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Abstract. Biogeochemical model behaviour for micronutrients is typically hard to constrain because of the sparsity of 

observational data, the difficulty of determining parameters in situ, and uncertainties in observations and models. Here, we 

assess the influence of data distribution, model uncertainty and misfit function on objective parameter optimisation in a model 10 

of the oceanic cycle of zinc (Zn), an essential micronutrient for marine phytoplankton with a long whole-ocean residence time. 

We aim to investigate whether observational constraints are sufficient for reconstruction of biogeochemical model behaviour, 

given that the Zn data coverage provided by the GEOTRACES Intermediate Data Product 2017 is sparse. Furthermore, we 

aim to assess how optimisation results are affected by the choice of misfit function and by confounding factors such as 

analytical uncertainty in the data or biases in the model related to either seasonal variability or the larger-scale circulation. The 15 

model framework applied herein combines a marine Zn cycling model with a state-of-the-art estimation of distribution 

algorithm (Covariance Matrix Adaption Evolution Strategy, CMA-ES) to optimise the model towards synthetic data in an 

ensemble of 26 optimisations. Provided with a target field that can be perfectly reproduced by the model, optimisation retrieves 

parameter values perfectly regardless of data coverage. As differences between the model and the system underlying the target 

field increase, the choice of misfit function can greatly impact optimisation results, while limitation of data coverage is in most 20 

cases of subordinate significance. In cases where optimisation to full or limited data coverage produces relatively distinct 

model behaviours, we find that applying a misfit metric that compensates for differences in data coverage between ocean 

basins considerably improves agreement between optimisation results obtained with the two data situations. 

1 Introduction 

Marine phytoplankton account for almost 50% of global primary production (Field et al., 1998), and their growth requires a 25 

variety of micronutrients, particularly first-row transition metals (Morel et al., 2014). In this study, we focus on zinc (Zn), 

which is physiologically important as a co-factor in essential enzymes (e.g. Morel and Price, 2003; Shaked et al., 2006; Morel 

et al., 2014), and has a high cellular abundance in phytoplankton (Moore et al., 2013; Twining and Baines, 2013). 

Though Zn, like phosphorus (P), is associated with organic matter rather than with siliceous frustules (Ellwood and Hunter, 

2000; Twining et al., 2003; Twining and Baines, 2013), the global distribution of dissolved Zn correlates with dissolved silicon 30 
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(Si) rather than with phosphate (PO4; Bruland, 1980). Vance et al. (2017) revealed the key role of enhanced Zn:P uptake by 

diatoms in the Southern Ocean, which, when coupled to the three-dimensional ocean circulation, causes the correlation 

between Zn and Si on a near-global scale. Deviations from this large-scale pattern have been observed in both the Atlantic 

(Conway and John, 2014; Lemaitre et al., 2020) and the Pacific Ocean (Janssen and Cullen, 2015; Vance et al., 2019), and 

thus while the first-order significance of enhanced Southern Ocean Zn:P uptake is uncontested (Ellwood, 2008; Roshan et al., 35 

2018; Weber et al., 2018; Middag et al., 2019), various processes have been suggested to be important distal from the Southern 

Ocean. Proposed water-column cycling processes include reversible scavenging (John and Conway, 2014; Weber et al., 2018), 

local overprinting signals related to biology (Middag et al., 2019; Vance et al., 2019), and authigenic sulphide precipitation in 

low-oxygen zones (Janssen and Cullen, 2015; but cf. Vance et al., 2019). Hypothesised inputs comprise sediment fluxes and 

atmospheric aerosol deposition in both the Atlantic (Conway and John, 2014; Lemaitre et al., 2020) and the Pacific (Conway 40 

and John, 2015; Liao et al., 2020), as well as hydrothermal input (Conway and John, 2014; Roshan et al., 2016; Lemaitre et 

al., 2020).  

The emergence of these hypotheses is a consequence of the GEOTRACES programme, which has increased the volume of 

marine trace metal abundance data by orders of magnitude (Conway et al., 2021). This increase in data availability has 

catalysed modelling studies of marine micronutrient cycles. The first global biogeochemical models have emerged for Zn 45 

(Vance et al., 2017; de Souza et al., 2018; Roshan et al., 2018; Weber et al., 2018) as well as for a range of other bioactive 

metals (e.g. van Hulten et al., 2017; Richon and Tagliabue, 2019), and the understanding of the oceanic iron cycle has evolved 

remarkably (e.g., Tagliabue et al., 2017; Tagliabue et al., 2019; Roshan et al., 2020).  

However, compared with the data for macronutrients, metal micronutrient observations remain sparsely distributed, posing 

one of the major difficulties faced when constraining biogeochemical models. Additionally, measurements of Zn uptake rates 50 

and cellular quotas (Zn:P) are scarce (Sunda and Huntsman, 1992), posing a challenge to modelling studies in which simulated 

Zn uptake must represent a variety of oceanic phytoplankton species. Further difficulties arise from commonly made 

assumptions regarding the precision of observations and the accuracy of the model. The combination of (i) analytical 

uncertainty, (ii) unresolved seasonal variability, and (iii) errors due to systematic bias in the circulation model results in a high 

level of parametric uncertainty, which is ideally addressed by determining model parameters through objective parameter 55 

estimation that minimises the misfit between model output and observations.  

Developing a truly data-constrained view of the oceanic Zn cycle thus requires a framework that enables quantitative 

assessment of the explanatory skill of the above-mentioned hypotheses regarding the marine Zn cycle. To this end, we aim to 

assess the strengths and sensitivities of an evolutionary algorithm for constraining biogeochemical model behaviour with data, 

particularly given the data coverage of the GEOTRACES Intermediate Data Product 2017 version 2 (IDP2017; Schlitzer et 60 

al., 2018; Fig. 1). We do so by optimising a global ocean Zn model using a state-of-the-art optimisation algorithm, Covariance 

Matrix Adaptation-Evolution Strategy (CMA-ES; Hansen and Ostermeier, 2001; Hansen, 2006).  

Using synthetic data that allow us full control over the “observations”, we perform a suite of 26 model optimisations in order 

to separately assess the impact of the above-mentioned uncertainties and biases, investigating how optimisation results are 
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impacted by the relatively sparse data coverage for Zn in the IDP2017, and by the choice of misfit function. Our results suggest 65 

that optimisation with the data coverage for Zn from IDP2017 can retrieve very similar biogeochemical model behaviour as 

when the algorithm is provided with perfect data coverage. However, with increasing uncertainty, optimisation results become 

strongly dependent on the choice of misfit function. In such cases, misfit functions that implicitly compensate for the uneven 

geographical distribution of observations in the data tend to reconstruct model behaviour more accurately, while those that 

favour the deep ocean are sensitive to systematic biases in the deep-ocean ventilation timescale of the underlying circulation 70 

model. 

2 Methods: models and optimisation ensemble 

We use a model framework that combines an offline approach for physical transport of dissolved Zn with an Estimation of 

Distribution Algorithm (EDA) for optimisation of four model parameters affecting the biogeochemical cycling of Zn. 

Simulations were carried out on the high-performance computing cluster Euler at ETH Zurich and the Cray XC40 Piz Daint 75 

at the Swiss National Supercomputing Centre (CSCS). Our ensemble of 26 optimisations comprises 10 optimisation 

experiment types (Sect. 2.3), each carried out with a subset of six misfit functions (Sect. 2.3.2). 

2.1 Biogeochemical ocean model 

2.1.1 Circulation framework 

Coupled physical-biogeochemical ocean models typically have a long equilibration time due to the timescales associated with 80 

global ocean circulation (Khatiwala, 2008; Wunsch and Heimbach, 2008). To efficiently simulate passive tracer transport, we 

use the transport matrix method (TMM), which calculates the transport of dissolved species as a sequence of sparse matrix-

vector products (Khatiwala et al., 2005; Khatiwala, 2007). For our optimisation experiments, we use annual-mean transport 

matrices (TMs) derived from MITgcm-2.8, a 2.8° global configuration of the MITgcm ocean general circulation model with 

15 vertical levels (Marshall et al., 1997; Dutkiewicz et al., 2005). This coarse-resolution model, which is forced by 85 

climatological winds, heat and freshwater fluxes, allows us to carry out a broad suite of optimisation experiments. In order to 

approach steady state in the global Zn field, each coupled physical-biogeochemical simulation was integrated forward in time 

using the TMM software (Khatiwala, 2018) for 3000 model years, using a time step of 12h for both tracer transport and 

biogeochemical interactions.  

2.1.2 Biogeochemical model of zinc 90 

The biogeochemical Zn model used in this study is described in detail by de Souza et al. (2018). Briefly, the biological Zn 

uptake term, 𝐽𝐽𝑍𝑍𝑍𝑍
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, is directly tied to that of PO4 by the stoichiometric parameter 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃: 

𝐽𝐽𝑍𝑍𝑍𝑍
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 ∙ 𝐽𝐽𝑃𝑃𝑃𝑃4

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢           (1) 
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Biological uptake of PO4, 𝐽𝐽𝑃𝑃𝑃𝑃4
𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢, is diagnosed by a biogeochemical P cycling model based on that described in Najjar et al. 

(2007), in which the uptake of PO4 in the surface ocean is driven by restoring surface PO4 concentrations towards annually 95 

averaged observations from World Ocean Atlas 2018 (WOA2018; Garcia et al., 2019) with a restoring timescale of 36 days. 

The stoichiometric parameter 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 (mol/mol) is a nonlinear function of the concentration of free Zn (Zn2+), arising from the 

phytoplankton culturing experiments of Sunda and Huntsman (1992):  

𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 = 𝑢𝑢𝑍𝑍𝑍𝑍∙𝑍𝑍𝑍𝑍2+

𝑏𝑏𝑍𝑍𝑍𝑍+𝑍𝑍𝑍𝑍2+
+ 𝑐𝑐𝑍𝑍𝑍𝑍 ∙ 𝑍𝑍𝑍𝑍2+          (2) 

Following Ellwood and van den Berg (2000), concentrations of Zn2+ are calculated from total dissolved Zn (the tracer carried 100 

in the model) in two steps: first, by assuming rapid equilibration of non-ligand-bound Zn (Zn’) with an organic ligand with 

conditional stability constant 𝐾𝐾𝐿𝐿=1010 M-1 and spatially constant concentration, which allows calculation of Zn’ by solving the 

quadratic equation: 

𝐾𝐾𝐿𝐿 ∙ (𝑍𝑍𝑍𝑍′)2 + (𝐾𝐾𝐿𝐿 ∙ 𝐿𝐿 − 𝐾𝐾𝐿𝐿 ∙ 𝑍𝑍𝑍𝑍 + 1) ∙ 𝑍𝑍𝑍𝑍′ − 𝑍𝑍𝑍𝑍 = 0        (3) 

and second, by calculating Zn2+ from Zn’ using the inorganic side-reaction coefficient 𝛼𝛼𝑍𝑍𝑍𝑍 = 2.1: 105 

𝑍𝑍𝑍𝑍2+  =  𝑍𝑍𝑍𝑍’
𝛼𝛼𝑍𝑍𝑍𝑍

            (4) 

The Zn uptake term is restricted to the euphotic zone, which comprises the uppermost two levels of MITgcm-2.8 (0–120 m). 

This uptake is exported downwards, where it is regenerated from an implicit particulate flux that attenuates with a power-law 

depth-dependence, i.e. a “Martin curve” with exponent -0.858 (Martin et al., 1987), identical to that used for P (Twining et al., 

2014). All simulations are initialised with a constant Zn field corresponding to a global ocean mean concentration of 5.4 nM 110 

(Chester and Jickells, 2012). 

In our optimisation experiments, we estimate the values of parameters 𝑎𝑎𝑍𝑍𝑍𝑍, 𝑏𝑏𝑍𝑍𝑍𝑍, and 𝑐𝑐𝑍𝑍𝑍𝑍 in Eq. (2), which control different 

aspects of the dependency of 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃. We also optimise the organic ligand concentration 𝐿𝐿, which determines the concentration 

of Zn2+, and thus the dependency of 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 on total dissolved Zn. The influence of changes in each of these parameters on 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 

is illustrated in Fig. 2. All parameters optimised are assumed to be globally and temporally constant. Parameter boundaries for 115 

optimisation were chosen relatively conservatively (i.e. broadly), since values are poorly constrained for both the ligand 

concentration (Bruland, 1989; Donat and Bruland, 1990; Ellwood and van den Berg, 2000; Lohan et al., 2005; Baars and Croot, 

2011; Kim et al., 2015; Sinoir et al., 2016) and the parameters governing the uptake curve (Sunda and Huntsman, 1992). For 

the parameters 𝑎𝑎𝑍𝑍𝑍𝑍, 𝑏𝑏𝑍𝑍𝑍𝑍, and 𝑐𝑐𝑍𝑍𝑍𝑍, the lower and upper boundary is determined by subtracting 50 % from, or adding 50 % to, 

their minimum and maximum values reported by Sunda and Hunstman (1992). The parameter boundaries for 𝐿𝐿 were likewise 120 

determined based on the range of observed values reported in Ellwood and van den Berg (2000). Parameter boundaries and 

reference values of each parameter are summarised in Table 1. Based on the findings of de Souza et al. (2018), we chose 

reference values to fit the uptake systematics obtained from culturing experiments with Emiliania huxleyi BT6 in Sunda and 

Huntsman (1992). 
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2.2 Optimisation algorithm 125 

For parameter optimisation, our model framework relies on the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES), 

more precisely the � 𝜇𝜇
𝜇𝜇𝑤𝑤

, 𝜆𝜆�-CMA-ES of Hansen (2016), an Estimation of Distribution Algorithm that performs particularly 

well on multi-modal functions (Hansen et al., 2010). While learning the covariance matrix in CMA-ES is analogous to learning 

the inverse Hessian matrix in a “classical” quasi-Newton method, CMA-ES outperforms the latter if the search landscape is 

non-convex or rugged (Hansen, 2016). 130 

The CMA-ES algorithm provides a method for updating the mean and the covariance matrix of a multivariate normal search 

distribution, with dimensions corresponding to the number of parameters being optimised. In contrast to “conventional” 

evolutionary algorithms, CMA-ES updates the mean and the covariance matrix by maximising the likelihood of previously 

successful candidate solutions and search steps respectively (Hansen, 2006). It thus efficiently incorporates information from 

the entire population, while also exploiting information between generations. The latter characteristic is particularly important 135 

here, as we use a small population size of ten individuals (𝜆𝜆=10), so that step-size control is key in preventing the population 

from premature convergence. CMA-ES has been shown to be a reliable and highly competitive evolutionary algorithm for 

both local (Hansen and Ostermeier, 2001) and global optimisation (Hansen and Kern, 2004; Hansen, 2009). It has been tested 

on real-world problems including parameter calibration in a biogeochemical ocean model by Kriest et al. (2017), whose 

implementation of CMA-ES in C++ we employ here, via the OptClimSO package (https://doi.org/10.5281/zenodo.5517610; 140 

Tett et al., 2013; Oliver et al., 2022). In order to apply CMA-ES to a constrained problem, we use the boundary handling 

described in Hansen et al. (2009), in which boundaries are imposed by adding a penalty function to the calculated misfit when 

a parameter’s distribution mean is out of bounds. As in Kriest et al. (2017), optimisation is terminated if the relative deviation 

of the misfits of seven individuals in a generation is smaller than 10-5, or if a predefined maximum of 200 iterations is reached. 

We also terminate optimisation when an individual produces a numerically very small misfit, smaller than that equivalent to a 145 

relative residual of 10-6 in each model cell. 

2.3 Experiment setups & nomenclature 

In all experiments, the Zn-cycling model was optimised toward synthetic observations (the target field) obtained from a 

previous model run. While we always apply the same model setup to carry out optimisation, the experiment types differ with 

respect to their target field. In the simplest test case, the target field is created with a physical and biogeochemical model setup 150 

that is identical to that being optimised. We refer to this test case as a TWIN experiment, since the target field can be perfectly 

reproduced by the model. The parameter values and the resulting target field of the TWIN experiment are hereafter referred to 

as reference parameters (Table 1) and reference field respectively. We refer to our second type of experiment as synObs (for 

“synthetic observations”). Target fields for the synObs experiments were created using the same reference parameter values, 

but either different model setups were applied to produce the target field, or it was modified a posteriori, as detailed in Section 155 

2.3.1. 
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Figure 1a arranges our optimisation experiments in a conceptual raster of the degree of data limitation versus degree of 

complexity of uncertainties. The simplest case is given by experiment TWIN_ALL, in which the model is optimised towards 

the entire Zn field produced by a previous simulation with the same model, i.e. the reference field. Experiment TWIN_IDP 

uses this same Zn field, but limits the data available for model optimisation by subsampling it only at those spatial locations 160 

where actual Zn observations are available in the IDP2017 (Schlitzer et al., 2018; Fig. 1b, c). The subscript “IDP+” refers to 

those experiments in which data coverage was expanded to include the locations of high-latitude observations published more 

recently than the IDP2017 (Section 2.3.3; Fig. 1b, c). The remaining experiments extend our optimisation array along the axis 

of increasing complexity of uncertainty, as detailed below. 

2.3.1 Types of uncertainty in synObs experiments 165 

In order to assess the effect of various kinds of uncertainty on optimisation with full data coverage (synObs_ALL), and the 

extent to which optimisation results are affected when we additionally account for the real, imperfect data coverage of the 

IDP2017 (synObs_IDP), we separately consider three sources of uncertainty:  

(i) analytical errors in the “observations” (synObs_[ALL/IDP]_noise, summarised as synObs_noise),  

(ii) lack of seasonal variability in the model (synObs_[ALL/IDP]_seas, summarised as synObs_seas) 170 

(iii) systematic biases in the physical ocean model (synObs_[ALL/IDP]_circ, summarised as synObs_circ).  

In order to assess the effect of observational analytical uncertainty on the optimisation results, the target fields in synObs_noise 

were created by perturbing the reference field with normally distributed random noise having zero mean and variance 𝜀𝜀:  

𝜀𝜀 =  (0.0719 ∙ [𝑍𝑍𝑍𝑍]0.7269)2          (5) 

which is an empirical estimate of the variance of Zn concentration analyses from GEOTRACES Zn intercomparison statistics 175 

(Bruland, 2013), and assumes that the analytical errors are laboratory-independent. Any negative concentrations resulting from 

this perturbation were set to zero.  

To investigate the influence of the lack of seasonal variability in our Zn-cycling model, synObs_seas experiments comprise 

optimisation towards an annual-mean target field produced by a simulation with the same physical model, but with a seasonal 

cycle in both physical transport and biogeochemistry (Khatiwala, 2007). Our last set of experiments, synObs_circ, assesses 180 

the sensitivity of the optimisation to systematic biases in the circulation of the physical model. In these experiments, the target 

field was produced with MITgcm-ECCO, a higher-resolution version of MITgcm from the Estimating the Circulation and 

Climate of the Ocean (ECCO) project (Stammer et al., 2004), i.e. a different physical model than that used during optimisation 

(MITgcm-2.8). In ECCO, an adjoint approach was used to adjust heat, momentum and freshwater fluxes so as to minimise the 

misfit between the model and a suite of observations (Wunsch and Heimbach, 2007). Climatological monthly mean transport 185 

matrices covering the 1992-2004 estimation period were extracted by Khatiwala (2007) and are annually averaged for use 

here. Our synObs_circ experiments aim to assess the effect of a reduction in data coverage on the optimisation results in the 

presence of systematic bias in the OGCM, rather than the effect of the OGCM itself, which is known to be large (Doney, 1999; 
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Doney et al., 2004; Najjar et al., 2007; Sinha et al., 2010; Dietze and Löptien, 2013; Löptien and Dietze, 2019; Kriest et al., 

2020). 190 

Metrics summarising similarities between the target fields of the synObs experiments and the target fields of TWIN 

experiments (i.e. the (reduced) reference field) are illustrated in Taylor diagrams (Taylor, 2001; Fig. 1d, e). This comparison 

shows that the synObs_circ target field, obtained with a different circulation model, is most distinct from the reference field 

with respect to all metrics illustrated. With regard to integrated Zn export flux, the impact of simulating seasonal variability is 

higher: while the simulation with MITgcm-ECCO produces an export flux that is 7 % higher than the reference simulation, 195 

the seasonal MITgcm-2.8 simulation has an export flux 9 % lower. Spatial differences between target fields, and the associated 

export fluxes, are visualised in Fig. S1. 

2.3.2 Misfit functions 

The difference between data and model is referred to as misfit (Lynch et al., 2009), which in this study is equivalent to the 

model error, since the data error of synthetic observations is zero. We calculate misfit at the location of our synthetic 200 

observations. Thus, for experiments with reduced data coverage (IDP and IDP+), the model output is interpolated to the target 

grid before calculating misfit. In this study, we assess the applicability of six misfit metrics, which can be described using one 

of the following equations: 

𝑀𝑀 = ∑  �∑
�𝑚𝑚𝑖𝑖,𝑗𝑗−𝑜𝑜𝑖𝑖,𝑗𝑗�

2

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗
∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗
𝑖𝑖=1

𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟
𝑗𝑗=1          (6) 

𝑀𝑀 =  ∑   �∑
�𝑚𝑚𝑖𝑖,𝑗𝑗−𝑜𝑜𝑖𝑖,𝑗𝑗�

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗
∙ 𝑤𝑤𝑖𝑖,𝑗𝑗

𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜,𝑗𝑗
𝑖𝑖=1

𝑁𝑁𝑟𝑟𝑟𝑟𝑟𝑟
𝑗𝑗=1          (7) 205 

where 𝑁𝑁𝑟𝑟𝑢𝑢𝑟𝑟 is the number of regions, 𝑁𝑁𝑜𝑜𝑏𝑏𝑜𝑜,𝑗𝑗 the number of observations in region 𝑗𝑗, and 𝑚𝑚𝑖𝑖,𝑗𝑗 and 𝑜𝑜𝑖𝑖,𝑗𝑗are the modelled and the 

“observed” (i.e. target) Zn concentrations, respectively, at each observational point 𝑖𝑖, 𝑗𝑗. The local model-observation difference 

𝑚𝑚𝑖𝑖,𝑗𝑗 − 𝑜𝑜𝑖𝑖,𝑗𝑗 is referred to as the residual, and its squared (Eq. 6) or absolute (Eq. 7) value is weighted by 𝑤𝑤𝑖𝑖,𝑗𝑗. We use four misfit 

metrics based on squared residuals (Eq. 6) and two based on absolute residuals (Eq. 7). An overview of the misfit metric 

applied in each of our experiment types is provided in Table S1. 210 

The four misfit metrics using squared residuals are (i) root-mean-square error (RMSE), (ii) volume-weighted RMSE 

(VolRMSE), (iii) variance-weighted RMSE (VarRMSE), and (iv) sum of regional RMSEs (BasinRMSE). For (i) to (iii), 

𝑁𝑁𝑟𝑟𝑢𝑢𝑟𝑟 equals one. In the case of RMSE, the weighting factor wi,j is unity for each squared residual. For VolRMSE, squared 

residuals are weighted by the fractional volume of the corresponding model cell. As the vertical grid spacing of MITgcm-2.8 

increases with depth and model cell volume decreases towards the poles, VolRMSE weights the deep and low-latitude ocean 215 

more strongly. Volume-weighting is frequently applied in ocean modelling studies when constraining towards observations of 

dissolved quantities (e.g. Kriest et al., 2017; Kwon et al., 2022).  
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Misfit function VarRMSE is only applied our synObs_noise experiment, in which synthetic observations were perturbed with 

heteroscedastic noise. In VarRMSE, wi,j equals the reciprocal of the variance of the synthetic observations, i.e. 𝜀𝜀−1 (Eq. 5). 

Weighting the squared residuals by 𝜀𝜀−1 is identical to the chi-squared statistic (e.g. Bevington and Robinson, 2003) and is 220 

frequently applied for multivariate comparison of predictions and observations, where the covariance between observational 

errors is assumed to be zero (e.g. Stow et al., 2009). In our calculation of variance-derived weights, residuals are calculated 

for synthetic observations larger than zero only.  

Misfit metric BasinRMSE, which sums regional RMSEs, was only applied in experiments with reduced data coverage. 

Distinction between ocean regions is frequently applied when optimisations are carried out on irregularly and sparsely sampled 225 

trace metal data (e.g. Frants et al., 2016; Weber et al., 2018). For BasinRMSE, we distinguish between five ocean basins 

(𝑁𝑁𝑟𝑟𝑢𝑢𝑟𝑟 = 5): Atlantic, Pacific, Indian Ocean, and two latitudinal sections of the Southern Ocean (40–50° S and >50° S). The 

resulting misfit corresponds to the sum of each region’s RMSE (i.e. 𝑤𝑤𝑖𝑖,𝑗𝑗=1). This misfit function mitigates any over- or under-

weighting of particular ocean regions that may arise from the irregular basinal distribution of observations (Fig. 1b). We refer 

to this implicit weighting that arises from summing RMSEs with different numbers of observations in each ocean region as 230 

basin-weighting. Our definition of regional constraints differs from that applied by Weber et al. (2018), since they defined nine 

discrete regions and incorporated only a portion of the observations provided in the GEOTRACES IDP2017. 

The misfit functions based on absolute residuals are referred to as RMAE (root mean absolute error) and BasinRMAE. The 

weights or number of regions applied are equivalent to those in the corresponding misfit functions based on squared residuals 

described above.  235 

2.3.3 Synthetic observational constraints 

For experiments listed in the first row of Fig. 1a (TWIN_ALL and synObs_ALL), the model is optimised towards synthetic 

observational fields at the resolution of the model, i.e. residuals are calculated at all model grid points. In all other experiments, 

in the second and third rows of Fig. 1a, (synObs_IDP+, TWIN_IDP & and synObs_IDP), model output and observations are 

compared at the 3-D coordinates of the Zn observations in the IDP2017 (IDP experiments) or the extended version thereof 240 

(IDP+ experiments; Fig. 1b) that includes data from recent high-latitude studies not included in the IDP2017 (Sieber et al., 

2019; Vance et al., 2019; Wang et al., 2019; Lemaitre et al., 2020). We only consider locations of IDP2017 data that were 

assigned quality flags 1 or 2, indicating (probably) good quality, and to which it is possible to interpolate. This results in ~4700 

data points at 295 geographic locations to constrain the model in the IDP experiments. Relative to its fractional volume, the 

Atlantic is clearly over-represented in the IDP2017 relative to the other ocean basins (Fig. 1b), while the Indian Ocean and the 245 

Southern Ocean south of 50° S are under-represented. In the vertical, intermediate water depths are under-represented relative 

to the model’s grid-spacing. 
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3 Results and discussion 

Our ensemble of optimisations towards synthetic observations allows us to assess the influence of (i) uncertainty in data or 

biases in the model, (ii) data coverage, and (iii) misfit function on the ability of CMA-ES to reproduce biogeochemical model 250 

behaviour and parameter values. In the following, we first discuss the degree to which model parameter values could be 

constrained overall in our optimisation experiments, before discussing the influence of each of the above-mentioned aspects 

in turn.  

3.1 Parameter value retrieval and its sensitivities 

Our TWIN experiments are a test case in which the model can exactly reproduce the synthetic observations. In these 255 

experiments, all parameter values were perfectly retrieved regardless of data coverage, even though calculating misfits in 

TWIN_IDP (i.e. with the data coverage of IDP2017) only involves 12% of the data from the target field of TWIN_ALL (perfect 

data coverage). Thus, the reduced and inhomogeneous spatial coverage of the GEOTRACES IDP2017 will not prevent the 

optimisation algorithm from converging to the correct parameter values if the observations can be perfectly matched by the 

model equations. Figure 3 shows the evolution of the parameter values and the logarithmic misfit during the TWIN_ALL 260 

experiment. High variances reflect a wide range of parameter values in a single generation of 10 individual simulations, and 

occur mainly at the beginning of the optimisation. For parameter 𝑎𝑎𝑍𝑍𝑍𝑍, which determines the asymptotic Zn:P value of the non-

linear portion of the Zn uptake equation (Eq. 2; Fig. 2), the average parameter value approaches the reference value earlier 

than for the other parameters. 

In synObs experiments, i.e. when target fields cannot be perfectly reproduced by the model, CMA-ES does not exactly retrieve 265 

reference parameter values. However, optimisation almost always identifies a parameter set that gives a better fit to the target 

field than would have been produced with reference parameter values (Table S2). Figure 4 provides an overview of the range 

of values determined for each of the four biogeochemical parameters optimised in our optimisation ensemble. This overview 

shows that the various types of complexity we introduce into our synObs experiments lead to a range of optimised values for 

each parameter. While the optimised values for parameter 𝑏𝑏𝑍𝑍𝑍𝑍 and 𝑐𝑐𝑍𝑍𝑍𝑍 span (almost) the entire range of allowed values, those 270 

for parameter 𝑎𝑎𝑍𝑍𝑍𝑍 and – to a lesser extent – 𝐿𝐿 span a relatively limited range (Fig. 4). Also, the median values for 𝑎𝑎𝑍𝑍𝑍𝑍 and 𝐿𝐿 

lie close to the reference values, whereas the median value for 𝑏𝑏𝑍𝑍𝑍𝑍 is clearly higher than the reference value, and that for 𝑐𝑐𝑍𝑍𝑍𝑍 

coincides with the lower boundary. The fact that the optimised value for 𝑐𝑐𝑍𝑍𝑍𝑍 was found at its lower boundary in 70 % of 

synObs experiments leads to an interquartile range in Fig. 4 that appears relatively narrow, although its optimised values range 

over the entire allowed parameter space, indicating the difficulty of constraining this parameter. 275 

3.1.1 Interrelationship between parameter retrieval and model sensitivity 

The differing extent to which uptake parameters can be retrieved by optimisation may be understood in light of their influence 

on simulated Zn uptake systematics. Figure 2 illustrates the influence of each parameter on the systematics of the stoichiometric 
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uptake ratio 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 when parameters are changed by ±50 % of the reference values, or when they are set to the minimum or 

maximum boundary value. While 50 % changes in the value of 𝑎𝑎𝑍𝑍𝑍𝑍 have a relatively high impact on 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃, changing any of 280 

the other parameters by ±50 % affects the shape of the curve to a much smaller extent. Changes in 𝑐𝑐𝑍𝑍𝑍𝑍 mainly affect 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 at 

high Zn2+, while changes in the parameters 𝑏𝑏𝑍𝑍𝑍𝑍 and 𝐿𝐿 have a similar effect on the shape of the 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 curve, suggesting that they 

might be able to compensate for each other.  

The sensitivity of the system response to parameter 𝑎𝑎𝑍𝑍𝑍𝑍 has already been reported by de Souza et al. (2018). Indeed, our 

optimisation ensemble reveals that 𝑎𝑎𝑍𝑍𝑍𝑍 has the strongest influence on simulated Zn export flux, especially in the Southern 285 

Ocean (Fig. S2), where the Zn:P ratio of export plays an important role in determining the large-scale Zn distribution (Vance 

et al., 2017; Roshan et al., 2018; Weber et al., 2018). The sensitivity to 𝑎𝑎𝑍𝑍𝑍𝑍 is also manifested in our optimisations by the fact 

that this parameter generally converges first towards its optimised value (e.g. Fig. 3). Figure 5 and Table S2 show the optimised 

parameters for each synObs experiment, i.e. parameter values that produce the minimum misfit in the last iteration. As 

illustrated clearly in Fig. 5, the reference value of 𝑎𝑎𝑍𝑍𝑍𝑍  is generally well retrieved (to within ±~30%; Table S2), with the 290 

important exception of VolRMSE-optimised synObs_circ solutions, where 𝑎𝑎𝑍𝑍𝑍𝑍 was found at its lower boundary, producing 

uptake systematics and global export fluxes that are clearly distinct from all others (Sect. 3.2.2). 

Parameter 𝑐𝑐𝑍𝑍𝑍𝑍 represents the opposite case in terms of sensitivity. Coming into play only at high Zn2+, its role in determining 

Zn uptake is minimal at the global scale, especially when high values of 𝑎𝑎𝑍𝑍𝑍𝑍, as in our reference parameter set, allow elevated 

𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 at high latitudes. Thus, high values of 𝑎𝑎𝑍𝑍𝑍𝑍 decrease the importance of the linear portion of the uptake curve governed by 295 

parameter 𝑐𝑐𝑍𝑍𝑍𝑍 (Eq. 2) and the degree to which it is constrainable. The interaction between these two model parameters is 

exemplified by the VolRMSE-optimised experiments in which 𝑎𝑎𝑍𝑍𝑍𝑍 is found at its lower boundary: here, optimisation finds 

elevated 𝐿𝐿 and extremely high values of 𝑐𝑐𝑍𝑍𝑍𝑍 (Fig. 5), coinciding with the upper boundary for this parameter. This results from 

the fact that high values of 𝑐𝑐𝑍𝑍𝑍𝑍 are needed to produce elevated Zn uptake at high latitudes when 𝑎𝑎𝑍𝑍𝑍𝑍 is low, especially when 

high ligand concentrations 𝐿𝐿 depress Zn2+. In our ensemble of optimisations, high values of 𝑐𝑐𝑍𝑍𝑍𝑍 are always concomitant with 300 

elevated ligand concentrations (Figs. 5, S3). 

Interdependence of parameter sensitivity can also be observed between the parameters 𝑏𝑏𝑍𝑍𝑍𝑍  and 𝐿𝐿 . Although changes of 

opposite sign to these parameters produce similar changes in Zn uptake systematics (Fig. 2), both were accurately retrieved in 

our TWIN experiments (Table S2). In synObs experiments, underestimation of one of these parameters did not necessarily 

result in overestimation of the other. Exceptions to this are found when 𝐿𝐿 is greatly overestimated (>100%); in all these cases, 305 

𝑏𝑏𝑍𝑍𝑍𝑍  is always clearly underestimated (<-26 %; Fig. S3). Higher values of the ligand concentration 𝐿𝐿  buffer Zn2+ to 

concentrations below typical values of 𝑏𝑏𝑍𝑍𝑍𝑍 over a large range of total Zn concentrations (Fig. S4), increasing the sensitivity of 

the uptake systematics to 𝑏𝑏𝑍𝑍𝑍𝑍. Conversely, low values of 𝐿𝐿 result in a sharper rise of Zn2+ with total Zn (Fig. S4), reducing the 

scope for 𝑏𝑏𝑍𝑍𝑍𝑍 to influence the Michaelis-Menten term in Eq. 2. In the vicinity of the reference value of 𝐿𝐿, the sensitivity to 𝑏𝑏𝑍𝑍𝑍𝑍 

is relatively low (Figs. 2, S4). In our optimisations, this lack of sensitivity is manifested by the fact that 𝑏𝑏𝑍𝑍𝑍𝑍 is found at a 310 

boundary more frequently (>30 % of synObs experiments) than 𝐿𝐿 (<10 %). In our optimisations, if parameters were found at 
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one of their boundary values, we frequently observed that misfits lower than that produced with optimised parameters would 

have been achieved with parameter values outside of the prescribed boundaries. This finding supports previous studies 

suggesting that identification of optimised parameter values at prescribed boundaries, and the occurrence of lower misfits 

outside the prescribed and supposedly realistic parameter space, may point to deficiencies in biogeochemical model structure, 315 

wrong choice of parameters to be optimised, or bias in the physical circulation (e.g. Kriest et al., 2017; Falls et al., 2021), and 

highlights the importance of well-considered boundaries for interpretability of results. 

In summary, our results show that parameters with a stronger influence on the (reference) biogeochemical model behaviour 

are better constrained over the range of uncertainties and data-coverage limitations represented by our synObs experiments. 

Given our choice of reference parameters, which emphasises the high affinity Zn uptake system (non-linear term of Eq. 2), 320 

parameter 𝑎𝑎𝑍𝑍𝑍𝑍 is the best-constrained parameter, and 𝑐𝑐𝑍𝑍𝑍𝑍 the most difficult to constrain, with its optimised value frequently 

found at a boundary.  

3.2 Retrieval of biogeochemical model behaviour 

Figure 6 illustrates how the optimised parameter sets influence a key aspect of the Zn cycling model: the dependence of the 

stoichiometric uptake parameter 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 on dissolved Zn (hereafter uptake curve or uptake systematics). We use this emergent 325 

relationship as a measure of model similarity since it controls the geographical systematics of Zn uptake and export (de Souza 

et al., 2018), although of course the stoichiometry of Zn:P uptake in the real ocean is not likely to follow a single dependence 

on Zn concentration. In subsequent subsections, we describe the retrieval of reference biogeochemical model behaviour for 

three optimisation experiments with varying degrees of dissimilarity between optimised and reference uptake systematics. 

3.2.1 RMSE-optimised synObs_ALL_seas 330 

Experiment synObs_ALL_seas optimises our annual-mean model towards a target field produced when seasonal variability is 

simulated, with perfect data coverage. The RMSE-optimised parameter values in this experiment differ by 12–60 % from the 

reference values used to produce the target field (Table S2). These values result in Zn uptake systematics that are broadly 

similar to the reference uptake systematics (Fig. 6b), although 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 underestimates the reference 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 at low concentrations, 

and exceeds it above ~1 nM. As a consequence, the RMSE-optimised Zn export flux is increased in the Zn-rich Antarctic 335 

Zone, but decreased in the Subantarctic Zone and at lower latitudes, relative to the reference Zn export flux distribution (Fig. 

S5b). These systematic changes reflect the trends observed when comparing Zn export flux distributions in the target and 

reference simulations (Fig. S5d), although differences between the reference and the RMSE-optimised Zn export fluxes are 

smaller than those between the reference and the target. Similarly, a comparison of residuals in the dissolved Zn distribution 

of the RMSE-optimised model (Fig. 7b, e, h) to those between the reference and target field (Fig. S1e, h, k) reveals that 340 

optimisation has reduced the magnitude of residuals by up to ~50 %, while the patterns of the residuals remain near-identical. 

In both cases, the surface ocean simulated with annual-mean TMs is generally biased to higher Zn concentrations (Figs. 7b, 
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S1e). High positive residuals in the surface Southern Ocean and North Pacific are associated with negative residuals below the 

euphotic zone (e.g. Fig. 7e, h). 

Although there are several optimisations that result in a similar uptake curve as the RMSE-optimised synObs_ALL_seas 345 

experiment (Fig. 6), we would like to note that both distribution and magnitude of residuals can be quite different (cf. second 

columns of Figs. 7, 8) between experiments. 

3.2.2 VolRMSE-optimised synObs_ALL_circ 

In synObs_circ experiments, the target field was produced using a different physical model than that used during optimisation. 

The VolRMSE-optimised parameter values in synObs_ALL_circ, as well as those obtained in the corresponding optimisation 350 

with reduced data coverage (synObs_IDP_circ), coincide with boundary values for three of four parameters (Table S2, Fig. 5). 

The resulting convex uptake curve (Fig. 6c) is strikingly different from the reference curve, as a consequence of a low value 

of 𝑎𝑎𝑍𝑍𝑍𝑍 and high value of 𝑐𝑐𝑍𝑍𝑍𝑍. The VolRMSE-optimised parameter set results in extremely low global Zn export fluxes (Table 

S2), reducing Zn uptake to the extent that surface concentrations are not drawn down to low values. This produces a positive 

bias throughout the surface ocean, and especially high concentrations in the subantarctic Southern Ocean, relative to both the 355 

RMSE-optimised Zn (Fig. 8c) and the reference field. As a consequence, the VolRMSE-optimised model produces high Zn 

concentrations in the deep North Atlantic (Fig. 8f) and lower concentrations in the entire mid-depth to abyssal Pacific (Fig. 

8i), i.e. a reduced deep-ocean Zn gradient. The low Zn export fluxes of this optimised solution reduce the normalised standard 

deviation of the VolRMSE-optimised field to a value similar to that in the target field (Fig. S6), i.e. VolRMSE-optimisation 

uses biogeochemical parameters to produce a similar statistical distribution of Zn as that simulated with MITgcm-ECCO due 360 

to its differing deep ocean circulation. The clearly distinct optimisation results are mainly related to volume-weighting, which 

is further discussed in Sect. 3.5.2. 

3.2.3 RMAE-optimised synObs_IDP_circ 

In the RMAE-optimised synObs_circ experiments, Zn uptake at high Zn concentrations is strongly reduced in 

synObs_IDP_circ relative to both the corresponding simulation with full data coverage and the reference uptake curve (Fig. 365 

6c, f), resulting in globally higher surface-ocean Zn concentrations. Additionally, reduced surface Southern Ocean nutrient 

uptake and export decreases concentrations in deep waters of the Southern Ocean through reduced nutrient trapping (Sarmiento 

et al., 2004; Marinov et al., 2006; Primeau et al., 2013), and, because reduced Zn uptake is a consequence of a decrease in the 

uptake stoichiometry parameter 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃, it leads to a strengthening of the global Zn-PO4 correlation while the Zn-Si correlation 

is weakened (Vance et al., 2017; de Souza et al., 2018). The shape of the RMAE-optimised uptake curve in synObs_IDP_circ 370 

is unique in our optimisation ensemble (Fig. 6), and is a consequence of the joint effect of reduced data coverage and choice 

of misfit function, as we discuss in Sect. 3.6. 
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3.3 Influence of uncertainty in the target field on parameter retrieval 

In our synObs experiments, the model cannot exactly reproduce the target field, and optimisation finds parameter sets that 

differ from the reference parameters to varying degrees, as shown by the examples discussed in Section 3.2. With increasing 375 

dissimilarity between target field and reference field, the reconstruction of model behaviour becomes increasingly difficult, 

and the sensitivity of optimisation results to the applied misfit metric increases (Fig. 6; Sect. 3.5). In all synObs experiments 

except one (Sect. 3.5.1), CMA-ES found a parameter set that produces a lower misfit to the target field than would have been 

achieved using the reference parameter values. This can be seen as “reciprocal bias compensation”, a term coined by Löptien 

and Dietze (2019) to describe the phenomenon that part of the bias induced by flaws in circulation models can be compensated 380 

for by changes to biogeochemical parameters. We find such error-compensating effects induced by biogeochemical parameter 

optimisation in all our synObs experiments. Relative to the misfit obtained with the reference parameters, proportionally 

highest reductions in misfits are seen in synObs_seas experiments (up to 3.5 %, excluding VolRMSE; Table S2). 

3.3.1 Analytical uncertainty 

In synObs_noise experiments, which aim to assess how CMA-ES is affected by analytical uncertainty inherent in any true 385 

observational field, model Zn uptake behaviour is well reconstructed regardless of data coverage (Fig. 6a, d) except for 

VarRMSE-optimised synObs_IDP_noise, discussed further in Sect. 3.5.1. This result suggests that analytical uncertainty in 

GEOTRACES Zn data should not prevent optimisation from accurately retrieving biogeochemical model behaviour. However, 

in contrast to the TWIN experiments, in which parameter values were perfectly retrieved, the optimised parameters in 

synObs_noise experiments are distinct from the reference parameters (Fig. 5): while parameters 𝑎𝑎𝑍𝑍𝑍𝑍, 𝑏𝑏𝑍𝑍𝑍𝑍, and 𝐿𝐿 are relatively 390 

well constrained to within ~5 %, ~30 % and ~15 % respectively (excluding VarRMSE), parameter 𝑐𝑐𝑍𝑍𝑍𝑍 is consistently found 

at its lower boundary. The poorer constraints on 𝑏𝑏𝑍𝑍𝑍𝑍  and 𝐿𝐿 than on 𝑎𝑎𝑍𝑍𝑍𝑍  may be explained by reciprocal effects of these 

parameters on the uptake curve (Fig. 2), while model sensitivity to 𝑐𝑐𝑍𝑍𝑍𝑍 is generally low when 𝑎𝑎𝑍𝑍𝑍𝑍 is properly reproduced (Sect. 

3.1.1). More broadly, despite the difference in the type of data used for optimisation, the imperfect parameter retrieval in these 

experiments is consistent with the observation in data-assimilating ecosystem model studies that Michaelis-Menten constants 395 

are hard to constrain in optimisations against synthetic data disturbed with noise (Friedrichs et al., 2006; Löptien and Dietze, 

2015). 

3.3.2 Lack of seasonal variability 

In synObs_seas experiments, which aim to assess the impact of our model’s lack of seasonality, differences between optimised 

uptake curves are more pronounced for different misfit functions than for different data coverage (Fig. 6b, e), with the 400 

VolRMSE-optimised uptake curve most obviously different from the reference curve. Nonetheless, in experiments with 

reduced data coverage, both the RMSE- and the VolRMSE-optimised uptake curves are less similar to the reference uptake 

curve than in corresponding experiments with full data coverage. In all synObs_ALL_seas experiments, the surface ocean of 
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the optimised model is generally biased to higher Zn concentrations (e.g. Fig. 7b, c), accompanied by negative residuals below 

the euphotic zone (e.g. Fig. 7e, h; Sect. 3.2). The integrated Zn export fluxes obtained in our synObs_seas experiments are 405 

generally slightly lower than the reference flux, but always overestimate the export flux of the target simulation (Table S2; 

Fig. S9), which is 9 % lower than the reference. The VolRMSE-optimised synObs_ALL_seas experiment produces the lowest 

export flux, i.e. closest to the flux of the target simulation, but this optimisation in fact leads to residuals that tend to amplify 

the RMSE-optimised residuals (cf. second and third column in Fig. 7), thus demonstrating the importance of the spatial patterns 

in the Zn export flux. Figure S7 shows that it is the differences in both circulation and biogeochemistry that limit the ability of 410 

CMA-ES to reconstruct exact parameter values and the integrated Zn export flux underlying the target field (Table S2). Instead, 

optimisation finds a compromise solution that alters biogeochemical parameter values to compensate for systematic differences 

between the target and reference fields, i.e. reciprocal bias compensation sensu Löptien and Dietze (2019). 

3.3.3 Differences in underlying circulation 

In synObs_circ experiments, our model is optimised towards a target field which was created using the reference 415 

biogeochemical parameters in a different circulation model, MITgcm-ECCO (Sect. 2.3.1). Among the target fields used in this 

study, the target field produced with MITgcm-ECCO is most clearly distinct from the reference field (Figs. 1d, e, S1). 

Differences between the reference field and the synObs_circ target field are larger than any differences resulting from relatively 

large changes to Zn uptake systematics within the MITgcm-2.8 framework used during optimisation (Fig. S6). Despite clearly 

different optimised uptake curves (Fig. 6c), it remains the case that differences between the optimised Zn fields and the target 420 

are larger than differences between optimised models resulting from different misfit functions (second column and third 

column in Fig. 8). Furthermore, differences between RMSE-optimised and VolRMSE-optimised fields, which are of a purely 

biogeochemical origin within the same circulation framework (MITgcm-2.8), are much more systematic than the distribution 

of residuals to the target field, which compares results from two different circulation frameworks (MITgcm-2.8 for the 

optimised model, MITgcm-ECCO for the target field). A major difference between the circulation simulated by the two 425 

MITgcm-configurations relates to timescales of deep ocean circulation, especially in the voluminous deep Pacific (Fig. S8).  

The focus of our synObs_circ experiments is mainly to assess the effect of data coverage on optimisation results when a 

systematic circulation bias exists, as we discuss in Sect. 3.4. However, it is worth noting that (i) parameter retrieval appears 

most challenging in these experiments, with parameters 𝑏𝑏𝑍𝑍𝑍𝑍 and 𝑐𝑐𝑍𝑍𝑍𝑍 each converging to a boundary in 8 of the 11 experiments 

conducted (Fig. 5), (ii) the synObs_circ experiments are the only experiments in which parameter 𝑎𝑎𝑍𝑍𝑍𝑍, the best-constrained 430 

parameter (Sect. 3.1), converged to its lower boundary as a consequence of volume-weighting (Sects. 3.2.2, 3.5), and (iii) all 

synObs_circ optimisations result in global Zn export lower than that of the reference simulation, while export in the target 

simulation is 7% higher than in the reference simulation (Table S2, Fig. S9). We note that these results and their severity may 

be specific to the two circulation models chosen for our synObs_circ experiments, and/or to the choice of reference parameters. 

On the other hand, the fact that retrieval of parameter values and biogeochemical model behaviour is difficult in the face of 435 

systematic differences in whole-ocean ventilation timescales is not unexpected. The strong influence of the physical circulation 
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framework on biogeochemical ocean model output was emphasised relatively early by Doney (1999). More recently, by 

comparing optimisation results obtained using CMA-ES with TMs derived from three different ocean models, Kriest et al. 

(2020) found that some of their optimised biogeochemical parameters depended strongly on the circulation. 

In summary, we find that optimisation of biogeochemical parameter values introduces some error-compensating effects in all 440 

synObs experiments. This tendency is most simply illustrated by the synObs_noise experiments, where optimisation to noise-

perturbed data produces parameter sets slightly different from the reference set. However, relative to the misfit obtained with 

the reference parameters, highest misfit reductions are seen in synObs_seas experiments (up to 3.5 %, excluding VolRMSE; 

Table. S2). This may reflect that fact that the target field of these experiments differs most strongly from the reference field in 

the high latitudes (Fig. 7), where changes to parameter values have a relatively high impact. 445 

3.4 Influence of reduced data coverage on parameter retrieval 

In order to isolate the effect of reduced data coverage on optimisation, we compare the results of synObs_IDP(+) experiments, 

in which data coverage is limited to the locations of existing observations, with the corresponding synObs_ALL experiment 

in which the entire Zn field is used to quantify misfit. 

3.4.1 Effects of reducing data coverage 450 

Limiting simulated data coverage to that of the IDP2017 means that approximately 88% of the model cells are not used for 

comparison to synthetic observations. Nonetheless, this does not lead to a significant increase in the total number of iterations 

needed until the internal convergence criterion is reached (Table S2). We also found no evidence that the reduction in data 

coverage causes CMA-ES to terminate in a local minimum: calculating the misfit with the optimised model output from 

synObs_ALL experiments at IDP2017 coordinates results in a higher misfit than the minimum misfit achieved in the 455 

corresponding synObs_IDP experiment. Conversely, misfits calculated using all model cells with optimal parameters from the 

synObs_IDP experiments were higher than the corresponding minimum misfits in synObs_ALL. Thus, the objectively optimal 

parameters indeed depend on the data coverage of the target field.  

Figure 6 shows that Zn uptake behaviour obtained with a particular misfit function in synObs_IDP often did not greatly differ 

from that obtained in the corresponding synObs_ALL experiment – with the exception of the RMSE-optimisation with the 460 

seasonal target field (synObs_seas) and the RMAE-optimisation with the target field obtained from ECCO (synObs_circ), 

introduced in Sect. 3.2.3. However, Fig. 9 shows that the degree of difference in parameter values varies: while for parameter 

𝑏𝑏𝑍𝑍𝑍𝑍 optimal solutions scatter widely around the 1:1 line, differences for the other parameters are much less pronounced, with 

only a few major offsets. The similarity for parameter 𝑐𝑐𝑍𝑍𝑍𝑍 is a consequence of its frequent coincidence with a boundary (Fig. 

5), regardless of data coverage. In contrast, the smaller scatter of parameters 𝐿𝐿 and especially 𝑎𝑎𝑍𝑍𝑍𝑍 around the 1:1 line reiterates 465 

our finding in Sect. 3.1 that these parameters are better constrained by optimisation (Fig. 4). While the scatter for parameter 𝐿𝐿 

is about equally distributed around the 1:1 line, parameter 𝑎𝑎𝑍𝑍𝑍𝑍, which has the strongest effect on Zn uptake systematics and 

export flux (Figs. 2, S2), is always underestimated in synObs_IDP experiments relative to the value obtained in synObs_ALL. 
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Limiting data coverage reduces the optimised parameter value of 𝑎𝑎𝑍𝑍𝑍𝑍 by 7 ± 5 % (1SD), excluding two cases for which 𝑎𝑎𝑍𝑍𝑍𝑍 is 

underestimated by >30 %: (i) VolRMSE-optimised synObs_IDP_seas, and (ii) RMAE-optimised synObs_IDP_circ (Fig. 9a, 470 

Table S2). In the first case, underestimation of 𝑎𝑎𝑍𝑍𝑍𝑍  is partly compensated by underestimation of parameters 𝑏𝑏𝑍𝑍𝑍𝑍  and 𝐿𝐿 , 

producing an uptake curve not very different from that obtained in in the corresponding synObs_ALL (Fig. 6b, e), and similar 

integrated Zn export (Fig. S9). In contrast, for RMAE-optimised synObs_IDP_circ, the underestimation of parameter 𝑎𝑎𝑍𝑍𝑍𝑍 is 

not compensated by other parameter values, leading to very different Zn uptake systematics from the corresponding 

synObs_ALL experiment (Fig. 6c, f) and strongly reduced integrated Zn export (Fig. S9). A similar but less extreme example 475 

leading to different Zn uptake systematics from the corresponding synObs_ALL experiment is found in the RMSE-optimised 

synObs_IDP_seas experiment, in which underestimation of 𝑎𝑎𝑍𝑍𝑍𝑍 is compounded by overestimation of 𝐿𝐿 and 𝑐𝑐𝑍𝑍𝑍𝑍 (Fig. 6b, e).  

It is apparent from Figs. 6 and 9 that the extent to which data coverage reduction affects parameter retrieval depends on the 

misfit function; we discuss this in detail in Sect. 3.6. Given the appropriate choice of misfit function, however, our set of 

experiments indicates that the spatial coverage of the GEOTRACES IDP2017 is sufficiently representative of the large-scale 480 

patterns of the Zn distribution to allow retrieval of biogeochemical model behaviour through optimisation. With regard to 

parameter retrieval, this finding is limited to those parameters that dominate model behaviour, i.e., 𝐿𝐿 and, especially, 𝑎𝑎𝑍𝑍𝑍𝑍, 

although the latter is consistently slightly underestimated relative to the value obtained in the corresponding synObs_ALL 

experiment. The fact that the generally well-constrained parameter 𝑎𝑎𝑍𝑍𝑍𝑍 is underestimated when data coverage is reduced, even 

though this parameter sensitively controls Zn export from the biogeochemically-important Southern Ocean (Fig. S2b), 485 

motivates an assessment of whether increasing the observational density in some regions, particularly the Southern Ocean, 

may improve parameter retrieval. We thus subsequently assess potential benefits associated with the addition of high-latitude 

data by considering our synObs_IDP+ experiments in more detail. 

3.4.2 Effect of including high-latitude data 

The synthetic target fields of our synObs_IDP+ experiments complement the IDP2017 coordinates with the locations of high-490 

latitude Zn observations published more recently (Fig. 1b). For the two optimisation experiments discussed above (RMSE-

optimised synObs_seas and RMAE-optimised synObs_circ), including these additional constraints leads to an improvement 

in parameter retrieval, as the underestimation in 𝑎𝑎𝑍𝑍𝑍𝑍 is considerably reduced (by ~50 %; Fig. 9), and the optimised uptake 

systematics become more similar to those obtained in the corresponding synObs_ALL experiments (Fig. 6). In order to 

investigate whether the alignment in systematics of the synObs_IDP+ experiments with those of the corresponding 495 

synObs_ALL experiments comes about due to additional Zn-concentration information, or due to the implicit change in the 

weights of different oceanic regions resulting from these additional data, we carried out an additional RMAE-optimised 

synObs_IDP_circ optimisation in which each data point was weighted by the implicit basin-weights derived from the IDP+ 

data situation (Table S3). This optimisation, which only includes the Zn information resulting from IDP2017 data coverage, 

resulted in uptake systematics that are quite distinct from those obtained in the corresponding synObs_IDP+ experiment. In 500 

fact, the uptake curve is very similar to that obtained in synObs_IDP_circ (Fig. S10), but produces consistently higher values 
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of 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃. This similarity implies that rather than the changed weighting of oceanic regions, it is the additional Zn-concentration 

information in the IDP+ data that is mainly responsible for altering optimisation results.  

Further evidence for the importance of the additional high-latitude Zn data arises from the BasinRMAE-optimised uptake 

systematics in synObs_IDP+_circ, which become more similar to the RMAE-optimised synObs_ALL experiment than that 505 

obtained for synObs_IDP_circ (Fig. S10). We suppose that in particular the additional data constraints at southern high 

latitudes − typically associated with high surface Zn concentrations − can significantly improve the ability to constrain 

biogeochemical model behaviour, because (i) the largest differences between the RMAE-optimised uptake systematics 

obtained in synObs_IDP_circ and synObs_IDP+_circ are observed for high Zn, and (ii) the BasinRMAE-optimised uptake 

curve obtained in synObs_IDP+_circ improves the BasinRMAE-optimised uptake curve obtained in synObs_IDP_circ, again 510 

exceeding it especially at high Zn (Fig. S10). 

In summary, our results suggest a benefit from additional high-latitude data. Among the RMAE-based optimisation results 

with reduced data coverage, BasinRMAE-optimised uptake systematics in synObs_IDP+_circ best reproduce the RMAE-

optimised uptake systematics in the corresponding experiment with full data coverage. This finding, together with the smaller 

deviations from the 1:1 line achieved with basin-weighting misfit metrics in Fig. 9, suggests that basin-weighting may be 515 

advantageous in reconstructing biogeochemical system behaviour from sparse and inhomogeneously sampled data. We discuss 

this further in Sect. 3.6. 

3.5 Importance of misfit function 

A feature that emerges from the preceding discussion is that, both in the presence of inaccuracies in the physical model (Sect. 

3.3) or with a reduction in data coverage (Sect. 3.4), optimisation results become increasingly dependent on the misfit metric 520 

used. This is in agreement with previous studies that report a potentially large impact of the choice of misfit function on the 

best estimate of biogeochemical fluxes and concentrations (e.g. Evans, 2003; Sauerland et al., 2019). In particular, the 

subjective choice of weights may have a strong influence on the optimisation results (Evans, 2003). While some studies apply 

RMSE-based misfit functions (e.g. Friedrichs et al., 2007), others suggest to reduce the effect of outliers by using a misfit 

function based on the absolute differences between model and observations (Trudinger et al., 2007; Seegers et al., 2018). 525 

Our ensemble of optimisations suggests that weighting is more important than the choice of squaring the residuals or not. Our 

optimisation results show that weighting squared residuals by the fractional volume of the grid cell (VolRMSE) results in large 

deviations from the reference uptake systematics whenever systematic differences in the underlying physical model are present 

(i.e. in synObs_seas and synObs_circ experiments), even with perfect data coverage; furthermore, weighting squared residuals 

by the inverse variance prevented CMA-ES from reaching its internal termination criterion. We discuss these two weighting 530 

schemes below. Other examples of a misfit metric leading to poorly retrieved biogeochemical model systematics emerge only 

in the light of both underlying uncertainty and limited data availability, and will be further discussed in Sect. 3.6, where we 

elucidate the joint effect of these two aspects and the importance of basin-weighting. 
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3.5.1 Influence of misfit function: variance-weighting 

The only synObs_noise experiment entirely unable to reproduce model Zn uptake behaviour is that optimised using VarRMSE 535 

(Fig. 6d). Reasons for CMA-ES being prevented from finding the absolute minimum of the misfit function might be non-

informative (“flat”) misfit functions, misfit functions with a rough topography, too wide boundary constraints, or a small 

population size (e.g. Ward et al., 2010; Kriest et al., 2017).The VarRMSE misfit metric is highly sensitive to changes in 

parameter 𝑏𝑏𝑍𝑍𝑍𝑍 (Fig. S11), and its minimum in parameter space is strongly offset from the reference value of this parameter. 

This topography appears to be a consequence of the variance-weighting of residuals in this misfit function. Some of the 540 

weighted residuals between the reference field and the noise-perturbed target field are very high for small concentrations (Fig. 

S12). This is because the variance used for weighting the squared residuals is empirically estimated from the noise-perturbed 

observations (as it would be from real observations), rather than from the reference field used to determine the added noise 

(Sect. 2.3.1). Since 𝜀𝜀 increases rapidly at small concentrations (Eq. 5), the empirical variance determined for noise-perturbed 

observations that actually underestimate the true value is a gross underestimate, leading to overweighting of these residuals in 545 

the misfit function (since 𝑤𝑤𝑖𝑖,𝑗𝑗 =𝜀𝜀−1). As a consequence, this particular misfit function appears to be too sensitive to changes 

in parameter 𝑏𝑏𝑍𝑍𝑍𝑍, which plays an important role at low concentrations (Fig. 2). However, the sensitivity of the global Zn 

distribution to parameter 𝑏𝑏𝑍𝑍𝑍𝑍 is virtually negligible (de Souza et al., 2018), and thus an elevated sensitivity of the optimisation 

to this parameter is not desirable. It might be sensible to apply a minimum absolute error when calculating weights for a misfit 

metric that weights by its reciprocal (Schartau et al., 2001). 550 

3.5.2 Influence of misfit function: volume-weighting 

A striking result of our optimisation ensemble is the fact that, in the presence of biases in the model, VolRMSE-optimised 

solutions exhibit Zn uptake systematics that are most distinct from both the other experiments as well as the reference uptake 

curve (Fig. 6), even when data coverage is perfect. The VolRMSE misfit function compensates to some extent for the unequal 

distribution of model cells, which are more numerous in the upper ocean due to the higher vertical resolution there. On the 555 

other hand, all misfit metrics applied in this study naturally emphasise the deep ocean for a nutrient element such as Zn, due 

to the order-of-magnitude increase in Zn concentrations between the surface and the deep ocean. Because of this expected 

concentration dependence of the residuals, several studies suggest that log-transformation might be appropriate if there is such 

a wide variability in concentrations (e.g. Stow et al., 2009; Seegers et al., 2018; Falls et al., 2021); instead, VolRMSE 

exacerbates this concentration dependence for elements with a nutrient-like distribution. When there are differences in the 560 

underlying physical model (synObs_seas and synObs_circ), VolRMSE-optimisation consistently leads to the smallest globally 

integrated Zn export flux (Table S2). This finding is most strongly manifested in synObs_circ experiments, in which there are 

systematic differences between the large-scale circulation underlying the synthetic observations (from MITgcm-ECCO) and 

the model (MITgcm-2.8).  
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The biogeochemical model behaviour obtained with the VolRMSE misfit metric in synObs_ALL circ has been introduced in 565 

Sect. 3.2.2. In this experiment, the optimised parameter set results in integrated Zn export flux reduced by 15 % relative to the 

reference simulation (Table S2), and by 20 % relative to the MITgcm-ECCO simulation that produced the target field; the 

reduction is even stronger for the corresponding experiment with IDP2017 data coverage. The fact that VolRMSE-optimised 

uptake curves strongly deviate from the reference uptake curve even with perfect data coverage (Fig. 6b,c), while only limited 

deviations are seen with RMSE and RMAE, supports the suspicion of Kriest (2017) and Kriest et al. (2017) that volume-570 

weighting might impede determinacy of parameters related to processes taking place in the euphotic zone. Based on our results, 

we question the suitability of volume-weighting for optimisation of biological uptake parameters towards basin-scale dissolved 

data, because VolRMSE leads to the fitting of large-scale patterns associated with ventilation of the deep ocean, rather than 

fitting biogeochemical model behaviour associated with the parameters to be optimised. This is shown particularly clearly by 

the synObs_circ experiments: simulating ideal age (Thiele and Sarmiento, 1990), the physical model used during optimisation 575 

(MITgcm-2.8) produces deep waters that, especially in the Pacific, are significantly older than in the circulation model 

underlying the synthetic target field (Fig. S8). This large-scale circulation timescale difference leads to enhanced accumulation 

of regenerated Zn in the deep Pacific relative to the target field (Fig. 8). The use of VolRMSE results in a sensitivity to residuals 

in the Zn-rich deep ocean to such an extent that the misfit minimum is found for parameters that drastically decrease globally 

integrated Zn export in order to reduce Zn accumulation in old deep waters – even though this simultaneously results in 580 

unrealistically high surface-ocean Zn concentrations (Sect. 3.2.2). On the one hand, these results recapitulate the dependence 

of biogeochemical model results on physical circulation pathways and timescales, but they also reveal that such sensitivities 

may be exacerbated by the sensitivities of the misfit function chosen for optimisation. Our results suggest that VolRMSE tends 

to enhance the circulation-dependence of optimisation results, although this tendency may be strengthened in our study by the 

nutrient-restoring nature of the underlying P-cycling model (e.g. Kriest et al., 2020).  585 

3.6 Interaction between data distribution and misfit function: importance of basin-weighting 

Finally, we bring together the two aspects of the suite of optimisation experiments discussed in Sects. 3.4 and 3.5, in order to 

assess how the influence of a misfit function on optimisation results is affected by data distribution. In particular, we discuss 

the importance of basin-weighting when data coverage is reduced.  

The two experiments in which the reduction in data coverage induces relatively large differences from those obtained in 590 

corresponding synObs_ALL experiments are the RMSE-optimised synObs_IDP_seas experiment and the RMAE-optimised 

synObs_circ experiment (Table S2; Fig. 6). Figure 10 shows the depth distribution of the residuals in these two experiments, 

as well as the residuals between the reference field and the corresponding target field. The depth distribution of residuals 

between the reference field and the target field of the synObs_seas experiments reveals that the sum of squared residuals in 

the surface ocean is about as high as that in the abyssal ocean, when data coverage is perfect (Fig. 10b). However, restricting 595 

data coverage to IDP2017 coordinates leads to a larger normalised sum of residuals (and especially of squared residuals) in 

the abyssal ocean, simply due to the sampling locations at which residuals are calculated. These residuals are reduced by 
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optimisation in the synObs_ALL and synObs_IDP experiments, but the depth structure of the residuals, and the enhanced 

importance of the abyssal ocean with IDP2017 coverage, remains (Fig. 10b). Overall, misfit minimisation appears to be a 

trade-off between fitting Zn concentrations in the abyssal ocean and that in the uppermost ~300 m: with full data coverage, 600 

RMSE-optimisation slightly favours fitting the upper ocean, but with reduced data coverage, changes to Zn concentrations in 

the abyssal ocean affect misfit more strongly than in the surface ocean. This changed trade-off results in different optimised 

Zn uptake systematics when data coverage is reduced (Fig. 6b, e).  

In the synObs_circ experiments, analysis of the depth distribution of residuals between the reference field and the target field 

(Fig. 10c, d, h, i) reveals that limiting data coverage to IDP2017 coordinates increases normalised residuals throughout the 605 

water column (Fig. 10c, d). The RMAE-optimised synObs_ALL_circ experiment produces a Zn field that is almost identical 

to the reference field, while in the corresponding experiment with IDP2017 coverage, optimisation worsens model fit in the 

uppermost layers (Fig. 10i) in favour of reduced sums of absolute residuals at depth, a result that is promoted by the small 

magnitude of residuals in the Zn-poor upper ocean. Figure S9 suggests that nearly all synObs_IDP_circ optimisations achieve 

lower global misfit at the expense of increased surface residuals produced by a decreased global Zn export flux. Thus, reducing 610 

data coverage for optimisation can alter misfit trade-offs between different ocean regions, due to changes in the vertical or 

geographic sampling of the target distribution. 

In order to assess the joint effect of reduced data coverage and misfit function on optimisation results in more detail, Fig. 11 

compares the optimised Zn field obtained in synObs_IDP_circ experiments with that obtained in synObs_ALL_circ. The 

synObs_IDP_circ experiments are the experiments with the greatest variability among optimised uptake systematics (Fig. 6); 615 

furthermore, the most-influential and best-constrained parameter 𝑎𝑎𝑍𝑍𝑍𝑍 is consistently underestimated, relative to the optimised 

value obtained in the corresponding synObs_ALL_circ experiment (Fig. 9; Sect. 3.4), a finding that is especially clear with 

the RMAE misfit metric.  

The comparison of the RMAE-optimised Zn fields obtained from synObs_ALL_circ and synObs_IDP_circ against each other, 

either only at IDP-coordinates (Fig. 11a) or at all model grid points (Fig. 11b), reveals that IDP2017 sampling does indeed 620 

capture many of the systematic offsets between the two fields, such as those at high concentrations in the Pacific and Southern 

Ocean >50° S. However, the offsets at IDP2017 coordinates are apparently neither numerous nor large enough to drive the 

RMAE-optimisation towards the result obtained with full data coverage. Squaring residuals amplifies the relative impact of 

these offsets (Fig. 11c, d), and indeed a comparison of the corresponding RMSE-optimised Zn field to RMSE-optimised 

synObs_ALL_circ reveals that such offsets between the two simulations are virtually absent at IDP coordinates (Fig. 11e). The 625 

fact that the RMSE-optimised 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 obtained in synObs_IDP_circ is not identical to that in synObs_ALL_circ, underestimating 

it at high concentrations but slightly overestimating it at low concentrations (Fig. 6c, f), results in tiny but systematic deviations 

from the theoretical quadratic relationship in the Southern Ocean (>50° S) and the Indian Ocean (grey points in Fig. 11e). 

which appear to be barely captured with IDP coordinates. 

Basin-weighting. Another way to amplify the systematic offsets seen in Fig. 11a is achieved by calculating separate RMAEs 630 

for different ocean basins as in our basin-weighting scheme, which weights the differences between the two fields in the 
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Southern Ocean >50° S more strongly (Fig. 11f). The systematic Zn differences in this region resulting from different data 

coverage are mostly mitigated in the corresponding BasinRMAE-optimised simulation, which produces a field much more 

similar to RMAE-optimised synObs_ALL (Fig. 11h), and results in estimates of 𝑎𝑎𝑍𝑍𝑍𝑍 and 𝐿𝐿 that are less strongly offset from 

this solution (Fig. 9; Table S2). Similar alignments in parameters 𝑎𝑎𝑍𝑍𝑍𝑍 and 𝐿𝐿 with basin-weighting can be observed in the case 635 

of the RMSE-optimised synObs_IDP_seas experiment discussed above. Here, the BasinRMSE-optimised solution corrects 

both the underestimation of 𝑎𝑎𝑍𝑍𝑍𝑍 and the overestimation of 𝐿𝐿 (Fig. 9a, d; Table S2) and produces uptake systematics more 

similar to the corresponding synObs_ALL solution (Fig. 6b, e). Thus, in both these experiments, basin-weighting reduces the 

sensitivity of optimisation results to the data distribution. Our basin-weighting scheme was chosen to counteract the unequal 

distribution of observations between basins in the IDP2017 (Fig. 1b). Thus, basin-weighted metrics result in a relative down-640 

weighting of the Atlantic and the Pacific, while weights of the Indian Ocean and the Southern Ocean south of 50° S are 

increased. As discussed for the two examples above, improvements achieved through basin-weighting are more generally 

apparent in our ensemble, being reflected in approximation of the uptake systematics in synObs_IDP(+) experiments to those 

in the corresponding synObs_ALL experiments with perfect data coverage (Fig. 6), and in a closer correspondence between 

the numerical values of optimised parameters 𝑎𝑎𝑍𝑍𝑍𝑍 and 𝐿𝐿 (Fig. 9). 645 

It is worth noting that our experience with basin-weighting is to some extent in contrast with the findings of Tjiputra et al. 

(2007) who applied variational data assimilation to a three-dimensional global marine biogeochemical model. Calculating 

misfits from surface cells only, these authors found that twin experiments aiming to assimilate synthetic chlorophyll 

“observations” are more successful in reducing the misfit function if an implicit regional scaling is applied by weighting each 

residual by its fractional volume, i.e., a metric similar to VolRMSE, which performs poorly in our experiments (Sect. 3.5.2). 650 

On the other hand, some optimisations towards the distributions of dissolved nutrients (e.g. Frants et al., 2016) explicitly 

encode an ad-hoc emphasis of the Southern Ocean that is implicit in our basin-weighting scheme. Though basin-weighting 

might be considered subjective, we argue that the high zonal symmetry in the Southern Ocean and its key role in determining 

global ocean nutrient distributions (Sarmiento et al., 2004; 2007) are sufficient justification for its application. In particular, 

we hypothesise that the biogeochemical importance of the Southern Ocean in determining the global Zn distribution (Vance 655 

et al., 2017; de Souza et al., 2018; Weber et al., 2018) is the reason why it is preferable to (implicitly) emphasise this region 

in the misfit metric. Given the general importance of the Southern Ocean in determining large-scale ocean biogeochemical 

parameters, such a metric is likely to perform well for most biogeochemically cycled elements with long oceanic residence 

times. Nonetheless, different misfit metrics obviously capture different aspects of the distribution of model performance. In 

order to ensure a thorough skill evaluation, Stow et al. (2009) suggest that the use of several metrics simultaneously is often 660 

to be recommended, and Sauerland et al. (2019) show that multi-objective optimisation can help to better constrain model 

parameters. 
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3.7 Implications for model calibration using real data 

Although there are modelling studies of marine trace metal cycling that objectively calibrate a variety of their model parameters 

(e.g. Frants et al., 2016; Weber et al., 2018; Pasquier et al., 2022), the impact of data distribution, model imperfections or 665 

choice of misfit function on optimisation results are often not discussed. In this study, we have separately assessed how 

optimisation results are impacted by these sources of uncertainty. In accordance with other work (e.g. Löptien and Dietze, 

2019; Kriest et al., 2020), our ensemble of optimisations shows that biogeochemical parameters are often optimised to 

compensate for the inability of model formulations to reproduce the target field (Sect. 3.3). Reconstructed Zn uptake 

systematics were most different from the reference uptake systematics in experiments with systematic differences between the 670 

large-scale circulation of the model and that underlying the target field (synObs_circ; Fig. 6); misfits obtained in this 

experiment type were also about an order of magnitude higher than those for synObs_seas, which differ only in terms of the 

presence or absence of seasonality within the same physical model. While optimisation to real Zn data (e.g. Weber et al. 2018) 

is outside this study’s focus, the results of our ensemble have direct implications for such optimisations and the inferences that 

may be drawn from them: 675 

- Because biogeochemical parameters are often optimised to compensate for the inability of model formulations to 

reproduce the target field, any optimisation of a simple biogeochemical model such as ours towards real data must 

be seen as attempting to retrieve the systematics of biogeochemical behaviour, rather than physically meaningful 

parameter values. This is especially the case since  – even though observations from wild phytoplankton (Twining 

and Baines, 2013) indicate geographical systematics that are similar to those that result from this model formulation 680 

(de Souza et al., 2018) – there  is no reason to believe that the stoichiometry of Zn:P uptake in the real ocean should 

follow a single dependence on dissolved Zn concentration. 

- Because increasing both spatial and temporal model resolution might be computationally unaffordable, even for a 

relatively efficient global optimisation algorithm like CMA-ES, it is important for studies focusing on optimisation 

towards global (micro)nutrient distributions with long whole-ocean residence times to prioritise the choice of 685 

circulation model, with special focus on accurate simulation of large-scale circulation timescales. 

- It is important to recognise the subjectivity that the choice of misfit function introduces to objective parameter 

optimisation, and to carefully weigh the sensitivities implicit to the misfit function in making this choice for any 

particular application. A misfit function that appears suitable for optimisation in a simple TWIN experiment, in 

which the model can perfectly describe the target field, may not be the best choice for optimisation towards noisy, 690 

incomplete and/or irregularly distributed real-world data. 

 

It should also be emphasised that our study has not considered the influence of model simplifications, such as the lack of 

external sources of Zn or simplifications in the underlying P cycling model. External inputs such as those from marginal 

sediments, atmospheric deposition, or hydrothermal vents (e.g. Conway and John, 2014; Roshan et al., 2016; Lemaitre et al., 695 
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2020; Liao et al., 2020; Sugino and Oka, 2022) are not relevant to our optimisation ensemble to synthetic observations, but 

their potential significance should be taken into account during optimisation to real data. With regard to the underlying P 

cycling model, it directly affects Zn cycling in our model formulation, since Zn uptake is related to PO4 uptake through 𝑟𝑟𝑍𝑍𝑍𝑍:𝑃𝑃 

(Sunda and Huntsman, 1992), and Zn remineralises with the same globally constant length-scale as P (Twining et al., 2014). 

In particular, the latter assumption may be over-simplified, as the remineralisation length-scale might be dependent on latitude 700 

or upper-ocean temperature (DeVries et al., 2014; Marsay et al., 2015; Weber et al., 2016). Furthermore, observational studies 

have come to contrasting conclusions regarding the similarities between the regeneration length-scales of Zn and P (Twining 

et al., 2014; Ellwood et al., 2020; Cloete et al., 2021). 

4 Conclusions 

This study has assessed how data distribution, model imperfections and misfit function influence the optimisation of a marine 705 

Zn cycling model with the algorithm CMA-ES. Using synthetic observations that allow us full control over the target field, we 

aimed to investigate the algorithm’s skill at retrieving parameter values and emergent model behaviour under real-world 

conditions resulting from data constraints, such as reduced data coverage and analytical errors, or from systematic bias between 

model and target field related to either seasonality or large-scale physical circulation.  

Our results revealed good performance of CMA-ES with respect to recovering biogeochemical model behaviour. In TWIN 710 

experiments, in which the model was optimised towards target fields that could theoretically be perfectly reproduced by the 

model, CMA-ES recovered all model parameter values regardless of data coverage. Furthermore, the analysis of our suite of 

synObs experiments, in which reproduction of reference model behaviour was impeded since the target field could a priori not 

be exactly reproduced by the model, revealed that (i) the data coverage of the GEOTRACES IDP2017 can be sufficient to 

reconstruct the systematics of Zn cycling at the global scale, (ii) optimisation generally broadly reproduced the Zn uptake 715 

systematics of the reference simulation, with a few meaningful exceptions related to the choice of misfit function, and (iii) the 

degree to which a parameter can be constrained depends strongly on its influence on the model’s Zn uptake systematics and 

emergent properties such as global export flux. 

As CMA-ES generally identified parameter sets that produced lower misfits than would have been calculated with the reference 

parameter set, all optimised results contain some error-compensating effects. Despite these, the reference Zn export flux is 720 

generally relatively well reproduced, except with the VolRMSE misfit metric. Applying this metric, which deemphasises the 

shallow ocean and polar regions, results in the most distinct Zn uptake systematics from both the reference curve and those 

resulting from optimisation with other misfit metrics. Furthermore, the inability of this metric to reproduce model behaviour 

increases with the dissimilarity between the target field and reference field (Fig. 6). Based on our results, we suggest avoiding 

misfit metrics that deemphasise regions where parameters to be optimised are likely to be influential. 725 

Finally, our study emphasises the importance of implicit basin-weighting in the misfit function, and the significance of the 

information gained from an increase in high-latitude Zn concentration data. The basin-weighting misfit metrics applied in this 
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study (BasinRMSE and BasinRMAE) oppose differences in data coverage between basins, and prove most successful in 

minimising the sensitivity of optimised model behaviour to data coverage. Since the high latitudes are under-sampled in the 

extant data, the efficacy of basin-weighting, in turn, reveals the importance of high-latitude Zn data for constraining model 730 

behaviour, as does the fact that our best-constrained parameter – which dominantly determines the magnitude of Zn export at 

high latitudes – is underestimated when data coverage is reduced.  
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Table 1. Reference parameter values and search intervals. 

 𝒂𝒂𝒁𝒁𝒁𝒁 

(-) 

𝒃𝒃𝒁𝒁𝒁𝒁 

(µM) 

𝒄𝒄𝒁𝒁𝒁𝒁 

(µM-1) 

𝑳𝑳 

(µM) 

reference value 6×10-3 3×10-5 0.32 1.2×10-3 

search range 6×10-4 – 9×10-3 4×10-6 – 6×10-5 0.16 – 7.05 2.5×10-4 – 
3.75×10-3 
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Figure 1. (a) Overview of the experiments carried out in this study. For experiments in the first row (ALL), optimisation was carried out 
using full data coverage. For experiments in the second and third row, modelled and target fields were interpolated to the 3-D geographical 
coordinates of locations which have Zn data available in an extended version of the GEOTRACES IDP2017 (IDP+; red dots in panel b) and 
in the original version of this data product (IDP, blue dots in b). (c) Distribution of IDP2017(+) observations in model depth layers of 
MITgcm-2.8. (d) Taylor diagram comparing target fields of the simulations listed in panel (a) to the reference field; (e) same as (d) but with 1030 
data coverage limited to IDP2017 coordinates.   
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Figure 2. Zn:P stochiometry of simulated uptake obtained with reference parameters (red) and by separately varying the parameters of Eq. 
(2). The stochiometries are calculated with one parameter being (a) decreased or (b) increased by 50% (dashed lines) or set to the 1035 
boundary value in Table 1 (solid line).  
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Figure 3. Evolution of parameter values and misfit (RMSE) in experiment TWIN_ALL. Red lines indicate the target parameter values. 
Black trajectories show the mean parameter value over all individuals in each generation of ten individuals, while blue lines mark 1040 
maximum and minimum parameter values in the generation. 
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Figure 4. Boxplots of optimised parameter values obtained in all synObs_experiments, presented in parameter space rescaled to the 
interval [0,1], i.e. turquoise lines at 0 and 1 correspond to boundary values for each parameter. Red stars indicate the reference parameter 1045 
values. 
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Figure 5. Results from the last generation of all synObs experiments. Error bars represent 2 standard deviations calculated using the 10 
individuals of the last genaration. Dots represent parameter values resulting in minimum misfit within the prescribed boundaries during 1050 
optimisation, coloured according to misfit metric.  
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Figure 6. Zn uptake systematics resulting from optimised parameter sets obtained in synObs experiments. Dashed lines in (e) and (f) are 
results obtained with the IDP+ data coverage (see text).  1055 
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Figure 7. Maps of surface Zn concentration (a-c), and zonal mean Zn concentration for the Atlantic (d-f) and the Pacific (g-i), showing the 
RMSE-optimised Zn field obtained in synObs_ALL_seas (first column), the difference between this field and the target field (second 
column), and the difference between this field and the VolRMSE-optimised model Zn field from the same experiment (third column). Note 
the different colour scales between column 2 and 3. 1060 
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Figure 8. Maps of surface Zn concentration (a-c), and zonal mean Zn concentration for the Atlantic (d-f) and the Pacific (g-i), showing the 
RMSE-optimised Zn field obtained in synObs_ALL_circ (first column), the difference between this field and the target field (second 
column), and the difference between this field and the VolRMSE-optimised model Zn field from the same experiment (third column). Note 1065 
the different colour scales in column 2 and 3. All results are interpolated to the grid of MITgcm-ECCO. 
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Figure 9. Comparison of parameter values obtained in synObs_IDP (empty symbols) or synObs_IDP+ (filled symbols) with those from 
the corresponding synObs_ALL experiment. Symbols indicate the experiment type. 1070 
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Figure 10. (a, c) Integrated reference residuals (i.e. Znreference - Zntarget) and residuals of optimised model over each model depth level. (f, 
h) are zoom-ins of (a, c). (b, g) and (d, i) are the same as (a, f) and (c, h) but the integration is done with residuals being squared and with 
absolute values of residuals respectively. In order to make results obtained with the two data situations comparable, all results are 1075 
normalised by the total number of observations. Note that positive and negative residuals within the same depth level can cancel each other 
out, and that the sum is influenced by the number of model cells located in the corresponding model depth level. Panel (e) shows relative 
frequency distributions of the vertical distribution of three different observational sets, which are the non-reduced observations, i.e. 
MITgcm-2.8deg, IDP2017, and IDP2017+ and panel (j) represents a zoom-in thereof.  
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Figure 11. Comparison of Zn obtained in synObs_IDP_circ to Zn obtained in synObs_ALL_circ. The first row compares RMAE-
optimised Zn obtained in synObs_IDP_circ and synObs_ALL_circ. The second and third row show the effect on deviations seen in the 
first row if Zn is either squared, as in RMSE, or five ocean regions are distinguished, as in BasinRMAE. The first and second column plot 
RMAE-optimised Zn obtained in synObs_IDP_circ and synObs_ALL_circ restricted to the coordinates in the GEOTRACES IDP2017v2 
and the entire field, respectively. Panels (e) and (h) of the third column compare Zn obtained with RMSE misfit function and BasinRMAE 1085 
misfit function in synObs_IDP_circ to the corresponding Zn obtained in synObs_ALL_circ, respectively. 
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