVI 

CV NDVI 

(%) 

Mean 

EVI SDev EVI 

CV EVI 

(%) 

Jan30_1000 0.86 0.10 11.64 0.57 0.18 31.54 

Jan30_1100 0.88 0.09 10.15 0.57 0.14 24.40 

Jan30_1200 0.85 0.09 10.38 0.52 0.15 28.48 

Jan30_1330 0.85 0.09 10.60 0.59 0.15 25.24 

Jan30_1430 0.85 0.09 10.35 0.61 0.16 26.84 

Jan30_1530 0.85 0.11 12.52 0.54 0.19 35.21 

Jan30_1630 0.93 0.06 6.69 0.49 0.18 36.90 

Jan31_0900 0.87 0.10 11.54 0.51 0.19 37.24 

Jan31_1000 0.87 0.10 11.08 0.55 0.19 34.66 

Jan31_1230 0.85 0.08 9.82 0.66 0.15 22.72 

Jan31_1330 0.85 0.09 10.70 0.55 0.19 33.80 

Jan31_1430 0.85 0.09 10.58 0.42 0.18 43.07 

Jan31_1530 0.86 0.08 9.83 0.61 0.12 20.24 

 388 

 389 

 390 
 391 
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