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Abstract. Biogeochemical model behaviour for micronutrients is typically hard to constrain because of the sparsity of
observational data, the difficulty of determining parameters in situ, and uncertainties in observations and models. Here, we
assess the influence of data distribution, model uncertainty and misfit function on objective parameter optimisation in a model
of the oceanic cycle of zinc (Zn), an essential micronutrient for marine phytoplankton with a long whole-ocean residence time.
We aim to investigate whether observational constraints are sufficient for reconstruction of biogeochemical model behaviour,
given that the Zn data coverage provided by the GEOTRACES Intermediate Data Product 2017 is sparse. Furthermore, we
aim to assess how optimisation results are affected by the choice of misfit function and by confounding factors such as
analytical uncertainty in the data or biases in the model related to either seasonal variability or the larger-scale circulation. The
model framework applied herein combines a marine Zn cycling model with a state-of-the-art estimation of distribution
algorithm (Covariance Matrix Adaption Evolution Strategy, CMA-ES) to optimise the model towards synthetic data in an
ensemble of 26 optimisations. Provided with a target field that can be perfectly reproduced by the model, optimisation results
in-perfeetretrieves parameter retrievalvalues perfectly regardless of data coverage. As differences between the model and the

system underlying the target field increase, the choice of misfit function can greatly impact optimisation results, while

limitation of data coverage is in most cases of subordinate significance. In cases where optimisation to full or limited data

ce, we find

coverage produces relatively distinct model behaviours—as
considerable alisnments between the-two-whenthat applying a misfit metric that compensates for differences in data coverage

between ocean basins_considerably improves agreement between optimisation results obtained with the two data situations.

1 Introduction

Marine phytoplankton account for almost 50% of global primary production (Field et al., 1998).Phytoplankton, and their
growth requires a variety of micronutrients, particularly first-row transition metals (Morel et al., 2014). In this study, we focus
on zinc (Zn), which is physiologically important as a co-factor in essential enzymes (e.g. Morel and Price, 2003; Shaked et al.,

2006; Morel et al., 2014), and has a high cellular abundance in phytoplankton (Moore et al., 2013; Twining and Baines, 2013).
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Though Zn, like phosphorus (P), is associated with organic matter rather than with siliceous frustules (Ellwood and Hunter,
2000; Twining et al., 2003; Twining and Baines, 2013), the global distribution of dissolved Zn correlates with dissolved silicon
(Si) rather than with phosphate (PO4; Bruland, 1980). Vance et al. (2017) revealed the key role of enhanced Zn:P uptake by
diatoms in the Southern Ocean, which, when coupled to the three-dimensional ocean circulation, causes the correlation
between Zn and Si on a near-global scale. Deviations from this large-scale pattern have been observed in both the Atlantic
(Conway and John, 2014; Lemaitre et al., 2020) and the Pacific Ocean (Janssen and Cullen, 2015; Vance et al., 2019), and
thus while the first-order significance of enhanced Southern Ocean Zn:P uptake is uncontested (Ellwood, 2008; Roshan et al.,
2018; Weber et al., 2018; Middag et al., 2019), various processes have been suggested to be important distal from the Southern
Ocean. Proposed water-column cycling processes include reversible scavenging (John and Conway, 2014; Weber et al., 2018),
local overprinting signals related to biology (Middag et al., 2019; Vance et al., 2019), and authigenic sulphide precipitation in
low-oxygen zones (Janssen and Cullen, 2015; but cf. Vance et al., 2019). Hypothesised inputs comprise sediment fluxes and
atmospheric aerosol deposition in both the Atlantic (Conway and John, 2014; Lemaitre et al., 2020) and the Pacific (Conway
and John, 2015; Liao et al., 2020), as well as hydrothermal input (Conway and John, 2014; Roshan et al., 2016; Lemaitre et
al., 2020).

The emergence of these hypotheses is a consequence of the GEOTRACES programme, which has increased the volume of
marine trace metal abundance data by orders of magnitude (Conway et al., 2021). This increase in data availability has
catalysed modelling studies of marine micronutrient cycles. The first global biogeochemical models have emerged for Zn
(Vance et al., 2017; de Souza et al., 2018; Roshan et al., 2018; Weber et al., 2018) as well as for a range of other bioactive
metals (e.g. van Hulten et al., 2017; Richon and Tagliabue, 2019), and the understanding of the oceanic iron cycle has evolved
remarkably (e.g., Tagliabue et al., 2017; Tagliabue et al., 2019; Roshan et al., 2020).

However, compared with the data for macronutrients, metal micronutrient observations remain sparsely distributed, posing
one of the major difficulties faced when constraining biogeochemical models. Additionally, measurements of Zn uptake rates
and cellular quotas (Zn:P) are scarce (Sunda and Huntsman, 1992), posing a challenge to modelling studies in which simulated
Zn uptake must represent a variety of oceanic phytoplankton species. Further difficulties arise from commonly made
assumptions regarding the precision of observations and the accuracy of the model. The combination of (i) analytical
uncertainty, (ii) unresolved seasonal variability, and (iii) errors due to systematic bias in the circulation model results in a high
level of parametric uncertainty, which is ideally addressed by determining model parameters through objective parameter
estimation that minimises the misfit between model output and observations.

Developing a truly data-constrained view of the oceanic Zn cycle thus requires a framework that enables quantitative
assessment of the explanatory skill of the above-mentioned hypotheses regarding the marine Zn cycle. To this end, we aim to
assess the strengths and sensitivities of an evolutionary algorithm for constraining biogeochemical model behaviour with data,
particularly given the data coverage of the GEOTRACES Intermediate Data Product 2017 version 2 (IDP2017; Schlitzer et
al., 2018; Fig. 1). We do so by optimising a global ocean Zn model using a state-of-the-art optimisation algorithm, Covariance

Matrix Adaptation-Evolution Strategy (CMA-ES; Hansen and Ostermeier, 2001; Hansen, 2006).
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Using synthetic data that allow us full control over the “observations”, we perform a suite of 26 model optimisations in order
to separately assess the impact of the above-mentioned uncertainties and biases, to-investigateinvestigating how optimisation
results are impacted by the relatively sparse data coverage for Zn in the IDP2017, and by the choice of misfit function. Our
results suggest that optimisation with the data coverage for Zn from IDP2017 can lead-terctricve very similar biogeochemical
model behaviour as when the algorithm is provided with perfect data coverage. However, with increasing uncertainty,
theoptimisation results become strongly dependent on the choice of misfit function. In such cases, misfit functions that
implicitly compensate for the uneven geographical distribution of observations in the data tend to producemore
aeeuratercconstruct model behaviour more accurately, while those that favour the deep ocean are sensitive to systematic biases

in the deep-ocean ventilation timescale of the underlying circulation model.

2 Methods: models and optimisation ensemble

We use a model framework that combines an offline approach for physical transport of dissolved Zn with an Estimation of
Distribution Algorithm (EDA) for optimisation of four model parameters affecting the biogeochemical cycling of Zn.
Simulations were carried out on the high-performance computing cluster Euler at ETH Zurich and the Cray XC40 Piz Daint
at the Swiss National Supercomputing Centre (CSCS). Our ensemble of 26 optimisations comprises 10 optimisation

experiment types (Sect. 2.3), each carried out with a subset of six misfit functions (Sect. 2.3.2).

2.1 Biogeochemical ocean model
2.1.1 Circulation framework

Coupled physical-biogeochemical ocean models typically have a long equilibration time due to the timescales associated with
global ocean circulation (Khatiwala, 2008; Wunsch and Heimbach, 2008). To efficiently simulate passive tracer transport, we
use the transport matrix method (TMM), which calculates the transport of dissolved species as a sequence of sparse matrix-
vector products (Khatiwala et al., 2005; Khatiwala, 2007). For our optimisation experiments, we use annual-mean transport
matrices (TMs) derived from MITgem-2.8, a 2.8° global configuration of the MITgem ocean general circulation model with
15 vertical levels (Marshall et al., 1997; Dutkiewicz et al., 2005). This coarse-resolution model, which is forced by
climatological winds, heat and freshwater fluxes, allows us to carry out a broad suite of optimisation experiments. In order to
approach steady state in the global Zn field, each coupled physical-biogeochemical simulation was integrated forward in time
using the TMM software (Khatiwala, 2018) for 3000 model years, using a time step of 12h for both tracer transport and

biogeochemical interactions.
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2.1.2 Biogeochemical model of zinc

The biogeochemical Zn model used in this study is described in detail by de Souza et al. (2018). Briefly, the biological Zn

uptake

uptake term, /""", is directly tied to that of POy by the stoichiometric parameter z,,.p:
uptake uptake
zg = Tzn:p ']Pg4 (1)

Biological uptake of PO,, /;fgi“ke, is diagnosed by a biogeochemical P cycling model based on that described in Najjar et al.

(2007), in which the uptake of POy in the surface ocean is driven by restoring surface PO4 concentrations towards annually
averaged observations from World Ocean Atlas 2018 (WOA2018; Garcia et al., 2019) with a restoring timescale of 36 days.
The stoichiometric parameter 77,,., (mol/mol) is a nonlinear function of the concentration of free Zn (Zn*"), arising from the

phytoplankton culturing experiments of Sunda and Huntsman (1992):

aznZn?*
bzn+Zn2t

Tzn:p = +Cn t Zn?* 2)

= B J - : B B 5 g

the-approach-ofFollowing Ellwood and van den Berg (2000)-, concentrations of Zn”" are calculated from total dissolved Zn

(the tracer carried in the model) in two steps: first, by assuming rapid equilibration of non-ligand-bound Zn (Zn’) with an

organic ligand with conditional stability constant K;=10'° M! and spatially constant concentration, which allows calculation

of Zn’ by solving the quadratic equation:

K -(Zn)*+(K,-L—K,-Zn+1)-Zn'—Zn=10 3)

and second, by calculating Zn* from Zn’ using the inorganic side-reaction coefficient @, = 2.1:

o’

Tn2t = (4)

azn

The Zn uptake term is restricted to the euphotic zone, which comprises the uppermost two levels of MITgem-2.8 (0-120 m).
This uptake is exported downwards, where it is regenerated from an implicit particulate flux that attenuates with a power-law
depth-dependence, i.e. a “Martin curve” with exponent -0.858 (Martin et al., 1987), identical to that used for P (Twining et al.,
2014). All simulations are initialised with a constant Zn field corresponding to a global ocean mean concentration of 5.4 nM
(Chester and Jickells, 2012).

In our optimisation experiments, we estimate the values of parameters az,, bz,, and cz, in Eq. (2), which control different
aspects of the dependency of 7,.p. We also optimise the organic ligand concentration L, which determines the concentration
of Zn?*, and thus the dependency of 7,,.p on total dissolved Zn. The influence of changes in each of these parameters on z,,.p
is illustrated in Fig. 2. All parameters optimised are assumed to be globally and temporally constant. Parameter boundaries for
optimisation were chosen relatively conservatively (i.e. broadly), since values are poorly constrained for both the ligand

concentration (Bruland, 1989; Donat and Bruland, 1990; Ellwood and van den Berg, 2000; Lohan et al., 2005; Baars and Croot,
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2011; Kim et al., 2015; Sinoir et al., 2016) and the parameters governing the uptake curve (Sunda and Huntsman, 1992). For
the parameters ay,, bz,, and cz,, the lower and upper boundary is determined by subtracting 50 % from, or adding 50 % to,
their minimum and maximum values reported by Sunda and Hunstman (1992). The parameter boundaries for L were likewise
determined based on the range of observed values reported in Ellwood and van den Berg (2000). Parameter boundaries and

reference values of each parameter are summarised in Table 1. Based on the findings of de Souza et al. (2018), we chose

reference values to fit the uptake systematics obtained from culturing experiments with Emiliania huxleyi BT6 in Sunda and

Huntsman (1992).

2.2 Optimisation algorithm

For parameter optimisation, our model framework relies on the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES),
more precisely the (ML,A)-CMA-ES of Hansen (2016), an Estimation of Distribution Algorithm that performs particularly
w

well on multi-modal functions (Hansen et al., 2010). While learning the covariance matrix in CMA-ES is analogous to learning
the inverse Hessian matrix in a “classical” quasi-Newton method, CMA-ES outperforms the latter if the search landscape is
non-convex or rugged (Hansen, 2016).

The CMA-ES algorithm provides a method for updating the mean and the covariance matrix of a multivariate normal search
distribution, with dimensions corresponding to the number of parameters being optimised. In contrast to “conventional”
evolutionary algorithms, CMA-ES updates the mean and the covariance matrix by maximising the likelihood of previously
successful candidate solutions and search steps respectively (Hansen, 2006). It thus efficiently incorporates information from
the entire population, while also exploiting information between generations. The latter characteristic is particularly important
here, as we use a small population size withof ten individuals (1=10), so that step-size control is key in preventing the
population from premature convergence. CMA-ES has been shown to be a reliable and highly competitive evolutionary
algorithm for both local (Hansen and Ostermeier, 2001) and global optimisation (Hansen and Kern, 2004; Hansen, 2009). It
has been tested on real-world problems including parameter calibration in a biogeochemical ocean model by Kriest et al.
(2017), whose implementation of CMA-ES in C++ we employ here, via the OptClimSO package
(https://doi.org/10.5281/zenodo.5517610; Tett et al., 2013; Oliver et al., 20212022). In order to apply CMA-ES to a constrained
problem, we use the boundary handling described in Hansen et al. (2009), in which boundaries are imposed by adding a penalty
function to the calculated misfit when a parameter’s distribution mean is out of bounds. As in Kriest et al. (2017), optimisation
is terminated if the relative deviation of the misfits of seven individuals in a generation is smaller than 107, or if a predefined
maximum of 200 iterations is reached. We also terminate optimisation when an individual produces a numerically very small

misfit, smaller than that equivalent to a relative residual of 10 in each model cell.



150 2.3 Experiment setups & nomenclature

In all experiments, the Zn-cycling model was optimised toward synthetic observations (the target fieldsficld) obtained from a
previous model run. While we always apply the same model setup to carry out optimisation, the experiment types differ with

respect to their target field. In the simplest test case, the target field is created with a physical and biogeochemical model setup

155 reproduced by the model. The parameter values and the resulting target field of the TWIN experiment are hereafter referred to

as reference parameters (Table 1) and reference field respectively. We refer to our second type of experiment as synObs (for { Formatted: Font: Bold

“synthetic observations”). Target fields for the synObs experiments were created using the same reference parameter values,
but either different model setups were applied to produce the target field, or it was modified a posteriori, as detailed belowin
Section 2.3.1.

160 Figure la arranges our optimisation experiments in a conceptual raster of the degree of data limitation versus degree of
complexity of uncertainties. The simplest case is given by experiment TWIN_ALL, in which the model is optimised towards
the entire Zn field produced by a previous simulation with the same model, i.e. the reference field. Experiment TWIN_IDP
uses this same Zn field, but limits the data available for model optimisation by subsampling it only at those spatial locations
where actual Zn observations are available in the IDP2017 (Schlitzer et al., 2018; Fig. 1b, ¢). The subscript “IDP+” refers to

165 those experiments in which data coverage was expanded to include the locations of high-latitude observations published more
recently than the IDP2017 (Section 2.3.3; Fig. 1b, ¢). The remaining experiments extend our optimisation array along the axis

of increasing complexity of uncertainty, as detailed below.

2.3.1 Types of uncertainty in synObs experiments

In order to assess the effect of various kinds of uncertainty on optimisation with full data coverage (synObs_ALL), and the
170 extent to which optimisation results are affected when we additionally account for the real, imperfect data coverage of the
IDP2017 (synObs_IDP), we separately consider three sources of uncertainty:
@) analytical errors in the “observations” (synObs_/ALL/IDP] noise, summarised as synObs_noise),
(ii) lack of seasonal variability in the model (synObs_/ALL/IDP] _seas, summarised as synObs_seas)
(iii) systematic biases in the physical ocean model (synObs /ALL/IDP] circ, summarised as synObs_circ).
175  Inorder to assess the effect of observational analytical uncertainty on the optimisation results, the target fields in synObs_noise
were ebtainedcreated by perturbing the reference field with normally distributed random noise having zero mean and variance

E:
e= (0.0719 - [Zn]°726%)2 (35)

which is an empirical estimate of the variance of Zn concentration analyses from GEOTRACES Zn intercomparison statistics
180 (Bruland, 2013), and assumes that the analytical errors are laboratory-independent. Any negative concentrations resulting from

this perturbation were set to zero.
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To investigate the influence of the lack of seasonal variability in our Zn-cycling model, synObs_seas experiments comprise
optimisation towards an annual-mean target field produced by a simulation with the same physical model, but with a seasonal
cycle in both physical transport and biogeochemistry (Khatiwala, 2007). Our last set of experiments, synObs_circ, assesses
the sensitivity of the optimisation to systematic biases in the circulation of the physical model. In these experiments, the target
field was produced with MITgem-ECCO, a higher-resolution version of MITgem from the Estimating the Circulation and
Climate of the Ocean (ECCO) project (Stammer et al., 2004), i.e. a different physical model than that used during optimisation
(MITgem-2.8). In ECCO, an adjoint approach was used to adjust heat, momentum and freshwater fluxes so as to minimise the
misfit between the model and a suite of observations (Wunsch and Heimbach, 2007). Climatological monthly mean transport
matrices covering the 1992-2004 estimation period were extracted by Khatiwala (2007) and are annually averaged for use
here. Our synObs_circ experiments aim to assess the effect of a reduction in data coverage on the optimisation results in the
presence of systematic bias in the OGCM, rather than the effect of the OGCM itself, which is known to be large (Doney, 1999;
Doney et al., 2004; Najjar et al., 2007; Sinha et al., 2010; Dietze and Loptien, 2013; Loptien and Dietze, 2019; Kriest et al.,
2020).

Metrics summarising similarities between the target fields of the synObs experiments and the target fields of TWIN
experiments (i.e. the (reduced) reference field) are illustrated in Taylor diagrams (Taylor, 2001; Fig. 1d, e). This comparison
shows that the synObs_circ target field, obtained with a different circulation model, is most distinct from the reference field
with respect to all metrics illustrated. With regard to integrated Zn export flux, the impact of simulating seasonal variability is
higher: while the simulation with MITgem-ECCO produces an export flux that is 7 % higher than the reference simulation,
the seasonal MITgem-2.8 simulation has an export flux 9 % lower. Spatial differences between target fields, and the associated

export fluxes, are visualised in Fig. S1.

2.3.2 Misfit functions

The difference between data and model is referred to as misfit (Lynch et al., 2009), which in this study is equivalent to the
model error, since the data error of synthetic observations is zero. We calculate misfit at the location of our synthetic
observations. Thus, for experiments with reduced data coverage (IDP and IDP+), the model output is interpolated to the target
grid before calculating misfit. In this study, we assess the applicability of six misfit metrics, which can be described using one

of the following equations:

2
M= ZNreg zNobs,j ("h,;—ol,]) wy (46)

Nobs,j

j=1 i=1

_ yreg Nobs,j|mi,j-0i,j|_ 5
L (7)
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where N,..4 is the number of regions, Noy ; the number of observations in region j, and m; ; and o; jare the modelled and the
“observed” (i.e. target) Zn concentrations, respectively, at each observational point i, j. The local model-observation difference
m;; — o;; is referred to as the residual, and its squared (Eq. 46) or absolute (Eq. 57) value is weighted by w; ;. We use four
misfit metrics based on squared residuals (Eq. 46) and two based on absolute residuals (Eq. 57). An overview of the misfit

metric applied in each of our experiment types is provided in Table S1.

N,¢q equals one. In the case of RMSE, the weighting factor wy; is unity for each squared residual. For VoIRMSE, squared
residuals are weighted by the fractional volume of the corresponding model cell. As the vertical grid spacing of MITgem-2.8
increases with depth and model cell volume decreases towards the poles, VoIRMSE weights the deep and low-latitude ocean
more strongly. Volume-weighting is frequently applied in ocean modelling studies when constraining towards observations of
dissolved quantities (e.g. Kriest et al., 2017; Kwon et al., 2022).

Misfit function VarRMSE is only applied our synObs_noise experiment, in which synthetic observations were perturbed with

heteroscedastic noise. In VarRMSE, w;; equals the reciprocal of the variance of the synthetic observations, ¢i.c. ¢~ (Eq. 35).

Weighting the squared residuals by e™! is identical to the chi-squared statistic (e.g. Bevington and Robinson, 2003) and is
frequently applied for multivariate comparison of predictions and observations, where the covariance between observational
errors is assumed to be zero (e.g. Stow et al., 2009). In our calculation of variance-derived weights, residuals are calculated
for synthetic observations larger than zero only.

Misfit metric BasinRMSE, which sums regional RMSEs, was only applied in experiments with reduced data coverage.
Distinction between ocean regions is frequently applied when optimisations are carried out on irregularly and sparsely sampled
trace metal data (e.g. Frants et al., 2016; Weber et al., 2018). For BasinRMSE, we distinguish between five ocean basins
(Nyeg = 5): Atlantic, Pacific, Indian Ocean, and two latitudinal sections of the Southern Ocean (40-50° S and >50° S). The

resulting misfit corresponds to the sum of each region’s RMSE (wyi.c. w; ;=1). This misfit function mitigates any over- or

under-weighting of particular ocean regions that may arise from the irregular basinal distribution of observations (Fig. 1b). We

refer to ghis < s SE-as shting; =

the-weightingisthis implicit andresultsweighting that arises from summing RMSEs with different numbers of observations in

cach ocean region as basin-weighting. Our definition of regional constraints differs from that applied by Weber et al. (2018),

since they defined nine discrete regions and incorporated only a portion of the observations provided in the GEOTRACES
IDP2017.
The weights or number of regions applied are equivalent to those in the corresponding misfit functions based on squared

residuals described above.
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2.3.3 Synthetic observational constraints

For experiments listed in the first row of Fig. la (TWIN_ALL and synObs_ALL), the model is optimised towards synthetic
observational fields at the resolution of the model, i.e. residuals are calculated at all model grid points. In all other experiments,
in the second and third rows of Fig. 1a, (synObs_IDP+, TWIN_IDP & and synObs_IDP), model output and observations are
compared at the 3-D coordinates of the Zn observations in the IDP2017 (IDP experiments) or the extended version thereof
(IDP+ experiments; Fig. 1b),whieh) that includes data from recent high-latitude studies not included in the IDP2017 (Sieber
et al., 2019; Vance et al., 2019; Wang et al., 2019; Lemaitre et al., 2020). We only consider locations of IDP2017 data that
were assigned quality flags 1 or 2, indicating (probably) good quality. and to which it is possible to interpolate. This results in
~4700 data points at 295 geographic locations to constrain the model in the IDP experiments. Relative to its fractional volume,
the Atlantic is clearly over-represented in the IDP2017 relative to the other ocean basins (Fig. 1b), while the Indian Ocean and
the Southern Ocean south of 50° S are under-represented. In the vertical, intermediate water depths are under-represented

relative to the model’s grid-spacing.

3 Results and discussion

Our ensemble of optimisations towards synthetic observations allows us to assess the influence of (i) uncertainty in data or
biases in the model, (ii) data coverage, and (iii) misfit function on the ability of CMA-ES to reproduce biogeochemical model
behaviour and parameter values. In the following, we first discuss the degree to which model parameter values could be
constrained ever-alloverall in our optimisation experiments, before discussing the influence of each of the above-mentioned

aspects in turn.

3.1 Parameter value retrieval and its sensitivities

Our TWIN experiments are a test case in which the model can exactly reproduce the synthetic observations. In these
experiments, all parameter values were perfectly retrieved regardless of data coverage, even though calculating misfits in
TWIN_IDP (i.e. with the data coverage of IDP2017) only involves 12% of the data from the target field of TWIN_ALL (perfect
data coverage). Thus, the reduced and inhomogeneous spatial coverage of the GEOTRACES IDP2017 will not prevent the
optimisation algorithm from converging to the correct parameter values if the observations can be perfectly matched by the
model equations. Figure 3 shows the evolution of the parameter values and the logarithmic misfit during the TWIN_ALL
experiment. High variances are-asseciated-withreflect a wide range of parameter values in a single generation of 10 individual
simulations, and occur mainly at the beginning of the optimisation. For parameter az,, which determines the asymptotic Zn:P
value of the non-linear portion of the Zn uptake equation (Eq. 2; Fig. 2), the average parameter value approaches the reference
value earlier than for the other parameters.

In synObs experiments, i.e. when target fields cannot be perfectly reproduced by the model, CMA-ES does not exactly

reproduceretricve reference parameter values. However, optimisation almost always identifies a parameter set that gives a

9
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better fit to the target field than would have been produced with reference parameter values (Table S2). Figure 4 provides an

overview of “the range of values determined for each of the four biogeochemical

parameters optimised in our optimisation ensemble. This overview shows that the various types of complexity we introduce
into our synObs experiments lead to a range of optimised values for each parameter. While the optimised values for parameter
bz, and ¢z, span (almost) the entire range of allowed values, those for parameter az, and — to a lesser extent — L span a
relatively limited range (Fig. 4). Also, the median values for az, and L lie close to the reference values, whereas the median
value for by, is clearly higher than the reference value, and that for c,,, coincides with the lower boundary. The fact that the
optimised value for ¢z, was found at its lower boundary in 70 % of synObs experiments leads to an interquartile range in Fig.
4 that appears relatively narrow, although its optimised values range over the entire allowed parameter space, indicating the

difficulty of constraining this parameter.

3.1.1 Interrelationship between parameter retrieval and model sensitivity

The differing eonstrainability-efextent to which uptake parameters can be retrieved by optimisation may be understood in light
of their influence on simulated Zn uptake systematics. Figure 2 illustrates the extent-te—whichinfluence of each parameter
affeetson the systematics of the stoichiometric uptake ratio 7,,.p when parameters are changed by +50 % of the reference
values, or when they are set to the minimum or maximum boundary value. While 50%- % changes in the-parameter value of
azy, have a relatively high impact on r5,.p, changing any of the other parameters by +50 % affects the shape of the curve to a
much smaller extent. Changes in ¢z, mainly affect 17,.p at high Zn>-cencentrations;", while changes in the parameters by,
and L have a similar effect on the shape of the 7,,.p curve, suggesting that they might be able to compensate for each other.
The sensitivity of the system response to parameter az, has already been reported by de Souza et al. (2018). Indeed, our
optimisation ensemble reveals that parameter-ay, has the strongest influence on simulated Zn export flux, especially in the
Southern Ocean (Fig. S2), where the Zn:P ratio of export plays an important role in determining the large-scale Zn distribution
(Vance et al., 2017; Roshan et al., 2018; Weber et al., 2018). The sensitivity to parameteray, is also manifested in our
optimisations by the fact that this parameter generally converges first towards its optimised value (e.g. Fig. 3). Figure 5 and
Table S2 provide-information-enshow the optimised parameters for each synObs experiment, i.e. parameter values that result
inproduce the minimum misfit efin the last iteration. As illustrated clearly in Fig. 5, the reference value of ay, is generally
well retrieved (to within +~30%; Table S2), with the important exception of VoIRMSE-optimised synObs_circ solutions,
where az, was found at its lower boundary, producing uptake systematics and global export fluxes that are clearly distinct
from all others (Sect. 3.2.2).

Parameter ¢, represents the opposite case in terms of sensitivity. Coming into play only at high Zn?", its role in determining
Zn uptake is minimal at the global scale, especially when high values of a,, as in our reference parameter set, allow elevated
Tzn.p at high latitudes. Thus, high values of a,, decrease the importance of the linear portion of the uptake curve governed by

parameter ¢z, (Eq. 2) and the degree to which it is constrainable. The interaction between these two model parameters is

10
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exemplified by the VoIRMSE-optimised experiments in which a,, is found at its lower boundary: here, optimisation finds
elevated L and extremely high values of ¢, (Fig. 5), coinciding with the upper boundary for this parameter. This results from
the fact that high values of ¢, are needed to produce elevated Zn uptake at high latitudes when a,, is low, especially when
high ligand concentrations L depress Zn?*. In our ensemble of optimisations, high values of c,, are always concomitant with
elevated ligand concentrations (Figs. 5, S3).

Interdependence of parameter sensitivity can also be observed between the parameters bz, and L. Although changes of
opposite sign to these parameters produce similar changes in Zn uptake systematics (Fig. 2), both were cerrectlyaccurately
retrieved in our TWIN experiments (Table S2). In synObs experiments, underestimation of one of these parameters did not
necessarily result in overestimation of the other. Exceptions to this are found when L is greatly overestimated (>100%); in all
these cases, by, is always clearly underestimated (<-26 %; Fig. S3). Higher values of the ligand concentration L buffer Zn*
to concentrations below typical values of b, over a large range of total Zn concentrations (Fig. S4), increasing the sensitivity
of the uptake systematics to parameter-by,. Conversely, low values of L result in a sharper rise of Zn?* with total Zn (Fig. S4),
reducing the scope for bz, to influence the Michaelis-Menten term in Eq. 2. In the vicinity of the reference parametervalue of
L, the sensitivity to parameter-by, is relatively low (Figs. 2, S4). In our optimisations, this lack of sensitivity is manifested by
the fact that by, is found at a boundary more frequently (>30 % of synObs experiments) than L (<10 %). In our optimisations,
if parameters were found at one of their boundary values, we frequently observed that misfits lower than that produced with
optimised parameters would have been achieved with parameter values outside of the prescribed boundaries. This finding

eiridentification of optimised parameter values at

supports previous studies suggesting that e

prescribed boundaries, and the occurrence of lower misfits outside the prescribed and supposedly realistic parameter space,
may point to deficiencies in biogeochemical model structure, wrong choice of parameters to be optimised, or bias in the
physical circulation (e.g. Kriest et al., 2017; Falls et al., 2021), and highlights the importance of well-considered boundaries
for interpretability of results.

In summary, our results show that parameters with a stronger influence on the (reference) biogeochemical model behaviour
are better constrained over the range of uncertainties and data-coverage limitations represented by our synObs experiments.
Given our choice of reference parameters, which emphasises the high affinity Zn uptake system (non-linear term of Eq. 2),
parameter az, is the best-constrained parameter, and cz,, the most difficult ene-to constrain, with its optimised value frequently

found at a boundary.

3.2 Retrieval of biogeochemical model behaviour

Figure 6 illustrates how the optimised parameter sets influence a key behaviouraspect of the Zn cycling model: the dependence

of the stoichiometric uptake parameter 7;,.p on dissolved Zn (hereafter uptake curve or uptake systematics). Fhe-vptake-eurve

moedel-We use this emergent relationship as a measure of model similarity since it controls the geographical systematics of Zn
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uptake and export (de Souza et al., 2018), although of course the stoichiometry of Zn:P uptake in the real/ ocean is not likely

to_follow a single dependence on Zn concentration. In subsequent subsections, we describe the retrieval of reference

biogeochemical model behaviour for three optimisation experiments with varying degrees of dissimilarity between optimised

and reference uptake systematics.

3.2.1 RMSE-optimised synObs_ALL_seas

Experiment synObs_ALL _seas optimises our annual-mean model towards a target field produced when seasonal variability is
simulated, with perfect data coverage. The RMSE-optimised parameter values in this experiment differ by 1260 % from the
reference values used to produce the target field (Table S2);). These values result in Zn uptake systematics that are broadly
similar to the reference uptake systematics; (Fig. 6b), although 1,,.p underestimates the reference r,,,.p at low concentrations,

above ~1 nM-{Fig—6b).. As a consequence, the RMSE-

and exceeds it for
optimised Zn export flux is increased in the Zn-rich Antarctic Zone, but decreased in the Subantarctic Zone and at lower
latitudes, relative to the reference Zn export flux distribution (Fig. S5b). These systematic changes reflect the trends observed
when comparing Zn export flux distributions in the target and reference simulations (Fig. S5d), although differences between
the reference and the RMSE-optimised Zn export fluxes are smaller than those between the reference and the target. Similarly,
a comparison of residuals in the dissolved Zn fielddistribution of the RMSE-optimised model (Fig. 7b, e, h) to those between
the reference and target field (Fig. Sle, h, k) reveals that optimisation has reduced the magnitude of residuals by up to ~50 %,
while the patterns of the residuals remain near-identical. In both cases, the surface ocean simulated with annual-mean TMs is
generally biased to higher Zn concentrations (Figs. 7b, Sle). High positive residuals in the surface Southern Ocean and North
Pacific are associated with negative residuals below the euphotic zone (e.g. Fig. 7¢, h).

Although there are several optimisations resultingthat result in a similar uptake curve as the RMSE-optimised
synObs_ALL _seas experiment (Fig. 6), we would like to note that both distribution and magnitude of residuals can be quite

different (cf. second columns of Figs. 7, 8) between experiments.

3.2.2 VoIRMSE-optimised synObs_ALL_circ

In synObs_circ experiments, the target field was produced using a different physical model than that used during optimisation.
The VolRMSE-optimised parameter values in synObs ALL circ, as well as those obtained in the corresponding optimisation
with reduced data coverage; (synObs IDP_circ), coincide with boundary values for three of four parameters (Table S2, Fig.
5). The resulting convex uptake curve (Fig. 6¢) is strikingly different from the reference curve, as a consequence of a low value
of az, and high value of cz,,. The VoIRMSE-optimised parameter set results in extremely low global Zn export fluxes (Table
S2), reducing Zn uptake to the extent that surface concentrations are not drawn down to low values. This produces a positive
bias throughout the surface ocean, and especially high concentrations in the subantarctic Southern Ocean, relative to both the
RMSE-optimised Zn (Fig. 8c) and the reference field. As a consequence, the VoIRMSE-optimised model produces high Zn

concentrations in the deep North Atlantic (Fig. 8f) and lower concentrations in the entire mid-depth to abyssal Pacific (Fig.
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8i), i.e. a reduced deep-ocean Zn gradient. TheseThe low Zn export fluxes of this optimised solution reduce the normalised
standard deviation of the VolIRMSE-optimised field to a value similar to that in the target field (Fig. S6), i.e. VoIRMSE-
optimisation uses biogeochemical parameters to produce a similar statistical distribution of Zn as that simulated bywith
MITgem-ECCO due to its differing deep ocean circulation. The clearly distinct optimisation results are mainly related to

volume-weighting, which is further discussed in Sect. 3.5.2.

3.2.3 RMAE-optimised synObs_IDP_circ

In the RMAE-optimised synObs circ experiments, Zn uptake at high Zn concentrations is strongly reduced in
synObs_IDP_circ relative to both the corresponding simulation with full data coverage and the reference uptake curve (Fig.
6¢, ), resulting in globally higher surface-ocean Zn concentrations. Additionally, reduced surface Southern Ocean nutrient
uptake and export decreases concentrations in deep waters of the Southern Ocean through reduced nutrient trapping (Sarmiento
et al., 2004; Marinov et al., 2006; Primeau et al., 2013), and, because reduced Zn uptake is a consequence of a decrease in the
uptake stoichiometry parameter r,.p, it leads to a strengthening of the global Zn-POj correlation while the Zn-Si correlation
is weakened (Vance et al., 2017; de Souza et al., 2018). The shape of the RMAE-optimised uptake curve in synObs_IDP_circ
is unique in our optimisation ensemble (Fig. 6), and is a consequence of the joint effect of reduced data coverage and choice

of misfit function, as we discuss in Sect. 3.6.

3.3 Influence of uncertainty in the target field on parameter retrieval

In our synObs experiments, the model cannot exactly reproduce the target field, and optimisation finds parameter sets that
differ from the reference parameters to varying degrees-. as shown by the examples discussed in Section 3.2. With increasing
dissimilarity between target field and reference field, the reconstruction of model behaviour becomes increasingly difficult,
and the sensitivity of optimisation results to the applied misfit metric increases (Fig. 6; Sect. 3.5). In all synObs experiments
except one (Sect. 3.5.1), CMA-ES found a parameter set that produces a lower misfit to the target field than would have been
achieved using the reference parameter values. This can be seen as “reciprocal bias compensation”, a term coined by Loptien
and Dietze (2019) to describe the phenomenon that part of the bias induced by flaws in circulation models can be compensated
for by changes to biogeochemical parameters. We find such error-compensating effects induced by biogeochemical parameter
optimisation in all our synObs experiments. Relative to the misfit obtained with the reference parameters, proportionally

highest reductions in misfits are seen in synObs_seas experiments (up to 3.5 %, excluding VoIRMSE; Table- S2).

3.3.1 Analytical uncertainty

In synObs_noise experiments, which aim to assess how CMA-ES is affected by analytical uncertainty inherent in any true
observational field, model Zn uptake behaviour is relativelywell reconstructed regardless of data coverage (Fig. 6a, d) except

for VarRMSE-optimised synObs_IDP_noise, discussed further in Sect. 3.5.1. This result suggests that analytical uncertainty
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in GEOTRACES Zn data should not prevent optimisation from accurately retrieving biogeochemical model behaviour.
However, in contrast to the TWIN experiments, in which parameter values were perfectly retrieved, the optimised parameters
in synObs_noise experiments are distinct from the reference parameters (Fig. 5): while parameters az,, bz,, and L are
relatively well constrained to within ~5 %, ~30 % and ~15 % respectively (excluding VarRMSE), parameter ¢, is consistently
found at its lower boundary. The poorer constraints on bz, and L than on a, may be explained by reciprocal effects of these
parameters on the uptake curve (Fig. 2), while model sensitivity to ¢, is generally low when a, is properly reproduced (Sect.
3.1.1). More broadly, despite the difference in the type of data-being used for optimisation, the imperfect parameter retrieval
in these experiments is consistent with the observation in data-assimilating ecosystem model studies that Michaelis-Menten
constants are hard to constrain in optimisations against synthetic data disturbed with noise (Friedrichs et al., 2006; Loptien and

Dietze, 2015).

3.3.2 Lack of seasonal variability

In synObs_seas experiments, which aim to assess the impact of our model’s lack of seasonality, differences between optimised
uptake curves are more pronounced for different misfit functions than for different data coverage (Fig. 6b, e), with the
VoIRMSE-optimised uptake curve most obviously different from the reference curve. Nonetheless, in experiments with
reduced data coverage, both the RMSE- and the VoIRMSE-optimised uptake curves are less similar to the reference uptake
curve than in corresponding experiments with full data coverage. In all synObs ALL seas experiments, the surface ocean of
the optimised model is generally biased to higher Zn concentrations (e.g. Fig. 7b, ¢), accompanied by negative residuals below
the euphotic zone (e.g. Fig. 7e, h; Sect. 3.2). The integrated Zn export fluxes obtained in our synObs_seas experiments are
generally slightly lower than the reference flux, but always overestimate the export flux of the target simulation (Table S2;

Fig. $9).59). which is 9 % lower than the reference. The VoIRMSE-optimised synObs_ALL seas experiment produces the

lowest export flux, i.e. closest to the flux of the target simulation, but this optimisation in fact leads to residuals that tend to

amplify the RMSE-optimised residuals (cf. second and third column in Fig. 7), thus demonstrating the importance of the spatial
patterns in the Zn export flux. Figure S7 shows that it is the differences in both circulation and biogeochemistry that limit the
ability of CMA-ES to reconstruct exact parameter values and the integrated Zn export flux underlying the target field (Table
S2). Instead, optimisation finds a compromise solution that alters biogeochemical parameter values to compensate for
systematic differences between the target and reference fields, i.e. reciprocal bias compensation sensu Loptien and Dietze

(2019).

3.3.3 Differences in underlying circulation

In synObs_circ experiments, our model is optimised towards a target field which was created using the reference
biogeochemical parameters in a different circulation model, MITgem-ECCO (Sect. 2.3.1). Among the target fields used in this
study, the target field produced with MITgem-ECCO is most clearly distinct from the reference field (Figs. 1d, e, SI).

Differences between the reference field and the synObs_circ target field are larger than any differences resulting from relatively
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large changes to Zn uptake systematics within the MITgem-2.8 framework used during optimisation (Fig. S6). Despite clearly
different optimised uptake curves (Fig. 6¢), it remains the case that differences between the optimised Zn fields and the target
are larger than differences between optimised models resulting from different misfit functions (ef--second column and third
column in Fig. 8). Furthermore, differences between RMSE-optimised and VoIRMSE-optimised fields, which are of a purely
biogeochemical origin within the same circulation framework (MITgcm-2.8), are much more systematic than the distribution
of residuals to the target field, which compares results from two different circulation frameworks (MITgem-2.8 for the
optimised model, MITgem-ECCO for the target field). A major difference between the circulation simulated by the two
MITgcem-configurations relates to timescales of deep ocean circulation, especially in the voluminous deep Pacific (Fig. S8).

The focus of our synObs_circ experiments is mainly to assess the effect of data coverage on optimisation results when a
systematic circulation bias exists, whichas we discuss in Sect. 3.4. However, it is worth noting that (i) parameter retrieval
appears most challenging in these experiments, with parameters b, and ¢, each converging to a boundary in 8 of the 11
experiments conducted (Fig. 5), (ii) the synObs_circ experiments are the only experiments in which parameter a,,, the best-
constrained parameter (Sect. 3.1), converged to its lower boundary as a consequence of volume-weighting (Sects. 3.2.2, 3.5),
and (iii) all synObs_circ optimisations result in global Zn export lower than that of the reference simulation, while export in

the target simulation is 7% higher than in the reference simulation (Table S2, Fig. S9). TheWe note that these results and their

severity may be specific to the two circulation models chosen for our synObs_circ experiments, and/or to the choice of

reference parameters. On the other hand, the fact that retrieval of parameter values and biogeochemical model behaviour is

difficult in the face of systematic differences in whole-ocean ventilation timescales is not unexpected. The strong influence of
the physical circulation framework on biogeochemical ocean model output was emphasised relatively early by Doney (1999).
More recently, by comparing optimisation results obtained using CMA-ES with TMs derived from three different ocean
models, Kriest et al. (2020) found that some of their optimised biogeochemical parameters depended strongly on the
circulation.

In summary, we find that optimisation of biogeochemical parameter values introduces some error-compensating effects in all
synObs experiments. This tendency is most simply illustrated by the synObs_noise experiments, where optimisation to noise-
perturbed data produces parameter sets slightly different from the reference set. However, relative to the misfit obtained with
the reference parameters, highest misfit reductions are seen in synObs_seas experiments (up to 3.5 %, excluding VoIRMSE;
Table. S2). This may reflect that fact that the target field of these experiments differs most strongly from the reference field in

the high latitudes (Fig. 7), where changes to parameter values have a relatively high impact.

3.4 Influence of reduced data coverage on parameter retrieval

In order to isolate the effect of reduced data coverage on optimisation, we compare the results of synObs_IDP(+) experiments,
in which data coverage is limited to the locations of existing observations, with the corresponding synObs_ALL experiment

in which the entire Zn field is used to quantify misfit.
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3.4.1 Effects of reducing data coverage

Limiting simulated data coverage to that of the IDP2017 means that approximately 88% of the model cells are not used for
comparison to synthetic observations. Nonetheless, this does not lead to a significant increase in the total number of iterations
needed until the internal convergence criterion is reached (Table S2). We also found no evidence that the reduction in data
coverage causes CMA-ES to terminate in a local minimum: calculating the misfit with the optimised model output from
synObs_ALL experiments at IDP2017 coordinates results in a higher misfit than the minimum misfit achieved in the
corresponding synObs_IDP experiment. Conversely, misfits calculated using all model cells with optimal parameters from the
synObs_IDP experiments were higher than the corresponding minimum misfits in synObs_ALL. Thus, the objectively optimal
parameters indeed depend on the data coverage of the target field.

Figure 6 shows that Zn uptake behaviour obtained with a particular misfit function in synObs_IDP often did not greatly differ
from that obtained in the corresponding synObs_ALL experiment — with the exception of the RMSE-optimisation with the
seasonal target field (synObs_seas) and the RMAE-optimisation with the target field obtained from ECCO (synObs_circ),
introduced in Sect. 3.2.3. However, Fig. 9 shows that the degree of differencesdifference in parameter values varies: while for
parameter bz, optimal solutions scatter widely around the 1:1 line, differences for the other parameters are much less
pronounced, with only a few major offsets. The similarity for parameter c, is a consequence of its frequent coincidence with
a boundary (Fig. 5), regardless of data coverage. In contrast, the smaller scatter of parameters L and especially az, around the
1:1 line reiterates our finding in Sect. 3.1 that these parameters are better constrained by optimisation (Fig. 4). While the scatter
for parameter L is about equally distributed around the 1:1 line, parameter a,, which has the strongest effect on Zn uptake
systematics and export flux (Figs. 2, S2), is always underestimated in synObs_IDP experiments relative to the value obtained
in synObs_ALL. Limiting data coverage reduces the optimised parameter value of az, by 7+ 5 % (1SD), excluding two cases
for which az, is underestimated by >30 %: (i) VolRMSE-optimised synObs_IDP seas, and (ii) RMAE-optimised
synObs_IDP _circ (Fig. 9a, Table S2). In the first case, underestimation of a, is partly compensated by underestimation of
parameters by, and L, producing an uptake curve not very different from that obtained in in the corresponding synObs_ALL
(Fig. 6b, e), and similar integrated Zn export (Fig. S9). In contrast, for RMAE-optimised synObs IDP circ, the
underestimation of parameter ay, is not compensated by other parameter values, leading to very different Zn uptake
systematics from the corresponding synObs_ALL experiment (Fig. 6c, f) and strongly reduced integrated Zn export (Fig. S9).
A similar but less extreme example leading to different Zn uptake systematics from the corresponding synObs ALL
experiment is found in the RMSE-optimised synObs_IDP_seas experiment, in which underestimation of az,, is compounded
by overestimation of L and c,,, (Fig. 6b, e).

It is apparent from Figs. 6 and 9 that the extent to which data coverage reduction affects parameter retrieval depends on the
misfit function; we discuss this in detail in Sect. 3.6. Given the appropriate choice of misfit function, however, our set of
experiments indicates that the spatial coverage of the GEOTRACES IDP2017 is sufficiently representative of the large-scale

patterns of the Zn distribution to allow retrieval of biogeochemical model behaviour through optimisation. With regard to
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parameter retrieval, this finding is limited to those parameters that dominate model behaviour, i.e., L and, especially, az,,
although the latter is consistently slightly underestimated relative to the value obtained in the corresponding synObs ALL
experiment. The fact that the generally well-constrained parameter az, is underestimated when data coverage is reduced, even
though this parameter sensitively controls Zn export from the biogeochemically-important Southern Ocean (Fig. S2b),
motivates an assessment of whether increasing the observational density in some regions, particularly the Southern Ocean,
may improve parameter retrieval. We thus subsequently assess potential benefits associated with the addition of high-latitude

data by considering our synObs_IDP+ experiments in more detail.

3.4.2 Effect of including high-latitude data

The synthetic target fields of our synObs_IDP+ experiments complement the IDP2017 coordinates with the locations of high-
latitude Zn observations published more recently (Fig. 1b). For the two optimisation experiments discussed above (RMSE-
optimised synObs_seas and RMAE-optimised synObs_circ), including these additional constraints leads to an improvement
in parameter retrieval, as the underestimation in az, is considerably reduced (by ~50 %; Fig. 9), and the optimised uptake
systematics become more similar to those obtained in the corresponding synObs ALL experiments (Fig. 6). In order to
investigate whether the alignment in systematics of the synObs IDP+ experiments with those of the corresponding
synObs_ALL experiments comes about due to additional Zn-concentration information, or due to the implicit change in the
weights of different oceanic regions resulting from these additional data, we carried out an additional RMAE-optimised
synObs_IDP_circ optimisation in which each data point was weighted by the implicit basin-weights derived from the IDP+
data situation (Table S3). This optimisation, which only includes the Zn information resulting from IDP2017 data coverage,
resulted in uptake systematics that are quite distinct from those obtained in the corresponding synObs_IDP+ experiment. Theln
fact. the uptake curve is-in-fact very similar to that obtained in synObs_IDP_circ (Fig. S10), but produces consistently higher
values of ,.p. This similarity implies that rather than the changed weighting of oceanic regions, it is the additional Zn-
concentration information in the IDP+ data that is mainly responsible for altering optimisation results.

Further evidence for the importance of the additional high-latitude Zn data arises from the BasinRMAE-optimised uptake
systematics in synObs_IDP+_circ, which becemesbecome more similar to the eorrespondingRMAE-optimised synObs_ ALL
experiment than that obtained for synObs_IDP_circ (Fig. S10). We suppose that in particular the additional data constraints at
southern high latitudes;which-are — typically associated with high Za-surface Zn concentrations; — can significantly improve
the ability to constrain biogeochemical model behaviour, because (i) the largest differences between the RMAE-optimised
uptake systematics obtained in synObs_IDP_circ and synObs IDP+ circ are observed for high Zn, and (ii) the BasinRMAE-
optimised uptake curve obtained in synObs_IDP+ circ improves the BasinRMAE-optimised uptake curve obtained in
synObs_IDP_circ, again exceeding it especially at high Zn (Fig. S10).

In summary, our results suggest a benefit from additional high-latitude data. Among the RMAE-based optimisation results

with reduced data coverage, BasinRMAE-optimised uptake systematics in synObs_IDP+ circ best reproduce the RMAE-
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optimised uptake systematics in the corresponding experiment with full data coverage. This finding, together with the smaller
deviations from the 1:1 line achieved with basin-weighting misfit metrics in Fig. 9, suggests that basin-weighting may be
advantageous in reconstructing biogeochemical system behaviour from sparse and inhomogeneously sampled data. We discuss

this further in Sect. 3.6.

3.5 Importance of misfit function

A feature that emerges from the preceding discussion is that, both in the presence of inaccuracies in the physical model (Sect.
3.3) or with a reduction in data coverage (Sect. 3.4), optimisation results become increasingly dependent on the misfit metric
used. This is in agreement with previous studies that report a potentially large impact of the choice of misfit function on the
best estimate of biogeochemical fluxes and concentrations (e.g. Evans, 2003; Sauerland et al., 2019). In particular, the
subjective choice of weights may have a strong influence on the optimisation results (Evans, 2003). While some studies apply
RMSE-based misfit functions (e.g. Friedrichs et al., 2007), others suggest to reduce the effect of outliers by using a misfit
function based on the absolute differences between model and observations (Trudinger et al., 2007; Seegers et al., 2018).

Our ensemble of optimisations suggests that weighting is more important than the choice of squaring the residuals or not. Our
optimisation results show that weighting squared residuals by the fractional volume of the grid cell (VoIRMSE) results in large
deviations from the reference uptake systematics whenever systematic differences in the underlying physical model are present
(i.e. in synObs_seas and synObs_circ experiments), even with perfect data coverage;-and: furthermore, weighting squared

residuals by the inverse variance prevented CMA-ES from reaching its internal termination criterion. We discuss these two

weighting schemes below. Other examples of a misfit metric leading to poorly retrieved biogeochemical model systematics
emerge only in the light of both underlying uncertainty and limited data availability, and will be further discussed in Sect. 3.6,

where we elucidate the joint effect of these two aspects and the importance of basin-weighting.

3.5.1 Influence of misfit function: variance-weighting

The only synObs_noise experiment entirely unable to reproduce model Zn uptake behaviour is that optimised using VarRMSE
(Fig. 6d). Reasons for CMA-ES being prevented from finding the absolute minimum of the misfit function might be non-
informative (“flat”) misfit functions, misfit functions with a rough topography, too wide boundary constraints, or a small
population size (e.g. Ward et al., 2010; Kriest et al., 2017).The VarRMSE misfit metric is highly sensitive to changes in
parameter bz, (Fig. S11), and its minimum in parameter space is strongly offset from the reference value of this parameter.
This topography appears to be a consequence of the variance-weighting of residuals in this misfit function. Some of the
weighted residuals between the reference field and the noise-perturbed target field are very high for small concentrations (Fig.
S12). This is because the variance used for weighting the squared residuals is empirically estimated from the noise-perturbed
observations; (as it would be from real observations). rather than from the reference field used to determine the added noise
(Sect. 2.3.1). Since ¢ increases rapidly at small concentrations (Eq. 35), the empirical variance determined for noise-perturbed

observations that actually underestimate the true value is a gross underestimate, leading to overweighting of these residuals in
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the misfit function (since w; ; =¢~*). As a consequence, this particular misfit function appears to be too sensitive to changes
in parameter by,, which plays an important role at low concentrations (Fig. 2). However, the sensitivity of the global Zn
distribution to parameter b, is virtually negligible (de Souza et al., 2018), and thus an elevated sensitivity of the optimisation
to this parameter is not desirable. It might be sensible to apply a minimum absolute error when calculating weights if-usingfor

a misfit metric that weights by its reciprocal (Schartau et al., 2001).

3.5.2 Influence of misfit function: volume-weighting

A striking result of our optimisation ensemble is the fact that, in the presence of biases in the model, VoIRMSE-optimised
solutions exhibit Zn uptake systematics that are most distinct from both the other experiments as well as the reference uptake
curve (Fig. 6), even with-perfectwhen data coverage is perfect. The VoIRMSE misfit function compensates to some extent for
the unequal distribution of model cells, which are more numerous in the upper ocean due to the higher vertical resolution there.
On the other hand, all misfit metrics applied in this study naturally emphasise the deep ocean for a nutrient element such as
Zn, due to the order-of-magnitude increase in Zn concentrations between the surface and the deep ocean. Because of this
expected concentration dependence of the residuals, several studies suggest that log-transformation might be appropriate if
there is such a wide variability in concentrations (e.g. Stow et al., 2009; Seegers et al., 2018; Falls et al., 2021); instead,
VoIRMSE exacerbates this concentration dependence for elements with a nutrient-like distribution. When there are differences
in the underlying physical model (synObs_seas and synObs_circ), VoIRMSE-optimisation consistently leads to the smallest
globally integrated Zn export flux (Table S2). This finding is most strongly manifested in synObs_circ experiments, in which
there are systematic differences between the large-scale circulation underlying the synthetic observations (from MITgem-
ECCO) and the model (MITgcm-2.8).

The biogeochemical model behaviour obtained with the VoIRMSE misfit metric in synObs_ALL circ has been introduced in
Sect. 3.2.2. In this experiment, the optimised parameter set results in integrated Zn export flux reduced by 15 % relative to the
reference simulation (Table S2), and by 20 % relative to the MITgem-ECCO simulation that produced the target field; the
effeetreduction is even stronger for the corresponding experiment with IDP2017 data coverage. The fact that VoIRMSE-
optimised uptake curves strongly deviate from the reference uptake curve even with perfect data coverage (Fig. 6b,c), while
only limited deviations are seen with RMSE and RMAE, supports the suspicion of Kriest (2017) and Kriest et al. (2017) that
volume-weighting might impede determinacy of parameters related to processes taking place in the euphotic zone. Based on
our results, we question the suitability of volume-weighting for optimisation of parameters—related-to-biological uptake
parameters towards basin-scale dissolved data, because VoIRMSE leads to the fitting of large-scale patterns associated with
ventilation of the deep ocean, rather than fitting biogeochemical model behaviour associated with the parameters to be
optimised. This is shown particularly clearly by the synObs_circ experiments-discussed-above: simulating ideal age (Thiele
and Sarmiento, 1990), the physical model used during optimisation (MITgem-2.8) produces deep waters that, especially in the
Pacific, are significantly older than in the circulation model underlying the synthetic target field (Fig. S8). This large-scale

circulation timescale difference leads to enhanced accumulation of regenerated Zn in the deep Pacific relative to the target
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field (Fig. 8). The use of VoIRMSE results in a sensitivity to residuals in the Zn-rich deep ocean to such an extent that the
misfit minimum is found for parameters that drastically decrease globally integrated Zn export in order to reduce Zn
accumulation in old deep waters — even though this simultaneously results in unrealistically high surface-ocean Zn
concentrations (Sect. 3.2.2). On the one hand, these results recapitulate the dependence of biogeochemical model results on
physical circulation pathways and timescales, but they also reveal that such sensitivities may be exacerbated by the sensitivities
of the misfit function chosen for optimisation. Our results suggest that VoIRMSE tends to enhance the circulation-dependence
of optimisation results, although this tendency may be strengthened in our study by the nutrient-restoring nature of the

underlying P-cycling model (e.g. Kriest et al., 2020).

3.6 Interaction between data distribution and misfit function: importance of basin-weighting

Finally, we bring together the two aspects of eurrasterthe suite of optimisation experiments discussed in Sects. 3.4 and 3.5, in
order to assess how the influence of a misfit function on optimisation results is affected by data distribution. In particular, we
discuss the importance of basin-weighting when data coverage is reduced.

The two experiments in which the reduction in data coverage induces relatively large differences from those obtained in
corresponding synObs_ALL experiments are the RMSE-optimised synObs_IDP_seas experiment and the RMAE-optimised
synObs_circ experiment (Table S2; Fig. 6). Figure 10 shows the depth distribution of the residuals in these two experiments,
as well as the residuals between the reference field and the corresponding target field. The depth distribution of residuals
between the reference field and the target field of the synObs_seas experiments reveals that the sum of squared residuals in
the surface ocean is about as high as that in the abyssal ocean, when data coverage is perfect (Fig. 10b). However, restricting
data coverage to IDP2017 coordinates leads to a larger normalised sum of residuals (and especially of squared residuals) in
the abyssal ocean, simply due to the sampling locations at which residuals are calculated. These residuals are reduced by
optimisation in the synObs_ALL and synObs_IDP experiments, but the depth structure of the residuals, and the enhanced
importance of the abyssal ocean with IDP2017 coverage, remains (Fig. 10b). Overall, misfit minimisation appears to be a
trade-off between fitting Zn concentrations in the abyssal ocean and that in the uppermost ~300 m: with full data coverage,
RMSE-optimisation slightly favours fitting the upper ocean, but with reduced data coverage, changes to Zn concentrations in
the abyssal ocean affect misfit more strongly than the-surface-ocean:in the surface ocean. This changed trade-off results in

different optimised Zn uptake systematics when data coverage is reduced (Fig. 6b, ).

Theln the synObs_circ experiments, analysis of the depth distribution of residuals between the reference field and the target

field of the synObs—cire-experiments-(Fig. 10c, d, h, i) reveals that limiting data coverage to IDP2017 coordinates increases

normalised residuals

d-throughout the water column (Fig. 10c, d). The RMAE-optimised
synObs_ALL_circ experiment produces a Zn field that is almost identical to the reference field, while in the corresponding
experiment with IDP2017 coverage, optimisation worsens model fit in the uppermost layers (Fig. 10i) in favour of reduced
sums of absolute residuals at depth, a result that is promoted by the small magnitude of residuals in the Zn-poor upper ocean.

Figure S9 suggests that nearly all synObs_IDP_circ optimisations achieve lower global misfit at the expense of increased
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surface residuals produced by a decreased global Zn export flux. Thus, reducing data coverage for optimisation can alter misfit
trade-offs between different ocean regions, due to changes in the vertical or geographic sampling of the target distribution.

In order to assess the joint effect of reduced data coverage and misfit function on optimisation results in more detail, Fig. 11
compares the optimised Zn ficld obtained in synObs_IDP_circ experiments with that obtained in synObs_ALL _circ. The
synObs_IDP_circ experiments are the experiments with the greatest variability among optimised uptake systematics (Fig. 6);
and0); furthermore, the most-influential and best-constrained parameter a, is consistently underestimated, relative to the
optimised value obtained in the corresponding synObs_ALL _circ experiment (Fig. 9; Sect. 3.4), a finding that is especially
clear with the RMAE misfit metric.

The comparison of the RMAE-optimised Zn fields obtained from synObs ALL _circ and synObs_IDP_circ against each other,
either only at IDP-coordinates (Fig. 11a) or at all model grid points (Fig. 11b), reveals that IDP2017 sampling does indeed
capture many of the systematic offsets between the two fields, such as those at high concentrations in the Pacific and Southern
Ocean >50° S. However, the offsets at IDP2017 coordinates are apparently neither numerous nor large enough to drive the
RMAE-optimisation towards the result obtained with full data coverage. Squaring residuals amplifies the relative impact of
these offsets (Fig. 1lc, d), and indeed a comparison of the corresponding RMSE-optimised Zn field to RMSE-optimised
synObs_ALL circ reveals that such offsets between the two simulations are virtually absent at IDP coordinates (Fig. 11¢). The
fact that the RMSE-optimised 7,,.p obtained in synObs_IDP_circ underestimatesis not identical to that in synObs_ALL _circ,
underestimating it at high concentrations but slightly everestimatesoverestimating it at low concentrations (Fig. 6c, f}), results
in tiny but systematic deviations from the theoretical quadratic relationship in the Southern Ocean (>50° S) and the Indian
Ocean (grey points in Fig. 11e);). which appear to be barely captured with IDP coordinates.

Basin-weighting. Another way to amplify the systematic offsets seen in Fig. 11a is achieved by calculating separate RMAEs
for different ocean basins as in our basin-weighting scheme, which weights the differences between the two fields in the
Southern Ocean >50° S more strongly (Fig. 11f). The systematic Zn differences in this region resulting from different data
coverage are mostly mitigated in the corresponding BasinRMAE-optimised simulation, which produces a field much more
similar to RMAE-optimised synObs_ALL (Fig. 11h)). and results in estimates of ay, and L that are less strongly offset from
this solution (Fig. 9; Table S2). Similar alignments in parameters a,, and L with basin-weighting can be observed in the case
of the RMSE-optimised synObs_IDP_seas experiment discussed above. Here, the BasinRMSE-optimised solution corrects
both the underestimation of az, and the overestimation of L (Fig. 9a, d; Table S2) and produces uptake systematics more
similar to the corresponding synObs_ALL solution (Fig. 6b, e). Thus, in both these experiments, basin-weighting reduces the
sensitivity of optimisation results to the data distribution. Our basin-weighting scheme was chosen to counteract the unequal
distribution of observations between basins in the IDP2017 (Fig. 1b). Thus, basin-weighted metrics result in a relative down-
weighting of the Atlantic and the Pacific, while weights of the Indian Ocean and the Southern Ocean south of 50° S are
increased. As discussed for the two examples above, improvements achieved through basin-weighting are more generally

apparent in our ensemble, being reflected in approximation of the uptake systematics in synObs_IDP(+) experiments to those
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in the corresponding synObs ALL experiments with perfect data coverage (Fig. 6), and in a closer correspondence between
the numerical values of optimised parameters a,, and L (Fig. 9).

It is worth noting that our experience with basin-weighting is to some extent in contrast with the findings of Tjiputra et al.
(2007) who applied variational data assimilation to a three-dimensional global marine biogeochemical model. Calculating
misfits from surface cells only, these authors found that twin experiments aiming to assimilate synthetic chlorophyll
“observations” are more successful in reducing the misfit function if an implicit regional scaling is applied by weighting each
residual by its fractional volume, i.e., a metric similar to VoIRMSE, which performs poorly in our experiments (Sect. 3.5.2).
On the other hand, some optimisations towards the distributions of dissolved nutrients (e.g. Frants et al., 2016) explicitly
encode an ad-hoc emphasis of the Southern Ocean that is implicit in our basin-weighting scheme. Though basin-weighting
might be considered subjective, we argue that the high zonal symmetry in the Southern Ocean and its key role in determining
global ocean nutrient distributions (Sarmiento et al., 2004; 2007) are sufficient justification for its application. In particular,
we hypothesise that the biogeochemical importance of the Southern Ocean in determining the global Zn distribution (Vance
et al.,, 2017; de Souza et al., 2018; Weber et al., 2018) is the reason why it is preferable to (implicitly) emphasise this region
in the misfit metric. Given the general importance of the Southern Ocean in determining large-scale ocean biogeochemical
parameters, such a metric is likely to perform well for most biogeochemically cycled elements with long oceanic residence
times. Nonetheless, different misfit metrics obviously capture different aspects of the distribution of model performance. In
order to ensure a thorough skill evaluation, Stow et al. (2009) suggest that the use of several metrics simultaneously is often
to be recommended, and Sauerland et al. (2019) show that multi-objective optimisation can help to better constrain model

parameters.

3.7 Implications for model calibration using real data

Although there are modelling studies of marine trace metal cycling that objectively calibrate a variety of their model parameters

(e.g. Frants et al., 2016; Weber et al., 2018; Pasquier et al., 2022), the impact of data distribution, model imperfections or

choice of misfit function on optimisation results are often not discussed. In this study, we have separately assessed how

optimisation results are impacted by differentthese sources of uncertainty. In accordance with other studieswork (e.g. Loptien

and Dietze, 2019; Kriest et al., 2020), our ensemble of optimisations shows that biogeochemical parameters are often optimised

to compensate for the inability of model formulations to reproduce the target field (Sect. 3.3).

experiments £Seet- 33 2 band a-fow - experiments optinising against reduced-data-coverage tSeets 3d-and -3.0)-the optimised

] not—res

parameters—d

—Reconstructed Zn uptake systematics
were most different from the reference uptake systematics in experiments with systematic differences between the large-scale
circulation of the model and that underlying the target field (synObs_circ; Fig. 6); misfits obtained in this experiment type

were also about an order of magnitude higher than those for synObs_seas, which differ only in terms of the presence or absence
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to real Zn data (e.g. Weber et al. 2018) is outside this study’s focus, the results of our ensemble have direct implications for

such optimisations and the inferences that may be drawn from them:

Because biogeochemical

parameters are often optimised to compensate for the inability of model formulations to reproduce the target field.

any optimisation of a simple biogeochemical model such as ours towards rea/ data must be seen as attempting to

retrieve the systematics of biogeochemical behaviour, rather than physically meaningful parameter values. This is
especially the case since — even though observations from wild phytoplankton (Twining and Baines, 2013) indicate

geographical systematics that are similar to those that result from this model formulation (de Souza et al., 2018); —
there is no reason to believe that the stoichiometry of Zn:P uptake in the real ocean should follow a single
dependence on dissolved Zn concentration:-thus,-any-.

Because increasing both spatial and temporal model resolution might be computationally unaffordable, even for a

relatively efficient global optimisation ef-a-simple-bi hemical-model-such-as-ours-algorithm like CMA-ES, it
is important for studies focusing on optimisation towards real-data-mustbe-seen-as-attemptingglobal (micro)nutrient
distributions with long whole-ocean residence times to retrieveprioritise the systematies—of biogeochemiecat

behaviour, rather than physically meaningful paramcter values. This reasoning underlics our choice to discuss the
restlts-of our-optimisationin-the-context-of Zn-uptake-systematies-(Fig—6)-and-of circulation model, with special

focus on accurate simulation of large-scale expert-flux—Seeendby;circulation timescales.

It is important to recognise the subjectivity that the choice of misfit function introduces to objective parameter

optimisation, and to carefully weigh the sensitivities implicit to the misfit function in making this choice for any

particular application. A misfit function that appears suitable for optimisation in a simple TWIN experiment, in
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which the model can perfectly describe the target field, may not be the best choice for optimisation towards noisy,

incomplete and/or irregularly distributed real-world data.

It should also be emphasised that our study has not considered the influence of model simplifications, e-g:such as the lack of

external sources of Zn or simplifications in the underlying P cycling model. 1i-eurmodelformulation-External inputs such

as

those from marginal sediments, atmospheric deposition, or hydrothermal vents (e.g. Conway and John, 2014; Roshan et al.,

2016; Lemaitre et al., 2020; Liao et al., 2020; Sugino and Oka, 2022) are not relevant to our optimisation ensemble to synthetic

observations, but their potential significance should be taken into account during optimisation to real data. With regard to the

underlying P cycling model, it directly affects Zn cycling;-as in our model formulation, since Zn uptake is related to PO4 uptake
through 7,,.p (Sunda and Huntsman, 1992), and si TH-is-assune rempineratiseZn remineralises with the same globally
constant length-scale as P (Twining et al., 2014). PartieutarlyIn particular, the latter assumption may be over-simplified, as the
remineralisation length-scale might be dependent on latitude or upper-ocean temperature (DeVries et al., 2014; Marsay et al.,
2015; Weber et al., 2016). Furthermore, observational studies have come to contrasting conclusions regarding the similarities

between the regeneration length-scales of Zn and P (Twining et al., 2014; Ellwood et al., 2020; Cloete et al., 2021).

4 Conclusions

This study has assessed how data distribution, model imperfections and misfit function influence the optimisation of a marine
Zn cycling model with the algorithm CMA-ES. Using synthetic observations that allow us full control over the target field, we
aimed to investigate the algorithm’s skill at retrieving parameter values and emergent model behaviour under real-world
conditions resulting from data constraints, such as reduced data coverage and analytical errors, or from systematic bias between
model and target field related to either seasonality or large-scale physical circulation.

Our results revealed good performance of CMA-ES with respect to recovering biogeochemical model behaviour. In TWIN
experiments, in which the model was optimised towards target fields that could theoretically be perfectly reproduced by the
model, CMA-ES recovered all model parameter values regardless of data coverage. Furthermore, the analysis of our suite of
synObs experiments, in which reproduction of reference model behaviour was impeded since the target field could a priori not
be exactly reproduced by the model, revealed that (i) the data coverage of the GEOTRACES IDP2017 can be sufficient to
reconstruct the systematics of Zn cycling at the global scale, (ii) optimisation generally broadly reproduced the Zn uptake
systematics of the reference simulation, with a few meaningful exceptions related to the choice of misfit function, and (iii) the
degree to which a parameter can be constrained depends strongly on its influence on the model’s Zn uptake systematics and
emergent properties such as global export flux.

As CMA-ES generally identified parameter sets that produced lower misfits than would have been calculated with the reference
parameter set, all optimised results contain some error-compensating effects. Despite these, the reference Zn export flux is

generally relatively well reproduced, except with the VoIRMSE misfit metric. Applying this metric, which deemphasises the
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shallow ocean and polar regions, results in the most distinct Zn uptake systematics from both the reference curve and those
resulting from optimisation with other misfit metrics. Furthermore, the inability of this metric to reproduce model behaviour
increases with the dissimilarity between the target field and reference field (Fig. 6). Based on our results, we suggest avoiding
misfit metrics that deemphasise regions where parameters to be optimised are likely to be influential.

Finally, our study emphasises the importance of implicit basin-weighting in the misfit function, and the significance of the
information gained from an increase in high-latitude Zn concentration data. The basin-weighting misfit metrics applied in this
study (BasinRMSE and BasinRMAE) oppose differences in data coverage between basins, and prove most successful in
minimising the sensitivity of optimised model behaviour to data coverage. Since the high latitudes are under-sampled in the
extant data, the efficacy of basin-weighting, in turn, reveals the importance of high-latitude Zn data for constraining model
behaviour, as does the fact that our best-constrained parameter — which dominantly determines the magnitude of Zn export at

high latitudes — is underestimated when data coverage is reduced.

Code and data availability

The TMM software and transport matrices are available to download from https:/doi.org/10.5281/zenodo.1246300
(Khatiwala, 2018). The OptClimSO optimisation framework is available at https://doi.org/10.5281/zenodo.5517610 (Oliver,
2021). It is originally sourced from Tett et al. (2013), and includes the CMA-ES optimisation code taken from Kriest et al.

(2017). Code implementing the Zn model optimised model outputs are available from https://doi.org/10.3929/ethz-b-
000543389 (Eisenring, 2022).
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Table 1. Reference parameter values and search intervals.

Azn bz, Czn L
Q] (uM) (M) (M)
reference value 6x107 3x10°8 0.32 1.2x10°3
! ! ! . 2.5x10% -
search range 6x10%-9x10%  4x10°-6x10°  0.16-7.05 37510
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1330

Figure 1. (a) Overview of the experiments carried out in this study. For experiments in the first row (ALL), optimisation was carried out
using full data coverage. For experiments in the second and third row, modelled and target fields were interpolated to the 3-D geographical
coordinates of locations which have Zn data available in an extended version of the GEOTRACES IDP2017 (IDP+; red dots in panel b) and
in the original version of this data product (IDP, blue dots in b). (¢) Distribution of IDP2017(+) observations in model depth layers of
MITgem-2.8. (d) Taylor diagram comparing target fields of the simulations listed in panel (a) to the reference field; (e) same as (d) but with
data coverage limited to IDP2017 coordinates.
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1335 Figure 2. Zn:P stochiometry of simulated uptake obtained with reference parameters (red) and by separately varying the parameters of Eq.

(2). The stochiometries are calculated with one parameter being (a) decreased or (b) increased by 50% (dashed lines) or set to the
boundary value in Table 1 (solid line).
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Figure 3. Evolution of parameter values and misfit (RMSE) in experiment TWIN_ALL. Red lines indicate the target parameter values.
Black trajectories show the mean parameter value over all individuals in each generation of ten individuals, while blue lines mark

maximum and minimum parameter values in the generation.
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1345  Figure 4. Boxplots of optimised parameter values obtained in all synObs_experiments, presented in parameter space rescaled to the

interval [0,1], i.e. turquoise lines at 0 and 1 correspond to boundary values for each parameter. Red stars indicate the reference parameter
values.
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1350  Figure 5. Results from the last generation of all synObs experiments. Error bars represent 2 standard deviations calculated using the 10
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optimisation, coloured according to misfit metric.
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1355  Figure 6. Zn uptake systematics resulting from optimised parameter sets obtained in synObs experiments. Dashed lines in (e) and (f) are
results obtained with the IDP+ data coverage (see text).
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Figure 7. Maps of surface Zn concentration (a-c), and zonal mean Zn concentration for the Atlantic (d-f) and the Pacific (g-i), showing the
RMSE-optimised Zn field obtained in synObs_ALL _seas (first column), the difference between this field and the target field (second

1360  column), and the difference between this field and the VoIRMSE-optimised model Zn field from the same experiment (third column). Note
the different colour scales between column 2 and 3.
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Figure 8. Maps of surface Zn concentration (a-c), and zonal mean Zn concentration for the Atlantic (d-f) and the Pacific (g-i), showing the

1365 RMSE-optimised Zn field obtained in synObs_ALL_circ (first column), the difference between this field and the target field (second
column), and the difference between this field and the VoIRMSE-optimised model Zn field from the same experiment (third column). Note
the different colour scales in column 2 and 3. All results are interpolated to the grid of MITgem-ECCO.
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Figure 10. (a, ¢) Integrated reference residuals (i.e. Znreference - Znurger) and residuals of optimised model over each model depth level. (f,
h) are zoom-ins of (a, ¢). (b, g) and (d, i) are the same as (a, f) and (c, h) but the integration is done with residuals being squared and with
absolute values of residuals respectively. In order to make results obtained with the two data situations comparable, all results are

normalised by the total number of observations. Note that positive and negative residuals within the same depth level can cancel each other
out, and that the sum is influenced by the number of model cells located in the corresponding model depth level—whereofthe-distributionis

sheown-in-(es§)-. Panel (e) shows relative frequency distributions of the vertical distribution of three different observational sets, which are

the non-reduced observations, i.e. MITgem-2.8deg, IDP2017, and IDP2017+ and panel (j) represents a zoom-in thereof.
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Figure 11. Comparison of Zn obtained in synObs_IDP_circ to Zn obtained in synObs_ALL _circ. The first row compares RMAE-
optimised Zn obtained in synObs_IDP_circ and synObs_ALL _circ. The second and third row show the effect on deviations seen in the
first row if Zn is either squared, as in RMSE, or five ocean regions are distinguished, as in BasinRMAE. The first and second column plot
RMAE-optimised Zn obtained in synObs_IDP_circ and synObs_ALL _circ restricted to the coordinates in the GEOTRACES IDP2017v2




and the entire field, respectively. Panels (e) and (h) of the third column compare Zn obtained with RMSE misfit function and BasinRMAE
misfit function in synObs_IDP_circ to the corresponding Zn obtained in synObs_ALL_circ, respectively.
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