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Abstract. Bioactive trace metals are critical micronutrients for marine microorganisms due to their role in mediating biological 15 

redox reactions, and complex biogeochemical processes control their distributions. Hydrothermal vents may represent an 

important source of metals to microorganisms, especially those inhabiting low iron waters, such as in the southwest Pacific 

Ocean. Previous measurements of primordial 3He indicate a significant hydrothermal source originating in the Northeast (NE) 

Lau Basin, with the plume advecting into the southwest Pacific Ocean at 1,500-2,000 m depth (Lupton et al., 2004). Studies 

investigating the long range transport of trace metals associated with such dispersing plumes are rare, and the biogeochemical 20 

impacts on local microbial physiology have not yet been described. Here we quantified dissolved metals and assessed microbial 

metaproteomes across a transect spanning the tropical and equatorial Pacific with a focus on the hydrothermally active NE 

Lau Basin, and report elevated iron and manganese concentrations across 441 km of the southwest Pacific. The most intense 

signal was detected near the Mangatolu Triple Junction (MTJ) and Northeast Lau Spreading Center (NELSC), in close 

proximity to the previously reported 3He signature. Protein content in distal plume-influenced seawater, which was high in 25 

metals, was overall similar to background locations, though key prokaryotic proteins involved in metal and organic uptake, 

protein degradation and chemoautotrophy were abundant compared to deep waters outside of the distal plume. Our results 

demonstrate that trace metals derived from the NE Lau Basin are transported over appreciable distances into the southwest 

Pacific Ocean, and that bioactive chemical resources released from submarine vent systems are utilized by surrounding deep 

sea microbes, influencing both their physiology and their contributions to ocean biogeochemical cycling.  30 

1 Introduction 

The central Pacific Ocean encompasses several biogeochemical regimes, including low nitrate surface waters in the subtropical 

gyres, and high-nitrate, yet low-iron waters in the equatorial upwelling zone (Cohen et al., 2021; Moore et al., 2013, 2001; 

Saito et al., 2014). Towards the south Pacific Ocean, little dust input from continental sources combined with low 
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macronutrient concentrations results in low primary productivity and reduced biological carbon export to the deep ocean 35 

(Jickells et al., 2005). In this region, active hydrothermal venting may be an important source of trace metals, such as iron, to 

surrounding microorganisms.  

Hydrothermal venting can arise wherever seawater percolating down into the seafloor intercepts strong geothermal gradients, 

for example as imposed by magmatic activity in the upper ocean crust.  Such systems can be associated with mid-ocean ridge 

spreading centers, intra-plate volcanoes, convergent margins, subduction zones, island arc volcanoes and back-arc spreading 40 

centers (Beaulieu et al., 2013; German and Seyfried, 2013). High temperature fluids released from vents serve as sources of 

dissolved elements by enriching seawater in metals derived from the underlying crust. The chemicals most concentrated in 

vent fluids include iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), methane and sulfides. They reach mM to µM 

concentrations compared to the pM to nM range typical of background seawater, and are used as energy sources for 

chemosynthetic microbial communities that sustain rich food webs (Bruland and Lohan, 2003; Tivey, 2007). A substantial 45 

portion of these hydrothermally-released trace metals rapidly precipitate as mineral sulfides and oxides through abiotic and 

biological oxidation (Gartman and Findlay, 2020). The hydrothermal fluid mixes with cool, oxidizing seawater and rises to 

form buoyant plumes above vent sources. Once the buoyant plumes reach neutral density in the water column, they are spread 

laterally by prevailing deep sea currents, transporting chemical resources and microbial communities into the deep ocean 

interior in non-buoyant plumes (Dick et al., 2013; Reed et al., 2015). Trace metal concentrations within these plumes generally 50 

decrease with distance from the hydrothermal source as a result of dilution and removal processes that include both abiotic 

precipitation and microbial uptake (Cowen et al., 1990; Gartman and Findlay, 2020).  

However, recent observations demonstrate that detectable levels of metals such as Fe can be transported substantial distances 

from vent sources, with both dissolved and particulate hydrothermally-sourced Fe traveling up to thousands of km, tracking 

with primordial 3He released from the mantle during hydrothermal venting (Fitzsimmons et al., 2014, 2017; Resing et al., 55 

2015; Saito et al., 2013). The Fe isotopic composition of central Pacific seawater furthermore indicates that such distal transport 

of hydrothermal Fe has likely persisted over the Cenozoic (Horner et al., 2015).  Non-buoyant plume Fe is thought to be 

stabilized in the dissolved state as inorganic metal oxides, organic/inorganic colloids, and through organic ligand complexation 

(Bennett et al., 2008; Fitzsimmons et al., 2014, 2017; Gartman and Findlay, 2020; Hawkes et al., 2013). The next largest 3He 

signal in the Pacific Ocean after the southern East Pacific Rise is associated with the Lo’ihi Seamount system, which similarly 60 

produces a strong distal Fe plume (Jenkins et al., 2020). It remains to be determined whether trace metals are similarly advected 

from the Northeast Lau (NE) Basin, where the third largest hydrothermal 3He signal in the Pacific Ocean has been measured, 

extending 2,000 km to the northwest and representing the most intense hydrothermal signature in this ocean basin at ~1,700 

m depth (German et al., 2006; Lupton et al., 2004).  

The Northeast (NE) Lau Basin is a dynamic back-arc spreading region surrounded by plate boundaries in the tropical southwest 65 

Pacific that contains an abundance of hydrothermal vent fields (Baker et al., 2019; Beaulieu et al., 2013; Martinez et al., 2006). 



3 

 

The basin is topographically restricted by the Lau and Tonga Ridges, which converge to the South (Speer and Thurnherr, 

2012). Consequently, deep hydrothermal plumes can only escape the Lau Basin from the North, exiting into the southwest 

Pacific (German et al., 2006; Speer and Thurnherr, 2012). The contributions of the prominent hydrothermal plume located off 

the Tonga Ridge (15°S and 173.1°W) to metal biogeochemistry and microbial physiology has yet to be investigated. In addition 70 

to its unique geophysical properties, the NE Lau Basin contains mineral deposits of commercial interest. The hydrothermal 

sulfides from this region contain the highest gold contents on record (Herzig et al., 1993), and plans are ongoing to mine cobalt 

and nickel-rich ferromanganese nodules from the seafloor to meet increasing economic demands (Lusty and Murton, 2018).  

Recent studies suggest that in addition to distal hydrothermal plumes introducing a flux of chemically reduced elements and 

compounds to the ocean interior, these systems may impact metal availability to surface phytoplankton. The oligotrophic south 75 

Pacific has extraordinarily low levels of continentally derived Fe and low macronutrient concentrations, resulting in nitrate 

and Fe limitation of phytoplankton growth (Jickells et al. 2005, Sunda et al. 2012, Behrenfeld et al., 2006). Hydrothermally-

sourced, distally-transported Fe from the southern Eastern Pacific Rise and Loʻihi distal plume systems may eventually upwell 

to fertilize surface phytoplankton communities in the Southern Ocean and the subpolar North Pacific, respectively (Jenkins et 

al., 2020; Resing et al., 2015). Distally-transported Fe from the NE Lau Basin is therefore not only critical to consider in the 80 

aphotic ocean; it could contribute euphotic zone primary production depending on water mass circulation and upwelling 

dynamics (Jenkins et al., 2020; Tagliabue et al., 2010).  

Trace metal transformations in hydrothermal plumes are heavily driven by biological communities (Gartman and Findlay, 

2020; Toner et al., 2009, 2016). Prior microbiological and meta-‘omic studies have offered insights into plume microbial 

community dynamics, with many studies focusing on near-field ecosystems (Huber et al., 2007; Jeanthon, 2000; Li et al., 2014; 85 

Reveillaud et al., 2016; Sylvan et al., 2012; Takai et al., 2008), and fewer, more recent explorations into distal plumes 

(Djurhuus et al., 2017; Haalboom et al., 2020; Li et al., 2020). Microbial communities in plumes may be sourced from seafloor 

vent sites themselves, or seeded from background seawater (Dick et al., 2013; Reed et al., 2015; Sheik et al., 2015). They 

include members of the Gammaproteobacteria, Thaumarchaea, and Deltaproteobacteria (Anantharaman et al., 2016; Dick et 

al., 2013), with these groups decreasing with distance from the vent source (Haalboom et al., 2020). Chemosynthetic bacteria 90 

in hydrothermal plumes carry out sulfur, methane, ammonia, hydrogen and Mn oxidation, sharing functional characteristics 

with microbes from other reducing habitats (Anantharaman et al., 2016; Dick et al., 2013). The less frequently studied 

hydrothermal microeukaryote populations include archaeplastids, ciliates, dinoflagellates, rhizaria, stramenopiles, and fungi, 

which have been identified based on partial metagenome-assembled genomes and amplicon sequencing (Anantharaman et al., 

2016; Hu et al., 2021), and play an important role in plume organic carbon cycling via grazing (Bennett et al., 2013; Hu et al., 95 

2021). Microbial community dynamics, ecology and biogeochemical contributions are comparatively less studied in distal 
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hydrothermal plumes due to their more recent characterization and fewer interdisciplinary expeditions where both the 

geochemistry and microbial ecology of ecosystems are considered.  

The 2011 Metzyme expedition embarked across the central Pacific Ocean with the goal of connecting trace element 

distributions with protein metabolism, and a suite of biological and physiochemical parameters were collected along vertical 100 

and lateral ocean gradients (Cohen et al., 2021; Hawco et al., 2020; Munson et al., 2015; Saito et al., 2014, 2015, 2020; Santoro 

et al., 2017). The trace metal profiles across this section of the Pacific Ocean, and the sources and sinks driving their 

distributions, have not yet been described. In this study, we present the full-depth dissolved trace metal section to address 

whether hydrothermal activity previously measured in the northeastern edge of the Lau Basin is associated with trace metal 

input, and leverage the Metzyme protein dataset to determine whether surrounding microbes were sensitive to distal 105 

hydrothermal plume geochemistry. Our results indicate several hydrothermal features based on dissolved Fe and Mn profile 

anomalies, with relatively abundant proteins related to protein folding, protease activity and metal transport in the vicinity of 

a hydrothermal plume. We posit these hydrothermal sources are a significant contributor to metal biogeochemistry and 

microbial physiology in the tropical southwest Pacific Ocean.  

2 Methods 110 

2.1 Oceanographic sampling section and biomass collection 

Seawater sampling occurred during October 1-25 2011 onboard the R/V Kilo Moana during the Metzyme expedition (Saito et 

al., 2014). The meridional transect (17°N-15°S) began off the Hawaiian Islands and terminated in the Tonga-Fiji region 

(173.1°W) of the NE Lau Basin (Fig. 1). Biomass collection for metaproteomics were performed using battery-operated 

underwater McLane pumps (McLane Research Laboratories) outfitted with custom filter head units secured onto a trace metal 115 

clean winch line. Each McLane pump head had three filter fractions for targeting specific size classes of the microbial 

community. For this analysis, we considered the 3–51 µm fraction containing eukaryotic protists and particle-associated and/or 

adsorbed bacteria, archaea and viruses. Pumps filtered between ~100-1,000 L, and once retrieved onboard were promptly 

sectioned for ’omic analyses (16S/18S rRNA, proteins) and frozen at -80°C (Table S1). Meta-’omics was performed across 

spatial and vertical gradients of the transect (Cohen et al., 2021). 120 

2.2 Trace metal analyses 

Seawater samples for trace metal analyses were collected using a trace metal clean rosette consisting of 12 ~8L X-Niskins on 

a trace metal clean Amsteel winch line (Saito et al., 2014). Two sets of 12 niskin bottles were used for full stations to allow 

simultaneous casting and processing. Following seawater collection, X-Niskins were brought into a fabricated shipboard class-

100 clean room and pressurized with filtered high purity nitrogen gas. Seawater was filtered through 47mm 0.2 µm 125 

polyethersulfone (Pall Supor) membranes to remove the particulate fraction, which was saved for the particulate metal analysis. 

The filters were not rinsed with Milli-Q water prior to freezing. HEPA filters were used to minimize particle contamination 
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and trace metal clean approaches were used during filtration and sample handling procedures. Prior to sample collection, 

polyethylene bottles were cleaned by soaking for 2 weeks in 10% HCl (Baker Analyzed ACS Reagent) and by rinsing with 

pH 2 HCl. Seawater was acidified to pH 1.8 using hydrochloric acid (Optima grade, Fisher Chemical), and samples were stored 130 

for 8 years before this dissolved trace metal analysis was conducted.  

Seawater preconcentration was performed using an automated solid phase extraction system, seaFAST pico, run in offline 

concentration mode (Bown et al., 2017; Jackson et al., 2018; Rapp et al., 2017; Wilson et al., 2019; Wuttig et al., 2019). The 

seaFAST contains a Nobias-chelate PA1 resin column (ethylenediaminetriacete and iminodiacetate) suitable for the 

simultaneous preconcentration of several trace metals (Fe, Mn, Zn, Cu, Cd, Ni) with high sensitivity and quantitative recovery 135 

(Biller and Bruland, 2012; Sohrin et al., 2008). Reagents consisted of a 4M ammonium acetate pH 6.0 buffer (Elemental 

Scientific), a 1% nitric acid rinse solution (Optima grade, Fisher Chemical), 10% nitric acid elution acid (Optima grade, Fisher 

Chemical), and a second “internal standard” 10% nitric elution acid solution containing 10 ppb indium (115In; SPEX CertiPrep). 

Solutions were prepared with 18.2 Ω Milli-Q water (Millipore). Polypropylene conical tubes used in the auto sampler were 

HCl acid-soaked for one week and pH 2-rinsed prior to use. Acidified samples were preconcentrated using an initial volume 140 

of 30-33 mL and elution volume of 500 µL. The volume range is due to early samples being run with four 10-mL loop load 

cycles (exactly 40 mL seawater as the initial volume). The seaFAST vacuum overflows the load loop, which resulted in only 

~3 mL remaining during the last 10 mL cycle, and a resulting concentration factor of approximately 66X. All subsequent 

samples were run with 3 full 10 mL load cycles for a 60X concentration factor. Process blanks consisted of MilliQ HCl-

acidified to pH 2 (Optima grade, Fisher Chemical), and were run alongside samples to account for background reagent and 145 

sample handling contamination.  

Following offline seaFAST preconcentration, the multi-element quantitative analysis was performed using an iCAP Q 

inductively coupled plasma-mass spectrometer (ICP-MS; Thermo Scientific) with a quartz cyclonic spray chamber (Thermo 

Scientific). Oxide interference on metal isotopes was minimized through the use of a cooled spray chamber and helium 

collision gas. Analytes were measured in single quadruple mode (kinetic energy discrimination [KED]). Concentrations of Fe, 150 

Mn, Zn, Cu, and Cd were determined using a six-point external standard curve with a multi-element standard (SPEX 

CertiPrep), diluted to range from 1-10 ppb in 5% nitric acid and prepared using volumetric flasks. Indium (In) standards (SPEX 

CertiPrep) were similarly added to these standard stocks, diluted to 1, 2, 3, 4 and 10 ppb. Instrument injection blanks consisted 

of 5% nitric acid in Milli-Q. Standard curve R2 values were ≥0.98 for the elements monitored.  

Using this resin-based preconcentration method, recoveries have been demonstrated to be >98% (Biller and Bruland 2012). In 155 

this analysis, matrix corrections were calculated using the known amount of In added to elution acid (10ppb) and In counts per 

second (cps) values measured in each eluted sample, which averaged 83 ± 9%. Since In was added in the elution acid, and not 

to the sample prior to preconcentration, this is considered a matrix correction and not recovery efficiency. Dissolved metal 

concentrations (dTM [nM]) were calculated for each metal following Eq. (1): 
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𝑑𝑇𝑀 =  
MSample

InSample
−

MProcess

InProcess 
×

InElution

MSlope
×

VEluted

VOriginal
 ,       (1) 160 

where MSample represents the metal cps in a given sample, InSample is the 115In cps of the sample, MProcess and InProcess are the 

average metal and 115In cps, respectively, of the pH 2 process blanks, Inelution is the 115In cps of the solution used to elute metals 

off the resin column, Mslope is the slope (cps/ppb) of metal M determined with the SPEX standards, VOriginal is the volume 

preconcentrated (30 or 33 mL), and VEluted is the final volume eluted (500 µL) for a 60 or 66X concentration factor.  

 165 

Method accuracy and precision was assessed using the 2009 Geotraces coastal surface seawater (GSC) standard (n = 3; Table 

1; Fig. S1), where estimated precision was 0.6% (Fe), 7.2% (Cu), 2.4% (Cd), 7.4% (Cd), and 2.1% (Mn) relative standard 

deviation (RSD). We observed higher variability among standard runs for Zn likely due to handling contamination, with 25.5% 

RSD.  Internal consistency was achieved by running previously analyzed deep seawater (from St. 9 and St. 13) alongside 

samples to monitor seaFAST accuracy over time, and to account for newly made batches of reagents and resin columns. 170 

Samples appearing oceanographically inconsistent with adjacent seawater depths were subsequently re-run. Comparisons of 

Metzyme profiles alongside the closest GP16 station in the South Pacific are presented in Fig. S2. 

 

Table 1. Reference seawater comparisons using the 2009 Geotraces coastal surface seawater (GSC) standard.  

Metal 

This Study (n = 3) 

(nM) 

Geotraces consensus 

(nM) 

Fe 1.74 ± 0.01 1.56 ± 0.12 

Zn 1.37 ± 0.35 1.45 ± 0.10 

Cu 1.53 ± 0.11 1.12 ± 0.15 

Cd 0.41 ± 0.01 0.37 ± 0.02 

Ni 4.61 ± 0.34 4.5 ± 0.21 

Mn 2.33 ± 0.05 2.23 ± 0.08 

 175 

Our data showed a systematic Cu offset with concentrations that were 7-22% higher than consensus values (Table 1; Fig. S1). 

We are unsure if this is associated with an offset in our method or with the emerging notion that Cu may be underestimated in 

prior consensus standard reporting. Cu speciation is known to include kinetically inert species (Kogut and Voelker, 2003), 

which could be resistant to exchange with preconcentration resins. It is possible that our higher dCu concentrations are a result 

of long-term acidified storage (8 years), during which time strongly binding refractory organic complexes could degrade and 180 

increase labile Cu (Little et al., 2018). Along these lines, Posacka et al. (2017) determined labile Cu concentrations in non-

UV-oxidized seawater samples increase with storage time, with long term sample storage at low pH (>4 years) demonstrating 

similar concentrations to those UV-oxidized and measured within 2 months. Dissolved Cu has previously been reported as 3.1 

nM in the deep southwest Pacific using Nobias-chelate PA1 resin (Takano et al., 2017), whereas the maximum raw dCu 

concentration we obtained in the southwest Pacific was approximately 4.2 nM. It is furthermore possible that the matrix 185 
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corrections based on In are not reflective of Cu, which has been demonstrated to show both high (103%) and low (~50%) 

recoveries from Nobias resin at pH of 6.1 (Quéroué et al., 2014; Rapp et al., 2017). In addition, ArNa+ interferences on 63Cu 

cannot be completely ruled out given the abundance of Na+ in seawater (Diemer et al., 2002), although a cooled spray chamber 

was used to minimize such polyatomic interferences. The exact mechanism behind these elevated Cu concentrations is unclear 

at present, and an intercalibration exercise within the trace metal community using long-term stored seawater would be useful 190 

to further understand these offsets. 

 

Laboratory blanks consisted of MQ acidified to a pH of 2 with Optima-grade HCl and were run alongside seawater samples 

(Table 2). Blanks reflect contamination added from reagents, seaFAST tubing, and laboratory/shipboard sample handling. MQ 

blanks showing pronounced Fe and/or Zn contamination were removed from the data set. The detection limit (LOD) was 195 

determined using 3X the standard deviation of the pH 2 blanks. In runs where only 1 MQ blank was used, the LOD could not 

be determined.  

 

Table 2. SeaFAST blanks and limits of detection determined by converting cps to nM, and correcting for matrix effects. MQ 

blank concentrations shown are averages across runs ± 1 standard deviation, with replicate blanks averaged within runs. The 200 

number of test sets (n) represents individual ICP-MS runs where blanks were preconcentrated alongside seawater samples and 

analyzed via ICP-MS. *For Zn, high MQ blanks were observed in 4 runs, and these values were excluded from the blank 

averages and LOD shown. 
 Fe (nM) Mn (nM) *Zn (nM) Cu (nM) Ni (nM) Cd (nM) 

LOD (n=12) 0.10 ± 0.11 0.006 ± 0.007 0.65 ± 0.39 0.11 ± 0.23 0.04 ± 0.02 0.0008 ± 

0.0005 

MQ Blank 

(n=18) 

0.14 ± 0.10 0.006 ± 0.005 0.47 ± 0.22 0.06 ± 0.08 0.04 ± 0.03 0.0006 ± 

0.0003 

 

The seaFAST was used to quantify dissolved Fe, Mn, Zn, Cu, Ni and Cd. To accurately quantify Co, UV-oxidation is necessary 205 

to disrupt strong organic ligands associations, and irradiation was not performed on seaFAST-preconcentrated seawater 

samples. A substantial fraction of the total dissolved Co was strongly bound to organic ligands, unchelated by the Nobias resin, 

and lost during the preconcentration procedure (Saito and Moffett 2001, Billard and Bruland 2012, Milne et al. 2010, Ndung’u 

et al 2003). Instead, dissolved Co data is presented using cathodic stripping voltammetry with seawater exposed to UV 

oxidation for 1 hour, as previously published by Hawco et al. (2020). 210 

 

Filter fractions for the particulate metal analysis were digested in 50% nitric acid and heated for 3 hours at 90°C, using 1 ppb 

In as an internal standard, diluted with 5% nitric acid, and quantified on an Element2 ICP-MS alongside external SPEX 

standards (Goepfert, 2013). Originally, blanks consisted of 0.2 µm polyethersulfone (Pall Supor) filters that were soaked in 

10% HCl and rinsed with MQ until a neutral pH was achieved. These filters were not rinsed with ultra-filtered seawater. Metal 215 

contamination on these filter blanks was high, with metal counts orders of magnitude lower in all filters exposed to seawater. 
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We suspect metals derived from the cleaning acid were retained on the filters and seawater conditioning/flushing would have 

reduced this contamination. We instead calculate particulate metal concentrations using minimum pFe and pMn values largely 

derived OMZ depths as a low metal reference “blanks”, which is a conservative approach and underestimates true particulate 

metal concentrations. All particulate metal samples were analyzed over three ICP-MS runs, with the designated blank filters 220 

containing approximately 117-240 pM Fe and 3-12 pM Mn. The Fe blanks correspond to St. 1 400 m; St. 2 450 m; and St. 4. 

150 m, and the Mn blanks correspond to St. 2 225 m; St. 4 400 m; and St. 5 800 m. 

 

2.3 Metaproteomics  

Biomass was collected onto 3-51 µm filters using in situ battery operated McLane pumps which filtered 165-1,384 L of 225 

seawater over the course of several hours, with flow rate depending on the suspended load present (Table S1). Seawater was 

first passed through a 51 µm pre-filter to exclude multi-cellular organisms, aggregated colonies and large organic debris 

followed by 3 µm and 0.2 µm filter membranes to capture the microeukaryotic and prokaryotic communities. Filters were 

frozen at -80°C until laboratory extractions. Proteins were extracted following a sodium dodecyl sulphate (SDS) detergent-

based method to solubilize membrane and soluble proteins and heated for 10 mins at 95°C (Cohen et al., 2021; Saito et al., 230 

2014). Protein quantification was performed using a colorimetric Bradford protein assay with the Bovine Serum Albumin 

standard and a Nanodrop spectrophotometer. Digestion was performed using trypsin at a trypsin:protein ratio of 1:20, and 

peptides were further purified using C18 Zip-tips. For the mass spectrometry analysis, peptides were diluted to 0.1 µg/µL and 

approximately 0.5-2 µg was injected onto a Dionex Ultimate3000 RSLCnano HPLC system in 2-dimension active modulation 

mode coupled to a Thermo Fusion Orbitrap mass spectrometer operating in data dependent acquisition mode (McIlvin and 235 

Saito, 2021).  For St. 1 200, 300, and 400 m, ~0.5 µg of peptides were injected due to low remaining peptide yields, whereas 

2 µg was injected for all other samples. The mass spectrometer monitored MS1 scans from 380-1580 m/z at 240K resolution 

and MS2 scans had a 1.6 m/z isolation window, 50 msec maximum injection, and a 5 sec dynamic exclusion.  

 

A translated metatranscriptome was used as the protein database (Cohen et al. 2021). Briefly, the metatranscriptomic data was 240 

generated by extracting RNA from 3–51-µm size fraction filters, purifying RNA, removing ribosomal RNA, converting RNA 

to cDNA followed by amplification, and fragmenting to 200 bp. Libraries were sequenced on the Illumina HiSeq platform, 

and raw data is available through National Center for Biotechnology (NCBI) under Bioproject PRJNA555787. Bioinformatic 

processing consisted of adaptor trimming, de novo assembly, open reading frame (ORF) prediction, and read mapping to ORFs 

(Cohen et al. 2021). Taxonomic and functional annotations were performed using the custom-built database PhyloDB, which 245 

includes marine prokaryotic and eukaryotic references (https://github.com/allenlab/PhyloDB), and additional iron oxidation, 

reduction, storage and acquisition annotations were assigned using FeGenie (Garber et al., 2020).  

 

https://github.com/allenlab/PhyloDB
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Metaproteomic spectral matches were performed using the SEQUEST algorithm within Proteome Discoverer using a fragment 

tolerance of 0.6 Da and parent tolerance of 10 ppm. Identification criteria consisted of a peptide threshold of 95% (1 peptide 250 

minimum) and protein threshold of 99% in Scaffold (version 4.8.4, Proteome Software Inc.). Exclusive spectral counts were 

normalized following the Normalized Spectral Abundance Factor (NSAF) approach, which accounts for differences in total 

spectral counts among samples and enables a relative comparison (Cohen et al. 2021). ORFs with a classified taxonomic 

annotation and lineage probability index greater than 0.7 were used for the downstream analysis (Podell and Gaasterland, 

2007). A small value of 0.03 (approximately the lowest normalized spectral count value in the data set) was added to all counts, 255 

thereby removing instances of 0, and allowed for fold change estimates. A permutation test was used to determine differential 

abundance of proteins between the hydrothermally-influenced sample (n=1) and background sites (n=20) implemented in 

PANDA-view (Chang et al., 2018). P-values were multiple test corrected using the Benjamini-Hochberg method and the 

significance cutoff was a false discovery rate (FDR) < 0.1.  

2.4 Amplicon sequencing 260 

Taxonomic composition was further assessed using 18S and 16S ribosomal RNA (rRNA) amplicon sequencing from the 3–

51-µm filter size fraction (Cohen et al. 2021). The V3–V5 and V9 regions were targeted of 16S and 18S rRNA fragments, 

respectively, and sequenced using the Roche 454 platform. The full cDNA prep and bioinformatic processing details are 

described in Bertrand et al. (2015). The 16S rRNA OTUs were taxonomically annotated using the SILVA rRNA database 

(release 111) (Quast et al., 2013), and 18S rRNA OTUs using the Protist Ribosomal Reference v.4.11.1 database (Guillou et 265 

al., 2013). Principal coordinate analysis (PCoA) of OTU data was performed using Bray-Curtis dissimilarity on center-log-

ratio transformed values and implemented with the R package phyloseq (McMurdie and Holmes, 2013).  

3 Results & Discussion 

The objective of the Metzyme survey was to track how microbial physiology shifts along natural biogeochemical gradients, 

with an emphasis here on the tectonically-active tropical southwest Pacific (Baker et al., 2019; Beaulieu et al., 2013). The 270 

section spans multiple biomes, beginning in the oligotrophic tropical North Pacific gyre, latitudinally traversing the nutrient-

rich equatorial upwelling zone, and terminating in the oligotrophic South Pacific gyre with a short longitudinal transect off the 

Samoan Islands, in the vicinity of the NE Lau Basin (Fig. 1).  

 

Physiochemical measurements indicated an asymmetry between the tropical northern and southern hemispheres with a 275 

difference in thermocline/nutricline depths, oxygen saturation, particle density (turbidity) and salinity (Fig. S3). An oxygen 

minimum zone (OMZ) resided between 17°N and 3.5°S at 150-1,000m depth, with the OMZ layer directly above excess 

nitrate+nitrite and phosphate in the northern tropical Pacific (Fig. 1). Equatorial upwelling was evident with nitrate+nitrite and 

phosphate concentrations reaching 10 µM and 0.5 µM, respectively, in surface waters between 0-3.5°S. Distinct water masses 

were observed across the section with higher salinity surface water characteristic of the South Equatorial Pacific Intermediate 280 
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Water present south of the equator, and the North Equatorial Pacific Intermediate Water to the north (Bostock et al., 2010). 

The South Equatorial Pacific Intermediate Water is associated with a deepening of the thermocline also evident in 

macronutrient and trace metal nutriclines, with on average <0.15 nM dFe, <0.6 nM dZn, <0.6 nM dCu, <3.1 nM dNi, <80 pM 

dCd, and <25 pM dCo persisting to 300m in the south Pacific (Fig. 1).  Below we report the full-depth trace metal distributions 

along this natural biogeochemical gradient. 285 

 

Fig. 1. Trace metal and macronutrient section plots along the Metzyme transect plotted using weighted-gridding interpolation 

in Ocean Data View. All dissolved metals apart from Co were quantified using seaFAST/ICP-MS, while Co was measured 

using cathodic stripping voltammetry following UV irradiation. Vertical white lines mark the CTD casts, white dots indicate 

discrete sampling depths. Six Fe outliers were removed from the section, for full profiles see Fig. 2-4. 290 
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3.1 Biogeochemical controls on dissolved metals in the tropical Pacific (St. 1-8) 

Dissolved metal distributions in the northern transect (St. 1-8) reflected regional biogeochemical and physical influences, 

including biological nutrient utilization in surface waters, redox effects in oxygen minimum zones, heterotrophic 295 

remineralization, hydrothermal input, and deep water scavenging (sorption onto particles, abiotic precipitation, aggregation of 

colloids, and biologically-mediated precipitation; Fig. 1). dFe showed a classic hybrid-type profile (Bruland and Lohan, 2003), 

with average concentrations of 0.15 ± 0.10 nM in surface waters (< 200m) due to biological drawdown, increasing to 0.63 ± 

0.30 nM below the euphotic zone as a result of remineralization (200-3,000m), and stabilizing to an average of 0.65 ± 0.14 

nM across the abyssal ocean (>3,000 m; Fig. 2). In contrast to dFe, dMn was elevated in surface waters due to dust input and 300 

photoreduction (van Hulten et al., 2016; Sunda et al., 1983), reaching an average 0.80 ± 0.30 nM at 40m, and decreasing to 

0.20 ± 0.03 nM by 3,000m. These Mn distributions are typical of the deep Pacific Ocean, with Mn oxidation mediated by Mn-

oxidizing bacteria in aphotic waters (van Hulten et al., 2016; Moffett and Ho, 1996; Tebo et al., 2005). 

 

A hydrothermal dFe signal was captured off the Hawaiian Island chain at St. 1 (17°N, 154.4°W; Fig. 2), ~212 km away from 305 

the tectonically active Lo’ihi Seamount. Maximum dFe concentrations reached 1.26 nM at 1,000m, consistent with the 1,100 

m Lo’ihi injection depth and associated 3He signature (Boyle et al., 2005; Jenkins et al., 2020; Lupton et al., 2004; Wu et al., 

2011). Using historical He concentrations and isotope ratio anomalies (δ3He) from the distal Lo’ihi plume close to our site 

(17°S, 152°W; Jenkins et al., 2019a) and converted to excess 3He (Jenkins et al., 2019b, 2020), we calculate a dFe:3He slope 

ratio of 2.0 x 106. This ratio is in good agreement (to within a factor of 2) with the distal ratio reported by Jenkins et al. (2020) 310 

using multiple distal sites 100-1,000 km from Lo’ihi. Dissolved Mn distributions show only a minor enrichment at this depth, 

similar to previous observations (Boyle et al., 2005), and support high dFe:dMn ratios associated with the Lo’ihi hydrothermal 

system (Jenkins et al., 2020). 

 

Fig. 2. Full depth metal profiles for dissolved Fe (red) and Mn (blue), oxygen (black), and primordial 3He used as a signature 315 

of hydrothermal activity (purple). 3He data was previously collected by (Lupton et al. 2004).  
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Dissolved Co, like Mn and Fe, reflected a hybrid-type profile with biological uptake in the euphotic zone, remineralization 320 

and scavenging influencing its distribution (Fig. 3). In the OMZs located between St. 1-6 (Fig. 1), two dCo plumes were 

apparent with dCo maxima of 132 pM (St. 2; 1.7 µM O2) and 116 pM dCo (St. 6; 26 µM O2) centered at ~200m, as previously 

discussed for the Metzyme section (Hawco et al., 2020). Dissolved Co is hypothesized to accumulate in the OMZ due to 

decreased activity of Mn-oxidizing bacteria, which otherwise co-precipitate Co along with Mn oxides onto their cell surface 

under oxic conditions (Cowen and Bruland, 1985; Hawco et al., 2020; Saito et al., 2017). Although dMn shows minor 325 
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enrichment at St. 2 in the OMZ, coinciding with high dCo, this biological feature appears to be secondary to surface 

photoreduction and deep scavenging processes which strongly drive its vertical profile. 

 

Other bioactive trace metals, including Zn, Cu, Ni and Cd, by contrast followed nutrient-like distributions with biological 

drawdown resulting in low concentrations in surface waters and accumulation of dissolved metals at depth (Fig. 3-4). Dissolved 330 

Zn was on average 1.21 ± 1.42 nM in surface waters of 40 m, and 10.37 ± 0.73 nM by 3,000 m. Dissolved Zn distributions are 

supported by a strong linear relationship with SiO4 along the cruise transect, with a Zn:Si slope of 0.069 nmol:µmol and an R2 

of 0.96 (Fig. 3B), which matches the tropical Southeast Pacific value of 0.066 (Roshan et al., 2016). This slope furthermore is 

close to the 0.053 nmol:µmol ratio used to calibrate Zn:Ca proxies (Marchitto et al., 2000), which is known to deviate 

depending on ocean basin (Middag et al., 2019). Dissolved Cu was an average of 0.62 ± 0.12 nM in surface waters of 40 m 335 

and 4.15 ± 0.19 nM by 3,000m, while dNi showed surface concentrations of 2.54 ± 0.40 nM and 10.25 ± 0.34 nM by 3,000m.  

 

Fig. 3 (a) Full depth metal profiles for dissolved Co (orange) and Zn (green), oxygen (black), and primordial 3He used as a 

signature of hydrothermal activity (purple). 3He data was previously collected by (Lupton et al. 2004). (b) Dissolved Zn 

distributions are supported by a strong linear relationship with SiO4 along the cruise transect, with a Zn:Si slope of 0.069 340 

nmol:µmol and an R2 of 0.96. This Zn:Si slope is close to the 0.053 nmol:µmol ratio used to calibrate Zn:Ca proxies (Marchitto 

et al., 2000) (c) Zn* Metzyme section, or Zn – 0.053*Si, displaying higher than expected Zn levels in the vicinity of the 

hydrothermal plume, inferred from Si concentrations. 
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In the case of dCd, its stoichiometry (Cd:PO4) varied with depth and between hemispheres, likely due to biological drawdown 345 

in surface waters, remineralization at depth, and mixing of water masses. Dissolved Cd ranged from 3 to 1,129 pM across the 

section, with an average of 9 ± 6 pM at 40m and 979 ± 40 by bathypelagic depths of 3,000m. Cd showed multiple linear 

relationships with PO4, where the Cd:PO4 ratio reached 116 pmol:µmol in surface waters <1 µM PO4, and increased to 462 in 

deep waters containing >1 µM PO4 (Fig. 4B). Our ratios are consistent with reported slopes of 50 in surface waters and 410 in 

deep waters of the southwest Pacific (Sieber et al., 2019), and 88 in surface waters (<250 m) and 420 in deep waters (>250 m) 350 

of the eastern tropical Pacific (Roshan et al., 2017). This large difference in stoichiometry between the shallow and deep, or 

“kink” in the ratio is observed across the global ocean. At the surface, preferential uptake of Cd relative to PO4 can occur as a 

result of Fe and/or Zn seawater depletion (Cullen, 2006), with Fe-limited cells reducing surface Zn concentrations and 

continuing to take up Cd through biodilution (Sunda and Huntsman, 2000). Fe limitation additionally causes the upregulation 

of nonspecific divalent metal transporters to which Cd competitively binds, further contributing to Cd drawdown from seawater 355 

(Cullen, 2006; Lane et al., 2008; Saito et al., 2010). Such distinct Cd:PO4 stoichiometries can be transported into larger features, 

where exported high latitude intermediate waters containing high Cd:PO4 ratios mix with lower latitude water masses 

containing low Cd:PO4 (Baars et al., 2014; Frew and Hunter, 1995; Middag et al., 2018; Xie et al., 2015). In our dataset, 

Antarctic-sourced seawater is evident by low excess Si, or Si* (Si – NO3), which coincides with the change in slope, and 

displays a transitional Cd:PO4 ratio (Fig. S4). Lateral differences in stoichiometry across the transect were furthermore 360 

demonstrated with a steeper Cd:PO4 ratio of 597 pmol:µmol observed in deep water of the south Pacific (St. 9-13) compared 

to a slope of 472 pmol:µmol further north (St. 1-8; Fig. 4C). We next contrast these trace metal distributions with 

hydrothermally-influenced sites in the NE Lau Basin. 

 

Fig. 4 (a) Full depth metal profiles for dissolved Cd (navy), Cu (yellow) and Ni (pink). (b) Linear relationship between 365 

dissolved Cd and PO4 across the transect, separated by shallow, < 1 µM PO4 (red) and deep, > 1 µM (blue). (c) Cd and PO4 

relationship in the north compared to southwest Pacific. Cd:PO4 relationship for St. 1-8 in deep water (>1 µM) is shown in 

pink, St. 9-13 (> 1 µM) is shown in brown. 

 

 370 
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3.2 Hydrothermal activity in the southwest Pacific (St. 9-13) 

Dissolved metal distributions in the lower transect are consistent with several local hydrothermal sources originating in the 

NE Lau Basin. δ3He samples were not collected during the Metzyme expedition, and as a result, comparisons are made using 

prior δ3He collected in the region. Most strikingly, a prominent dFe and dMn feature was observed at 15°S and 174.5°W (St. 375 

13; Fig. 5A-B). Dissolved Fe and dMn steadily increased to 5.2 and 11.3 nM, respectively, by 1,900 m, in contrast to typical 

bathypelagic concentrations of ~0.5 nM dFe and ~0.18 nM dMn at stations further north. These maxima were located just 81 

km east of a maximum δ3He (43.4%) centered at 1,726 m, collected at 15°S and 173.1°W two decades prior (Lupton et al., 

2004), and could be associated with a common hydrothermal source. Alternatively, an intense δ3He signal of 58.7% has been 

measured 168 km west of our site, at 15.64°S and 177.32°W and centered at 1,924 m, and may also be associated with these 380 

metal anomalies, although seawater at this depth should advect to the northwest (Fig. S5) (Lupton et al., 2004; Reid, 1997; 

Speer and Thurnherr, 2012). Thus, that hydrothermal source is not expected to be responsible for the metal features to the east. 

No physiochemical signatures were detected using CTD sensors (temperature, salinity, turbidity) implying this was not a near-

field hydrothermal plume feature (Fig. S3). 

 385 

The St. 13 dFe/dMn ratio of 0.43 at 1,900m is low compared to the distal plumes from the southern East Pacific Rise and 

Lo’ihi systems with ratios >2 (Fitzsimmons et al., 2014; Jenkins et al., 2020), likely due to the distinct underlying geology in 

this back-arc setting. Hydrothermally-derived Zn was evident with excess Zn (Zn*) in the vicinity, which demonstrated higher 

than expected Zn concentrations based on its relationship to Si (Zn - 0.053*Si), and similar to observations made in the southern 

East Pacific Rise (Fig. 3C) (John et al., 2018; Roshan et al., 2016). Other trace metals investigated (Cu, Ni, Co, Cd) did not 390 

show distributions consistent with a hydrothermal source (Fig 1). 

 

Fig. 5 (a) Total dissolved Fe (red), Mn (aqua) and particulate Fe (brown), Mn (navy) alongside hydrothermal helium (purple) 

in the NE Lau Basin. Helium data was collected in 1987 and 1990 from identical locations as trace metals in 2011 (St. 10 and 

12; Lupton et al. 2004). (b) The tropical southwest Pacific leg of the Metzyme transect (St. 9-13) in the Northeast Lau Basin, 395 

plotted using GeoMapApp. Nearby hydrothermal vent sites are indicated with green stars (Baker et al., 2019; Beaulieu et al., 

2013), and spreading axes are labeled (Baker et al., 2019; Lupton et al., 2012; Martinez et al., 2006). The red arrow indicates 

direction of flow at 2,000 m (Reid, 1997; Speer and Thurnherr, 2012). FSC: Futuna Spreading Center; NWLSC: Northwest 

Lau Spreading Center; RR: Rochambeau Rifts; CLSC: Central Lau Spreading Center; N-ELSC: northern Eastern Lau 

Spreading Center; FRSC: Fonualei Rift and Spreading Center; MTJ: Mongatolou Triple Junction; NELSC: Northeast Lau 400 

Spreading Center. (c) Estimated relationship between dissolved iron or manganese and excess helium in the NE Lau Basin. 

Excess 3He was calculated using δ3He reported in Lupton et al. (2004) at the same coordinates as Metzyme St. 12, and metal 

concentrations from Metzyme St. 13. A Type II linear regression is shown for dFe (Glover et al., 2012). dMn showed a 

nonlinear relationship with excess 3He better fit by an exponential trend line. Note that total He and Ne concentrations were 

not available and were estimated based on similar δ3He and depth in the southwest Pacific, using climatological data contained 405 

the Global Oceanic Database of Tritium and Helium between 14-17°S and 160-180°W (Jenkins et al., 2019a). Upper water 

column excess 3He concentrations were extrapolated using historical data from Lupton et al. (2004). (d) Dissolved iron profiles 

at each station plotted with depth (left) and density (right). 
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 410 

The NE Lau Basin is semi-enclosed, topographically restricted by the Tonga Ridge to the west and south, Lau Ridge to the 

west, and Zephyr Shoal below 2,000m to the north (Speer and Thurnherr, 2012). Distal plumes are therefore expected to vent 

to the northwest, consistent with circulation patterns measured from NE Lau Basin float trajectories (Speer and Thurnherr, 

2012). Elevated dFe and dMn concentrations at St. 13 coincide with where the highest hydrothermal output is expected; north-

bound hydrothermal outflow is steered along the east side of the Tonga Ridge before ultimately escaping into the northwest 415 

(Speer and Thurnherr, 2012). This is similar to topographic steering of the Kairei plume along the Central Indian Ridge in the 

Indian Ocean (Rudnicki and German, 2002). 

 

Further east at St. 9-12, dFe and dMn profiles demonstrate additional hydrothermal sources showing lateral consistency ~300 

km apart (Fig. 5A). As seawater at 2,000 m advects in a northwestern direction (Lupton et al., 2004; Reid, 1997), it is unlikely 420 

the sharp feature detected at St. 13 was contributing to elevated metal concentrations at these stations further east (St. 9-12). 

They additionally reside in different density layers (Fig. 5D). Seawater samples collected during the Metzyme expedition from 

the identical location as the previously measured 3He core (δ 3He = 43.3%; Lupton et al. 2004) show two dFe and dMn peaks 

straddling the δ3He maximum at 1,726 m with a concave distribution (Metzyme St. 12). The shallower metal peaks occurred 

at 1,230 m, with 1.6 nM dFe and 0.83 nM dMn, while the deeper peak consisted of 1.8 nM dFe and 2.3 nM dMn at 2,320m 425 

(Fig 5B). These shallow and deep dFe and dMn signals are also present 333 km east of the Tonga Ridge at 15°S and 170°W 

(St. 10), where dFe and dMn were 1.4 and 0.22 nM, respectively, at 1,243 m depth, and 1.1 and 0.26 nM, respectively, at 2,744 

m (Fig. 5B). Although the St. 12 deep dFe signal is much sharper than the one at St. 10, the integrated areas of both peaks 

between 2,000 – 3,000 m are comparable (907 vs. 849 µmol/m2, respectively) suggesting a similar iron supply, and they fall 

in the same density layer (Fig. 5D). Notably, particulate Fe (pFe) matches the dual dFe peaks and therefore supports two 430 

separate hydrothermal sources at St. 10 and St. 12, and demonstrates that particle formation and scavenging is not driving the 

concave dissolved Fe profile distributions. A third peak is present at St. 10 at 3,803 m where dFe reaches 1.24 nM and dMn 

0.48 nM, and at St. 12 at 3,450 m where dFe reaches 0.9 nM, although the Lau Basin sea floor is not that deep and neither 

signal could originate from there. A shallow dFe signal was furthermore captured at St. 11 where only a partial profile was 

obtained from the upper water column. Apart from multiple hydrothermal sources, sills may also explain the multi-featured 435 

metal profiles with seawater advecting away from the hydrothermal source(s) coming into contact with sill structures, 

disrupting flow and dispersing the plume in three dimensions (Fig. 1). Elevated subsurface dFe was evident as far north as St. 

9 (12°S, 167.6°W) where dFe reached 1.4 nM at 800m (Fig. 2).  

 

As St. 9 is our most northern station that captures hydrothermal influence in the dissolved metal fraction, we suspect the plumes 440 

captured in this survey do not continue north, and instead discharge laterally or to the northwest where they escape to the 

tropical southwest Pacific. There was little evidence of the East Pacific Rise plume-derived dFe advecting west over ~6,000 

km in the St. 10 dFe profiles (Fig. 2A), despite the pronounced δ3He of 30% observed at 2,500 m at this location (Lupton et 
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al., 2004) and a dFe:3He signal evident just ~550 km south of this site (Fitzsimmons et al., 2014). It is possible the St. 10 dFe 

peak at 2,750 m is associated with the East Pacific Rise, but likely that any East Pacific Rise-sourced Fe is overshadowed by 445 

the more intense local plumes at St. 12. 

 

Our trace metal profiles are consistent with the presence of multiple, diverse sources of venting in this region of the NE Lau 

Basin (Baker et al., 2019), and exhibit changes in non-buoyant plume location, intensity, and/or depth in the water column 

compared to the 3He anomalies that were more than two decades earlier, in 1987 (Lupton et al., 2004). The core of the 3He 450 

plume identified by Lupton et al. (2004) is located at the same site as our St. 12, approximately 81 km east of where the 

strongest dFe and dMn signal was detected at our St. 13 (Fig. 5B). Furthermore in the original 3He data set, there was no signal 

associated with shallow dFe and dMn enrichments at ~1,200m, where only the deeper δ3He signature centered at 1,726 m was 

apparent (Lupton et al., 2004). We hypothesize that these differences within the dynamic NE Lau Basin system may be due to 

changes in hydrography in the pathways and/or flux of the plume materials exiting the Lau Basin together with recognition 455 

that extensive new eruptions should be expected to have arisen along his fast spreading back-arc system (up to 42 mm/year 

full spreading rate; Baker et al., 2019) since the corresponding 3He sampling was conducted in 1987.  Multiple distinct 

hydrothermal vent sources appear responsible for the metal-rich plumes observed at different depths/density surfaces observed 

here, all of which should be expected to contribute to the larger excess 3He pool (Fig. 5A) (German et al., 2006; Lupton et al., 

2004).   460 

 

The Northeast Lau Basin contains 135 active hydrothermal sites with new sites continuing to be discovered, and hydrothermal 

vents nearby our sampling sites are shown in Fig. 5B (Baker et al., 2019; Beaulieu et al., 2013). The exact vent sources 

responsible for the dFe and dMn distributions observed here are unknown. The strongest metal plume signals in this study 

come from St. 13, which is <50 km from the NE Lau Basin Spreading Center (NELSC) and the Mangatolo Triple Junction 465 

(MTJ) which have plume depths between 1,300-2,400m (Fig. 5B) (Baker et al., 2019; Kim et al., 2009; Lupton et al., 2004). 

There is extensive arc volcanism to the east which likely generates further complexity with additional vents feeding multiple 

shallower plume depths (Baker et al., 2019; Staudigel et al., 2004, 2006). This is observed in dFe and dMn profiles from St. 

12 eastward when compared to the broad coalesced plume that dominates 3He distributions in the NE Lau Basin (Lupton et 

al., 2004). Although active hydrothermal venting has been measured East of the Tonga Arc at the Vailulu’u Seamount Somoan 470 

Island chain hotspot (Staudigel et al., 2004), this system is not likely responsible for the intense 3He plume  given that the 

maximum 3He signal is located within the W-E lateral bounds of the Lau Basin (Lupton et al., 2004), and that the St. 13 metal 

plume falls along the ridge axis (Fig. 5B).  The Vailulu’u Seamount additionally has a crater depth of just 750 m (Staudigel et 

al., 2004), which is too shallow to explain the strong metal-enriched feature we report here at 1,900m. 

 475 

Using metal concentrations from St. 13 and δ3He quantified by Lupton et al. (2004) from our St. 12, we estimate the maximum 

amount of dFe relative to excess 3He released from this back-arc setting (Fig. 5C; Table 3).  (For comparison, the relationship 
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between St. 12 dFe and 3He is shown in Fig. S6.) St. 13 dFe showed a linear relationship with 3He with a slope of 3.8 x 106 

while dMn, in contrast, behaved non-conservatively. Geostrophic flow supports northwest circulation at this depth (Lupton et 

al., 2004; Reid, 1997; Speer and Thurnherr, 2012), and dFe:3He ratios of 3.8 x 106 represent a significant source of Fe being 480 

introduced to microbial communities at bathypelagic depths in this direction. The dFe:3He estimates for this back-arc area 

(Table 3) are distinct from, but comparable to, what has previously been reported for other major plumes at a Mid Ocean Ridge 

(southern East Pacific Rise) and an intra-plate hotspot (Lo’ihi Seamount) (Fitzsimmons et al., 2017; Jenkins et al., 2020). Our 

metal data demonstrates that the hydrothermal plume observed by Lupton et al. (2004) has the capacity to export large amounts 

of Fe and Mn to the ocean interior, similar to the southern EPR and Lo’ihi systems (Jenkins et al., 2020; Resing et al., 2015).  485 

We next discuss how microbial physiology may have been impacted by this distal plume.  

 

Table 3. Dissolved metal to excess 3He ratios among the NE Lau Basin, Lo’ihi Seamount, and southern East Pacific Rise distal 

plumes. The NE Lau Basin ratio was calculated here using δ3He reported by Lupton et al. (2004) from the same location as 

Metzyme St. 12, and using Metzyme St. 13 dissolved metal concentrations. No upper water column 3He values were available 490 

for 400-800 m, and they were therefore linearly extrapolated. Excess 3He was determined following the equation in Jenkins et 

al., (2020). The Type II linear regression slope is shown for dFe. St. 13 dMn showed a nonlinear relationship with excess 3He 

better fit by an exponential trend line. Note that He and Ne concentrations were not available from Lupton et al. 2004 and were 

instead estimated based on similar δ3He values and depths in the Global Oceanic Database of Tritium and Helium (Jenkins et 

al., 2019a) between 14-17°S and 160-180°W. Helium isotope solubility fractionation factors, He and Ne solubilities, and Type 495 

II regressions were calculated using healph, LJSolMol, and lsqfitma Matlab functions (Jenkins et al., 2019a, 2019b, 2020). The 

dFe:3He ratios were obtained from the regression of individual samples at one site. 

 
 NE Lau Basin  

(this study) 

Lo’ihi Seamount 

(Jenkins et al., 2020) 

East Pacific Rise 

(Fitzsimmons et al., 2017) 

dFe:3He 3.8 x 106 4.4 x 106 4.3 x 106 

dMn:3He 0.14e(2.86x) 1.0 x 106 2.3 x 106 

3.3 Microbial community composition in background and hydrothermally-influenced seawater 

The influence of distal hydrothermal plume geochemistry on surrounding microbial physiology and ecology was assessed 500 

using comparative metaproteomics with the 3-51 µm fraction of the Metzyme meta-’omic data set (Cohen et al., 2021). Since 

hydrothermal vents were not the focus of this expedition, real-time instrumentation for tracking hydrothermal signatures was 

not onboard the ship. Instead, seawater samples and biomass was collected at the same location where hydrothermal activity 

had been observed previously, at St. 12 (Lupton et al., 2004), and analyzed back in the laboratory. We therefore were unaware 

that the largest metal signatures were at St. 13, or that present-day plume maxima at St. 12 were at 1,200 and 2,200 m, and so 505 

biomass was not collected at these depths. However, biomass was obtained in the vicinity of hydrothermal influence, at St. 12 

(15°S, 173.1°W) at 1,900m, where dissolved and particulate metals were higher than background concentrations. Other deep 

(≥ 200 m) samples collected across the transect served as background, non-hydrothermally-influenced vent sites (n=20). 

Metzyme metaproteomes from the upper water column are used comparatively to the deep ocean, but are not the focus of this 

analysis. 510 
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Microbial communities collected on the 3-51 µm filters were composed of archaea, heterotrophic bacteria, viruses, 

cyanobacteria, protists, and metazoans (Fig. 6). In particular, dinoflagellates, Alphaproteobacteria and Prochloroccocus 

accounted for an average of 50 ± 9% (± 1 standard deviation) across all of the sample communities based on NSAF-normalized 515 

proteins (Fig. 6). The presence of prokaryotic organisms smaller than 3 µm represents particle-associated assemblages, 

filamentous chains, host-symbiont relationships, or cells aggregated or adsorbed onto biomass-dense filters. Samples collected 

from the upper water column (< 200m) showed higher proportions of cyanobacteria while relative distributions of the other 

abundant groups, including Gammaproteobacteria and Alphaproteobacteria, were more abundant with depth (Cohen et al., 

2021). Although the 0.2-3 µm fraction would certainly contain pelagic bacteria and archaea sensitive to hydrothermally derived 520 

chemical species, we were not able to extract enough biomass from this filter fraction for the metaproteomic analysis.  

 

Amplicon sequencing of ribosomal RNA was used to determine community composition along the Metzyme transect (Cohen 

et al., 2021). A PCoA analysis constructed with 18S and 16S rRNA operational taxonomic units (OTUs) demonstrated that 

the eukaryotic and prokaryotic communities at the hydrothermal site largely resembled that of background locations (Fig. S7). 525 

These similarities between the distal plume-influenced and background prokaryotic communities agree with findings from 

buoyant hydrothermal plumes at vent-sites along the Eastern Lau Spreading Center (ELSC) where it has been argued that 

microbes sourced from background seawater are entrained into and displace seafloor organisms (Sheik et al., 2015). Deep sea 

communities therefore may be relying on metabolic plasticity to exploit a variety of environmental conditions, enabling the 

occupation of both hydrothermal and non-hydrothermal influenced seawater systems. Protistan groups such as ciliates, 530 

stramenopiles, dinoflagellates and radiolarians are also ubiquitous in the deep ocean, and may serve as important vectors for 

transferring carbon obtained from vent sites to the broader bathypelagic ocean (Mars Brisbin et al., 2020; Murdock and Juniper, 

2019; Olsen et al., 2015). However, hydrothermal populations can be genomically distinct from background communities at a 

fine taxonomic level, which has been observed in vent-influenced protistan communities using amplicon sequence variants 

(ASVs) (Hu et al., 2021; Mars Brisbin et al., 2020) and bacterial functional genes (Mino et al., 2013, 2017), although this was 535 

not observed here using an OTU approach. Interestingly, disconnects between the amplicon and proteomic datasets were 

apparent with the 16S rRNA analysis indicating cyanobacteria were one of the most relatively abundant taxa identified even 

in deep waters (≥ 200 m; Fig. S8), while <25% of deep prokaryotic proteins belonged to cyanobacteria (Fig. 6). Such 

differences could be due to extraction, primer, and/or sequencing bias (Brooks et al., 2015; VerBerkmoes et al., 2009), limited 

references in taxonomic databases (Orellana et al., 2019), or biological differences in cellular pools of RNA and proteins. 540 

Regardless, both analyses indicate that at a coarse taxonomic level, particle-associated prokaryotic and microeukaryotic 

communities in this size fraction at the hydrothermal site were similar to those of background seawater. 
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3.4 Metaproteomics of particle-associated microbial communities in hydrothermally-influenced seawater 

Metaproteomics was performed by injecting purified peptides from each station and depth onto an HPLC system in 2-545 

dimension active modulation mode coupled to an orbitrap mass spectrometer (LC/MS/MS) running in data dependent 

acquisition (DDA) mode (see methods) (McIlvin and Saito, 2021). The full dataset contains 9,796 proteins, 99,143 peptides 

and 366,025 total spectral counts, of which 80% of the proteins have a taxonomic and/or functional annotation (Cohen et al. 

2021). To investigate metabolically active proteins influenced by hydrothermal metal release, a permutation test was performed 

with only deep samples (≥ 200 m, n = 21) comparing background non-hydrothermally influenced vent sites (n = 20) to a single 550 

site within the vicinity of a hydrothermal plume (St. 12, 1,900m). A two-tailed asymptotic general independence test was used 

followed by Benjamini-Hochberg p-value correction (FDR < 0.1). Of the 3,492 deep (≥ 200 m) proteins, 201 were either more 

abundant at the hydrothermal site compared to background sites, or solely identified at the hydrothermally-influenced site 

(FDR < 0.1; Table S2). Consistent with the amplicon sequencing analysis, the taxonomic identity of hydrothermal plume-

associated proteins largely resembled that of background sites. Eighty-four percent of these hydrothermally-influenced proteins 555 

belonged to the particle-associated prokaryotes; of the 201 proteins enriched at the HT site, 169 were prokaryotic, 28 

eukaryotic, and 4 viral (Prochlorococcus phage P-SSM2 and P-SSP7; Synechococcus phage S-RSM4; Fig. 6). The implications 

of hydrothermal activity on microbial metabolism was next explored by examining differentially abundant proteins involved 

in metal transport, amino acid metabolism, and chemoautotrophy.  

 560 

Fig. 6. Whole community phyla and supergroup-level relative community abundance determined through metaproteomics on 

the 3-51 µm size fraction, modified from Cohen et al. 2021 (Left). Only peptide spectral counts matching open reading frames 

(ORFs) with a classified taxonomic annotation and lineage probability index greater than 0.7 are shown. Exclusive spectral 

counts were normalized following the NSAF (normalized spectral abundance factor) approach. Differential abundance of 

proteins in the hydrothermal plume (St. 12, 1,900m) compared to non-HT, background deep sites (n=20) (Right). The x-axis 565 

represents protein abundance (NSAF-normalized spectral counts), and y-axis is the log2 fold change in protein abundance 

between the HT site (St. 12, 1,900m) and the average of deep (≥ 200 m) background sites (n = 20). The horizontal purple lines 

mark a log2 fold change of 2 or -2, for a 4-fold increase or decrease in protein abundance, respectively. A small value of 0.03 

was added to normalized spectral counts to allow for log transformation. Linear arm contains proteins not identified in the 

hydrothermal plume. Note not all protein groups of interest are annotated; for a complete list of key proteins identified see Fig. 570 

4 and Table S2. (Nxr: nitrate oxioreductase; SoxF: sulfur oxidation protein; Amo: ammonia monooxygenase; PS I: 

photosystem I reaction center protein). 
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3.5 Microbial trace metal and organic transporters, structural proteins and proteases potentially utilized in the 575 

dispersing plume 

A number of transporters identified may aid in uptake and efflux of metals and organics originating from the hydrothermal 

plume. These include a heavy metal transporter protein belonging to the Betaproteobacteria Burkholderiales family which was 

not detected outside plume-influenced seawater (FDR = 3x10-4; Fig. 6). Although trace metals are micronutrients required by 

cells to carry out essential biochemical reactions, high concentrations lead to oxidative stress and cell damage. Therefore, this 580 

protein may be useful, either for uptake or efflux out of the cell. Bacterial TonB outer membrane receptor proteins were 

investigated as they are involved in transport of siderophores, inorganic metals, vitamin B12 and carbohydrates (Noinaj et al., 

2010). The majority of TonB proteins identified were not differentially abundant (n = 83, Fig. 7), although 3 in particular were 

enriched in the vicinity of the plume. Two of these TonB proteins were 4-fold (FDR = 3x10-4) and 6-fold (FDR =0.006) more 

abundant in the plume and belonged to the Flavobacteriales family within Bacteroidetes. One contained the SusC and CirA 585 



26 

 

domains characteristic of carbohydrate and inorganic Fe uptake, respectively, and the other contained the SusC, B12 (BtuB) 

and FepA siderophore domains. An additional TonB protein was 9-fold more abundant in the hydrothermal plume (FDR = 

0.006), belonging to the Alteromonadales family within Gammaproteobacteria, and containing the BtuB domain. Two of 9 

putative ABC transport system siderophore transporters belonging to Rhizobiales Alphaproteobacteria and Vibrionales 

Gammaproteobacteria were additionally enriched in the plume-influenced seawater (FDR = 3x10-4 and 9.7x10-4, respectively). 590 

Elevated siderophore transporters may be consistent with increased ligand production in plumes, as has been invoked in 

stabilizing hydrothermal Fe through organic complexation (Bennett et al., 2008). Although TonB genes are highly expressed 

in Gammaproteobacteria from the Guaymas Basin hydrothermal plume (Li et al., 2014), we did not find evidence for overall 

enrichment with only these 3 out of 83 TonB transporter proteins identified as differentially abundant in the plume, suggesting 

these transporters are broadly utilized by deep sea bacterial communities. The three that are specific to the hydrothermal plume 595 

may belong to bacterial strains that were relatively more abundant in the plume environment, or that contain protein isoforms 

with distinct functional roles.  

 

Similar to the TonB transporters, NikA nickel/metallophore ABC transporters, used for the uptake of metals or oligopeptides, 

are ubiquitous in the deep ocean (Fig. 7). Three proteins however were differentially abundant in the plume; two belonged to 600 

Rhizobiales Alphaprotebacteria and one to Thermoplasmatales archaea, and were 10-fold (FDR = 3x10-4), 9-fold (FDR=0.01), 

and 5-fold (FDR=0.01) more abundant in the plume, respectively. The Nik ABC transport system may import Co as well as 

Ni (Rodionov et al., 2006), and it is unknown whether Mn may also be imported through this uptake system, or whether high 

concentrations of hydrothermal Mn could competitively inhibit Ni/Co uptake. Finally, a sodium/solute family symporter 

specific to acetate and belonging to SAR 11 Alphaproteobacteria was 8-fold more abundant at the hydrothermal site (FDR = 605 

3x10-4), with this family of transporters also enriched in transcripts at Guaymas Basin (Dick et al., 2013). This collection of 

transport proteins reflects potential mechanisms for importing or exporting metals and organic resources sourced from the NE 

Lau Basin distal hydrothermal plume. 

 

Protein folding components and proteases were elevated in the plume and suggest a concerted effort to maintain cellular 610 

structure and utilize organic nitrogen. Twenty-one of 115 globally detected GroEL chaperone proteins involved in protein 

folding were relatively abundant at 1,900m (FDR < 0.1), belonging to Rhodobacterales, Rhizobiales and PS1 clade members 

of the Alphaproteobacteria, Legionellales Gammaprotebacteria, Poribacteria, Planctomycetes, Chloroflexi, and cyanobacteria 

(Fig. 7). Microbes residing in hydrothermal systems are acclimated to extreme temperature and pressure (Merino et al., 2019), 

and chaperone GroEL proteins are hypothesized to be advantageous to thermophilic hydrothermal vent bacteria requiring a 615 

structural defense against the high temperature environment which can lead to protein misfolding (Chen et al., 2013; Wei and 

Zhang, 2010). As this was a distal hydrothermal plume at ambient temperature, the identification of these proteins may 

represent residual proteins from microbial communities that were transported from near-field vent sites during plume mixing 

and seawater entrainment. In addition, 4 of 8 Clp proteases were solely detected in plume-influenced seawater, belonging to 
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Altermonadales and Virbionales Gammaproteobacteria and Chloroflexi (FDR = 3x10-4). Clp proteases are multi-subunit ATP-620 

dependent proteins that are found in diverse microorganisms including hyperthermophilic bacteria (Ward et al., 2002). 

Hydrothermal vents support dense chemosynthetic populations producing organics that may be accessed by heterotrophs using 

such proteases (Bennett et al., 2013; Dick, 2019). These proteases were not present at surveyed OMZs across the transect, and 

Clp protease gene expression was similarly uniquely elevated at the Guaymas Basin hydrothermal vent and not in the Eastern 

Tropical South Pacific (ETSP) OMZ (Dick et al., 2013). This protease therefore may be specific to hydrothermal plume-625 

associated heterotrophs.  

 

Amino acids in particular can be stabilized in reducing, metal-rich and acidic vent environments (Fuchida et al., 2014), and 

hence, they may also be entrained into dispersing hydrothermal plumes. Certain amino acid transporters were relatively 

abundant in the plume-influenced seawater and may play a role in directly importing labile amino acids from the plume, 630 

including 4 branched and 1 L-amino acid transporters belonging to members of Alphaproteobacteria and Gammaproteobacteria 

(FDR ≤ 0.03).  Heterotrophic plume microbes therefore appear to reinforce cellular structure using chaperone proteins, import 

amino acids, and express peptidases to potentially take advantage of available organic material.  

3.6 Chemoautotrophy  

Chemoautotrophic metabolism was detected in the plume with ammonium, nitrite and sulfur oxidation proteins present. Many 635 

of these proteins were also present at OMZ sites and elsewhere along the transect, supporting widespread chemoautotrophy in 

the deep ocean (Fig. 7). One of three ammonia monooxygenase proteins (AmoB) belonging to Thaumarchaeota was 6-fold 

more abundant in the plume (FDR = 0.07; Fig. 6). These transcripts are similarly elevated in hydrothermal systems (Baker et 

al., 2012) and genes are present in metagenome-assembled-genomes of the Eastern Lau Basin (Anantharaman et al., 2016). 

Thaumarchaeota is known to carry out ammonia oxidation in this region of the central Pacific (Santoro et al., 2017), and this 640 

process is not unique to hydrothermal plumes. One of 31 detected nitrite oxidoreductases, predicted to bind molybdenum and 

responsible for the conversion of NO2 to NO3 (NxrG), was attributed to the Brocadiales family within Planctomycetes and 

was relatively abundant in the plume and detected only at this location (FDR = 3x10-4). These distributions support nitrification 

as a ubiquitous chemoautotrophic strategy (Pachiadaki et al., 2017; Saito et al., 2020), although chemoautotrophs likely have 

a competitive advantage over heterotrophs in low organic, reducing environments with elevated ammonium and nitrite that 645 

can be oxidized as energy sources (Dick et al., 2013). Sulfur oxidation was potentially occurring, with SoxF belonging to 

Rhodobacterales Alphaproteobacteria only detected in the plume-influenced seawater (FDR = 3x10-4). However, this SoxF 

protein was also present in surface waters (< 200m) throughout the central Pacific transect, and may also be utilized by 

heterotrophic bacteria residing in oxygenated waters performing anaplerotic inorganic carbon fixation via sulfur oxidation 

(Muthusamy et al., 2014). Other sulfur oxidation proteins known to be relatively abundant in hydrothermal plume 650 

metatranscriptome were not detected (SoxA, DsrA) (Anantharaman et al., 2016; Dick et al., 2013). Metals and sulfide derived 

from vent fluid likely formed inorganic metal-sulfide clusters, reducing metal toxicity in the microbial community (Edgcomb 
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et al., 2004) and limiting the bioavailability of sulfide to sulfide-oxidizing organisms, as observed in the Eastern Lau Spreading 

Center (Hsu-Kim et al., 2008; Sheik et al., 2015). Supporting this possibility, polymetallic massive sulfides have been observed 

in the NE Lau Basin (Beaulieu et al., 2013; Hawkins, 1986). Lastly, heterotrophic Mn-oxidizing bacteria are a major conduit 655 

for Mn oxide precipitation in non-buoyant plumes (Cowen et al., 1990). Multicopper oxidase enzymes responsible for 

heterotrophic Mn oxidation in cultured hydrothermal bacteria (Dick et al., 2006), however, were not detected in the plume-

influenced sample. Lithotrophic Mn oxidation is also theorized to occur in Mn(II)-rich vent fluids (Templeton et al., 2005) and 

has recently been described for the first time in Nitrospirae bacteria of tap water, which show high 16S rRNA sequence 

similarity to Nitrospirae from Lo’ihi Seamount seafloor lava (Yu and Leadbetter, 2020). In this analysis, Nitrosopirae proteins 660 

were not enriched in distal plume-influenced seawater (>3 µm fraction), though proteins of this phyla were detected elsewhere 

in the transect. Genes expressed in Nitrospirae and hypothesized to play a role in lithotrophic Mn(II) oxidation, including outer 

membrane c-type cytochromes and porin-cytochrome c complexes (Yu and Leadbetter, 2020), were similarly not enriched. It 

is possible that environmental Mn oxidation proteins differ from those characterized in our reference databases, and are 

therefore missed during bioinformatic annotations.  665 

3.7 Potential vertical transport of surface phytoplankton  

The majority of photosynthetic proteins detected were highly represented in surface waters, and included the pigments 

phycoerythrin, phycocyanin and chlorophyll a binding proteins, and photosynthetic carbon fixation components flavodoxin 

and carbon concentrating proteins. Unexpectedly, a portion of differentially abundant proteins in the hydrothermally-

influenced seawater (at 1,900 m) compared to background deep sites belonged to Prochlorococcus (20%), and several light-670 

associated proteins were differentially abundant, including phycoerthyrin, phycocyanin, photosystem I subunit XI, chlorophyll 

a/b binding proteins, proteorhodopsin and Rubisco (Fig. 6). The abundance of these proteins may represent metabolically 

active phototrophic cells maintaining core metabolism while rapidly sinking to the deep ocean attached to larger particles in 

the 3-51 µm size range, similar to fast-sinking, healthy diatom cells being detected at 4,000m in the Indian, Atlantic and Pacific 

Oceans (Agusti et al., 2015). There is furthermore growing support for fresh dissolved organic material (DOM) being exported 675 

to the deep ocean (Bergauer et al., 2018; Kirchman, 2018). It is unclear if these phytoplankton cells in deep waters are 

photosynthetically viable or partially degraded. Photosynthetic green sulfur bacteria have been isolated from a deep sea 

hydrothermal vent in the East Pacific Rise, and it has been argued these organisms use geothermal radiation as a light source 

(Beatty et al., 2005; White et al., 2002). The possibility of geothermal light biochemically stimulating photosynthetic proteins 

from sinking cyanobacterial cells warrants further exploration. Contamination cannot be completely ruled out, but is unlikely 680 

to be solely responsible for the 1, 900 m protein biomass signal, as approximately 23 L of surface seawater would be required 

to passively move through the 1,900 m filter during vertical transport to produce the protein levels collected (Table S1). Future 

experiments will benefit from replicated biomass collection with large volumes filtered, and examinations into the degradation 

state of proteins at depth. 

 685 
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Fig. 7. Heatmap displaying relative protein abundance for all proteins detected involved in chemoautotrophy, protein 

degradation, protein folding, and resource transport. Each row represents a unique protein with associated normalized spectral 

counts. Gray represents no protein detection. The sample collected in from the hydrothermal plume (HT; St. 12, 1,900 m) is 

shown alongside other deep samples (≥ 200 m) collected along the Metzyme transect, including those within the OMZ region 

(St. 1-6, ~150-1,000 m). See Table S2 for the full list of proteins and annotations. 690 
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Conclusion & Outlook 

This study represents the first metaproteomic assessment of deep sea microbial communities in a dispersing hydrothermal 

plume, and will be valuable in generating hypotheses regarding hydrothermal plume carbon cycling, food web structure, and 695 

metabolic plasticity of deep sea microbial communities. There are several recommendations that can be made for future studies 

evaluating microbial metabolism in distal plume environments: 1) Performing meta-‘omics on distal plumes is challenging,  

and real-time tracking of hydrothermal features onboard the research vessel is recommended to ensure optimal locations and 

depths are sampled. Meta-‘omic analyses in future studies will benefit from sample collection guided by in situ optical and 

redox sensors to maximize the biological signal that might be expected from samples taken toward the plume core. For 700 

example, investigations into metaproteomes of microbes residing in a metal-rich plume’s center may reveal additional metal 

uptake, oxidation, or efflux proteins and processes not identified here. 2) In this study, we focused on particle-associated 

bacteria and protists collected onto 3-51 µm filters. These findings may differ from the functionality of pelagic bacteria (<3 

µm) inhabiting hydrothermal plume environments. It is therefore recommended to survey both communities in future studies 

to ensure a comprehensive assessment of plume dynamics. 3) Finally, differences in taxonomic composition of microbial 705 

communities between hydrothermally-influenced sites and background seawater were not observed using the 16S/18S rRNA 

amplicon sequencing and metaproteomic approaches described here, although communities may be taxonomically distinct at 

a lower classification level. In particular, longer target regions and greater sequencing depth could provide enhanced resolution 

revealing differences in genera, species or strains.   

 710 

In summary, trace metal distributions along the central Pacific Ocean reflect a combination of biogeochemical influences, 

including biological uptake in surface waters, dissolution and decreased metal oxide production in OMZs, heterotrophic 

remineralization, scavenging at depth, and hydrothermal inputs. In the NE Lau Basin, several distinct hydrothermal plumes 

sourced from local spreading centers or volcanoes were observed. Hydrothermal dFe and dMn escapes into the tropical 

southwest Pacific in distal plumes, transporting metals to the surrounding bathypelagic ecosystem with a dFe:3He ratio that 715 

approaches that of the Lo’ihi and southern East Pacific Rise distal plumes. The communities within the plume taxonomically 

resembled that of non-hydrothermal sites, perhaps indicative of background seawater that is entrained into deep sea 

hydrothermal plumes. Although protein signatures were largely similar between the hydrothermal plume and background 

locations, there were indications of altered microbial physiology with the differential abundance of proteins involved in metal 

transport, protein folding, and peptide degradation. The collection of proteins identified here offers a glimpse into hydrothermal 720 

vent metabolisms and expands our understanding of biogeochemical processes within basin-scale dispersing hydrothermal 

plumes and their influences on microbial physiology. 
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