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Abstract. Recently, remotely-sensed measurements of the near-infrared reflectance (NIRv) of 18 

vegetation, the fluorescence correction vegetation index (FCVI), and radiance (NIRvrad) of 19 

vegetation, have emerged as indicators of vegetation structure and function with potential to 20 

enhance or improve upon commonly used indicators, such as the normalized difference 21 

vegetation index (NDVI) and the enhanced vegetation index (EVI). The applicability of these 22 

remotely sensed indices to tropical forests, key ecosystems for global carbon cycling and 23 

biodiversity, have been limited. In particular, fine-scale spatial and temporal heterogeneity of 24 

structure and physiology may contribute to variation in these indices and the properties that are 25 

presumed to be tracked by them, such as gross primary productivity (GPP) and absorbed 26 

photosynthetically active radiation (APAR).  In this study, fine-scale (approx.15cm) tropical 27 

forest heterogeneity represented by NIRv, FCVI, and NIRvrad, and by lidar-derived height is 28 

investigated and compared to NIRV and EVI using unoccupied aerial system (UAS)-based 29 

hyperspectral and lidar sensors. By exploiting near-infrared signals, NIRv, FCVI, and NIRvrad 30 

captured the greatest spatiotemporal variability, followed by the enhanced vegetation index 31 

(EVI), then the normalized difference vegetation index (NDVI). Wavelet analyses showed the 32 

dominant spatial scale of variability of all indicators was driven by tree clusters and larger-than-33 

tree-crown size gaps rather than individual tree crowns. NIRv, FCVI, NIRvrad, and EVI 34 

captured variability at smaller spatial scales (~50 m) than NDVI (~90 m) and lidar-based surface 35 

model (~70 m). We show that spatial and temporal patterns of NIRv and FCVI were virtually 36 

identical for a dense green canopy, confirming predictions in earlier studies. Furthermore, we 37 

show that NIRvrad, which does not require separate irradiance measurements, correlated more 38 

strongly with GPP and PAR than did other indicators. NIRv, FCVI, and NIRvrad, which are 39 

related to canopy structure and the radiation regime of vegetation canopies, are promising tools 40 

to improve understanding of tropical forest canopy structure and function. 41 
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1 Introduction 42 

Important spatial and temporal heterogeneity in structurally complex and species-rich tropical forests is not well 43 

characterized. Many factors contributing to this heterogeneity, including varying microclimate, light conditions, 44 

topography, crown structure, and patterns of tree mortality and regeneration, can produce high variability in carbon 45 

fluxes, ultimately affecting coarse-scale gross primary production (GPP) measurements in forests (e.g., Xu et al., 2015; 46 

Guan et al., 2015; Morton et al., 2014; Bohlman and Pacala, 2012; Laurance et al., 2012; Clark et al., 2008; Huete et 47 

al., 2008). Improving knowledge of tropical forest dynamics at multiple scales is crucial to monitoring and predicting 48 

resilience of tropical ecosystems and productivity under climate change (Liu et al., 2021; Clark et al., 2017; Laurance 49 

et al., 2012; Malhi, 2012; Wright, 2010; Saatchi et al., 2010; Lewis et al., 2009). Remote sensing (RS) measurements 50 

have been employed to uncover vegetation patterns of structure and productivity from local to global scales, often 51 

with a focus on filling gaps in knowledge regarding variation and uncertainties in GPP estimates (e.g., Jung et al., 52 

2011; Glenn et al., 2008; Huete et al., 2002; Ryu et al., 2018; Yang et al., 2017; Jiang et al., 2008; Zhao et al., 2010; 53 

Heinsch et al., 2006; Running et al., 2004; Turner et al., 2003). Yet, the spatial mismatch between satellite data (e.g., 54 

30 m to 1 km pixel resolution), which provides observations across large extents at repeat intervals, and site-specific 55 

plot level data (e.g., 0.1 – 1 hectare), is in part responsible for the uncertainties in GPP estimates Yet, there is a spatial 56 

mismatch between satellite data (e.g., 30 m to 1 km pixel resolution), which provides observations across large extents 57 

at repeat intervals, and plot level data , is in part responsible for the uncertainties in GPP estimates (Gelybó et al., 58 

2013; Zhang et al., 2020). A way to solve this problem is to acquire high spatial and temporal resolution data that can 59 

capture fine-grained heterogeneity of tropical forests (Clark et al., 2017; Mitchard, 2018; Saatchi et al., 2011; Lewis 60 

et al., 2009). Unoccupied aerial systems (UAS) with hyperspectral imaging sensors offer an opportunity to collect 61 

tropical forest canopy data at high spatial resolution and which could address unknowns related to the high 62 

heterogeneity of tropical forests.  63 

Traditional reflectance-based indices (RI) using RS data, such as the normalized difference vegetation index 64 

(NDVI) and enhanced vegetation index (EVI), are known to capture structural changes that are coincident with 65 

changes in GPP. RIs have provided optical methods using RS to track GPP via the light use efficiency (LUE) model 66 

(J.L.Monteith, 1977; Yuan et al., 2014; B. E. Medlyn, 1998). In the most commonly used formulation of the LUE 67 

model for RS, GPP is 68 

𝐺𝑃𝑃 =  𝐴𝑃𝐴𝑅 𝑥 𝜀   (1) 

 69 

where APAR is the absorbed photosynthetically active radiation and (𝜀)  is the efficiency with which the target 70 

vegetation converts the radiation to carbon (Gamon, 2015; Yuan et al., 2014; Running et al., 2004). APAR is derived 71 

from  72 

𝐴𝑃𝐴𝑅 =  𝑃𝐴𝑅 𝑥 𝑓𝑃𝐴𝑅  (2) 

where PAR is the incoming photosynthetically active radiation and fPAR is the fraction of absorbed PAR. RIs 73 

commonly used in the LUE model of GPP as well as direct proxies for GPP are NDVI and EVI, because of a strong 74 

relationship to fPAR (Springer et al., 2017; Morton et al., 2015; Gamon et al., 2015; Porcar-Castell et al., 2014; Glenn 75 

et al., 2008; Gao et al., 2007; Huete et al., 2002; Zarco-Tejada et al., 2013). NDVI and EVI are typically used as 76 
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proxies on seasonal timescales. When used to examine changes on shorter timescales, they have been multiplied by 77 

photosynthetically active radiation (PAR) to account for changes in radiation (incoming, absorbed, and scattered) 78 

which better align with GPP changes (Springer et al., 2017; Yuan et al., 2014).  However, RIs alone have often not 79 

shown enough sensitivity to capture more fine-scale or rapid changes in vegetation, such as those in tropical forests, 80 

and questions linger about the ability to track green-up with RIs in evergreen regions (Liu et al., 2021; Yang et al., 81 

2018a; Lee et al., 2013; Xu et al., 2015; Morton et al., 2014; Samanta et al., 2010; Sims et al., 2008). 82 

Recently, three emerging vegetation indicators have been shown to track with GPP more closely than traditional 83 

RIs. These indicators are the near-infrared reflectance of vegetation (NIRv) (Badgley et al., 2017), the fluorescence 84 

correction vegetation index (FCVI) (Yang et al., 2020) and the near-infrared radiance of vegetation (NIRvrad) (Wu et 85 

al., 2020). Because they exploit additional information from the NIR region of the spectrum, NIRv, FCVI, and 86 

NIRvrad do not saturate in dense canopies or suffer the same level of contamination from senesced vegetation and 87 

soils as traditional RIs (Baldocchi et al., 2020; Badgley et al., 2017).  Additionally, these indicators require only 88 

moderate spectral resolution data and are similarly straightforward to measure and calculate as RIs, making them 89 

accessible in a broad range of studies. Therefore, NIRv, FCVI, and NIRvrad could be employed as valuable indicators 90 

of canopy structure and function (Badgley et al., 2019; Badgley et al., 2017; Dechant et al., 2020).  91 

NIRv is the product of NDVI and the total near-infrared scene reflectance (NIR). NIRv from moderate 92 

spectral resolution satellite imagery and field spectrometers has been shown to empirically track both measured and 93 

modelled GPP globally, although with highest uncertainties in the tropics. The NIRv~GPP relationship holds at 94 

monthly to seasonal timescales presumably due to co-incident changes in canopy phenology, light capture and 95 

scattering, and GPP (Badgley et al., 2019; Badgley et al., 2017; Dechant et al., 2020). FCVI, derived from radiative 96 

transfer theory rather than an empirical relationship, is calculated from RS data by subtracting the reflectance in the 97 

NIR from the reflectance in the visible range (Yang et al., 2020). Yang et al. (2020) demonstrated that FCVI tracked 98 

GPP and solar-induced fluorescence (SIF; a radiance-based indicator of GPP), by capturing structure and radiation 99 

information from a vegetated canopy in field experiments with crops and in numerical experiments. Yet FCVI showed 100 

differences from NIRv due to exposed soil within the vegetated study areas. In previous studies, FCVI and NIRv were 101 

similar for dense green canopies where soils have less of an impact, but this has not yet been tested in the tropics 102 

(Wang et al., 2020; Badgley et al., 2019; Dechant et al., 2020). The product of NDVI and the NIR radiance, called 103 

NIRvrad, was proposed as a proxy for GPP on half-hourly and daily timescales. In contrast, NIRv and FCVI track 104 

changes on longer timescales (Wu et al., 2020; Dechant et al., 2020; Baldocchi et al., 2020; Zeng et al., 2019). Because 105 

the radiance of NIR accounts for incoming radiation at short timescales, NIRvrad has tracked GPP and SIF on half-106 

hourly and diurnal scales as well as seasonally in crops and, to a limited extent, natural grass and savanna ecosystems 107 

(Dechant et al., 2020; Baldocchi et al., 2020; Zeng et al., 2019; Wu et al., 2020).  108 

Readily available UAS-based hyperspectral sensors are capable of robust measurements of NIRv, FCVI, and 109 

NIRvrad at ultra-high spatial scales, i.e. tens of centimeters or less. In this regard, UAS-based data have the potential 110 

to improve our understanding of tropical forest structure and function over a range of scales that are poorly resolved 111 

by other RS platforms.  Here, we use high spatial resolution UAS measurements to characterize spatial and temporal 112 

variation in a semi-deciduous tropical forest canopy during the dry season, and compare commonly used spectral 113 
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indices (NDVI and EVI) to newer vegetation indicators (NIRv, NIRvrad, and FCVI) by (i) examining correlations 114 

between GPP and vegetation indicators using mean values across the canopy throughout the day, (ii) evaluating the 115 

distribution of fine spatial resolution values (~15 cm) across the canopy and examining changes in this spatial variation 116 

throughout the course of two days, and finally (iii) identifying the dominant spatial scale driving variation across our 117 

10 ha study region. 118 

2 Materials and Methods 119 

2.1 Study Area 120 

Barro Colorado Island (BCI), Panama, is a 1560 ha island (approximately 15 km2) in Gatun Lake, which was formed 121 

by the construction of the Panama Canal. The Smithsonian Tropical Research Institute manages the preserved area 122 

specifically for research. This semi-deciduous moist tropical forest receives approximately 2640 mm mean annual 123 

precipitation and has a mean temperature of 26oC with a dry season from approximately January through April (Detto 124 

et al., 2018). There is high species diversity, with approximately 500 tree species, approximately 60 species per ha, 125 

and about 6.3% of trees at >30cm diameter at breast height (dbh) (Bohlman and O'Brien, 2006; Condit et al., 2000). 126 

The UAS and ground measurements were focused on an area approximately 10 ha within the footprint of an eddy 127 

covariance tower near the center of the island (9.156440°, -79.848210°).  128 

2.2 Data collection 129 

The GatorEye Unmanned Flying Laboratory is a hardware and software system built for sensor fusion 130 

applications, and which includes hyperspectral, thermal, and visual cameras and a Lidar sensor, coupled with a 131 

differential GNSS, internal hard drives, computing systems, and an Inertial Motion Unit (IMU). Hardware and 132 

processing details, as well as data downloads, are available at www.gatoreye.org. The GatorEye flew 13 missions on 133 

January 30 and 31, 2019 over the forest canopy within the eddy covariance tower footprint at an average height of 120 134 

m above ground level (AGL) and at 12 m/s (Fig. 1). In this study, we used radiometrically calibrated flight transects 135 

from the Nano VNIR 270 spectral band hyperspectral sensor (Headwall Photonics, Fitchburg, MA, USA) which 136 

covered approximately 1 ha per flight within the EC footprint in this study. The Nano sensor spectrally samples at 137 

approximately 2.2 nm and 12-bit radiometric resolution from 400 to 1050 nm. The frame rate was set to 100 fps, with 138 

an integration time of 12 ms and provided a pixel resolution of approximately 15x15 cm. The Nano was calibrated to 139 

radiance by the manufacturer before the field campaign and pixel drift was removed by dark images collection, which 140 

was corrected for during the conversion from digital number to radiance. The hyperspectral transects were equally 141 

subset for each flight in ENVI + IDL (Harris Geospatial, Boulder, CO). Each flight resulted in 1920 transects of 142 

approximately 400 m length composing three blocks discretized in 2500 data points. Simultaneous lidar was collected 143 

using a VLP-32c ultra puck (Velodyne, San Jose, CA), which was processed to a 0.5x0.5 m resolution digital surface 144 

model (DSM). 145 

Turbulent fluxes and meteorological variables were measured from a 40 m Eddy Covariance (EC) flux tower 146 

(Fig. 1). The eddy covariance system includes a sonic anemometer (CSAT3, Campbell Scientific, Logan, UT) and an 147 

http://www.gatoreye.org/
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open-path infrared CO2/H2O gas analyzer (LI7500, LiCOR. Lincoln, NE). High-frequency (10Hz) measurements 148 

were acquired by a datalogger (CR1000, Campbell Scientific) and stored on a local PC. Other measurements made at 149 

the tower include air temperature and relative humidity (HC2S3, Rotronic, Hauppauge New York), and 150 

photosynthetically active radiation (PAR; BF5, Delta-T Devices, UK).  EC data were processed with a custom program 151 

using a standard routine described in Detto et al. (2010). GPP was derived from daytime values of net ecosystem 152 

exchange (NEE) by adding the corresponding mean daily ecosystem respiration obtained as the intercept of the light 153 

response curve (Lasslop et al., 2010).  Due to a power issue, EC data were not available during the January 30 flights; 154 

so only January 31 GPP were available.  155 

An HH2 Pro Spectroradiometer (HH2; ASD/Panalytical/Malvern, Boulder, CO) fitted with a diffuse cosine 156 

receptor was used on the ground in full sun at the forest edge to record incoming irradiance on January 30 and 31, 157 

2019 (~ 3nm FWHM and spectral sampling at 1nm). HH2 irradiance was resampled to match the Nano hyperspectral 158 

sensor and used to calculate reflectance. A calibrated reference tarp was placed in full sun at the forest edge and the 159 

UAS flew over and recorded the tarp each UAS flight. Reflectance was calculated separately using the HH2 and tarp 160 

data and resulting reflectance values compared as a method to vicariously cross-calibrate reflectance from the 161 

hyperspectral data (<7.0% difference for all data in the study). In addition, PAR was calculated with the HH2 data and 162 

compared to the tower-mounted PAR measurement (approximately 1.5 km apart) to help understand any differences 163 

in the sky conditions during flight times. PAR differences across the site for each flight time for the duration of flights 164 

(approximately 10-15 minutes in length each) ranged between 4.0% and 10.3%.  165 

 166 

2.3 Vegetation indicators 167 

We calculated NDVI and EVI as (Tucker, 1979; Huete et al., 2002; Rouse JR et al., 1974): 168 

𝑁𝐷𝑉𝐼 =  
𝑅770−800 − 𝑅630−670

𝑅770−800 + 𝑅630−670

 
 (1) 

and 169 

𝐸𝑉𝐼 =  
2.5(𝑅770−800 − 𝑅630−670)

𝑅770−800 + 6 × 𝑅630−670 − 6 × 𝑅460−475 + 1
 

 (2) 

where R is reflectance and the subscripts indicate wavelengths. Here, we used the averages of 770-800 nm for NIR, 170 

630-670 nm for red reflectance, and 460-475 nm for blue bands reflectance and normalized to reduce noise.  171 

We further calculated the near-infrared vegetation index NIRv as: 172 

𝑁𝐼𝑅𝑣 =  𝑁𝐷𝑉𝐼 ×R770-800 (3) 

where R770-800 is the NIR reflectance (Badgley et al., 2017). The fluorescence correction vegetation index (FCVI) 173 

was calculated from spectral data by subtracting the reflectance in the visible range (R400-700) from the NIR 174 

reflectance (Yang et al., 2020) as follows 175 

𝐹𝐶𝑉𝐼 = R770-800-R400-700 (4). 

The near-infrared radiance of vegetation (NIRvrad) was calculated similarly to the NIRv, except NDVI was multiplied 176 

by the radiance, rather than reflectance, from the NIR region (Rad770-800) (Wu et al., 2020) as follows: 177 



6 

 

𝑁𝐼𝑅𝑣𝑟𝑎𝑑 =  𝑁𝐷𝑉𝐼 ×Rad770-800 (5). 

2.4 Data Analysis 178 

A workflow summarizing data analyses is provided in Fig.1. We examined mean values across the canopy 179 

over the course of one day by creating a diurnal time series of scatterplots of the tower-based PAR data, tower-based 180 

GPP data, and means of all spectral vegetation indicators, on Jan 31, 2019, and ran comparisons using Pearson’s 181 

correlation coefficients to examine correlations. Results are provided in Section 3.1 and Fig. 2. At fine spatial scales, 182 

i.e. pixel sizes of ~15 cm, we created density plots, calculated the coefficient of variation (CV), and calculated the 183 

means of all vegetation indicators (NDVI, EVI, NIRv, FCVI, NIRvrad) for each flight to compare spatial and temporal 184 

variability. Results are provided in Section 3.2 and Fig. 3. To determine which spatial scales dominate the variability 185 

of each vegetation quantity, we ran power spectrum wavelet analysis using code created in the Matlab programming 186 

language (Mathworks, Natick, Massachusetts). For each vegetation quantity and each flight, and for the lidar elevation 187 

model representing canopy height, we computed the Morlet wavelet power spectrum of individual transects (Torrence 188 

and Compo, 1998). All power spectra from the wavelet analysis were normalized to unit variance. An ensemble power 189 

spectrum for each vegetation indicator was created by averaging across all the transects of each flight and then across 190 

flights. We then compared the power spectra for each vegetation indicator and lidar data to compare the spatial scales 191 

at which the quantities captured variability as well as the spatial scale at which the lidar-based elevation model 192 

captured variability. Results are provided in Section 3.3 and Fig. 4. For illustration purposes, Fig. S3 is an example of 193 

two synthetic signals generated with fractal Brownian motion algorithm and different level of noise-to-signal ratio 194 

(Signal A and B, respectively, Fig. A1) and the corresponding power spectra which decay differently at smaller spatial 195 

scales (Power Spectra, Fig. A1). Initial UAS data processing was carried out in Interactive Data Language (IDL) and 196 

Environment for Visualizing Images (ENVI) (Harris Geospatial, Boulder, CO). Other analyses, including graphical 197 

illustrations, were carried out using the R open source environment with libraries dplyr, ggplot, and tidyverse (R 198 

Development Core Team, 2010; Wickham et al., 2018; Wickham, 2017, 2016) and Matlab R2019a (Mathworks, 199 

Natick, Massachusetts).  200 

 201 
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 202 

Figure 1. Summary of methods. Diagram representing discrete flight times for UAS and near-continuous EC-estimated 203 
GPP (far left). Platforms and instrumentation (blue) consisted of the Analytical Spectral Devices (ASD) Handheld 204 
Spectroradiometer Pro 2 (HH2), the GatorEye Flying Laboratory, and the tower at Barro Colorado Island (BCI). Data 205 
collected included irradiance, hyperspectral, Lidar, Eddy Covariance System (EC), and Photosynthetically Active 206 
Radiation (PAR). Calculations made were PAR with the HH2 (PARHH2), the Normalized Difference Vegetation Index 207 
(NDVI), Enhanced Vegetation Index (EVI), Fluorescence Correction Vegetation Index (FCVI), the Near Infrared 208 
Vegetation Index (NIRv), the Near Infrared Radiance of Vegetation (NIRvrad), the Digital Surface Model (DSM), Gross 209 
Primary Productivity (GPP) and PAR from the PAR Sensor on the tower (PARtower). An overview of the data analysis at 210 
each scale is provided in the right of the diagram.   211 

3 Results and discussion 212 

3.1 Diurnal trend in spectral vegetation indicators, PAR, and GPP 213 

The degree to which remote sensing vegetation indicators represent changes in GPP depend largely on canopy 214 

structure-dependent light absorption and scattering processes, that is, exploiting relationships between a remote 215 

sensing vegetation quantity, PAR or APAR, and GPP. Fig. 2 shows GPP, PAR, and the mean value of each vegetation 216 

quantity at each flight time over the course of January 31, the day on which we had overlapping data between the UAS 217 

and eddy covariance system (Fig. 2a-d). Additionally, Pearson correlation coefficients among mean NIRv, FCVI, 218 

NIRvrad, EVI, and NDVI for each flight time and the GPP and PAR values at the flight times are shown in Fig. 2d. 219 

NIRv is significantly and strongly positively correlated to both FCVI (r=0.9, p<0.001) and EVI (r=0.9, p<0.01). 220 

NIRvrad is the only vegetation quantity with a significant correlation to PAR and GPP, with a strong positive 221 

relationship (0.9 and 0.81, respectively, p-values <0.05; Fig. 2d).  Mean NIRvrad values also have the greatest relative 222 

diurnal change among the vegetation indicators (Fig. 2c and d). These results demonstrate that a shared correlation of 223 

NIRvrad and GPP to PAR results in mean NIRvrad tracking diurnal changes in GPP to a greater degree than NIRv, 224 

FCVI, NDVI or EVI, because NIRvrad takes incoming radiation into account whereas the other vegetation indicators 225 

do not. The ability of NIRvrad to track APAR is notable alone. However, our evidence supports the proposed use of 226 

NIRvrad as a proxy for changes in GPP on short timescales – albeit based on only one day of data. NIRvrad is a more 227 

practical proxy of GPP than SIF in the sense that a separate instrument to measure PAR is not needed (Wu et al., 2020; 228 

Zeng et al., 2019). Given that the relationship between NIRvrad and GPP depends on PAR, it is unclear if the 229 
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association between NIRvrad and GPP would weaken during the wet season when low light or diffuse light conditions 230 

are more common (Berry and Goldsmith, 2020).  231 

 232 

Fig. 2. Diurnal time series smoothed with a LOESS filter of a) GPP b) PAR c) NIRvrad d) NIRv, FCVI, NDVI, and EVI e) 233 
comparisons of quantities using Pearson correlations color indicates strength of relationship, * = p-value<0.05, ** = p-value 234 
<0.01, *** = p-value <0.001. 235 

3.2 Tropical forest canopy variation 236 

Spatial distributions and the coefficient of variation (CV) of all pixels of NIRv, FCVI, and NIRvrad are 237 

generally similar to one another and show considerable variation spatially across the canopy and temporally over the 238 

course of a day and across days (Fig. 3a-c, Table A2). NIRv, FCVI, and NIRvrad distributions are distinct from EVI 239 

and NDVI (Fig. 3a-e, Table A2, and Table A2). NIRv, FCVI, and NIRvrad have the highest CV at each flight time 240 

(between 39.78% and 91.54%, Table A1), followed by EVI (between 20.24% and 37.24%, Table A2) and NDVI 241 

varied the least at any flight time (between 9.83% and 12.82%, Table A2). For some indices, mean values across the 242 

canopy fail to capture extreme high (NIRv, NIRvrad, and FCVI) or low values (NDVI) during morning and afternoon 243 

hours. This pattern suggests “hot” and “cool” spots of activity related to heterogeneity in forest structure and low sun 244 

angles. In previous studies, the directional effects on NIRv have been examined on coarse spatial scales (i.e. satellites) 245 

and have been proposed as a means of improving understanding of  NIRv agreement to GPP  (Hao et al., 2021; Dechant 246 

et al., 2020; Baldocchi et al., 2020; Zhang et al., 2020). Our results demonstrate that NIRv, FCVI, and NIRvrad capture 247 

fine-grained heterogeneity of this tropical forest canopy, which was obscured by EVI and NDVI (Fig. 3a-e). NIRv 248 
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and NIRvrad use NDVI, thus, by definition, NIR is the largest contributing factor to the heterogeneity captured (Fig. 249 

3a, c, and e). While NIRv and NIRvrad distributions are generally similar, they diverge in the afternoons when PAR 250 

declines, which likely is why NIRvrad is better correlated with GPP. EVI variability was higher than NDVI variability, 251 

but lower than that of NIRv, FCVI, and NIRvrad, indicating that EVI has a different level of sensitivity to viewing 252 

geometry and canopy components (potentially understory), light absorption and scattering regime of the canopy than 253 

the other indices (Table A1and Table A2). We also show empirically that NIRv and FCVI are virtually the same in a 254 

dense tropical forest presumably due to both indices similarly representing the radiation regime of the tropical forest 255 

canopy, i.e. light capture and scattering, in conditions with little background soil, supporting the predictions of earlier 256 

studies (Dechant et al., 2020; Zeng et al., 2019; Yang et al., 2018b; Wu et al., 2020).  257 

Midday distributions of NIRv, FCVI, and NIRvrad on Jan. 30 at 1200 and 1330 and Jan. 31 at 1230 are less 258 

skewed than at other times of the day whereas morning and afternoon distributions are skewed toward lower values, 259 

except for Jan. 31 at 1530 (Fig. 3a-c).  On both days, when mean values peak at midday, the variation for all vegetation 260 

indicators is lowest (Jan 30, 1200 CV between 47.6 and 49.2 and Jan 31, 1230 CV between 45.6 and 47.2) (Fig. 3, 261 

Table A1). The highest variability occurred in the afternoon on both days (Jan 30, 1630 CV between 91.3% and 91.5 262 

and Jan 31, 1430 CV between 83.3% and 83.8% for all quantities) (Fig. 3, Table A2).  At midday, NIRv, FCVI, and 263 

NIRvrad variability was low and means were high, indicating that viewing and sun geometry drive the higher and 264 

lower values during morning and afternoon. This effect is greater in the afternoon than the morning (Fig. 3, Table 265 

A2). However, a different pattern is apparent on Jan. 31 during the 1530 flight time when mean values increased from 266 

the 1430 flight time means and the CV values were the lowest of any flight observations in the study and this influence 267 

appears to be greatest on EVI. It is possible that this was due to another type of effect on illumination geometry, such 268 

as wind influencing the UAS, diffuse radiation effects, or hotspot effects. 269 
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 270 

Fig. 3. NIRv (a), FCVI (b), and NIRvrad (c) density plots for each flight time on January 30 and January 31, 2019. Colours 271 
of distributions indicate day. 272 

3.3 Power Spectrum Analysis 273 

Power spectrum analysis was used to identify the dominant spatial scales driving variability across the canopy 274 

(Fig. 4).  In Fig. 4, the area beneath the curve is proportional to the variance because it is the spectrum divided by the 275 

corresponding scale and then plotted as a function of the log of the scale (example signals and power spectra provided 276 

Fig. A1).  Similar to their spatial distributions (Fig. 3), NIRvrad and FCVI are indistinguishable in their dominant 277 

scales of spatial variability (Fig. 3) (Dechant et al., 2020; Zeng et al., 2019).  Power spectrum analysis shows a distinct 278 

peak around 50 m spatial scale for NIRv, NIRvrad, FCVI, and EVI, whereas NDVI peaks at approximately 90 m. The 279 

largest tree crown sizes on BCI are on the order of 20-30 m in diameter and the most common crown sizes are between 280 

4-10 m (Fig. A2). Thus, the spatial variability of the vegetation indicators is strongly influenced by larger forest 281 

structures, such as forest gaps and tree clusters, rather than individual tree crowns.  282 

This larger scale of variability is also confirmed by the power spectrum of the lidar-derived canopy surface 283 

model, which displays a peak at 70 m scale, indicating that larger than tree crown scales produce the most variability 284 

in canopy height.  In other words, UAS-based lidar data also show that canopy heights within a 70 m spatial scale 285 

create strong spatial features on the landscape. Vegetation indicators and the lidar canopy surface model appear less 286 

effective at capturing smaller scale differences within a canopy (leaves or leaf clumps) or among the most frequent 287 

tree crown sizes on BCI (4-10 m sunlit tree crown sizes determined by stereophotos; Fig. A2). However, the peaks in 288 

the vegetation indicators are broader than the peak in the lidar data, showing that smaller features of the canopy are 289 

still contributing to the total spatial signal in the power spectra.  These results suggest that satellite data with a spatial 290 

resolution greater than ~50 m may miss important variation in diverse tropical forest canopies. NDVI displays a 291 
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different shape with a slower decay at small scales, indicating less distinguishable spatial structures from the canopy, 292 

and a peak shifted to the larger scales (Fig. 4), i.e. NDVI does not distinguish smaller spatial structures. At much larger 293 

scales (>100-200 m), the vegetation indicators decline smoothly, while NDVI and especially lidar show an increase 294 

in variance probably associated with topographic heterogeneity. 295 

One reason why vegetation indicators and LiDAR captured variability at spatial scales larger than the most 296 

common tree crown sizes on BCI is that canopy heights tend to be more uniform on BCI compared to other tropical 297 

forests, possibly due to wind (Bohlman and O'Brien, 2006). For example, Dipterocarpus dominated South-East Asian 298 

forests have emergent trees, unlike BCI, which can reach up to 60 m in height. Additionally, tree crowns on BCI tend 299 

to be more flat-topped than conical or rounded, and trees can be found clumped in similar heights, which could explain 300 

why the most often detected unit is larger than the mean of a single crown. On the other end of the spectrum, forest 301 

gaps can be larger than a single crown because treefall often affects neighbouring trees.  302 

Vegetation indicators and the Lidar-derived surface model represent the spectral and structural properties most 303 

broadly of the upper canopy, and thus it is conceivable that they display similar spatial variability. However, NIRv, 304 

FCVI, NIRvrad, and EVI discriminated details at a different spatial scale from NDVI and LiDAR. These results 305 

parallel the variability detected in their distributions (Fig. 3 and Table A1), where NDVI patterns were distinct from 306 

the other vegetation indicators. Taken together, these results show that NIRv, FCVI, and NIRvrad have a smoother 307 

spatial pattern and peak at finer scales than NDVI, which is known to saturate at high green biomass (Zhu and Liu, 308 

2015; Huete et al., 2002), whereas NIRv, FCVI, and NIRvrad should better correlate with aspects of photosynthetic 309 

capacity. Thus, these emerging indicators should measure finer resolution spatial heterogeneity and should be more 310 

adept at monitoring changes in structure and function of the canopy than NDVI. Additionally, the emerging indicators 311 

can potentially disaggregate the physiological and structural component of SIF when SIF measurements are available 312 

since changes in structure of the forest coincide with changes in GPP (Wang et al., 2020; Wu et al., 2020; Yang et al., 313 

2020; Dechant et al., 2020). Emerging indicators’ heightened ability to differentiate the fine-scale spatial variability 314 

in the canopy is likely due to the influence of high upwelling of NIR from the canopy and understory, particularly in 315 

the dry season, which tend to blur the signal of the upper canopy for NDVI. Notably, EVI and NDVI, two common 316 

indicators of vegetation greenness, show differences in their power spectrum, in particular the slope of the curve for 317 

scales less than 20 m. EVI was designed to better capture vegetation changes by exploiting variability in the reflectance 318 

in the blue range, especially effective in dense green canopies. This may help explain the scale of variability in this 319 

canopy where variation in the blue may be expected to manifest, especially because deciduous crowns, which have 320 

high reflectance in blue wavelengths compared to fully leaved crowns, are present on BCI (Bohlman, 2008). 321 

 322 
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 323 

Fig. 4. Ensemble wavelet power spectra for all the quantities used in this study and a LiDAR-derived digital 324 

surface model (DSM). Note that FCVI and NIRv are similar, thus the NIRv curve is obscured by the FCVI. 325 

Ensembles were created by averaging the spectrum of individual transects, then averaging across flights. Note 326 

that in this representation, the spectrum divided by the corresponding scale as a function of the log of the scale, 327 

the area beneath the curve is proportional to the variance. 328 

4 Conclusions 329 

We examined NIRv, FCVI, and NIRvrad, emerging vegetation indicators related to fPAR of a semi-deciduous 330 

tropical forest canopy using UAS-based hyperspectral data. Our findings demonstrate that NIRvrad has greater 331 

potential to track GPP over the course of a day than the non-radiance-based indices as evidenced by a shared 332 

correlation among NIRvrad, PAR, and GPP. Thus, NIRvrad is a potential proxy for tracking GPP on short timescales 333 

without the need for separate measurements of incoming irradiance. Also, NIRv, FCVI, and NIRvrad at high spatial 334 

resolution (~15cm) unveil greater spatial and diurnal variability of BCI’s tropical forest canopy versus EVI or NDVI, 335 

which may pave the way to improve our understanding of the relationship between GPP and remote sensing 336 

observations. For instance, by benchmarking changes of vegetation function and structure that underlie a GPP 337 

measurement representing the whole EC footprint, fine scale NIRv, FCVI, or NIRvrad measurements may reveal 338 

highly differential behaviors of tropical species diurnally to seasonally. The dominant scale driving spatial variability 339 

of spectral measurements and lidar data are larger forest structures occurring on BCI, such as groups of similar trees 340 

or forest gaps. Yet, smaller, broader peaks in the power spectra of NIRv, FCVI, NIRvrad, and EVI indicate these four 341 

indices incorporate smaller scale information compared to NDVI. Taken together, the demonstrated potential to track 342 

GPP, measure spatial heterogeneity and variability, and capture forest structural characteristics of BCI open greater 343 

possibilities to examine structure and function within and across this tropical forest.  344 

Because remote sensing advancements are making it possible to capture physiological responses of vegetation, 345 

the importance of improved techniques to examine the radiation regime, for instance estimating fPAR or APAR, can 346 
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be overlooked. However, recent studies have highlighted the importance and difficulties of measuring fPAR and 347 

APAR, the strong dependence of measurements on illumination and viewing geometry, as well as the need for 348 

increased understanding of structure-related radiation regime information more generally e.g. (Hao et al., 2021; 349 

Dechant et al., 2020; Baldocchi et al., 2020; Rocha et al., 2021; Zhang et al., 2020). For NIRv, FCVI, and NIRvrad, 350 

inclusion of the NIR spectral region makes the emerging indices more sensitive to incoming, absorbed, and scattered 351 

radiation, which can be influenced by illumination and viewing geometry, changes in canopy leaf angles or associated 352 

structure changes. In the case of NIRvrad, which was most strongly associated with GPP, changes in light regime and 353 

associated photosynthetic capacity can even be captured diurnally. Furthermore, NIRv, FCVI, and NIRvrad 354 

measurements, especially at high spatial and temporal resolution can help inform our understanding of one another, 355 

traditional reflectance-based indices, and other measurements such as SIF. This study highlights the importance of 356 

understanding the incoming solar radiation, absorbed and scattered radiation, and illumination and viewing geometry 357 

of any remote sensing data, but it also encourages exploiting RS observations to improve our ability to measure 358 

structure-related light capture and scattering patterns. It is in this role, we show these measurements should be further 359 

investigated as valuable tools to improve our understanding of complex tropical forest canopies and potentially as an 360 

improved estimate of fPAR, APAR, or GPP. While this study focuses on BCI, these techniques could be applied more 361 

broadly for the purposes of defining the dominant scale of spatial variability, tracking structural changes, monitoring 362 

coincident changes in GPP or light regime, or as inputs to vegetation models of tropical forest structure and function. 363 
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5 Appendix A 364 

 365 

Figure A1. Sample signals with relatively higher noise (Signal A) and lower noise (Signal B) and their corresponding Power 366 
Spectra ensemble plotted as normalized on log scale. Note the representation of the variance by area under the curve is 367 
preserved by multiplying the Power (S(f)) by the frequency (f). In this way the area beneath the curve is still proportional 368 
to the variance.   369 

 370 
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 371 

Figure A2. Distribution of tree crown sizes on BCI in a sample ~10 ha plot taken from digitized high spatial resolution 372 
stereo photos that were linked to stems in the field (Bohlman and Pacala 2012). This ~10 ha plot does not coincide with the 373 
~10 ha area sampled by the UAS near the eddy covariance tower in this study.  374 

 375 

Table A1. Mean, standard deviation (Sdev) and coefficient of variation (CV) of NIRv, NIRvrad, and FCVI measurements 376 
for the study. 377 

Flight Time Mean 

NIRv 

SDev 

NIRv 

CV 

NIRv 

(%) 

Mean 

NIRvrad 

SDev 

NIRvrad 

CV 

NIRvrad 

(%) 

Mean 

FCVI 

SDev 

FCVI 

CV 

FCVI 

(%) 

Jan30_1000 0.26 0.16 61.36 0.60 0.36 60.54 0.29 0.18 59.69 

Jan30_1100 0.24 0.15 61.48 0.54 0.33 60.56 0.27 0.16 60.89 

Jan30_1200 0.29 0.15 49.20 0.82 0.39 47.59 0.34 0.16 47.88 

Jan30_1330 0.28 0.14 50.46 0.81 0.40 49.24 0.32 0.16 49.16 

Jan30_1430 0.27 0.15 55.46 0.70 0.38 54.38 0.31 0.17 54.22 

Jan30_1530 0.21 0.14 65.10 0.63 0.41 64.71 0.25 0.16 64.01 

Jan30_1630 0.16 0.14 91.54 0.32 0.30 91.54 0.17 0.15 91.39 

Jan31_0900 0.22 0.14 66.31 0.52 0.34 65.25 0.25 0.16 66.01 

Jan31_1000 0.24 0.14 59.43 0.66 0.39 58.29 0.27 0.16 59.04 

Jan31_1230 0.30 0.14 47.17 1.09 0.50 45.63 0.35 0.16 45.91 

Jan31_1330 0.22 0.14 61.91 0.82 0.51 61.47 0.25 0.15 60.53 

Jan31_1430 0.16 0.14 85.32 0.50 0.42 83.81 0.19 0.16 83.83 

Jan31_1530 0.86 0.08 9.83 0.61 0.12 20.24 0.53 0.04 8.15 
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 378 

Table A2. Mean, standard deviation (Sdev) and coefficient of variation (CV) of NDVI and EVI measurements for the study. 379 

 380 

Flight Time 

Mean 

NDVI 

SDev 

NDVI 

CV NDVI 

(%) 

Mean 

EVI SDev EVI 

CV EVI 

(%) 

Jan30_1000 0.86 0.10 11.64 0.57 0.18 31.54 

Jan30_1100 0.88 0.09 10.15 0.57 0.14 24.40 

Jan30_1200 0.85 0.09 10.38 0.52 0.15 28.48 

Jan30_1330 0.85 0.09 10.60 0.59 0.15 25.24 

Jan30_1430 0.85 0.09 10.35 0.61 0.16 26.84 

Jan30_1530 0.85 0.11 12.52 0.54 0.19 35.21 

Jan30_1630 0.93 0.06 6.69 0.49 0.18 36.90 

Jan31_0900 0.87 0.10 11.54 0.51 0.19 37.24 

Jan31_1000 0.87 0.10 11.08 0.55 0.19 34.66 

Jan31_1230 0.85 0.08 9.82 0.66 0.15 22.72 

Jan31_1330 0.85 0.09 10.70 0.55 0.19 33.80 

Jan31_1430 0.85 0.09 10.58 0.42 0.18 43.07 

Jan31_1530 0.86 0.08 9.83 0.61 0.12 20.24 

 381 

 382 

 383 
 384 
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