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Abstract. Phytoplankton form the base of marine food webs and play an important role in carbon cycling, making it 

important to quantify rates of biomass accumulation and loss. Since phytoplankton drift with ocean currents, rates should be 

evaluated in a Lagrangian as opposed to Eulerian framework. In this study, we quantify the Lagrangian (from Bio-Argo 15 

floats and surface drifters with satellite ocean colour) and Eulerian (from satellite ocean colour and altimetry) statistics of 

mesoscale chlorophyll and velocity by computing decorrelation time and length scales and relate the frames by scaling the 

material derivative of chlorophyll. Because floats profile vertically and are not perfect Lagrangian observers, we quantify the 

mean distance between float and surface geostrophic trajectories over the time spanned by three consecutive profiles (Quasi-

Planktonic Index; QPI) to assess how their sampling is a function of their deviations from surface motion. Lagrangian-20 

Eulerian statistics of chlorophyll are sensitive to the filtering used to compute anomalies. Chlorophyll anomalies about a 31-

day time filter reveal approximate equivalence of Lagrangian and Eulerian tendencies, suggesting they are driven by ocean-

colour-pixel-scale processes and sources or sinks. On the other hand, chlorophyll anomalies about a seasonal cycle have 

Eulerian scales similar to those of velocity, suggesting mesoscale stirring helps set distributions of biological properties, and 

ratios of Lagrangian to Eulerian timescales depend on the magnitude of velocity fluctuations relative to an evolution speed of 25 

the chlorophyll fields in a manner similar to earlier theoretical results for velocity scales. The results suggest that stirring by 

eddies largely sets Lagrangian time and length scales of chlorophyll anomalies at the mesoscale.  

1 Introduction 

Upper-ocean phytoplankton communities vary on sub-diurnal and sub-seasonal timescales and submesoscale to mesoscale 

spatial scales. Fully capturing this variability is challenging because of the temporal and spatial limitations of different 30 

observational platforms, choices associated with sampling strategies, and data gaps, creating the need to best leverage a 
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variety of complementary observing platforms (Chai et al., 2020). Time derivatives of surface chlorophyll and phytoplankton 

carbon provide valuable estimates of the phytoplankton net specific accumulation rate (r) that reflect biological growth and 

loss processes as well as physical advection and mixing (e.g., Behrenfeld et al., 2005). The temporal variability of r from 

Eulerian time series from, for example, a mooring or high-resolution ship observations at a fixed geographic location 35 

necessarily incorporates a variance component from advective and mixing divergence. Similar issues arise in the analysis of 

r from satellite ocean colour data on fixed geographic grids, with the additional complication of temporal data gaps caused 

by satellite orbital dynamics and cloud cover.  

In principle, a Lagrangian or water-parcel following framework isolates net biological growth from horizontal physical 

transport, allowing more direct comparisons to laboratory and mesocosm biological experiments, theory, and food-web 40 

models. Analysis of many Lagrangian series reveals sensitivity of phytoplankton community growth rates to environmental 

conditions experienced (Zaiss et al., 2021), allows for partitioning of chlorophyll (Chl) variance into net community 

production and advective effects (Jönsson et al., 2011), and reveals how dispersion regulates phytoplankton blooming 

(Lehahn et al., 2017). Records from surface or mixed-layer drifters with bio-optical sensors are rare and often of short 

duration (Abbott and Letelier, 1998; Briggs et al., 2018). Alternatively, one can obtain Lagrangian time series by projecting 45 

satellite ocean colour data onto surface trajectories (Jönsson et al., 2009), either those from in situ surface drifters or from 

synthetic particles advected with surface currents from ocean models or satellite altimetry. This approach has yielded 

important insights into the roles of episodic events in controlling net community production in coastal regions (Jönsson and 

Salisbury, 2016) and of submesoscale biophysical dynamics at ocean fronts (Zhang et al., 2019). Nevertheless, it ultimately 

falls victim to the limited spatial information content of any ocean colour product (Doney et al., 2003; Glover et al., 2018).  50 

An alternative, complementary observing strategy involves Bio-Argo floats, a platform experiencing a rapid growth in 

deployments for monitoring ocean biogeochemistry and ecosystems (Claustre et al., 2010; Gruber et al., 2010; 

https://biogeochemical-argo.org/). Bio-Argo floats are like traditional Argo floats but equipped with additional sensors to 

measure variables such as chlorophyll fluorescence, backscatter, and/or nutrient concentrations. Depth resolution of these 

variables in combination with hydrographic variables allows floats to detect rare or small-scale events, such as wintertime 55 

restratification by mixed layer instabilities (Lacour et al., 2017), subduction of particulate organic carbon (Llort et al., 2018), 

and upwelling due to rapid evolution of mesoscale eddies (Ascani et al., 2013). However, formally, Bio-Argo floats are only 

quasi-Lagrangian, reflecting a weighted average of velocities experienced between their parking depth and the surface. To 

properly sample evolution of ocean mixed layer biology, a platform should be nearly Lagrangian with respect to the surface 

flow. Typically, floats profile every few days, meaning they spend most of their time drifting with more sluggish flows at a 60 

parking depth of ~1,000 m. However, when vertical shear is weak or the floats profile more frequently, Bio-Argo floats 

might serve as a viable platform for studying evolution of upper-ocean phytoplankton communities. 

In this paper we seek to understand the Lagrangian statistics (time and length scales) of mesoscale Chl anomalies in a 

subregion of the North Atlantic Ocean and how these depend on the underlying Eulerian statistics of the Chl field and a 

water parcel’s motion. Because Chl is stirred, we first diagnose the Lagrangian-Eulerian statistics of the velocity field. We 65 
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take a trajectory-scale perspective, drawing on earlier theoretical (Middleton, 1985) and observational (Lumpkin et al., 2002) 

studies using the framework of the material derivative to quantify the relative contributions of advective and tendency terms. 

In particular, we characterize the fields by computing integral time and space scales of autocorrelation functions from floats, 

surface drifters, and satellite altimetry fields. We also take a local perspective by constructing a Quasi-Planktonic Index 

(QPI; Della Penna et al., 2015) that quantifies the distance between a float trajectory and synthetic surface trajectories (from 70 

altimetric geostrophic currents) over three consecutive profiles. We combined these two perspectives to highlight quasi-

Lagrangian behaviour of floats (that affects sampling) by weighting their averaged integral time scales by the inverse-

squared median QPI over individual time segments. Similar to the velocity analysis, we compute integral time scales of Chl 

for floats, ocean colour projected onto surface drifter tracks, and Eulerian fixed-location pixels of ocean colour, and evaluate 

them through the framework of the material derivative. Scales of Chl and velocity are compared to assess correspondence. 75 

Although submesoscale variability in Chl is of leading importance (Lévy et al., 2018), we focus on mesoscale variance partly 

because of data restrictions: there is a trade-off between resolving more variance and dealing with increased gaps when 

working with a finer ocean colour product, and, given the relatively sluggish motion of floats, they may not capture the full 

spectrum of submesoscale processes. Nevertheless, combined Lagrangian-Eulerian statistics are unknown at any scale and 

new findings are still being gleaned about geostatistics of the mesoscale Chl field and their origin (Eveleth et al., 2021). Our 80 

analysis builds on recent regional studies of the spatial geostatistics of satellite ocean colour (Eveleth et al., 2021; Glover et 

al., 2018) and the seasonal to annual variations in phytoplankton chlorophyll, carbon biomass, and net primary production 

from Bio-Argo floats (Yang, 2021; Yang et al., 2020). 

2 Framework 

2.1 Material derivative and integral scales 85 

The material derivative of a scalar such as Chl(x(t), t) is 

  Advection
Lagrangian tendency Eulerian tendency

Chl Chl
Chl

D
S DIFF

Dt t


    
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u          (1) 

where DIFF represents turbulent diffusion, S(x(t), t) represents sources and sinks along trajectory x(t), and d dt x u  

(Chenillat et al., 2015; Jönsson et al., 2011; van Sebille et al., 2018; d’Ovidio et al., 2013). If Chl were conserved, S = 0. 

When u is inferred from observational data (e.g., a drifter tractory), a water parcel’s motion deviates from the trajectory of an 90 

infinitesimally small particle of tracer so that DIFF encompasses unresolved advection that manifests as a diffusion term and 

is in general nonzero (van Sebille et al., 2018). A scalar or velocity field exhibits decorrelation in space and time, and from 

an Eulerian perspective, decorrelations of velocity can be quantified with integral scales Te and Le. A Lagrangian sampling 

platform moving with the surface flow will experience spatial and temporal velocity decorrelations simultaneously, mixing 

the field’s temporal and spatial information, and so will tend to exhibit a shorter decorrelation time compared to an Eulerian 95 
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observer (Tl ≤ Te). To model dispersion of particles advected by the flow u , one can assume the variances of Chl are equal 

in each frame so that the ratio of the advective and tendency terms in Eq. (1) scales as: 

*

' ' '

1 /
e

e e e

u L u u

T L T c
              (2) 

where u’ is a scale for the mesoscale eddy velocities, Le and Te are Eulerian length and time scales for the mesoscale velocity 

field, and c* = Le / Te is an evolution speed for the eddy field.   100 

Philip (1967) argued that the quantity Tl / Te, a measure of the difference in Lagrangian and Eulerian perspectives, should 

depend only on α. For a homogenous and stationary 2-D eddy field, Middleton (1985) assumed certain functional forms for 

the Eulerian energy spectrum and assumed the distribution of parcel displacements was stationary and Gaussian to determine 

the relations  

  1/22 2
l eT T q q 


              (3a) 105 

  1/22 2
l eL L q q 


              (3b) 

where 8q  . To interpret their meaning, consider the case where 1  . In this case, the tendency term dominates the 

advective term, or equivalently, the platform is advected more slowly than the eddy field evolves and the velocity 

decorrelation is determined by Eulerian temporal evolution (Tl ≈ Te). This renders the platform like a mooring, and this 

regime is referred to as the “fixed-float” regime (terminology as in LaCasce, 2008). On the other hand, suppose that 1  . 110 

In that case, the advective term dominates, or equivalently, the platform is advected across eddies faster than they evolve and 

the Lagrangian decorrelation of velocity is determined by the temporal imprint of spatial decorrelations (Tl < Te). This is 

referred to as the “frozen-turbulence” regime (as in LaCasce, 2008), related to Taylor’s hypothesis (Taylor, 1938).   

Lumpkin et al. (2002) applied Eq. (3) to surface drifters and deep isopycnal floats, computing Lagrangian integral time 

scales from those platforms and computing Eulerian integral time scales from an ocean model. They found the theoretical 115 

model to hold well: the deep floats fell in the “fixed-float” regime and the surface drifters spanned the two regimes, with 

spatial variability accounted for by variability in the kinetic energy of major current systems in the North Atlantic. Since 

Bio-Argo floats profile, it is not clear what regime they should experience. Our first step is to compute Lagrangian velocity 

scales (Tl, Ll) from trajectories of the Bio-Argo floats and drifters and to evaluate the relations in Eq. (3), where Eulerian 

velocity scales (Te, Le) are calculated from maps of surface geostrophic velocity anomalies from satellite altimetry. If the 120 

flow is dominated by mesoscale balanced motions, flows at parking depth should mimic those at the surface with a reduction 

in magnitude (which does not affect decorrelation time) and a slight decay of high wavenumbers (Klein et al., 2009; Lapeyre 

and Klein, 2006), allowing geostrophic Eulerian scales to be compared to both drifters and floats.  

Such an analysis yields a statistical representation of how an observer moves horizontally and effectively quantifies particle 

dispersion governed by advection; however, it does not directly inform us of the statistics of how a tracer like Chl is sampled 125 

by the moving platform. To do that, we analyze a scaling of the material derivative using time and length scales of Chl, 
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which have effects of turbulent diffusion and sources/sinks built in. While there is not a theoretical relationship equivalent to 

Eq. (3) for tracers and no a priori relation between Tl, Chl and Te, Chl, we first explore the equivalent parameter spaces 

 ,Chl ,Chl Chll eT T F              (4a) 

   ,Chl ,Chl Chl Chl Chll eL L G F              (4b) 130 

where *
Chl Chl'u c   and *

Chl ,Chl ,Chle ec L T . We envision Eq. (4) as a parallel to Eq. (3) with equivalent interpretation, 

namely a quantification of how Lagrangian and Eulerian time and length scales of Chl vary as a function of how turbulent 

velocity fluctuations relate to evolving space-time Chl fields. Additionally, we then admit a scalar variance (angle brackets 

indicate standard deviation) that may vary by reference frame to obtain the scaling 

space

,Chl ,Chl ,Chl

ChlChl Chl
'l e

l e e

u
T T L

  .           (5) 135 

With this more general approach we assess the relative magnitude of the three scaling terms in Eq. (5), which are from left to 

right the Lagrangian tendency (LAG), Eulerian tendency (EUL), and eddy advection (or stirring; ADV). The Eulerian scales 

are derived from satellite ocean colour, and the Lagrangian scales Chl
l
, , ChllT , and 'u  are derived from floats (Chl 

measured by onboard fluorometer) and drifters (Chl from satellite ocean colour projected onto trajectories). We expect the 

relative magnitudes of the Lagrangian and advective terms to be different between floats and drifters. For both the velocity 140 

and Chl analyses, all necessary scales and the datasets used to estimate them are summarized in Table 1. The methodology 

(integral of autocorrelation function) and datasets are described in Sect. 3.  

 

Scale Definition Source Time window ACF bin 

lT   Lagrangian velocity timescale Floats 
Drifters 

120 day 
120 day 

5 day 
1 day 

eT   Eulerian velocity timescale Altimetry 120 day 1 day 

eL   Eulerian velocity length scale Altimetry N/A 27.8 km 

,ChllT   Lagrangian Chl timescale Floats 
Drifters w/projected ocean colour 
metbio003d segment 
metbio010d segment 

120 day 
120 day 
55 day 
48 day 

5 day 
1 day 
1 day 
1 day 

,ChleT   Eulerian Chl timescale GlobColour pixel time series 365-366 day 1 day 

,ChleL   Eulerian Chl length scale Glover et al. (2018) variogram ranges N/A N/A 

'u   Lagrangian velocity scale Floats 
Drifters 

120 day 
120 day 

N/A 

Chl
l
  Lagrangian Chl scale Floats 

Drifters w/projected ocean colour 
metbio003d segment 
metbio010d segment 

120 day 
120 day 
55 day 
48 day 

N/A 

Chl
e

  Eulerian Chl scale GlobColour pixel time series 365-366 day N/A 
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space
Chl   Spatial Chl scale Glover et al. (2018) variogram relative sills N/A N/A 

Table 1: Overview of the time and space scales and variances, the data sources from which they are calculated, and the bin sizes used for 
the discrete temporal or spatial autocorrelation functions (ACFs). All time scales and time variances are computed from non-overlapping 145 
segments. Length scales for velocity are derived from discrete radial (isotropic) ACFs in 5º x 5º space bins. Length scales for chlorophyll 
(Chl) are derived from the variograms calculated by Glover et al. (2018).  

2.2 Quasi-Planktonic Index (QPI) 

Float velocities are estimated by centered differencing positions of neighbouring profiles. While the preceding material 

derivative analysis provides a holistic summary of how a float samples mesoscale fields over some time window, it is also 150 

useful to obtain a more local measure of the similarity of float and Lagrangian trajectories. We construct a Quasi-Planktonic 

Index (QPI) that quantifies the similarity of the float trajectory to a best-fit synthetic surface trajectory advected by altimetric 

total geostrophic currents. This index is similar to the one developed by Della Penna et al. (2015) but is tailored to evaluate 

the centered difference derivatives. At each time step ti of a float trajectory, we advect a disk of particles of radius 0.3º both 

forwards (to ti+1) and backwards (to ti-1) in time. For each synthetic trajectory we compute the distance between itself and the 155 

true float trajectory and choose the trajectory that minimizes the average distance over the three time steps (ti-1, ti, ti+1), with 

the average distance being the QPI (in kilometres). Full details of the calculation are given in Appendix A. To tie the two 

frameworks together, we hypothesize that a Bio-Argo float with a smaller median QPI over some period of time will behave 

more like a surface drifter, with a larger α and a smaller Tl / Te. 

3 Data and methods 160 

3.1 Study region 

Our study domain approximately corresponds to that of the North Atlantic Aerosols and Marine Ecosystems Study 

(NAAMES) field campaign in the subtropical to subpolar transition region of the North Atlantic Ocean (Behrenfeld et al., 

2019). The domain boundaries were chosen to encompass the full trajectories of the Bio-Argo floats that we analyze. The 

domain includes the typical spatial extent of the North Atlantic spring bloom and includes the high-strain and high-eddy 165 

kinetic energy conditions of the North Atlantic Current sandwiched between more quiescent subpolar and subtropical 

conditions. We tile the domain into 5º x 5º cells as done by Glover et al. (2018) (Figure 1) and compute averaged integral 

scales in each, using satellite pixels or float or drifter segments whose median latitude and longitude reside within.  
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Figure 1: Overview of study domain and float sampling. (a) Time-mean geostrophic eddy kinetic energy from altimetry; (b) Snapshot of 170 
log10(Chl) to convey a typical bloom (June 2002; from GlobColour); (c) Locations of all float tracks; (d) Counts of all profiles (total 
height). Orange region counts profiles with Quasi-Planktonic Index (QPI) < 5 km and blue region those with QPI > 5 km; (e) As in (d) but 
profiles are binned according to season. In panels (a)-(c) we display the 5º x 5º space bins used for computing Lagrangian and Eulerian 
scales. The two bolded bins host the rapidly profiling metbio* float segments that are the subject of further analysis.  

3.2 Data 175 

3.2.1 Floats 

We use data from 13 Bio-Argo floats deployed over four cruises during NAAMES (Figure 1; floats with prefix ‘n’). Most of 

the floats are confined to the high-strain and high-eddy kinetic energy conditions of the North Atlantic Current (Figure 1a). 

In addition to measuring salinity, temperature, and pressure like standard Argo floats, the NAAMES floats measured 

backscatter at 700 nm and chlorophyll fluorescence. Chlorophyll a concentration (Chl) is derived from fluorescence and is 180 

calibrated against discrete HPLC samples and corrected for non-photochemical quenching (Xing et al., 2012). All float data 
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are obtained as L2 data from the University of Maine In-Situ Sound and Color Lab web archive and are distributed as 

profiles with 2-m resolution in the vertical between 0-500 m (4 m between 500-1,000 m). All profile quantities are 

interpolated to a 1-m grid using a cubic hermite interpolating polynomial. The Chl data are quality controlled by the U. 

Maine group. For temperature and salinity, when possible we match the L2 files to profile files in the Argo GDAC and keep 185 

only samples with adjusted profiles with a QC flag of 1 (good), 2 (probably good), 3 (possibly bad after correction; omitted 

for any “Real Time” profiles), 5 (adjusted), or 8 (estimated) prior to interpolating (see Argo Data Management Team, 2019). 

All profiles are visually inspected.  

We include 5 additional floats that were used to inform NAAMES station sampling but were deployed by other projects 

(Figure 1; lovbio* and metbio* floats). Data were obtained as Sprof files from the Argo GDAC and only profiles 190 

overlapping in time with NAAMES were retained. While “Delayed Time” hydrographic profiles were generally available, 

only “Adjusted” Chl profiles were available, meaning only an automated set of quality checks have been applied 

(Schmechtig et al., 2018). Samples with QC flags of 1, 2, 3, 5, and 8 are retained and the profiles are interpolated as with the 

NAAMES floats. Throughout, special attention is paid to brief (~50 day) segments from metbio003d and metbio010d that 

exhibited consistently frequent and shallow profiling as they may exhibit more closely Lagrangian behaviour.  195 

For all floats the mixed layer depth (MLD) is computed as the depth at which the potential density exceeds that at 10 m by 

0.03 kg m-3. To make float-measured Chl consistent with satellite-measure Chl, we construct a single time series with a 

weighted average over one attenuation depth, utilizing the fact that about 90% of the satellite measured Chl signal in the 

open ocean comes from a depth of 1
490Kd  , where 490Kd  is the diffuse attenuation coefficient at 490 nm (Gordon and 

McCluney, 1975). We estimate 490Kd  following Morel et al. (2007) (their equation 8),  200 

 0.6715

490 0.0166 0.0773 ChlKd   ,           (6a) 

where we take [Chl] as the mixed-layer average chlorophyll, and then take a weighted vertical average at each time step as  
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 .        (6b) 

The series is log-transformed and then smoothed with a running 48-hour Hamming window to remove sub-daily variability. 

Float velocities are estimated by centered differencing profile positions and the QPI is calculated for each profile as in 205 

Appendix A.   

3.2.2 Satellite data 

We use the multi-satellite merged altimetry dataset distributed by Copernicus Marine Environmental Services which 

includes daily maps of surface geostrophic velocity and geostrophic velocity anomalies on a 0.25º grid. Geostrophic 

velocities are used for particle advection when computing the QPI and for comparing to effective float or drifter velocities. 210 
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The geostrophic velocity anomalies (from sea level anomalies relative to a long-term mean) effectively isolate the mesoscale 

and are used for computing scales Te and Le. A high pass filter is applied to each anomaly time series by Fourier 

Transforming and zeroing out frequencies lower than (150 days)-1 before inverse Fourier Transforming back to the time 

domain.  

We obtain fields of log-transformed, daily, 0.25º, L3m Chl fields from GlobColour computed from the GSM algorithm and 215 

blending all available satellites. We use a spatially coarse and blended product to maximize data coverage, with the 0.25º 

resolution consistent with our focus on mesoscale variance. All maps are assumed to correspond to 12:00:00 UTC. The time 

domain for all satellite data is January 2003 – December 2016 and approximately follows the Glover et al. (2018) study.  

3.2.3 Drifters 

Six-hourly surface drifter trajectories within the time domain of the satellite data were obtained from the NOAA Global 220 

Drifter Program. The dataset reports velocities obtained by centered differencing positions. To remove the influence of 

inertial oscillations and tides, which can decrease Tl compared to fluctuations due to mesoscale processes, we filter every 

drifter velocity series with an ideal low pass filter by zeroing out all frequencies lower than 2/(3 IP) in the frequency domain, 

where IP is the inertial period corresponding to the trajectory’s median latitude. For series with gaps, the filter is applied to 

individual segments so long as they are longer than 20 days. Finally, the filtered time series are subsampled once per day: at 225 

00:00:00 UTC for comparison with the altimetry fields or at 12:00:00 UTC for comparison with the ocean colour fields. We 

construct Lagrangian time series of Chl by bilinearly interpolating the daily mesoscale Chl maps onto the subsampled drifter 

returns.  

3.3 Subtrahends for chlorophyll 

A subtrahend is a field to be subtracted from another. To isolate mesoscale Chl variability, all Chl integral scales are 230 

computed from anomalies relative to one of two Chl subtrahends that we construct: a smoothed space-time running filter or a 

climatology. More details of the methodology and an example time series are given in Appendix B. 

The first subtrahend (“smoothed”) is meant to replicate that used by Glover et al. (2018) so that we can obtain Lagrangian 

and Eulerian time scales consistent with their Eulerian space scales. All GlobColour space-time fields are convolved with a 

3-D filter defined as a 31-day Hamming window in time and a 2-D Gaussian in space with a 1º full-width-half-maximum 235 

and a 2º cutoff. For drifters, the anomalies are projected onto the drifter tracks. For floats, we perform a weighted running 

average of each float Chl series with weights defined by a 31-day Hamming window. The objective of the space-time 

filtering in Glover et al. (2018) was to isolate mesoscale (and any resolved submesoscale) variability signals (anomalies) 

from the lower frequency seasonal and geographic patterns of bloom formation and decline that were meant to be captured in 

the subtrahend. However, the short 31-day time window may have the undesirable effect of retaining some of the mesoscale 240 

signal in the subtrahend, instead isolating faster processes in Chl anomalies. Yang et al. (2020) found that phytoplankton 

accumulation rates r are typically one to two orders of magnitude smaller than growth rates so that intraseasonal r-1 is 
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generally O(10 days). Similar physical time scales are found for lifetimes (weeks; Chelton et al., 2011; Gaube et al., 2014) 

and inverse growth rates (days to weeks; Smith, 2007) of energy-containing mesoscale eddies.  

Given those concerns, the second subtrahend is meant to strictly isolate anomalies from a repeating annual cycle 245 

(“climatology”). All GlobColour space-time fields are “stacked” by day of year in a 4th dimension (for example, January 1 of 

every year is regarded as having the same time coordinate) and convolved with a 4-D filter defined as a 31-day-of-year 

Hamming window in time, a 2-D Gaussian in space with a 1º full-width-half-maximum and a 2º cutoff, and a boxcar 

function (equal weights) across years, yielding a set of 366 maps. For drifters, the anomalies are projected onto the drifter 

tracks. For floats, the subtrahend is projected onto the float tracks, regressed against float data to account for different data 250 

dynamic ranges, and differenced. 

3.4 Integral time scales 

Our goal is to obtain estimates of the Lagrangian and Eulerian integral time scales of velocity and Chl representative over a 

5º x 5º bin for each measurement platform (Table 1). For all platforms (floats, drifters, satellite-derived fields), all individual 

time series of variable y(t) (zonal [u] or meridional [v] velocity or Chl anomalies) are broken into 120-day segments (365-255 

day for Eulerian ocean colour) and each segment is prewhitened, either by removing the scalar mean (Chl anomaly series) or 

a linear trend line fit by regression (velocity series), creating y’(t) with zero mean. The latitude-longitude coordinates for 

each time series segment are defined as the median latitude and longitude over the segment length for drifting platforms 

(float, drifters) or as the pixel latitude and longitude.  

Integral time scales are estimated from autocorrelation functions (ACF). For zero-mean data, the discrete autocovariance 260 

function (ACVF) at lag τ is 

        
1

1
' '

N

k kk
C y t y t

N

 
 

              (7) 

where N(τ) is the number of data points in 'iy  separated by  1n n       . To arrive at an ACF,  C   needs to be 

normalized by the variance, which explicitly is   20 'iC y . However, for unevenly spaced (equivalently gapped) data, 

dividing by 2'iy  can lead to ACF values greater than 1. Because 'iy  is stationary,    2 2 2' ' ' ( )i i iy t y t y t   and the 265 

normalization issue can be avoided by dividing  C   by a measure of the variance using only the data points that went into 

the calculation at lag τ,  

     R C J               (8a) 

where  
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  .        (8b) 270 
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At this point, we could obtain the integral scale T by integrating  R   to the lag of its first zero crossing, which for a 

discrete ACF is  
0

T R
 

 


    . Applying this method to all segments i from all time series in some space subset I (e.g., a 

5º x 5º bin), we could then obtain average scales T  by averaging estimates from all i I . An alternative approach to obtain 

a spatially averaged scale would be to first construct a single composite ACF that is representative of I and then integrate 

that single ACF to its first zero crossing. To construct such an ACF, we use pairs of points from all locally prewhitened 275 

segments  'iy t  to construct a composite      c c cR C J    where 

 
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
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   
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   


 .       (9b) 

For this composite ACF,  
0

c cT R
 

 


    . For any dataset involving satellite ocean colour, cT  must be used due to the 

large number of gaps. For evenly spaced data sets we find cT T , but cT  can be quite different from T  for the floats with 280 

T  biased larger. This is because T  weighs each segment i equally while segments with shorter median Δt between profiles 

contribute more to  cR   than do those with a longer median Δt by virtue of offering more data pairs. In this regard,  cR   

is a better estimate of the ensemble ACF and cT  a better estimate of the ensemble integral scale. However, there is value in 

continuing to use T  when possible since this reverse order of operations allows us to construct average scales weighted by 

(QPI)-2, allowing us to gauge in parameter space how a smaller median QPI over the window size affects the turbulence 285 

regime experienced by the floats.  

All time scales analyzed in this study are derived by averaging in space (from integrating Eq. (8) and averaging), except any 

scales involving satellite ocean colour, where large numbers of gaps require using space-composited ACFs (from integrating 

Eq. (9)). Each method uses all segments in the 5º x 5º space bins depicted in Fig. 1. Velocity time scales are computed 

separately for each component (zonal and meridional) before taking  , ,0.5l l u l vT T T   (similar for eT ). Velocity standard 290 

deviations are computed by evaluating the segment standard deviation of each component, averaging them over all segments 

in a space bin to yield u  and v , and then taking  ' 0.5 u vu    . Finally, Lagrangian length scales are computed by 

multiplying together Lagrangian time and velocity scales as 'l lL u T  or , Chl , Chl'l lL u T .   
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3.5 Integral length scales 

There are 20 x 20 altimetric geostrophic velocity anomalies per 5º x 5º space bin, per map. For each space bin we subtract 295 

from all points their scalar spatial mean (yielding  'y r ) and compute the distances between all possible pairs of points to 

construct a radial (isotropic) ACF for space lag d at time t,  

     R d C d J d             (10a) 

where 

   
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1
( ) ' '

( )

N d

k k
k

C d y r y r d
N d 

              (10b) 300 

and  
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 
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N d N d
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J d y r y r d
N d  

   
    

      
  .        (10c) 

R(d) is integrated in the same manner as R(τ) to obtain an integral length scale L. This is repeated for one map per month 

over the study period (taken as the 15th of each month) and scales from each map are averaged to obtain ,e uL  and ,e vL . As 

with time scales, scales for velocity are defined as the average of zonal and meridional scales,  , ,0.5e e u e vL L L  .  305 

For computational reasons, our estimates of Le,Chl in each space bin come directly from the variograms calculated from daily, 

mesoscale-isolating MODIS fields by Glover et al. (2018). While their analysis used variograms to interpret scale, it is easy 

to show (Appendix C) that a measure mathematically identical to integrating the ACF to its first zero crossing can be derived 

from the variogram parameters. To match the length scales defined by Middleton (1985), all Eulerian integral length scales 

(velocity and Chl) are multiplied by 2. 310 

3.6 Chl frequency spectra 

Due to limitations of the data, ACF-derived scales might be biased large (float scales due to large lag bins necessary for 

uneven sampling; Table 1) or short (ocean colour scales due to poor intra-segment estimates of the mean for sparse 

segments). Because the power spectrum P(f) is the Fourier Transform of the ACF, a time series with an exponential ACF has 

power spectrum 315 

 

1

22

1
( )

2

T
P f

T f 







,            (11) 

which depends only on decorrelation time T. This spectrum is characterized by a 0f  power law at low frequencies and 2f   

power law at high frequencies, with   1
2 T 

 setting the transition frequency. For an independent measure of the power 

spectrum (that does not rely on our estimated ACFs), spectra will be calculated on all Chl time segments (same segments 
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used for ACFs) using the Lomb-Scargle method (Glover et al., 2011). The frequencies evaluated are the equivalent of the 320 

Fourier harmonics for the segment length and spectral estimates are retained for 1 2f t  , which is an effective Nyquist 

frequency based on the average separation between data points over the segment. For each platform, valid individual spectra 

are averaged together (ocean colour segments with at least 50 % good samples; float segments with at least 24 profiles).  

4 Results and Discussions 

4.1 Velocity analysis 325 

4.1.1 Quasi-Planktonic Index, QPI 

The QPI methodology is illustrated in Fig. 2, where we display two examples when a float was located near straining 

maxima at the intersection of attractive and repulsive flow features. These are regions of rapid tracer stretching as evidenced 

by the elongation of synthetic particle clouds and represent a good challenge for a profiling float to keep up with surface 

flows. In the case depicted in Fig. 2a where the time spanned by the three adjacent profiles is only 2 days, the QPI is small at 330 

4.49 km. The distribution of QPI for all float profiles is continuous and skewed long, with a mode centered at about 0-5 km 

(Figure 3a). The net velocities experienced by the floats (by centered differencing their positions) are well-correlated to the 

surface geostrophic velocities projected onto the float track (zonal and meridional correlation coefficients of 0.79 over all 

floats) but are systematically smaller by a factor of 2.3 (2.4) for u (v). The samples with QPI < 5 km (a threshold for display 

purposes, chosen as a compromise between ensuring a small QPI and having a usable amount of data) tend to fall closer to a 335 

one-to-one line (‘x’ symbols in Fig. 3b). The good correlation suggests that the deeper mesoscale flows that the floats feel 

are equivalent barotropic and the nature of their deviations from a surface Lagrangian trajectory are primarily in magnitude 

of displacement, not in direction. For comparison, net drifter velocities have a slope of nearly 1 with respect to surface 

geostrophic currents (Figure 3c) but are no better correlated to them (zonal correlation coefficient 0.75; meridional 

correlation coefficient 0.72). Scatter about the one-to-one line is partly due to ageostrophic effects.  340 

The two examples in Fig. 2 differ markedly in their QPI, with a derivative time window increase from two to four days 

corresponding to a QPI that is ~6 times larger and a float trajectory that is qualitatively different from surface trajectories. 

The profiling interval exhibits strong control on QPI, with QPI increasing nonlinearly with derivative time window (Figure 

4). This relationship represents a combination of greater time for the float to experience more sluggish velocities at parking 

depth (seen in Fig. 3b), greater time afforded to integrate vertical shear, and the manifestation of two-particle dispersion 345 

statistics under quasi-geostrophic turbulence due to mismatch between float and synthetic particle initial locations.  
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Figure 2: Example true (squares) and shadow (circles) float trajectories for (a) small Quasi-Planktonic Index (QPI) and (b) large QPI. In 
both panels, altimetric geostrophic currents are shown as vectors, initial particle locations are black dots, and final forward (backward) 350 
particle locations are blue (orange) dots. QPI and derivative time window indicated in lower right corner.  

 

Figure 3: Overview of float velocities. (a) Histogram of Quasi-Planktonic Index (QPI) for all float profiles. Black line indicates 5 km. (b) 
Scatter plot of effective float velocity (centered difference position) against the total surface geostrophic velocity projected onto the float 
track. Blue (orange) dots are for zonal (meridional) velocity and similarly coloured x-symbols are for profiles with QPI < 5 km. Solid line 355 
is one-to-one line and dashed (dotted) line is least-squares regression line for zonal (meridional) velocity. (c) As in (b), but for drifters.  
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Figure 4: Scatter plot of Quasi-Planktonic Index (QPI) as a function of derivative time window (time spanned by three profiles) for all 
float profiles (dots) along with box and whisker plots indicating 2.5, 25, 50, 75, and 97.5 percentiles. Bins are [0, 1) days, [1, 2.5) days, 
and then span 5 days after that.  360 

4.1.2 Integral time scales 

Evaluating Tl as a function of u’ (Figure 5a), drifters (open circles) and floats (solid circles) largely cluster into two separate 

regions, with drifters exhibiting greater velocity variance and a shorter time scale (~3 days compared to the ~5 days of 

floats). However, for space bins with multiple float segments, when we weight the individual scales by QPI-2 (where the QPI 

is the segment-median; crosses connected by grey lines), we see the cluster of float points moves towards the cluster of 365 

drifter points (shorter Tl and larger u’). In particular, the two rapid time sampling metbio* float segments (triangles in Fig. 5) 

reside even closer to the cluster of drifter points than do the QPI-2-weighted values from their host 5º x 5º bin. Nevertheless, 

they do not exactly reach the drifter scales of the host bin (open blue and orange circles). Lagrangian integral length scales 

(Figure 5c) generally exhibit a similar clustering of points with floats having shorter length scales and with the QPI-2-

weighted points moving towards the cluster of drifter points.  370 

A similar relationship is found when examining l eT T  as a function of *'u c  (Figure 5b). There are two clusters of points 

(floats and drifters) which each reside on the theoretical curve of Middleton (1985), and the QPI-2-weighted float values 

move along the curve towards the drifter values. The same is generally true for l eL L  as a function of *'u c  (Figure 5d). 

These results suggest that drifters are generally in the “frozen-field” regime of turbulence while floats are primarily in the 

“fixed-float” regime, effectively acting as moorings. We found the floats to exhibit a continuum of behaviour, with segments 375 

characterized by a smaller median QPI (trajectories more similar to a surface Lagrangian trajectory) residing closer to 

drifters in l eT T  and l eL L  versus *'u c  space. Overall, this is consistent with the currents experienced by the floats being 

just as well-correlated to surface geostrophic currents as are the currents experienced by surface drifters (Figure 3), 

suggesting that eT  calculated from mesoscale geostrophic velocity anomalies derived from altimetry is a good estimate for 

both the surface and deep flow and the mesoscale currents are generally equivalent barotropic with only a small horizonal 380 
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wavenumber attenuation over depth. Floats in general traverse the eddy field more sluggishly than a surface parcel (but in a 

manner still aligned with the surface flow) and this will impact how they sample a reactive tracer.  

 

Figure 5: Scatter plots of velocity time and length scales for Lagrangian ( lT  and lL ) and Eulerian ( eT  and eL ) frames. (a) lT  as a 

function of scale for the mesoscale eddy velocities, u’; (b) l eT T  as a function of *'u c , where *c  is the evolution speed for the eddy 385 

field, *
e ec L T ; (c) lL  as a function of u’; (d) l eL L  as a function of *'u c . Hollow (filled) circles come from all surface drifters (all 

Bio-Argo floats) in a 5º x 5º bin and crosses weight the Bio-Argo float-derived scales by QPI-2, with light grey lines connecting the 
weighted and unweighted values. Coloured triangles come from two time segments from two floats (metbio003d – orange; metbio010d – 
blue) with frequent and shallow profiling. The float and drifter circles coloured in the same manner are scales corresponding to the 5º x 5º 
bins hosting those two segments. Solid line indicates the theoretical relation of Middleton (1985).  390 
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Figure 6: Scatter plots of chlorophyll time and length scales for Lagrangian ( ,ChllT  and ,ChllL ) and Eulerian ( ,ChleT  and ,ChleL ) frames. (a) 

,Chl ,Chll eT T  as a function of *
Chl'u c  from anomalies relative to smoothed subtrahend, where u’ is scale for the mesoscale eddy velocities 

and *
Chlc  is the evolution speed for the chlorophyll field, *

Chl ,Chl ,Chle ec L T ; (b) ,Chl ,Chll eL L  as a function of *
Chl'u c  from anomalies relative 

to smoothed subtrahend; (c) and (d) are as in (a) and (b) but for anomalies relative to climatology subtrahend. Symbols are identified in 395 
legend and are exactly as in Fig. 5. Grey curves are from Eq. (12) with Chl 2q   and s = 2. 

4.2 Chlorophyll analysis 

4.2.1 Chlorophyll scales relative to smoothed subtrahend 

Relative to the smoothed subtrahend, both floats and drifters experience *
Chl' 1u c   even though drifters move faster than 

floats, so the Chl field is evolving faster than either platform moves (Figure 6). This suggests that the primary balance in the 400 

material derivative should be an approximate correspondence of the Eulerian and Lagrangian tendency terms, EUL ≈ LAG 
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(Eq. (5)). We see that this is the case, for example, for drifters with ocean colour in the two space bins that host the rapidly 

sampling metbio* segments (Figure 7a-b; see locations as bolded bins in Fig. 1). The eddy advection term (ADV) is about 25 

% the magnitude of either EUL or LAG and is presumably less important. Drifters sample EUL ≈ LAG while floats sample 

LAG < EUL, except for the rapidly profiling metbio* segments during which the float is behaving most like a drifter and 405 

EUL ≈ LAG. Since the primary balance is EUL ≈ LAG, ,Chl ,Chll eT T  for drifters is approximately 1 in every space bin (Figure 

6a). The ratio is likely also ~1 for floats, but our ratios are biased large because coarse float time sampling demands using 

larger lag bins in the ACF (Table 1), causing structure of the ACF at small lag to be poorly resolved. We know that the float 

scales are biased large because ,Chl ,Chll eT T  must approach 1 as ' 0u   (the observer is stationary), but that is not the case. 

Averaged float scales weighted by QPI-2 are shorter, approaching drifter with ocean colour scales. For both platforms, 410 

because EUL ≈ LAG, ,Chl ,Chl 1l eL L   everywhere (Figure 6b). That is because neither platform has enough time to traverse 

, ChleL  before Chl becomes decorrelated. This is corroborated by counting the number of ocean colour pixels traversed by a 

drifter over , ChllT , which is ~1. The composite frequency spectra for both platforms (Figures 8a-b) reveal good agreement 

with the model of an exponential ACF with an e-folding time , ChllT  between 0.5 and 1 days (dashed reference curves). The 

similar decorrelation time for both platforms is consistent with the interpretation that EUL ≈ LAG relative to this subtrahend 415 

(the different motions of the two platforms do not matter) and is consistent with our interpretation that the float , ChllT  

computed from the ACFs are likely biased large and in reality are closer to the , ChllT  ~ 1 day of drifters with ocean colour.  

 

Figure 7: Magnitude of the material derivative terms for log-transformed surface chlorophyll using Eq. (5) in the two space bins hosting 
the rapidly profiling metbio* segments. The Eulerian tendency (EUL, bluish green) term is plotted on the left of each panel, and the 420 
Lagrangian tendency (LAG, blue) and eddy advection (ADV, orange) terms are displayed separately for drifters, floats, floats with average 
scales weighted by QPI-2, and the metbio* segments themselves. Panels (a) and (b) are calculated from Chl anomalies relative to the 
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smoothed subtrahend and panels (c) and (d) are calculated from Chl anomalies relative to the climatological subtrahend. Panels (a) and (c) 
are for bin hosting the metbio003d segment and panels (b) and (d) are for bin hosting the metbio010d segment.  

4.2.2 Chlorophyll scales relative to climatological subtrahend 425 

Relative to the climatological subtrahend, floats experience *
Chl' 1u c   while drifters experience *

Chl' 1u c  . So, drifters 

sample Chl space-time fields by traversing mesoscale Chl structures of diameter , ChleL  while floats sample Chl somewhat 

more like a fixed observer (Figure 6c-d). Drifters measure ,Chl ,Chl 1l eT T   while floats measure ,Chl ,Chl 1l eT T  . Note that this 

distinction between platforms is similar to what we saw regarding how they each sample the velocity field (compare Figures 

5b,d and 6c-d), the meaning of which will be discussed in more detail later. With *
Chl'u c  for drifters (and 'u  occasionally 430 

close to *
Chlc  for floats), we expect effects of advection to be important. We see this to be the case, for example, in the two 

space bins hosting the rapidly profiling metbio* segments (Figures 7c-d). For drifters with ocean colour, EUL ≈ ADV and 

each is about 50-60 % of LAG in those space bins, confirming that all terms are important. For floats, the ADV term is 

smaller than it is for drifters (because floats have smaller velocity variance) except for the rapidly profiling metbio* 

segments which have ADV close in magnitude to drifter ADV. The LAG term for floats tends to be smaller than for drifters, 435 

except for the rapidly profiling metbio* segments, for which the term is large like it is for drifters.  

Since EUL ≈ ADV for drifters, ,Chl ,Chl 1l eT T  . This is because a portion of the Lagrangian Chl signal is decorrelated by the 

platform traversing lateral Chl gradients. For floats, because ADV is less important and LAG is reduced, ,Chl ,Chl 1l eT T  , 

more closely approximating an Eulerian observer. Consistent with the importance of advection, drifters with ocean colour 

tend to experience ,Chl ,Chl 1l eL L   or even greater than 1 in some space bins (Figure 6d). Drifters can experience 440 

,Chl ,Chll eL L  because Lagrangian trajectories are often aligned with isolines of tracer (Lehahn et al., 2007), hence drifters do 

not move directly down-gradient. Floats, on the other hand, tend to sit on a linear one-to-one line in ,Chl ,Chll eL L  versus 

*
Chl'u c  space (Figure 6d). This is because EUL, not ADV, plays a primary role in the decorrelation since floats move slower 

than the Chl field evolves, except for the fastest moving floats which plateau where the drifter points do in Fig. 6d. Note that 

averaged scales weighted by QPI-2 move towards drifter scales in both ,Chl ,Chll eT T  and ,Chl ,Chll eL L  versus *
Chl'u c  space 445 

(Figure 6c-d), with increased velocity variance and generally (but not exclusively) shorter , ChllT  and longer , ChllL . Note also 

that float-based results are not sensitive to ACF methodology (use of Eq. (8) or Eq. (9); Appendix D).  

The frequency spectra (Figure 8c-d) deviate from the theoretical power spectra corresponding to an exponential ACF for any 

value of , ChllT  (curves with , ChllT = 5 and 10 days are shown, approximately bracketing the calculated drifter and float scales 

relative to this subtrahend) and instead take on an approximate 1f   slope over calculated frequencies. Given the role of 450 

ADV relative to this subtrahend, one possibility is that the Lagrangian 1f   slope represents a manifestation of an Eulerian 
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wavenumber 1k   slope associated with a passive tracer under QG turbulence (Smith and Ferrari, 2009) as the platform 

traverses the approximately frozen field, but this cannot be confirmed. Regardless, an equal spectral slope for both platforms 

is not inconsistent with our ACF-derived time scales but does mean that we cannot use the spectra to corroborate them.  

 455 

Figure 8: Averaged Lomb spectra for chlorophyll from all valid float (left) and drifter (right) segments as defined in Sect. 3.6. Spectra in 
top (middle) row are calculated from Chl anomalies relative to the smoothed (climatological) subtrahend. Bottom row gives counts of 
valid estimates per frequency. For float spectra, bold black line is the space-averaged spectrum while orange (blue) spectrum is from the 
individual metbio003d (metbio010d) segment. Dotted reference spectra are theoretical spectra for an exponential autocorrelation function 
(ACF) with decorrelation time Tl as labelled. Dashed spectra in middle panels give a -1 power law slope.  460 

4.3 Biophysical interpretation of time and length scales 

To interpret the meaning of these Chl scales, we compare them to the velocity scales. If stirring by the mesoscale velocity 

field is a primary driver of Chl variability, we expect the two variables to have similar Eulerian scales. Beginning with the 
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smoothed subtrahend, although the Eulerian space scales of Chl and velocity are similar (Figure 9b), the Eulerian time scales 

are unrelated (Figure 9a; squares), with , ChleT  fixed at ~2 days but eT  spanning ~5-12 days. Along a trajectory, Chl 465 

decorrelates faster than velocity (Figure 9c) and over a shorter distance (Figure 9d) for both platforms, with floats 

experiencing longer decorrelation times of each variable but covering a shorter distance before becoming decorrelated. 

Eulerian velocities are calculated from satellite altimetry using a geostrophic balance, therefore containing mesoscale and 

larger balanced flows, and we note that Lagrangian velocities are from drifter trajectories that were filtered in time to remove 

fluctuations shorter than 1.5 inertial periods, a procedure that presumably removes primarily unbalanced motions. Hence all 470 

velocity signals are likely dominated by balanced, mesoscale flows. The short time window of the Chl subtrahend (31 days) 

means that only rapid fluctuations (relative to inverse growth rates of mesoscale baroclinic instability or typical inverse 

phytoplankton accumulation rates) are retained. While tight coupling between division and loss rates tends to keep 

accumulation rates r low, abrupt changes in division rates due to rapid changes in environmental conditions can cause large-

amplitude fluctuations in r (Behrenfeld and Boss, 2018). Field studies in the subpolar North Atlantic observed near-surface 475 

accumulation rates of 0.47 day-1 up to 0.77 day-1 (Graff and Behrenfeld, 2018), corresponding to time scales of 1.3-2.1 days. 

Dynamically, submesoscale processes have length scales on the order of the deformation radius of the mixed layer (O(1 km)) 

and time scales on the order of an inverse inertial period (O(1 days)) (Mahadevan, 2016), scales smaller than an ocean colour 

pixel and shorter than those of mesoscale dynamics. Hence, the EUL ≈ LAG balance for Chl relative to this subtrahend can 

be taken as dominance of ocean-colour pixel-scale variability in the retained signal due to either submesoscale processes or 480 

to biological sources/sinks.  

For the climatological subtrahend, the Eulerian length scales are the same as relative to the other subtrahend, so again 

, Chle eL L . However, for this subtrahend, , Chle eT T  (Figure 9a; circles). This is consistent with mesoscale dynamics setting 

Eulerian statistics of both velocity and Chl. Along a trajectory, Chl decorrelates more slowly than does velocity and Chl is 

correlated over a longer distance than is velocity. The Lagrangian time scale for floats is greater than it is for drifters because 485 

the reduced importance of the ADV term means Chl properties are retained longer. Equivalence of Eulerian length and time 

scales of velocity and Chl suggests that Chl scales are also dominated by balanced mesoscale dynamics, via advection, and a 

physical interpretation relating mesoscale stirring to Lagrangian Chl scales will be presented in Sect. 4.5. Because lateral 

motion and the ADV term are important, the differing motions of floats and drifters means that they each sample different 

Chl signals relative to this subtrahend, with floats behaving somewhere between an Eulerian and a surface-Lagrangian 490 

observer. The exception is the two metbio* segments which sample Chl fields much like a surface-Lagrangian observer 

would.  
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Figure 9: Time and length scales of chlorophyll (Chl) and velocity. (a) Eulerian time scales ( ,ChleT  versus eT ); (b) Eulerian length scales (

,ChleL  versus eL ); (c) Lagrangian time scales ( ,ChllT  versus lT ); (d) Lagrangian length scales ( ,ChllL  versus lL ). Open circles are for 495 

drifters, filled circles are for floats, and crosses are for floats weighted by QPI-2 where all scales are calculated from Chl anomalies relative 
to the climatology subtrahend. Open squares are for drifters, filled squares are for floats, and stars are for floats weighted by QPI-2 where 
all scales are calculated from Chl anomalies relative to the smoothed subtrahend. Dotted lines are one-to-one.  

4.4 Comparison with earlier estimates and a role for biology 

Few studies have investigated Eulerian time scales of phytoplankton and even fewer have addressed Lagrangian time scales. 500 

Further, comparison of results across studies is complicated by myriad choices of data processing (e.g., subtrahends), 

intrinsic data resolution, and methodology (ACF or otherwise). In a series of studies, Denman and Abbott (1988, 1994) 

analyzed a scale-dependent decorrelation time by assessing the spatial coherence of ocean colour images separated in time 

and found Eulerian decorrelation times are generally less than about a week, being longer for 50-100 km wavelengths and 

shorter for 25-50 km wavelengths. Wavelengths smaller than 25 km are decorrelated after about a day. Comparing cross-505 
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coherence of Chl and SST they conclude that physical stirring is the major driver of Chl variability at the mesoscale, a 

conclusion shared by Glover et al. (2018). In a more recent study, Kuhn et al. (2019) assessed Eulerian temporal 

decorrelation of numerically modelled biomass and found decorrelation times to generally be about 15 days, longer in 

regions of lower eddy-kinetic-energy and for larger phytoplankton size classes. Their longer decorrelation times may be 

partially due to analyzing three-day averaged model fields. Our , ChleT  fall in this broad range of values. The stark difference 510 

of values relative to the two subtrahends may be partially explained by the wavelength-based analyses of Denman and 

Abbott (1988), whereby the smoothed subtrahend is emphasizing pixel-scale (~25 km) variability, contributing to the short 

(~1-2 day) , ChleT  compared to the climatology subtrahend (~5-12 day).  

Estimates of , ChllT  are rarer. Abbott and Letelier (1998) used bio-optical surface drifters in the California Current and found 

, ChllT  and lT  in the open ocean are both about 2.5 days while , SSTlT  is closer to 7 days, causing them to question the degree 515 

to which Chl behaves as a passive tracer. Boss et al. (2008) find much longer , ChllT  at about 2 weeks using a profiling float. 

We also find lT ~ 2-3 days for drifters (longer for floats) but , ChllT  is systematically larger or smaller depending on 

subtrahend (note Abbott and Letelier detrended float segments while Boss et al. only removed a scalar mean, the latter 

observing that seasonality dominated their longer decorrelation time). In a series of studies, Jönsson et al. (2009, 2011) used 

synthetic particle trajectories and satellite ocean colour to quantify terms of the material derivative. They found the advective 520 

term is generally comparable in magnitude to the Lagrangian tendency and must be included. There are important 

differences in the magnitude and sign of each term, where a near-zero Eulerian tendency can be explained by a large 

Lagrangian tendency countering an advective term.  

Analyses of Lagrangian series point to an importance of biological sources and sinks. Advection of phytoplankton across 

spatial gradients of environmental conditions will affect dominant phenotypes (Lévy et al., 2014), with the relative time 525 

scales of physical parameters and physiological acclimation governing species succession (Zaiss et al., 2021). The LAG term 

is generally the largest term in the scaling of Eq. (5) (Figure 7), meaning turbulent diffusion or sources and sinks of Chl are 

important. Relative to the smoothed subtrahend, as discussed earlier, the appropriate space scales are not resolved and an 

approximate balance of LAG ≈ EUL is achieved. But relative to the climatological subtrahend, the magnitudes of LAG and 

ADV tend to scale with each other, being largest for drifters and the metbio* segments and smallest for the unweighted float 530 

segments (Figure 7). By moving slower than phytoplankton patches, floats underestimate sources and turbulent diffusion 

(reducing LAG) and, that being so, there is less Chl variance apparently advected (reducing ADV, where we interpret 

platform speed as the typical speed of velocity fluctuations). Note that this is consistent with the interpretation posed in Sect. 

4.3: effects of turbulent diffusion and sources and sinks are contained in the information content of ocean colour space-time 

fields and will project onto an Eulerian tendency or an advective term depending on the relative rates at which a 535 

phytoplankton patch and observer move. It remains to be seen which of turbulent diffusion (DIFF) or sources (S) are 

important in driving the decorrelation, and that will be addressed in Sect. 4.5.  
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Finally, comparing Lagrangian and Eulerian timescales of Chl and of phytoplankton biomass (from backscattering) reveals 

regional discrepancies, confirming that Chl contains an acclimation component; however, each variable has a similar ratio of 

Lagrangian-to-Eulerian timescales, confirming that they are sampled by a moving observer in the same manner and giving us 540 

confidence in our Chl-based biophysical interpretation (Appendix E).  

4.5 Empirical relationship between chlorophyll Lagrangian and Eulerian scales 

The plots of l eT T  and l eL L  as functions of *'u c   (Figure 5b,d) and ,Chl ,Chll eT T  and ,Chl ,Chll eL L  as functions of 

*
Chl Chl'u c   (Figure 6c-d) have the same general shape. A similar functional dependence is not surprising given 

correspondence of Eulerian length and time scales for both velocity and Chl (Figure 9a-b), with only subtle differences in the 545 

Lagrangian length and time scales of each variable (Figure 9c-d) accounting for differences in the underlying functions. For 

this reason, we posit a mesoscale relationship for Chl may take the same form as that Middleton (1985) derived for velocity,  

    1/

,Chl ,Chl Chl Chl Chl Chl

ss s
l eT T F q q 


             (12a) 

    1/

,Chl ,Chl Chl Chl Chl Chl Chl

ss s
l eL L G q q  


   ,        (12b) 

where the constant Chlq  sets the asymptotic value at large Chl  and the exponent s sets how rapidly G transitions between 550 

linear and constant behaviour. In Middleton’s (1985) velocity scaling (Eq. (3)), the asymptotic value q is less than 1 because 

the variable being decorrelated is the same variable causing the decorrelation and lL  never reaches eL . For Chl, one 

possibility is to set Chl 1q   so that as ADV dominates  *
Chl'u c   we have ,Chl ,Chll eL L . However, we have seen that 

,Chl ,Chll eL L  routinely. A better choice (purely empirically) seems to be Chl 2q   so that as ADV dominates we have 

, Chl , Chl 2l eL L   (grey curves in Fig. 6). For simplicity we set s = 2. 555 

The observation ,Chle eL L  shows that the Chl field is characterized by features with scales similar to mesoscale eddies. To 

take this a step further, Glover et al. (2018) show that in our study region of the North Atlantic, the statistical decorrelation 

length ,ChleL  is proportional to a mixing length that quantifies the distance a mesoscale eddy could stir a water parcel 

containing Chl anomalies, assuming that all Chl anomalies are generated by stirring a mean gradient (see their Figure 7). 

This provides a further clue that mesoscale stirring might be of primary importance in setting Lagrangian Chl statistics. 560 

Effects of stirring should be most apparent in the asymptotic limit *
Chl'u c   because turbulent velocity fluctuations are 

larger than the evolution speed of the Chl field. Since Chl isolines twist and deform as they are strained by the mesoscale 

field, ,Chl Chl ,Chll eL q L  can exceed ,ChleL . To motivate an empirical value Chl 2q   relating the frames, we  appeal to an 

idealized geometry of mesoscale eddies. Following the convention of Middleton (1985), eL  equals twice the decorrelation 

length and is effectively a mesoscale eddy diameter. From this perspective, , Chl 2eL  serves as a radius of curvature for the 565 
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maximal , Chl , Chl 2l eL L  (half a circumference) of a parcel traversing the perimeter of a mesoscale eddy as it is stirred. 

Half a circumference may be a meaningful decorrelation length in the scenario where a mean Chl gradient is stirred by an 

eddy of diameter eL , partitioning the eddy into two hemispheres of high and low Chl, respectively (e.g., see Fig. 2a of 

Gaube et al. (2014)), and effectively equating the Eulerian separation ,ChleL  in Euclidean space to a trajectory distance ,ChllL . 

At the other asymptotic limit, if *
Chl' 0u c   then turbulent velocity fluctuations relative to the translation of the Chl field are 570 

small and ,Chl ,Chll eT T  so that ,Chl ,Chll eL L . With this interpretation, it is useful to view ADV as a local stirring of a mean 

Chl field instead of advection of anomalies over long distances (though the equivalence of ,ChleL  and a mixing length shown 

by Glover et al. (2018) relates the two perspectives). This is why the effect of 'u  on ,Chl ,Chll eT T  matters in its relation to *
Chlc

, which is an evolution speed for the scalar field. Likewise, it is useful to view 'u  as turbulent velocity fluctuations, which 

by our filtering are associated with the mesoscale eddy field. When the observer is a true surface Lagrangian observer, 'u  is 575 

properly captured by the platform’s motion, but as we have shown, for an Argo float, effects of stirring are underestimated.  

The relationships in Eq. (12) reveal further insight into the processes that cause the Lagrangian decorrelation of Chl. The 

turbulent diffusion term from Eq. (1) (DIFF) can be expressed as a Fickian diffusion with coefficient K that is constant over 

an integral time scale: 

2DIFF ChlK  .            (13) 580 

In the Lagrangian frame, the diffusivity K scales as  2
' lK u T  (Taylor, 1922), allowing us to scale DIFF as  

 2 2
,ChlDIFF ' l eu T L .           (14) 

If we define a parameter β as the ratio of the total Lagrangian tendency to the contribution from turbulent diffusion, we 

obtain the following scaling: 

 
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 
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 
 

.         (15a) 585 

This says that β is equal to the square of the ratio of the Eulerian length scale of Chl to the geometric mean of the Lagrangian 

length scales of Chl and of velocity. From our Fig. 9d, relative to the climatology subtrahend we have ,Chl 2.5l lL L  so that 

we can rewrite β as: 

 2

,Chl ,Chl2.5 e lL L  .           (15b) 

If we consider the case where LAG is entirely driven by DIFF (β = 1), we have 590 

,Chl ,Chl 2.5l eL L  .           (16) 
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It is worth noting that the asymptotic value Chl ,Chl ,Chll eq L L  (for *
Chl'u c  ) argued for heuristically above is π/2, which 

is quite close to 2.51/2. This suggests that in the limit of large turbulent velocity fluctuations (where ,Chl ,Chl Chll eL L q ), we 

have Ll,Chl (and hence Tl,Chl) determined entirely by turbulent diffusion. Because globally ,Chl ,Chl Chll eL L q  (Figure 6d; Eq. 

12), we can obtain an inequality for β, revealing that globally β = LAG/DIFF ≥ 1, or equivalently LAG ≥ DIFF. This must 595 

be true because from Eq. (1), LAG = DIFF + S. As an extension of this result, it is implied that S becomes increasingly 

important in setting Lagrangian decorrelation where ,Chl ,Chll eL L  (since β >> 1), and this happens in the limit that turbulent 

velocity fluctuations are relatively small ( *
Chl' 1u c  ). So, in short, we have confirmed our earlier interpretation that when 

*
Chl' 1u c  , DIFF drives Lagrangian decorrelation Tl,Chl as a consequence of mesoscale stirring, and when *

Chl' 1u c  , 

sources S (biological or otherwise) drive Lagrangian decorrelation. 600 

4.6 Methodological decisions 

Many methodological decisions were made in this study. Here we discuss some of them and comment on how they may 

influence our results. 

4.6.1 Depth-reduction of float time series 

As described in Sec. 3.2, the Chl time series constructed from the float measurements are weighted in depth to better 605 

approximate what satellites see, allowing us to compare scales derived from floats to those derived from ocean colour. We 

found using float series calculated as a more traditional (and biophysically meaningful) depth-average over the mixed layer 

(e.g., Yang et al., 2020) yields results that are not appreciably different from those in Figures 6-9.  

4.6.2 ACF parameters 

Although methodology is consistent, the segment length and ACF bin sizes vary for different platforms (Table 1). 610 

Lagrangian segments should be kept as short as possible because as a platform moves it may encounter different 

environmental (physical or otherwise) conditions, and we followed Lumpkin et al. (2002) and used 120 days for all 

variables. For Eulerian series, this is less of an issue, and, since seasonal variability is removed, length of the segment is less 

likely to have a significant impact on scales. Given that, we used 365-366 day segments for chlorophyll. Regarding temporal 

ACF bin sizes, ideally one would use a bin size that matches the sampling interval because this is the smallest lag that can be 615 

resolved. For this reason, the ACFs based on satellite altimetry, satellite ocean colour, or drifters use a bin size of 1 day. The 

floats have a variable profiling interval (Figure 4). While they sometimes profile with a frequency of about 1 per day, they 

generally profile less frequently and we settled on a bin size of 5 days. The two metbio* float segments are given special 

attention because they profiled more frequently, and for that reason we were able to use a finer bin size of 1 day. As a 

general statement, choosing a larger bin size causes structure (curvature) of the ACF to be poorly resolved at short lag and 620 
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biases time scales large, as discussed in Sec. 4.2. A similar rationale applies to the spatial ACF bin size, where 27.8 km 

approximately corresponds to the 0.25º resolution of the data in the latitudinal direction. The scales are averaged in (or the 

ACFs are composited in) 5º x 5º space bins to enhance the quality of estimates, and this size was chosen to match the grid 

size of Glover et al. (2018) where they computed variograms of Chl and found this size good to resolve spatial variability.  

4.6.3 Ocean colour product 625 

There is a trade-off between resolving more variance and dealing with increased gaps when moving to a finer resolution 

ocean colour product. For the purpose of this study, we chose to prioritize data coverage, leading us to select a blended, 0.25º 

product, and focus on the mesoscales. The choice of product is also consistent with the grid size of the Eulerian velocity field 

(0.25º altimetric geostrophic currents), important since we compare the two variables (Figure 9). In particular, GlobColour 

was selected because Zhang et al. (2019) demonstrated it to resolve realistic Lagrangian behaviour in terms of 630 

(sub)mesoscale dynamics, so we conclude that its space-time information is biophysically accurate.  

We suspect our findings depend on our choice of ocean colour product and constitute a representation of mesoscale 

biophysical dynamics: studies using submesoscale-resolving velocity and ocean colour data may find different relationships 

between Lagrangian and Eulerian scales. In particular, we suspect that the finding ,Chl ,Chll eT T  is indicative of mesoscale 

variance and a consequence, in part, of an 0.25º ocean colour product. This may be the manifestation of an observer moving 635 

across gradients in the mean chlorophyll field, as would happen when a mesoscale eddy stirs a horizontal gradient as 

discussed in Sec. 4.5, and is consistent with the importance of DIFF – a manifestation of unresolved advection – in driving 

the Lagrangian decorrelation over most of the range of observations instead of S. Chlorophyll may actually be conserved for 

longer along a trajectory than our results would indicate: if patches are organized in filaments not fully resolved in an 0.25º 

product, the inability for a drifter-projected time series to resolve near-constant chlorophyll levels along a filament will result 640 

in an early temporal decorrelation. The result that the ratio ,Chl ,Chll eT T  is approximately 1 relative to the smoothed 

subtrahend (where sub-pixel variability probably dominates) while the ratio is less than 1 relative to the climatology 

subtrahend supports this interpretation.  

5 Conclusions 

We analyzed the Lagrangian-Eulerian statistics (time and length scales) of velocity and chlorophyll (Chl) as measured by 645 

Bio-Argo floats and as represented by satellite ocean colour (GlobColour) projected onto surface drifter tracks. Lagrangian 

statistics of velocity satisfy the Middleton (1985) relations, with drifters in a “frozen field” regime (spatial Eulerian 

decorrelation drives temporal Lagrangian decorrelation) and floats in a “fixed-float” regime (Eulerian tendency drives 

decorrelation). However, there is a continuum of behaviour with segments weighted by the inverse square of the Quasi-

Planktonic Index (QPI) – a metric quantifying similarity of a float trajectory to a surface geostrophic trajectory – 650 



28 
 

approaching the frozen-field limit. This is made possible by the mesoscale flows being approximately equivalent-barotropic 

with small horizontal wavenumber attenuation over depth. Given the space-time resolution of our ocean colour product (and 

typical float time sampling), both floats and drifters sample anomalies relative to the smoothed subtrahend as fixed 

observers, suggesting that at periods shorter than 31 days, Lagrangian Chl variability is dominated by ocean-colour-pixel-

scale processes. Analysis of a finer ocean colour product and a faster sampling observer is necessary to elucidate biophysical 655 

mechanisms (e.g., submesoscale sources and sinks). However, relative to a climatological subtrahend, Eulerian decorrelation 

time and length scales of Chl match those of velocity, suggesting mesoscale physical dynamics are important in setting 

plankton distributions as suggested by earlier studies (Denman and Abbott, 1994; Glover et al., 2018). The ratio of 

Lagrangian to Eulerian length scales for chlorophyll, ,Chl ,Chll eL L , depends on how fast a parcel moves relative to how fast 

the Chl field evolves  *
Chl'u c , following an empirical curve that appears to have the same functional form as that for 660 

velocity but with the asymptotic value replaced by scalar Chl 1q  , a value consistent with stirring by mesoscale eddies. A 

fundamental result of this study is that mesoscale Lagrangian time and length scales are strongly set by the stirring of 

mesoscale eddies, with turbulent diffusion generally dominating the decorrelation. As for the biophysical interpretation of 

float-measured time series, qualitatively speaking, the slower horizontal motion of floats relative to surface Chl patch speed 

means that advection across mean Chl gradients is reduced and both turbulent diffusion and intra-patch biological sources 665 

are underestimated, both leading to longer time scales , ChllT  and smaller Lagrangian tendency (LAG) and eddy advection 

(ADV) terms compared to a surface Lagrangian observer. By choice of data products and filtering, our results are based on 

time- and length-scales representative of mesoscale variances in velocity and Chl fields. Follow up studies using data 

resolving submesoscale variance are warranted. 

  670 

Appendix A 

The Quasi-Planktonic Index (QPI) is a single number that quantifies the similarity of a float trajectory to the best-fit 

synthetic trajectory (computed by advection of synthetic particles with altimetric total geostrophic currents) over the 

temporal footprint of a centered difference derivative (three total float profiles). The procedure is repeated for each float 

profile i. We first create a disk of particles about  lon , lati i ir  by making a rectangle about ri with particles spaced zonally 675 

by 0 / cos(lat )i  out to totallon / cos(lat )i i  and meridionally by 0  out to totallat i   and then retaining those values with 

spherical distance less than or equal to 0.3º. We chose o
0 0.05   and o

total 0.3  . The disk of K particles is advected by the 

altimetric total geostrophic currents forward in time with a fourth-order Runge-Kutta scheme at an hourly time step from 

their initial position at ti to the first hour past float time ti+1. Velocity fields at intermediate time steps are obtained through 

linear interpolation and particle velocities are updated through bilinear interpolation in space. For the kth trajectory beginning 680 
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at float time ti its position at float time ti+1 is obtained by linearly interpolating its positions at the two surrounding hourly 

time steps. Similarly, the disk of K particles is advected backward in time with the same fourth-order Runge-Kutta scheme 

and hourly time step out to the first hour prior to ti-1. For the kth trajectory beginning at float time ti, its position at float time 

ti-1 is obtained by linearly interpolating its positions at the two surrounding hourly time steps.  

The advection gives K sets of three positions at each float step i. The penalty function for trajectory k at float step i measures 685 

the average distance between the kth synthetic trajectory and the true float trajectory over the three time steps that constitute 

the centered difference: 

    
1

, float
1

1
dist ,

3i k k
j

S i j j

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  r r            (A1) 

where r is the position in latitude-longitude coordinates and  dist   is a measure of distance on the sphere. The QPI for time 

step i is  690 

,QPI mini i k
k K

S


              (A2) 

and has units of kilometres. The corresponding shadow trajectory is the three-element trajectory kr  for the k that minimizes 

S.  

Synthetic particle trajectories are advected by altimetric geostrophic currents, which generally well-approximate the 

mesoscale flows of interest. Della Penna et al. (2015) found that including an Ekman term in the advecting flow modified 695 

only the tail of the distribution of a QPI calculated against surface drifter trajectories. To gauge how altimetric geostrophic 

trajectories approximate surface Lagrangian trajectories, we also computed a QPI for all drifter returns in our study space-

time domain calculated over Δt = 2 days and found they are larger than expected (median ~ 8 km). However, the latitudinal 

variations of the drifter QPI are much smaller than latitudinal variations of the float QPI (the subset with a comparable Δt ~ 2 

days) even though a geostrophic approximation should perform better at mid-latitudes since Ekman transports become more 700 

important away from the generally balanced, persistent Gulf Stream and North Atlantic Current and their energetic eddies. 

This suggests that median drifter QPI is large not because of failing to include an Ekman term, but because geostrophic 

currents from mapped altimetry data do not resolve inter-swath deformations to the mesoscale field (Ascani et al., 2013) and 

underestimate surface flows when finite differencing (Sudre and Morrow, 2008). We conclude that the QPI is a useful 

measure of similarity to surface flow for floats.  705 

Appendix B 

The first subtrahend (“smoothed”) is meant to replicate that used by Glover et al. (2018) so that we can obtain Lagrangian 

and Eulerian time scales consistent with their Eulerian space scales. For Eulerian data, we perform a 3-D convolution of all 

GlobColour space-time fields with a 3-D filter defined as a 31-day Hamming window in time and a 2-D Gaussian in space 

with a 1º full-width-half-maximum and a 2º cutoff. Just as the total GlobColour data are bilinearly interpolated onto drifter 710 
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tracks, the subtrahend is interpolated in the same manner and the two are differenced to obtain Lagrangian Chl anomalies. 

Finally, for a float Chl subtrahend, we perform a weighted running average of each float Chl series with weights defined by a 

31-day Hamming window. This approach to smoothing the float data is less than desirable because it constitutes a 

Lagrangian subtrahend whereas the drifter anomalies are about an Eulerian subtrahend projected onto a Lagrangian 

trajectory. Further, this approach cannot implement an equivalent spatial smoothing in the subtrahend for the float data since 715 

they come from a single Lagrangian trajectory (see discussion below). The time filter component of the “smoothed” 

subtrahend is effectively a low-pass filter and, with a cutoff of 31 days, we found it to retain a sizable portion of the 

intraseasonal (and perhaps mesoscale) variance. This is particularly the case for the float data, where uneven spacing means 

that the effective cutoff frequency will vary depending on the sparsity of sampling in a 31-day window since data points near 

the center of the window are weighted more.  720 

As an alternative, the second subtrahend strictly isolates climatological variability (“climatology”). The spatial footprint of 

the filter is the same, but the time filtering is performed about a day-of-year coordinate rather than an absolute date 

coordinate (for example, 1 January of every year is regarded as having the same time coordinate). Specifically, for Eulerian 

data, we perform a 4-D convolution of all GlobColour space-time fields with a 4-D filter defined as a 31-day-of-year 

Hamming window in time, a 2-D Gaussian in space with a 1º full-width-half-maximum and a 2º cutoff, and a boxcar 725 

function (equal weights) across years. Again, the subtrahend is bilinearly interpolated onto the drifter tracks.  

The major difference for the “climatological” subtrahend concerns how the floats are treated. There are not enough co-

located floats to create a climatological subtrahend from float-measured Chl, so we construct a float subtrahend from the 

filtered GlobColour data (Eulerian subtrahend). Because floats measure Chl year-round while GlobColour contains 

significant seasonal gaps, we first regress annual and semiannual cosines to the Eulerian subtrahend in each pixel as an 730 

interpolant. While inclusion of higher harmonics would yield a better fit in some regions (especially in regions with complex 

seasonal cycles such as those with spring and fall phytoplankton blooms), we stick to only the first two harmonics since gaps 

in the Eulerian subtrahend of up to 6 months would lead to significant overshoot if higher harmonics were included. The 

resulting field is then projected onto the float tracks (with a simple nearest neighbour approach in space and time). Finally, 

because the dynamic range of GlobColour Chl is different from that of the depth-averaged float Chl series, the projected 735 

subtrahend needs to be scaled before it can be removed from the float data (like a bias correction). So, as a final step we 

regress the projected subtrahend against actual float Chl (all samples across all floats) to obtain a best estimate of seasonal 

cycle amplitude:      clim, float clim, GlobColourChl , 0.025 1.444Chl ,t t t t x x . 

A summary of the subtrahends is provided in Table B1, and a visual example of time series is shown in Fig. B1. Anomalies 

about the “climatology” subtrahend contain substantially more low-frequency variance, including intraseasonal variability 740 

but also interannual variability due to year-to-year variations in phasing and amplitude of blooming. The “climatology” 

subtrahend has the added benefit of being applied to the floats and drifters in an equivalent manner as an Eulerian subtrahend 

projected onto a Lagrangian trajectory. It is fair to question whether the “smoothed” subtrahend as computed for floats is 
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comparable to the “smoothed” subtrahend as computed for ocean colour pixels and drifters because the former does not 

include explicit spatial smoothing, only a combined space-time Lagrangian smoothing. As a test, Fig. B1 additionally 745 

includes the Eulerian “smoothed” subtrahend projected onto float tracks (via nearest-neighbour interpolant and regressed 

against float data to correct for dynamic range) for periods where we have overlapping data. In general, the projected 

Eulerian “smoothed” subtrahend closely agrees with the float “smoothed” subtrahend. Exact correspondence between float 

and satellite Chl is not expected since floats sample a parcel of water on the order of the size of the platform and gridded 

ocean colour products integrate information in space and time (see discussion in Yang et al. (2020)).  750 

 

 

Figure B1: Example time series of log-transformed, depth-reduced Chl from two floats (n0572 and metbio003d). Data are orange, data 
with sub-daily filter applied are black, the “smoothed” subtrahend is solid grey, and the “climatology” subtrahend is dashed grey. For 
evaluation, we also display the GlobColour data projected onto the float tracks (black squares) and the Eulerian “smoothed” subtrahend 755 
from GlobColour projected onto the float tracks (solid blue). Note that sample interval was generally over one day except for brief 
intervals so that sub-daily filtered and unfiltered series are generally identical (black curve generally over orange). Note also the variable 
sample rate for metbio003d, illustrating how the effective cutoff period of the smoothed subtrahend can vary substantially from 31 days.  

 

Subtrahend name Eulerian Drifter Float 

Smoothed 3-D convolution of all 
GlobColour space-time fields 
with 31-day Hamming window 

Project Eulerian 
subtrahend onto drifter 
track 

Along-track weighted running 
average with 31-day width 
Hamming window 
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in time, 2-D Gaussian in space 
(1º FWHM, 2º cutoff)  

Climatology 4-D convolution of all 
GlobColour space-time fields 
with: 31-day Hamming window 
in day-of-year coordinate, 2-D 
Gaussian in space (1º FWHM, 2º 
cutoff), boxcar across years 

Project Eulerian 
subtrahend onto drifter 
track 

Regress annual + semiannual 
cosines onto Eulerian subtrahend in 
each pixel (to fill gaps), project 
resulting field onto float tracks, 
regress projected subtrahend against 
actual float Chl (all samples across 
all floats) to account for different 
dynamic ranges and potential biases 
between float and GlobColour Chl. 

Table B1: Summary of subtrahends. 760 

Appendix C 

Glover et al. (2018) calculate space scales of mesoscale Chl variability by calculating variograms of mesoscale Chl anomaly 

fields in 5º x 5º space bins. They fit a spherical variogram model to their calculations by nonlinear regression, which in one 

dimension is given by  
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         (C1) 765 

where 0c  is the nugget (unresolved variance), c  is the sill (approximating the total variance), a is the range (closely related 

to the decorrelation length), and   is the scale of space separation being evaluated (Glover et al., 2011, 2018). Intuitively, a 

is closely related to the integral decorrelation length (integral of spatial ACF to first zero crossing) but the two are not equal. 

The spatial autocorrelation function  R   is related to the variogram by  

   1
1

(0)
R

C
    ,            (C2) 770 

where  C   is the autocovariance function. Using the fact that  0C c , the space lag 0  at which the ACF R = 0 is 

determined by rearranging Eq. (C2) to yield  0c    , requiring 0 a  . Thus, the integral of the ACF to the first zero 

crossing is given by  

   
0 0 0

1a a a

L R d d d
c

     


               (C3) 

which, after substituting in Eq. (C1), gives  775 
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 
.            (C4) 
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Glover et al. (2018) report separate ranges xa  and ya  from MODIS data in the zonal and meridional directions, respectively. 

Therefore, we calculate zonal and meridional integral length scales xL  and yL  from Eq. (C4) to define the Chl integral 

length scale,  

 1/22 2
, Chle x yL L L  .           (C5) 780 

Appendix D 

 

Figure D1: Exactly as in Fig. 6 but with float scales calculated by integrating Eq. (9) (space-composited ACF) instead of integrating Eq. 
(8) (individual segment ACF) and averaging over space. 
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Appendix E 785 

In this paper we analyze chlorophyll since there is a history of geostatistical studies of that variable to build upon (e.g., 

Denman and Abbott, 1988, 1994; Doney et al., 2003; Glover et al., 2018; Eveleth et al., 2021). Chl is a complicated variable, 

containing a regionally (and seasonally) strong acclimation signal in addition to a biomass signal (Behrenfeld et al., 2005) 

that may imprint on our results. As a check, we evaluated Eulerian and Lagrangian timescales of phytoplankton carbon 

biomass ( phytoC ) and compared them to timescales of Chl. phytoC  is derived from float- (at 700 nm) or satellite-measured (at 790 

443 nm) backscattering (following Graff et al., 2015 Table 2 and assuming a spectral power law for backscattering of -0.78), 

anomalies are computed relative to equivalently constructed subtrahends as for Chl (as described in Sect. 3.3), and its ACF is 

integrated as for Chl (as described in Sect. 3.4). In general, Eulerian and Lagrangian timescales of Chl are longer than 

timescales of phytoC  in the subtropics (as defined by the -0.10 m mean absolute dynamic topography contour; Della Penna 

and Gaube, 2019), are shorter than timescales of phytoC  near coasts, and are approximately equal elsewhere, suggesting that 795 

there is a regional acclimation signal built into Chl that affects its timescales in certain regions of the ocean. However, 

importantly for this study, the relevant quantity ,Chl ,Chll eT T  is proportional to ,Cphyto ,Cphytol eT T  everywhere, meaning that even 

if the biophysical drivers of variability in Chl and Cphyto vary regionally, the variables are sampled equivalently by a 

Lagrangian (or quasi-Lagrangian) observer, giving us confidence in our Chl-based results.  

Data availability 800 

NAAMES float data are available from the University of Maine In-Situ Sound and Color Lab archive 

(http://misclab.umeoce.maine.edu/floats/). *Sprof files for the non-NAAMES floats and *prof files for the NAAMES floats 

(hydrographic variables only) are available from the IFREMER Argo Global Data Assembly Center (snapshot from 

February 2021; http://doi.org/10.17882/42182#81474). Altimetry data (product 

SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047, DT2018 reprocessing; https://doi.org/10.5194/os-15-1207-805 

2019) are archived by Copernicus Marine Environmental Services (https://marine.copernicus.eu/). The DT2018 version was 

superseded by the DT2021 version at time of writing and is no longer accessible by url; however, data can be de-archived by 

Copernicus upon request. GlobColour data (variables CHL1 and BBP using “merged” sensors, L3m, daily binning, 25 km 

resolution, and the GSM algorithm) are from the R2019 processing available by web or ftp from ACRI-ST, France 

(https://hermes.acri.fr). Drifter data are the quality-controlled six-hourly product available from the NOAA Global Drifter 810 

Program (https://doi.org/10.25921/7ntx-z961), where we accessed the ASCII files on 14 September 2020 

(https://www.aoml.noaa.gov/phod/gdp/interpolated/data/all.php).  
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