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Abstract. Accurate estimates of the net ecosystem CO2 exchange (NEE) would improve the understanding of the natural 

carbon sources and sinks and their role in the regulation of the global atmospheric carbon. In this work, we use and compare 

the random forest (RF) and the gradient boosting (GB) machine learning (ML) methods for predicting the year-round 6 

hourly NEE over 1996–2018 in a pine-dominated boreal forest in southern Finland and analyze the predictability of the 

NEE. Additionally, aggregation to weekly NEE values was applied to get information about longer term behavior of the 

method. The meteorological ERA5 reanalysis variables were used as predictors. Spatial and temporal neighborhood 

(predictor lagging) was used to provide the models more data to learn from, which was found to improve the accuracy 

compared to using only the nearest grid cell and time step. Both ML methods can explain the temporal variability of the NEE

in the observational site of this study with the meteorological predictors, but the GB method was more accurate. It was more 

effective in separating the important predictors from non-important ones, showing no signs of overfitting despite many 

redundant variables. The accuracy of the GB (RF), here measured mainly using cross-validated Pearson correlation 

coefficient between the model result and the observed NEE, was high (good), reaching a best estimate value of 0.96 (0.94) 

and the root mean square value of 1.18 µmol m ² s ¹ (1.35 µmol m ² s ¹). We recommend using GB instead of RF for ⁻ ⁻ ⁻ ⁻

modeling the CO2 fluxes of the ecosystems due to its better performance.
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1 Introduction

Forests and other terrestrial carbon sinks remove about one third of the anthropogenic carbon dioxide (CO2) annually 

emitted to the atmosphere, and thus they constitute an important component of the global carbon balance (Friedlingstein et 

al., 2020). However, the existing observation network for estimating the total atmosphere–ecosystem CO2 exchange is 

sparse (Alton, 2020), and especially the historical coverage of observations over the past decades is poor. Among other 

biotypes and ecosystems, the boreal forests contribute significantly to the global atmospheric carbon stock, but how they do 

it in detail is still largely unknown, reflected in the wide range of estimates of the carbon storage of these forests (Bradshaw 

and Warkentin, 2015). Therefore, there is a need for accurate spatio-temporal modeling of carbon fluxes for improved 

monitoring and understanding the boreal, and ultimately, the global carbon cycles (Jung et al., 2020).

In boreal forests, the atmosphere–ecosystem CO2 flux shows strong seasonal and diurnal cycles, dominated by 1) the 

photosynthesis by plants (acting as a CO2 sink from the atmosphere), and 2) by the total ecosystem respiration, including 

plant respiration and organic decomposition processes by microorganisms (acting as a CO2 source into the atmosphere). In a

homogeneous forest environment, the net flux generated by these processes can be accurately measured with the 

micrometeorological eddy covariance method, which has emerged as common standard for long-term ecosystem-scale flux 

measurements (Aubinet et al., 2012; Hicks and Baldocchi, 2020).

Both total respiration and photosynthesis are typically at their largest in the warm season in boreal forests (Ueyama et al., 

2013; Wu et al., 2012; Kolari et al., 2007). On average, their net effect, i.e. the net ecosystem exchange of CO2 (NEE), is 

dominated by photosynthesis on the weekly scale in summer, but on the sub-daily scale, the total respiration turns NEE 

positive (i.e., into a source) during nights when photosynthesis of plants is switched off. In the cold season, the diurnal 

variability is mostly absent, and then NEE is again slightly positive as respiration still continues.

Various meteorological and local biotic factors and processes affect the NEE, and their importance is different in different 

seasons. Local conditions include soil type and properties, and plant species and their density distributions. Key 

meteorological variables, such as air temperature and short-wave radiation, typically have large seasonal and diurnal 

variations. These variables are observed globally using in-situ and remote sensing techniques, and the resulting large-scale 

data sets can be further post-processed and homogenized via data assimilation, employing numerical weather prediction 

(NWP) models, and presented in a spatio-temporal grid format. This product is called reanalysis, which can be considered a 

by-product of the NWP process (Parker, 2016).
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In recent years, various machine learning (ML) approaches have been proposed and used to model the NEE (or related 

quantities) over various locations and globally (Besnard et al., 2019). In particular, the random forest (RF) has been popular, 

and it has been shown to be suitable for this task (Nadal-Sala et al., 2021; Reitz et al., 2021; Bodesheim et al., 2018; 

Tramontana et al., 2015). 

We employ the RF algorithm to model the 6 hourly net CO2 exchange between the atmosphere and a boreal forest in 

Finland. In addition to the RF regression method, we use the gradient boosting (GB) regression (Friedman, 2001; Chapter 10

in Hastie et al., 2009; for examples of applications across a variety of fields, see http://kaggle.com) and compare their results.

In addition to the comparisons of the methods, we investigate the meteorological controls on the CO2 exchange. Several 

meteorological predictors from the global ERA5 reanalysis (Hersbach et al., 2020) were used as input for the RF and GB 

regression models, including but not limited to (ground) temperatures, precipitation amounts, radiation quantities, and heat 

fluxes. 

We investigate in detail whether the skill of the GB method could overcome the skill of the popular RF method in explaining

the variability of the NEE when using the meteorological predictors. In addition to that, we rank the importance of the 

individual predictors in the study site and explore the effect of reducing both the number of samples and the number of 

predictors on the accuracy of the GB model. Finally, we discuss the significance of our results in a broader context.

2 Materials and methods

2.1 CO2 flux measurements as the target variable

The eddy covariance CO2 flux data, measured above a 50 year old Scots pine forest in Hyytiälä, Finland (61°51' N, 24°17' 

E) in 1996–2018 (Launiainen et al., 2022) and processed to represent the NEE, were acquired from 

https://smear.avaa.csc.fi/download (accessed 25 February 2021). Flux processing for the NEE was done using the EddyUH 

software (Mammarella et al., 2016; a summary of the data is shown in Fig. 1, presented as multi-year mean values). NEE is a

sum of ecosystem carbon uptake in photosynthesis and carbon loss in respiration, and a negative NEE means that the forest 

takes up carbon, i.e., is a carbon sink. These data consist of 30 min averages which were aggregated for modeling to 6 h 

resolution using averaging with moving, non-overlapping windows. Only complete 6 hourly aggregates were accepted for 

the averaging process. The resulting data set contained 10500 non-missing data points and 22800 missing values. In addition 

to the preprocessed NEE data, the modeling was separately tested using the raw CO2 flux (i.e., measured by the eddy 

covariance system and without storage change flux correction and friction velocity filtering) as the target variable.
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Figure 1: The 6 hourly (thin black), weekly (thick black), and annual (orange) multi-year means of observed net ecosystem CO2 

exchange (NEE) at the Hyytiälä SMEARII site. Eddy covariance method with a 24-m tall tower was used for measurements. Years

1996–2018 were used in calculation of the mean values.

Additionally, weekly means were calculated from the 6 h data for validation purposes. For this, a moving, overlapping and 

centered windowing was used to preserve the same number of samples as in the 6 h data. Missing data inside the window 

were accepted not to discard almost all of the samples. When validating the model, the missing 22800 time steps were also 

rejected from the model results for consistency.

2.2 Variables from the ERA5 reanalysis as predictors

Typically, air and soil temperatures, short-wave (photosynthetically active) radiation, and relative humidity are the key 

meteorological variables used in modeling the CO2 flux (eg., Nadal-Sala et al., 2021). In addition to these, we included a 

large set of other variables 1) to search for new, unexpected relationships between the flux and these less common variables, 

and 2) to study how much these variables can either improve or deteriorate the accuracy of the model. Altogether 19 

meteorological variables from the global ERA5 reanalysis product (Hersbach et al., 2020) were selected (Table 1). 

The ERA5 reanalysis data for 1996–2018 were downloaded from https://cds.climate.copernicus.eu/ (accessed 15 March 

2021) in the 1°×1° spatial and 1 h temporal resolution. The data were downsampled to 6 hourly using moving averaging with

non-overlapping windows.

Table 1. Gridded parameters from the ERA5 reanalysis product.

Variable Abbreviation
Evaporation e
Mean surface direct short-wave radiation flux msdrswrf
Mean sea level pressure msl
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Mean surface latent heat flux mslhf
Mean surface sensible heat flux msshf
Relative humidity at 1000 hPa r
Snow depth sd
Soil temperature, level 1 (7 cm) stl1
Soil temperature, level 2 (28 cm) stl2
Soil temperature, level 3 (100 cm) stl3
Volumetric soil water, layer 1 (0–7 cm) swvl1
Volumetric soil water, layer 2 (7–28 cm) swvl2
Volumetric soil water, layer 3 (28–100 cm) swvl3
2-meter temperature t2m
Total cloud cover tcc
Total precipitation tp
10-meter u-component of the wind u10
10-meter v-component of the wind v10
Geopotential at 150 hPa z

2.3 Temporal lagging and spatial neighbourhoods of the predictor data

As the first approximation, the modeling could be carried out by using the grid point closest to the Hyytiälä site. Similarly, 

temporal synchronization of the predictor data and the target variable could be used. On the other hand, many processes 

happen sequentially in time and their effect on the target variable could be seen as delayed. For example, meteorological 

conditions in the night-time can affect the plant photosynthesis the following day (Kolari et al., 2007), and advection of 

humid or dry air from nearby regions can increase or decrease photosynthesis. We wanted to give the ML models the 

opportunity to take advantage of these relationships happening in space and time. For this, we selected the 25 closest grid 

cells around the site and five closest time steps around each of the time steps (t=0) of the target variable. Note that lagging 

was applied both to forward and delay the predictors in time (Fig. 2a). Then, in total, we had 19 variables × 25 grid cells × 5 

temporal lags = 2375 individual predictors for modeling.
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Figure 2: Examples of using (a) temporal lagging and (b) spatial neighbourhoods of predictor variables X to model the target 

variable Y. In the study, the temporal lags [-2, -1, 0, +1, +2] were used. In b), only nine grid cells are shown for clarity, but 25 

nearest grid cells were used in the experiments.  

Technically, the calculation of the correlation matrix was too laborious a task with 23752 ≈ 5.6 × 106 operations. However, 

the predictor set necessarily contains highly correlated variables: for example, the temperature time series of neighbouring 

grid cells are correlated. Such collinearity can hamper the robustness and reliability of statistical models (Lavery et al., 

2019). To deal with the collinearity, the principal component analysis method (Jolliffe and Cadima, 2016) using 1) all 

components and 2) reduced number of components was tested as a preprocessing step to make the predictors orthogonal, i.e.,

non-correlated, but it was found that this dimension reduction method was unnecessary, as the results were slightly better 

without it (not shown), and thus it was not used here.

2.4 Gradient boosting and random forest regressions

For the machine learning of this study, the xgboost package (version 1.4.2: 

https://xgboost.readthedocs.io/en/latest/python/index.html) of the Python language (v. 3.7.6: https://www.python.org/) was 

used to fit both the GB and the RF regression models.

Compared to, for example, deep learning methods, GB and RF models can fit properly with relatively small data sets, do not 

necessarily require graphical processing units to fit fast, have only a small set of tunable hyperparameters, do not require 

heavy preprocessing of the predictor or the target data, such as removal of the seasonality, and are generally easier to use. 

That said, one preprocessing step was found to improve the model accuracy: quantile transformation with 105 quantiles was 

used to make the target variable, i.e., the CO2 flux, strictly Gaussian distributed. Validation of the model was performed 

using the inverse transformed (non-Gaussian) flux data.

Both the GB and RF are ensemble based tree methods, which means that the final prediction of the model is formed by 

calculating the mean of weak learners, trees, constituting the ensemble. Variation between the ensemble members is created 

by fitting the members to random subsamples of the predictor matrix X: these subsamples are formed by sampling randomly 

both the predictor and the time step dimensions. While the members of the RF are just the trees fitted independently to 

different subsamples, the GB takes an additional step by fitting the models hierarchically one by one, such that each member 

tree reduces the prediction error of the previous one. In other words, each new member is forced to concentrate on those 

observations that are the most difficult to predict correctly (Chapter 10 in Hastie et al., 2009), and in this sense, GB learns 
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more than the RF. We further improved the robustness and accuracy of GB by using a hybrid approach, where small RF 

models with 10 members were used in boosting instead of single trees.

2.5 Cross-validation framework and parameter tuning

K-fold cross-validation with shuffling and five splits was used to fit five separate ensemble models (Hawkins et al., 2003). In

this method, the entire data set is split K (here five) times such that each of the K models has its own validation set, and the 

remaining data is used to fit the model. Finally, the predictions from all models were combined to form a continuous time 

series covering all time steps in 1996–2018.

As an important variation to the standard K-fold cross-validation method, we randomly sampled years instead of individual 

time steps. Sampling randomly time steps would lead to sampling from the same weather events, i.e., from serially correlated

data, which would lead to overestimation of the model accuracy in the validation. This can be avoided by sampling 

sufficiently large, continuous blocks in time, such as years.

For measuring the goodness of fit, the root mean squared error (RMSE) and the Pearson correlation coefficient (CORR) have

been used as metrics of model skill, and they were calculated from the 6 hourly and weekly data separately. Bootstrapping 

with 10³ samples was used to estimate the sampling errors.

For tuning, multiple rounds of cross-validation were performed with different settings of the parameters, and the best 

combinations, in the RMSE sense, were selected. The hyperparameters of the models, and their tuned values, are listed in 

Table 2. A slight improvement in the accuracy of the models could still be achieved by a more thorough exploration of the 

hyperparameter space using, for example, exhaustive grid search (Pedregosa et al., 2011) or Bayesian optimization (Snoek et

al., 2012), but major improvements in the accuracy, which is already close to the optimum with the presented values, might 

not be likely.

Table 2. Optimized hyperparameters of the GB and RF regression models. The squared error was used as the cost function in the
optimization.  Optimization was  based on multiple  rounds  of  5-fold  cross-validation.  Constant  default  values  of  other  model
parameters were used, and they are not presented here. Using num_parallel_tree = 10 > 1 for GB increases the robustness of the
model by fitting 10 trees – which equals a small RF – instead of one tree.   

Model parameter Explanation Optimized value for GB Optimized value for RF

learning_rate
Step size of the optimization 
process 

0.075 –

max_depth
Maximum depth of a single 
tree 

7 14
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alpha
The L1 regularization 
parameter

0.01 0.01

subsample
Random sample size of a tree 
(proportion of time steps) 

0.75 0.50

colsample_bytree
Random sample size of a tree 
(proportion of predictors) 

0.75 –

colsample_bynode
Random sample size of each 
layer inside a tree (proportion 
of predictors) 

– 0.50

n_estimators Number of boosting rounds 500 –

num_parallel_tree
Number of random forest 
samples

10 500

3 Results

3.1 Goodness of fit of the machine learning approaches

For the 6 h GB data, the 95% confidence intervals (CIs), based on bootstrapping with 103 samples, were 1.14–1.22 µmol 

m ² s ¹ for the RMSE, and 0.955–0.960 for CORR (Fig. 3). For the weekly data, the 95% CIs were 0.455–0.481 µmol m ² ⁻ ⁻ ⁻

s ¹ and 0.981–0.984 for RMSE and CORR, respectively. The RF performance was also good, but did not reach the GB skill, ⁻

as the RMSE CIs for the 6 hourly (weekly) data were 1.31–1.40 µmol m ² s ¹ (0.511–0.536 µmol m ² s ¹) for the RMSE, ⁻ ⁻ ⁻ ⁻

and 0.941–0.947 (0.979–0.981) for CORR, respectively.
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Figure 3: Two-dimensional probability density histograms of the 6 h (upper row) and weekly mean (bottom) observed and 

modeled CO2 fluxes (GB shown on the left column; RF on right). Color shading indicates qualitatively the density of the 

observed–modelled value pairs inside each pixel. Estimated Pearson correlation coefficients (CORR) and the root mean square 

errors (RMSE) of the fit are also shown. See text for the confidence limits of these values.

To study the effect of diurnal and seasonal cycles, monthly and 6 hourly grouping were used simultaneously, and RMSE and

CORR were calculated for these groups for the GB algorithm (Fig. 4a). The lowest correlation was found in August at 00 

UTC (CORR = 0.49; 95% CIs 0.31–0.64) and the highest in April at 06 UTC (0.89; 0.86–0.91). In general, both the absence 

of diurnal variation and the small absolute values of the flux in general increase the correlation uncertainty in winter. The 

largest variation of the target variable in the summer daytime (06–12 UTC; 09–15 local time) yields the largest RMSE.
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Figure 4: Estimates of root mean square error (upper panels) and Pearson correlation coefficient (lower panels) derived from 103 

bootstrap samples. a: Monthly and 6 hourly decompositions of RMSE and CORR for GB. Median values of bootstrap 

distributions are shown. b: Annual confidence intervals of RMSE and CORR for the RF and GB. Median is shown with a 

horizontal line in the center of each figure unit. Deciles of distributions are shown with box edges. Years with more than 40% of 

missing data were excluded.

When excluding the winter months, the day-time NEE was better predicted (CORR = 0.66–0.89) than the night-time 

exchange (CORR = 0.49–0.77). Interestingly, an opposite result was achieved when the raw CO2 flux was modeled instead 

of the preprocessed NEE: in that case the night-time (18–00 UTC) fluxes were better predicted (CORR = 0.74–0.85) than the

morning (06 UTC; CORR = 0.62–0.83) and afternoon (12 UTC; CORR = 0.67–0.86) fluxes. Analysis of the results of the 

different target data imply that the sampling error emerging from a rather large share of missing samples in the NEE data 

could explain the differences (not shown).

Additionally, annual grouping of the data was used to obtain annual estimates of CORR, RMSE and their confidence 

intervals, again using the bootstrapping technique for both ML algorithm results (Fig. 4b). These estimates show an 

increasing temporal trend for CORR, implying either 1) a quality improvement in observed fluxes or 2) in the ERA5 

predictor data over the years, or 3) changes in the environment as the forest grows. The highest CORR was achieved in 2015 

(median CORR for GB = 0.969), and the lowest in 2000 (median CORR for GB = 0.930). Because of smaller samples, the 

annual CI estimates were wider than when bootstrapping the whole dataset of 23 years.
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3.2   Temporal distribution of the fitting data affects the goodness of fit

The time series of the CO2 flux observations in Hyytiälä is exceptionally long and complete in time. Therefore, it is 

important to study the sensitivity of modeling to the amount and distribution of fitting data to assess whether the methods 

could be used for sites with less data. For this, additional, in-sample sampling was used to reduce the amount of data prior to 

fitting of the models in the cross-validation framework. Sampling with sample sizes of 10%, 20%, … 100% were used to 

resample the data within each fold of the cross-validation.

The in-sample sampling was implemented with two different strategies. First, the ordinary random sampling was used. This 

strategy mimics the cases in which the time series of a site is incomplete, i.e., contains missing observations randomly 

distributed over the study period. Second, non-random sampling was used to study the cases in which the study period is 

short but more complete, implemented by using the same percentage shares as with the random sampling, but selecting 

continuous blocks of data from the beginning of the cross-validation samples. This strategy was used to simulate the cases in

which the observational data is more complete but its total length is shorter. 

The results indicate that the GB can cope with less data compared to RF (Fig. 5). For example, when considering the non-

random sampling, the GB achieves the same skill with 20% data as the RF with 50%. Additionally, the CORR results reveal 

that the selection of the ML algorithm is more important in determining the goodness of fit of the result than the selection of 

the sampling strategy at each percentage level. The differences between the random and non-random sampling results also 

indicate that lengthening the time series by adding more years to it might be a better strategy to further improve the model 

than gap filling the missing values in the existing observational time series. This can be seen in the larger changes in the non-

random sampling results as the amount of data increases: with the random sampling approach, the changes, and hence the 

algorithm improvements, become quite small with larger than 60% amounts.
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Figure 5: Cross-validated Pearson correlation coefficient (left) and root mean square error (right) as a function of the amount of 

fitting data for the gradient boosting approach (dark tones) and the random forest approach (light tones). Different in-sample 

sampling approaches (random versus non-random) are also shown with different dashes. 6 h averages were used in this 

experiment.

3.3   Analysis of predictor importance

For measuring the predictor importance, the gain metric of the xgboost package was used. The gain implies the relative 

contribution of each predictor to the model, and it is calculated by measuring each predictor's contribution to each tree of the 

model. When comparing the predictors, a higher gain value implies that the predictor is more important for generating a 

prediction.

Figure 6 presents the 40 most important individual predictors in each of the five fitted GB models (which differ from each 

other by the cross-validation years used in fitting), and Figures A1–A4 summarize the mean results for different parameters 

and grid cells–lag combinations. Sensible heat flux turned out to be the most important of the input parameters. Also, the soil

temperature of the uppermost layer, and the short-wave radiation were among the most important predictors. They were 

followed by the 2-meter temperature, soil temperatures of deeper layers, and evaporation rate. The non-lagged variables 

were more important than the lagged ones, and so were the positively lagged predictors compared to the negatively lagged 

ones. However, the nearest grid cell did not contain the most important predictor data on average.
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Figure 6: The 40 most important individual predictors in each of the fitted gradient boosting models based on the gain metric 

value. Predictor name coding: Xv_VARIABLE_GRIDCELL-ID_TIMELAG. For example, in each of the models, the mean 

sensible heat flux (msshfl) from the grid cell number 9 without temporal lagging (+0) was the most important predictor of the CO2

flux variability. See Table 1 for explanations of abbreviations.

To study the overall relevance of the input variables, we conducted an experiment in which we excluded them one by one, 

beginning from the worst (total cloud cover, tcc; Fig. A1), and measured the accuracy of GB after each drop until it started to

decrease significantly. It turned out that half of the variables originally included were redundant, i.e., they did not improve 

the model accuracy at all. Importantly, however, they did not worsen the model either. Relative humidity was the first 

variable to add significant value to the model, and those with a smaller average gain could be discarded without virtually any

effect to the results. Interestingly, using only the two most important variables – sensible heat flux and the soil temperature at

the uppermost layer – yielded a model with a relatively good accuracy (CORR = 0.947).
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4 Discussion and conclusions

Many local factors affecting the CO2 exchange between the atmosphere and a boreal forest either vary only slowly over 

time, as is the case for the plant distribution and growth and soil microorganism populations, or are effectively constant (e.g.,

soil properties and shape of the terrain). In contrast, the variability of meteorological factors is prominent and happens in 

short time scales and, partly for these reasons, dominates the variability of the flux response (Sierra et al., 2009). Indeed, the 

vast majority of the CO2 flux variation in the studied forest can be explained by using only meteorological factors, of which 

the most important ones were, in order, sensible heat flux, soil temperature, short-wave radiation, air temperature, 

evaporation rate, latent heat flux, snow depth, air pressure, and relative humidity. Out of all 19 variables included in the 

analysis, these are the ones which significantly contributed to the GB model skill. It is worth noting that some of the 

variables included in the analysis are not completely independent of the physical and biophysical processes: to some extent, 

many of them are regulated by the plants themselves, and the environment in general. The most important of such variables 

are the latent and sensible heat fluxes, evaporation, relative humidity, and the near-surface temperature. 

At least to some extent, if not completely, the ML methods employed here might be able to account for slow changes in the 

response happening over the years if 1) they are caused by the meteorological variables, and 2) the current period of the 

study contains clear enough signals of these changes. For example, the increasing trend in temperature is one of the most 

important variables explaining the CO2 variability both in the short and long term (Huntingford et al., 2017; Pulliainen et al.,

2017). However, it is unclear how well the present methods can handle cases in which the values of predictor variables fall 

outside of the range used in fitting the models. It is likely that the temperature extremes exceed the observed variability in 

the near future along with the warming local and global climate. Eventually, the ecosystem changes become so large that the 

accuracy of the method will necessarily deteriorate.

When interpreting the results, it is important to distinguish the conceptual difference between the negative and positive 

temporal lags. A strong correlation between the response variable and positively lagged predictor is an indicator of the 

predictor driving the CO2 flux, either directly or indirectly. Intuitively, a correlation between the flux and a negatively 

lagged predictor variable is more difficult to understand. In these cases the relationship must be indirect and more of a 

proxy-like: for example, horizontal advection can carry properties to or away from the study site, and these properties can be 

identified from both upwind (corresponding to the positive time lags) and downwind (negative time lags) grid cells. It is also

possible that because of spatial biases and other inaccuracies in the gridded form of the variables, some of the neighboring 

grid cells might better represent the local conditions than the nearest cell. 

In general, machine learning methods seek for relationships between the response variable and the predictor data, and they 

cannot distinguish whether these relationships are truly causal. Even though the identified relationships and interaction 
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mechanisms may not be intuitive and even causally coherent, they can still be used to improve the model accuracy. To be 

beneficial for the modeling, such a relationship just needs to be sufficiently robust and strong, and constant in time. Even 

though the predictor dataset contained many redundant variables, the GB method effectively excluded them, and the cross-

validated correlation remained high. In addition to this, the method proved to be skilful even in cases in which the amount of 

fitting samples was heavily reduced. With less powerful statistical methods, overfitting would be much more likely, leading 

to poorer cross-validation results when using redundant and/or collinear predictor variables and/or small fitting samples 

(Chapter 7 in Wilks, 2011; Chapters 3 and 7 in Hastie et al., 2009; Lavery et al., 2019). 

Both the efficiency of the GB method in rejecting the non-optimal predictors and the ability to cope with small fitting 

samples are especially encouraging considering its application to other locations: all variables can be used, letting the model 

decide about the redundancy. It is likely that the same variables that were found important at our study site might not 

constitute an optimal choice in other ecosystems and locations; vice versa, the predictors found redundant in Hyytiälä, such 

as soil moisture, can be important in other environments (Nadal-Sala et al., 2021; Zhou et al., 2019).

Because 1) the meteorological predictors can explain almost all of the variability of the observed atmosphere-ecosystem 

CO2 flux, 2) gradient boosting regression is efficient in modeling that variability, and 3) CO2 flux is measured globally at a 

large number of sites representing different climates and ecosystems (Hicks and Baldocchi, 2020), this work could act as a 

first step in creation of a multi-purpose, national, regional, or global flux model (Jung et al., 2020). These meteorological 

variables, derived here from the ERA5 reanalysis product, are easily and freely available globally in a spatially and 

temporally dense, complete, and homogeneous format, and they extend back to the 1950s. However, because local biotic 

conditions may dominate the variation among different locations, they should be included in the model as well.
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Appendices

Figure A1. Mean gain of ERA5 gridded parameters averaged over the gradient boosting models, grid cells, and lags. See Table 1

for explanations of abbreviations. Note the logarithmic x-axis.
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Figure A2. Mean gain of ERA5 grid cells averaged over predictor variables, gradient boosting models, and lags. The numbering

logic is so that the cell in the bottom left corner is number 1, the next one to the right is number 2, and so on. The first cell of the
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next row upward is the number 6. The center cell of the domain, which is closest to the Hyytiälä site, is number 13. See Fig. 2 for

visualization of the numbering principle.

Figure A3. Mean gain of different lags of the ERA5 predictors,  averaged over gradient boosting models,  grid cells and lags.
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Positive lags indicate forwarding the predictors relative to the target variable, and negative lags indicate postponing (delaying) the

predictors. Zero indicates non-lagged data.
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Figure A4.  Mean gain of  different lags and grid cells  of  the ERA5 predictors,  averaged over gradient boosting models  and

variables, and using groupings for (grid cells, lags). Negative lags indicate postponing (delaying) the predictors relative to the

target variable, and negative lags indicate forwarding the predictors. Zero indicates non-lagged data. See Fig. 2 and Fig. A2 for the

logic of the numbering of the grid cells. Note the logarithmic x-axis.

Code and data availability

The code for reproducing the results from experiments and analyses is available at Kämäräinen et al. (2022; 

https://zenodo.org/badge/latestdoi/368864113). The code can be used to download and preprocess also the ERA5 predictor 

data: other data, including the NEE data, are included in the repository.
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