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Abstract26

In spite of the importance of land ecosystems in offsetting carbon dioxide emissions released by27

anthropogenic activities into the atmosphere, the spatio-temporal dynamics of terrestrial carbon28

fluxes remain largely uncertain at regional to global scales. Over the past decade, data assimilation29

(DA) techniques have grown in importance for improving these fluxes simulated by Terrestrial30

Biosphere Models (TBMs), by optimizing model parameter values while also pinpointing possible31

parameterization deficiencies. Although the joint assimilation of multiple data streams is expected to32
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constrain a wider range of model processes, their actual benefits in terms of reduction in model33

uncertainty are still under-researched, also given the technical challenges. In this study, we34

investigated with a consistent DA framework and the ORCHIDEE-LMDz TBM-atmosphere model how35

the assimilation of different combinations of data streams may result in different regional to global36

carbon budgets. To do so, we performed comprehensive DA experiments where three datasets (in37

situ measurements of net carbon exchange and latent heat fluxes, space-borne estimates of the38

Normalized Difference Vegetation Index, and atmospheric CO2 concentration data measured at39

stations) are assimilated alone or simultaneously. We thus evaluated their complementarity and40

usefulness to constrain net and gross C land fluxes. We found that a major challenge in improving the41

spatial distribution of the land C sinks/sources with atmospheric CO2 data relates to the correction of42

the soil carbon imbalance.43

44

1 Introduction45

46

The dramatic growth of atmospheric CO2 concentrations recorded in the last half-century has47

increased awareness on the impact of human activities on climate. Taking up about one third of the48

carbon dioxide from the atmosphere, the terrestrial biosphere plays a key role in regulating CO249

emissions released by anthropogenic activities (fossil fuel emissions, land use and land cover change)50

(Friedlingstein et al., 2020). Quantifying variations in the distribution and intensity of carbon (C)51

sources/sinks from year to year remains a challenge given the complexity of the processes involved52

and what we can learn from observations. By formalizing current knowledge of the main processes53

governing the functioning of vegetation into numerical representations, terrestrial biosphere models54

(TBMs) have grown in importance for studying the spatio-temporal dynamics of net and gross land55

surface C fluxes from the local to the global scales. However, the large spread in simulated regional56

to global scale C fluxes for the last few decade (Friedlingstein et al., 2020) as well as for future57

projections (Arora et al., 2020) highlights the remaining uncertainties in our understanding and58

prediction of the fate and role of the biosphere under climate change and anthropogenic pressure.59

60

Over the past decade, the parameter uncertainty in TBMs has increasingly been reduced thanks to61

statistical data assimilation (DA, also referred to as model-data fusion) frameworks, benefiting from62

the experience gained in other fields of Earth and Environmental sciences (geophysics, weather63

forecasting, hydrology, oceanography, etc.). DA techniques enable optimization of the model64

parameters using relevant target observations, while taking into account both observational and65

modelling uncertainties. DA does not only enable improving the model parameters but can also help66
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pinpointing model deficiencies (Luo et al., 2012). The importance of DA as a key component of67

terrestrial biosphere carbon cycle modelling is reflected by the diversity of DA systems in the global68

TBM communities. Since the first global scale Carbon Cycle Data Assimilation System (CCDAS)69

(Kaminski et al., 2002; Rayner et al., 2005) developed for the Biosphere Energy-Transfer Hydrology70

(BETHY) model, other modelling groups have developed their own global scale carbon cycle DA71

systems, in particular for ORCHIDEE (ORganizing Carbon and Hydrology In Dynamic EcosystEms72

model) (Santaren et al., 2007; Peylin et al., 2016), JULES (Joint UK Land Environment Simulator)73

(Raoult et al. (2016)), JSBACH (Schürmann et al. (2016)), or CLM (Community Land Model) (Fox et al.,74

2018), and in parallel to the development of community assimilation tools (as DART (Anderson et al.,75

2009) or PECAn (Dietze et al. (2013)).76

77

Within a variational DA framework, ground-based measurements of eddy-covariance fluxes at a local78

scale (Wang et al., 2001; Knorr and Kattge, 2005; Sacks et al., 2007; Williams et al., 2009; Groenendijk79

et al., 2011; Kuppel et al., 2012) have been widely used to constrain net and gross CO2 fluxes and80

latent heat flux. Moreover, remote sensing proxies of vegetation activities, such as raw reflectance81

data (Quaife et al., 2008), vegetation indices (Migliavacca et al., 2009; MacBean et al., 2015), or82

FAPAR - fraction of absorbed photosynthetically active radiation (Stöckli et al., 2008; Zobitz et al.,83

2014; Forkel et al., 2014; Bacour et al., 2015), have also been used to constrain the model parameters84

at various spatial scales. Finally, atmospheric CO2 mole fraction measurements have been assimilated85

to provide valuable information on large-scale net ecosystem exchange (NEE) (Rayner et al., 2005;86

Koffi et al., 2012).87

88

In the early days of DA studies, most focused on the assimilation of a single data stream (e.g.,89

targetting only NEE). Then, assimilations with multiple C cycle related datasets have soon been90

considered (Moore et al., 2008; Richardson et al., 2010; Ricciuto et al., 2011; Keenan et al., 2013;91

Thum et al., 2017; Knorr et al., 2010; Kaminski et al., 2012; Kato et al., 2013; Bacour et al., 2015;92

Peylin et al., 2016). The underlying motivation behind assimilating multiple data streams is that using93

a greater number and diversity of observations should provide stronger constraints on model94

parameters, including a wider range of processes, hence resulting in a greater reduction in model95

uncertainty. However, many previous studies that assimilated multiple datasets hardly considered96

potential incompatibilities between the model and the observations (although see Bacour et al., 2015;97

Thum et al., 2017), that may result in a deterioration of model agreement with other observations98

not included in the assimilation. Besides, only a few have quantified the actual benefit of assimilating99

multiple data-sets compared to the single data stream assimilations, in particular in the context of100

global scale C cycle DA experiments.101
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The assimilation of multiple data streams can be done either sequentially, in which one observation102

type is assimilated at a time, or simultaneously (joint assimilation approach or “batch” strategy as103

defined in Raupach et al., 2005), where the model is calibrated with all data included in the same104

optimization (e.g. Richardson et al., 2010; Kaminski et al., 2012; Schürmann et al., 2016). Although105

with model parameters and observations described by probability distributions, simultaneous and106

sequential assimilations could theoretically lead to the same result (Tarantola et al., 2005), this is not107

the case in practice for complex problems. Incomplete or incorrect description of the error statistics108

may result in large differences between simultaneous and stepwise approaches (see Kaminski et al.,109

2012; MacBean et al., 2016). In addition, model non linearities also tend to exacerbate these110

potential differences. Simultaneous assimilation is considered to be more optimal in the context of111

optimizing TBM parameters as it maximizes the consistency of the model with the whole of the112

datasets considered (Richardson et al., 2010; Kaminski et al. 2012) and avoid incorrect/incomplete113

propagation of the error statistics from one step to the other (Peylin et al., 2016). The use of a114

gradient descent approach for the optimization, with the risk that it gets trapped in local minima,115

also increases the chances that stepwise and simultaneous approaches diverge. However, sequential116

approaches remain appealing for modelers: They require less initial technical investment and enable117

easier assessment of the impact of each data stream assimilated successively onto the optimized118

variables. Both approaches however face similar challenges, like defining the model-data uncertainty119

(see, e.g., Richardson et al., 2010; Keenan et al., 2013; Kaminski et al., 2012; Bacour et al., 2015;120

Thum et al., 2017; Peylin et al., 2016) and hence the weight that each dataset has on the121

optimization outcome (although specific weighting approaches may be envisioned, as in Wutzler and122

Carvalhais et al. (2014) or Oberpriller et al. (2021)) . Another major challenge, as highlighted by123

MacBean et al. (2016) or Oberpriller et al. (2021), concerns inconsistencies between observations124

and model outputs, which are usually not accounted for in common bias-blind (Dee, 2005) Bayesian125

DA systems relying on the hypothesis of Gaussian errors. Indeed, most studies do not attempt to126

identify systematic errors in the observations and/or in the model and to correct for them. The likely127

impact of model-data biases on the parameter optimization is then a degraded model performance128

as well as an illusory decrease in the estimated model uncertainty (Wutzler and Carvalhais, 2014;129

MacBean et al., 2016; Bacour et al., 2019).130

131

The present study aims to go a step forward in the assessment of how assimilating multiple C cycle132

related data streams impacts and changes the constraint on net and gross CO2 flux simulations at the133

global scale. To do so, we further advance from the sequential assimilation of Peylin et al. (2016)134

(referred to as “stepwise“ approach hereafter) by implementing a simultaneous assimilation135

framework with the same data streams: net carbon fluxes (net ecosystem exchange – NEE) and136
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latent heat fluxes (LE) measured at eddy covariance sites across different ecosystems, satellite137

derived Normalized Difference Vegetation Index (NDVI) at coarse resolution for a set of pixels138

spanning the main deciduous vegetation types, and monthly atmospheric CO2 concentration data139

measured at surface stations worldwide. The study relies on the variational DA framework designed140

for the ORCHIDEE global vegetation model (Krinner et al., 2005), here associated to a simplified141

version of the LMDz atmospheric transport model (Atmospheric General Circulation Model of the142

Laboratoire de Météorologie Dynamique, Hourdin et al., (2006)) based on pre-calculated transport143

fields for assimilating atmospheric CO2 concentration data. ORCHIDEE and LMDz are the terrestrial144

and atmospheric components of the Institut Pierre Simon Laplace (IPSL) Earth System Model145

(Dufresne et al., 2013).146

By conducting different assimilation experiments in which each data stream is assimilated alone or in147

combination (for all combinations of datasets), the research questions that we address in this study148

are:149

1. What impact does the combination of different data streams assimilated have on the reduction150

in model-data misfit, and to which extent are the model predictions improved (or degraded) with151

respect to the other data-streams that were not assimilated?152

2. How does the combination of different data-streams impact the optimised parameter values153

and uncertainties, and the predicted spatial distribution of the net and gross carbon fluxes at154

regional and global scales? How do the derived carbon budgets compare with independent155

process-based model and atmospheric inversion estimates from the Global Carbon Project’s 2020156

Global Carbon Budget (Friedlingstein et al., 2020)?157

3. How does a model–data bias related to incorrect initialisation of soil carbon pools (i.e. their158

disequilibrium with respect to steady state) impact the overall optimisation performances within159

a Bayesian assimilation framework relying on the hypothesis of Gaussian errors?160

In addition, our analysis of the useful informational content provided by different data-streams on C161

fluxes is supported by methodological aspects aiming to:162

1. Improve the realism of the prior error statistics on parameters by making them consistent with163

the prior model-data mismatch;164

2. Quantify the observation influence of each of the three data streams on the joint assimilation in165

which all three datasets were included in the optimization.166
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Throughout the presentation of the results, we discuss implications of each assimilation experiment167

on our ability to accurately constrain gross and net CO2 fluxes. In the final section we propose some168

perspectives for other modeling groups wishing to implement global scale parameter DA systems to169

constrain regional to global scale C budgets.170

171

2 Materials and methods172

2.1 Models173

2.1.1 ORCHIDEE174

Model description175

ORCHIDEE is a spatially explicit process-based global TBM (Krinner et al. 2005) that calculates the176

fluxes of carbon dioxide, water and heat, between the biosphere and the atmosphere, as well as the177

soil water budget. The temporal resolution is half an hour except for the slow components of the178

terrestrial carbon cycle (including carbon allocation in plant reservoirs, soil carbon dynamics, and179

litter decomposition) which are calculated on a daily basis. The version of ORCHIDEE in this study180

corresponds to that used in the IPSL Earth System Model for its contribution to the Climate Model181

Intercomparison Project 5 (CMIP5) established by the World Climate Research Program182

(https://cmip.llnl.gov/). Vegetation is represented by 13 Plant Functional Types (PFTs) that include183

bare soil. The processes use the same governing equations for all PFTs, except for the seasonal leaf184

dynamics (phenology), which follows Botta et al. (2000) (see MacBean et al. (2015) for a full185

description). The observation operator for NDVI is determined i) by assuming a linear relationship186

between NDVI and FAPAR (Myneni et al., 1994 ) and ii) by calculating FAPAR from the simulated LAI187

based on the classical Beer-Lambert law for the extinction of the direct illumination within the188

canopy (Bacour et al., 2015 ; MacBean et al., 2015 ) . In addition, we consider normalized data in our189

assimilation scheme . The soil organic carbon is simulated by a CENTURY-type model (Parton et al.,190

1987) and is partitioned in three pools (slow, passive, active) with different residence times.191

192

Model Set-up193

The set-up of the simulations performed with ORCHIDEE depends on the data assimilated. The model194

is run at site scale for the assimilation of eddy-covariance measurements, at a spatial resolution of195

0.72° for the assimilation of the satellite NDVI data, and at the resolution of the atmospheric196

transport model LMDz (3.75°x2.5°) for the assimilation of atmospheric CO2 measurements. The Olson197

land cover classification at 5 km is used to derive the PFT fractions at each spatial resolution, but for198

https://cmip.llnl.gov/
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the flux tower simulations where the proportion of each PFT is set based on expert knowledge. For199

satellite pixels and global simulations, ORCHIDEE is forced using the 3-hourly ERA-Interim gridded200

meteorological forcing fields (Dee et al., 2011) (aggregated at 3.75°x2.5° when assimilating201

atmospheric CO2 concentrations). For the flux tower simulations, the model is forced by local202

measurements of the meteorological variables at a half-hourly time step.203

For each spatial resolution, a prior spin-up simulation was performed by recycling available forcing204

data. The objective was to bring the different soil carbon reservoirs to “realistic” values, albeit the205

spin-up runs result in neutral net carbon flux by construction. Each spin-up simulation was then206

followed by a transient simulation (starting from the first year of measurement for each data stream)207

and accounting for the secular increase of atmospheric CO2 concentrations; for the global simulations,208

only a short transient simulation from 1990 to 1999 was performed.209

210

2.1.2 LMDz211

Model description212

The study relies on version 3 of LMDz (Hourdin et al., 2006) as implemented for the IPSL contribution213

to CMIP4. In order to save computational time, we used LMDz in the form of a precomputed214

Jacobian matrix at a set of CO2 measurement stations (§2.2.3) (see details in Peylin et al., 2016).215

216

Model set-up217

To simulate atmospheric CO2 concentrations that can be compared to observations, the transport218

model has to be forced not only by terrestrial biospheric fluxes (calculated by ORCHIDEE), but also by219

other natural (e.g. ocean) and anthropogenic CO2 fluxes. We imposed a net emission due to land use220

change (i.e. deforestation) of 1.1 GtC.yr-1 although we also accounted for a larger flux from biomass221

burning but compensated partly by forest regrowth (see Peylin et al. (2016) for more details). The222

global maps of biomass burning emissions were taken from the Global Fire Emission Database223

version 3 dataset (Van der Werf et al., 2006; Randersen et al., 2013) over the period 1997-2010 at a224

monthly time step and gridded at 0.5°x0.5° resolution. The global fossil fuel CO2 emission products225

used here were developed by University of Stuttgart/IER based on EDGAR v4.2 and were provided at226

a 0.1°x0.1° spatial resolution and at a monthly time scale. The ocean flux component was obtained227

from a data-driven statistical model based on artificial neural networks that estimated the spatial228

and temporal variations of the air-sea CO2 fluxes (Peylin et al., 2016).229

230
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2.2 Assimilated data231

2.2.1 in situ flux measurements (F)232

The NEE and LE measurements come from the FLUXNET global network. We used harmonized,233

quality-checked and gap-filled data (Level 4) at 68 sites from the La Thuile global synthesis dataset234

(Papale, 2006). The site locations are presented in Figure 1. These ecosystem measurements cover235

very different time spans, ranging from one single year at some sites up to nine years. They constrain236

seven PFTs among the twelve natural vegetation types represented in ORCHIDEE: tropical evergreen237

broadleaf forest – TrEBF (3 sites corresponding to 6 site-years), temperate evergreen needleleaf238

forest – TeENF (16 sites, 45 sites-years), temperate evergreen broadleaf forest – TeEBF (2 sites, 4239

site-years), temperate deciduous broadleaf forest – TeDBF (11 sites, 37 site-years), boreal evergreen240

needleleaf forest – BoENF (12 sites, 44 site-years), boreal deciduous broadleaf forest – BoDBF (3 sites,241

6 site-years), and C3 grassland – C3GRA (21 sites, 56 site-years). We assimilated daily-mean values of242

NEE and LE observations, but only when at least 80% of the 48 potential half-hourly data in a day are243

available.244

2.2.2 Satellite products (VI)245

The NDVI products considered here are derived from MODIS collection 5 surface reflectance data246

acquired in the red and near-infrared channels and corrected from the directional effects (Vermote247

et al. (2008). Data already assimilated into ORCHIDEE and described in MacBean et al. (2015) are248

considered here: They are provided at daily / 0.72° resolutions and span over the 2000-2010 period.249

Five among the six deciduous, non-agricultural, PFTs of ORCHIDEE were optimized in this study:250

TrDBF - tropical broadleaved rainy green forest, TeDBF, BoDBF, BoDNF – Boreal needleleaf251

summergreen forest, and C3GRA. C4 grasses and evergreen PFTs were not considered. For each PFT,252

fifteen 0.72° pixels were selected for assimilation depending on their thematic homogeneity with253

respect to the considered PFT (fractional coverage above 60%) and consistency between the254

observed NDVI time series and the prior ORCHIDEE. The location of these satellite pixels is shown in255

Figure 1.256

257

2.2.3 Atmospheric CO2 measurements (CO2)258

The surface atmospheric CO2 concentration data come from three databases: The NOAA Earth259

System Laboratory (ESRL) archive (ftp://ftp.cmdl.noaa.gov/ccg/co2/), the CarboEurope IP project260

(http://ceatmosphere.lsce.ipsl.fr/database/index_database.html), and the World Data Centre for261

Greenhouse Gases of the World Meteorological Organization Global Atmospheric Watch Programme262

(http://gaw.kishou.go.jp). The data include in situ measurements, made by automated quasi-263

ftp://ftp.cmdl.noaa.gov/ccg/co2/
http://ceatmosphere.lsce.ipsl.fr/database/index_database.html
http://gaw.kishou.go.jp/cgi-bin/wdcgg/catalogue.cgi
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continuous analysers, and air samples collected in flasks and later analyzed at central facilities. In this264

study, we used monthly-mean values of these measurements (Peylin et al., 2016). Ten years of265

observations over the 2000-2009 period were used from a total of 53 stations located around the266

world (Figure 1).267

268

2.3 Assimilation methodology269

2.3.1 Data assimilation framework270

The data assimilation system associated to the ORCHIDEE model (ORCHIDAS) has been described in271

previous studies regarding the assimilation of these data streams alone (Kuppel et al., 2012; Santaren272

et al., 2014; MacBean et al., 2015; Bastrikov et al., 2018) or their combinations (Bacour et al., 2015;273

Peylin et al., 2016). The assimilation system relies on a variational Bayesian framework that optimizes274

ORCHIDEE parameters gathered in a vector x, by finding the minimum of a global misfit function J(x)275

iteratively . J(x) is a linear combination of the misfit functions associated with each data stream. It is276

assumed that the errors of observations and on the model parameters are Gaussian and that the277

data streams errors are independent from each other:278

279

�(�) = 1
2
[ �����◦�����(�) − ����

T.����
−1 . �����◦�����(�) −���� +

�����(�) − ��
T.��

−1. �����(�) −�� + �����(� −
��㐲) T.��㐲

−1. �����(�) −��㐲 + (�−��)T. �−1. (� −��)]

(1)

280

where yo are the observation vectors (with o = F (flux), VI (satellite NDVI), or CO2 (CO2 concentration);281

HORCH and HLMDz are the observational operators of the ORCHIDEE and LMDz models, respectively. Ro282

is the error covariance matrix characterizing the observation errors with respect to the model283

(therefore including the uncertainty in the model structure) associated to data stream o. The284

dimensionless control vector z quantifies the distance between the values of the optimized285

parameters and the corresponding prior information xb: � = �−�/�. (� −��) , where B is the286

associated a priori error covariance matrix.287

We use the gradient-based L-BFGS-B algorithm (Byrd et al., 1995; Zhu et al., 1997) to minimize J(x)288

iteratively. It accounts for bounds in the parameter variations. The algorithm requires the gradient of289

the misfit function as an input in order to explore the parameter space:290

291

���(�) = �����
��� T.�����

T.����
−1 . �����◦�����(�) − ���� +

�����
� T.��

−1. �����(�) − �� + �����
�㐲 T.��㐲

−1. �����(�) − ��㐲 +
�−1. (�−��)

(2)
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292

The calculation of ���(�) uses the Jacobian matrix of ORCHIDEE associated to each data stream,293

�����
� (assuming local linearity of the model), and that of LMDz. For most of ORCHIDEE294

parameters, �����
� (or �� in hereafter) is calculated thanks to the tangent linear model of295

ORCHIDEE obtained by automatic differentiation using the TAF (Transformation of Algorithms in296

Fortran) tool (Giering et al., 2005); however, for a few parameters involved in threshold conditions of297

the model processes, especially related to phenology, we use a finite difference method.298

299

After optimization, the posterior error covariance matrix A (for “analysis”) of the optimized300

parameters can be calculated as a function of the Jacobian matrix associated to the gradients of the301

model outputs with respect to the parameters at the solution for each data stream:302

303

� = � ��T.��
−1.�� +�−1

−1 (3)

304

It is computed under the hypothesis of model linearity in the vicinity of the solution. The square root305

of the diagonal elements of B or A correspond to the standard deviation σ on model parameters.306

2.3.2 Parameters to be optimized307

308

We chose to optimize a limited set of carbon-cycle related parameters of ORCHIDEE as a result of309

preliminary sensitivity analyses and past DA studies. A short definition of these parameters that310

mostly control photosynthesis, phenology and respiration, is provided in Table 1, while their311

associated prior values, bounds and uncertainty are documented in Supplementary Table S3. More312

comprehensive descriptions of their role in the model processes are provided in Kuppel et al. (2012)313

and MacBean et al. (2015). The size of soil carbon pools drives the magnitude of the net carbon314

fluxes exchanged with the atmosphere to a large extent; Soil carbon is closely related to soil texture,315

climatic (temperature and moisture), disturbance history (including land use and fires), as well as316

ecosystem and edaphic properties (Schimel et al., 1994; Todd-Brown et al., 2013) . Given that we do317

not have access to that information, neither at the site scale (for assimilation of NEE measurements)318

nor at the global scale (for assimilation of atmospheric CO2 concentrations), we use a steady state319

assumption where ORCHIDEE has been brought to near equilibrium with a long spin-up of the soil320

carbon pools. To correct for this bias, the initial state of the soil carbon reservoirs is optimized using a321

multiplicative parameter of both the slow and passive pools as in Peylin et al.(2016). The use of these322

correction factors is a handy way to correct any issues related to the use of our soil organic C model323
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and the soil carbon disequilibrium. Two multiplicative parameters are used depending on the type of324

data considered (and their associated spatial scale): for in situ flux measurements, we considered325

site-specific parameters KsoilC,site; for atmospheric CO2 concentration data, instead of resolving the326

initial conditions for all LMDz grid cells we scaled the carbon pools for 30 large scale regions KsoilC,reg.327

Note that having correct soil carbon pools is less important when assimilating satellite NDVI data328

because these are more closely related to carbon uptake rather than net carbon flux. In total, up to329

182 parameters are optimized depending on the data streams considered.330

The prior values xb of the parameters are set to the standard values of ORCHIDEE (Supplementary331

Table S3). Not all parameters are constrained by all three data streams. In particular, satellite332

FAPAR/NDVI products inform the timing of phenology of plant vegetation (start and end of the333

growing season) rather than on photosynthesis or respiration with our DA system (Bacour et al., 2015;334

MacBean et al., 2015). The dependency of each parameter with respect to the assimilated data335

streams is indicated in Table 1.336

337

2.3.3 Data assimilation experiments338

Different data assimilation experiments were tested in order to understand the respective constraint339

brought by each data stream and evaluate their compatibility with each other and with the model.340

First, each data stream was assimilated separately and then its combinations with the other two341

were considered. Second, the three data streams were assimilated altogether. The various342

experiments are described in Table 2 with the number of data points assimilated and the number of343

parameters optimized. Indeed, the number of optimized parameters differs with the type of data344

assimilated as described in §2.3.2 and in Table 1. The assimilations have a high computational cost,345

with an average value for joint assimilations using all three data streams of about 50,000 hr Central346

Processing Unit time on AMD Rome compute nodes at 2.6 GHz with 256 GB memory per node.347

Two assimilation experiments combining the three data streams were tested: one experiment348

(F+VI+CO2) with all parameters optimized in a single step; and an additional experiment following a349

2-step optimization (F+VI+CO2-2steps), as described hereafter. In the first step, the global soil carbon350

reservoirs were constrained by assimilating atmospheric CO2 data only, and optimizing the two main351

parameters controlling soil respiration, KsoilCreg and Q10. In the second step, all parameters but352

KsoilCreg were optimized from the three data streams: KsoilCreg was retained from the first step and353

Q10 was optimized but the prior uncertainty for Q10 for the second step corresponded to the354

posterior uncertainty derived from the first step. We did this to correct for the initialisation of the355

soil carbon imbalance following model spin-up and illustrate how the informational content of the356

three data-streams relative to the surface carbon fluxes can be enhanced once soil carbon357
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disequilibrium is more “realistically” represented; the motivations and implications of the two358

assimilations experiments are further discussed in the result and discussion sections.359

The results of these assimilations were compared to the companion study of Peylin et al. (2016) in360

which the same data streams were assimilated in a sequential/stepwise approach: NDVI data were361

assimilated first, then in situ flux measurements, and finally atmospheric CO2 concentration362

measurements. While only 3 years of atmospheric CO2 data were used in Peylin et al. (2016), the363

stepwise results presented here really accounts for the same ten years used in the simultaneous364

experiments (2000-2009) to facilitate the comparison of the approaches (in particular the impact of365

using the atmospheric CO2 growth rate over 10 years on the optimisation of the mean terrestrial366

carbon sink). There are however a few differences in the set-up compared to the present study (cf.367

details provided in Supplementary Text S1).368

369

2.3.4 Error statistics on observations and parameters370

2.3.4.1 Observation error statistics371

Like in previous studies with ORCHIDAS, we defined �� as diagonal and computed the variances372

from the Root Mean Square Difference (RMSD) between the data and the a priori ORCHIDEE373

simulations (i.e. performed with the model default parameter values) for fluxes and satellite374

observations. However, it is worth noting that this approach overestimates the variances in order to375

compensate for any neglected correlations. For atmospheric CO2 measurements, we followed a376

different methodology given the large discrepancy in the modelled a priori concentrations with377

respect to the observed data (i.e., large bias that increases over time due to biases in the land net378

carbon sink (too small)). The errors were determined at each site as the standard deviation of the379

observed temporal concentrations (Peylin et al., 2005, 2016), to capture the general feature that380

model-data mismatch is likely large for sites and months with large variations in daily concentrations.381

Although crude, such an hypothesis has been used in many atmospheric CO2 inversions and in our382

case it combines all structural errors of the terrestrial and transport models.383

384

2.3.4.2 Tuning of the prior error statistics385

We assumed that errors in the prior parameter values are independent and therefore we used a386

diagonal B matrix. We populated the diagonal of B in an iterative way from consistency diagnostics of387

the data assimilation system following Desroziers et al. (2005), as described hereafter. If both B and388

Ro matrices are correctly specified and if the estimation problem is linear, they should be related to389
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the covariance of the residuals (d) between observations and background simulations (i.e. innovation)390

following:391

�� .�.�� T +�� = � �� −�(��) . �� −�(��) T = � ��
�.��

�T (4)

392

With393

�� = � �� −�(��) . �� −�(��) T = � ���.��
�T (5)

394

�� .�.�� T = � �(��) −�(��) . �� −�(��) T = � ��
�. ��

�T (6)

395

Similarly, the diagnostic on analysis errors can be determined from the residuals between396

observations and posterior simulations as:397

�� .�.�� T = � �(��) −�(��) . �� −�(��) T = � ��
�.���

T (7)

398

In principle, the tuning of B and R needs to be performed iteratively for successive values of �� and399

of the corresponding residuals, until convergence, which is prohibitive in terms of computing time.400

The estimation of the covariance matrices depends on the mathematical expectation (E) which would401

require several realizations of the residuals to diagnose the error statistics (Desroziers et al. (2005);402

Cressot et al., 2014). In this study, only one optimization was performed using one set of a priori403

parameters for each dataset. We therefore calculated these metrics by averaging the diagonals of404

the matrices described by both sides of the equations for all available observations (Kuppel et al.,405

2013). This way, both sides are scalar values (Cressot et al., 2014).406

407

The standard deviation of the errors were determined after a few trials considering the three single408

data stream assimilation experiments independently: For each DA experiment we started from an409

initial parameter error set at 40% of the variation interval for each parameter (as in Peylin et al.,410

2016); The errors were then varied in order to fulfill the consistency diagnostics on the parameter411

and observation errors (see Supplementary Text S3). Finally, we evaluated the consistency of the412

resulting model-data covariance matrices for the DA experiments with multiple data streams using413

the reduced chi-square test (i.e. the chi-square statistic normalized by the number of observations, m414

(Chevallier et al., 2007; Klonecki et al., 2012), which is implicitly optimized by the Desroziers et al.415

(2005) approach:416

2 =
2�(��)
�

(8)

417
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If the �� and B covariance matrices are well defined, the ratio of each term of the diagnostics of418

Desroziers et al. (2005) (ratio between �� and� ���.��
�T ;�� .�.�� Tand � ��

�.��
�T ; and419

�� .�.�� T +�� and � ��
�.��

�T ) should approach 1. Table 3 shows the values of the420

consistency diagnostics for the final parameter error set-up.421

The diagnostics for �� (ratios slightly above 1 for all data streams) and for the reduced chi-square422

(Table S1 - values below 1) indicates a slight overestimation of the observation error. The diagnostics423

for B (ratioB) show a stronger overestimation of the a priori error for NEE, LE and atmospheric CO2,424

but an underestimation for NDVI. For fluxes and satellite data, the combined diagnostics for�� and425

B (ratioBR) appear consistent with ratios close to 1. For CO2 however, the value of ratioBR close to the426

value of ratioB highlights the strong influence of the background information (B matrix) or the model427

structure on the optimization, while the large value of 2 expresses a strong underestimation of the428

observation error. Indeed, when determining RCO2,we purposely did not account for the large bias (by429

about 1 ppm.yr-1) between the observed CO2 temporal profiles at stations and the prior simulations,430

which is due to the initialisation of ORCHIDEE’s carbon pools (which is discussed in the Result section).431

Finally, for the diagnostics on the analysis, the various tests performed (Supplementary Text S3) all432

lead to negative quantities. Instead, the simulations of the calibrated model were expected to be433

contained in between their prior state and the observations (the residuals having opposite signs,434

their product is positive). This result may reflect a too strong model correction. However, it should be435

noted that a strong assumption associated with these tests concerns the linearity of the model,436

which may not hold for terrestrial biosphere models.437

438

2.4 Diagnostics for system evaluation439

2.4.1 Optimisation performance440

We measured the efficiency of any assimilation by quantifying the reduction of the cost function as441

the ratio of the prior to posterior values. It should be noted that the minimum value of the cost442

function is not expected to be zero given the uncertainty in both the data and model, and the limited443

number of degrees of freedom (number of optimized parameters) allowed. We also looked at the444

ratio of the norm of the gradient between the prior and posterior misfit functions, as it illustrates the445

progression towards the expected optimum, for which the gradient is null. The decrease of the norm446

of the gradient depends on the estimation problem (non-linearities, number of observations versus447

number of optimized parameters, constraints of the data on the model processes, etc.); However,448

based on our experience with non-linear problems, we still expect the norm of the gradient to be449

reduced by at least two orders of magnitude.450
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The analysis of the optimization performances are summarized in §3.1 and detailed in451

Supplementary Text S4.452

453

2.4.2 Model improvement and posterior predictive checks454

The model improvement was quantified by the reduction of the RMSD between model and data,455

prior and posterior to optimization, expressed in %, as 100 × (1 − RMSDpost RMSDprior ).456

We conducted posterior predictive checks by running the model optimized after assimilation of one457

or two data streams and quantifying the resulting model-improvement with respect to the data458

streams not accounted for in the assimilation.459

2.4.3 Uncertainty reduction on parameters and error budget460

The knowledge improvement on the model parameters brought by assimilation was assessed by the461

uncertainty reduction determined by 1- σpost/σ prior, where σpost and σprior are the standard deviation462

derived from the posterior (A) and prior (B) covariance matrices on the model parameters and463

output variables.464

A comprehensive quantification of the uncertainty reduction on model variables would require465

accounting also for the covariance matrix of the model structural error which could be the dominant466

factor. Because this covariance matrix is difficult to estimate for complex process-based terrestrial467

biosphere models (see Kuppel et al., 2013, for a first attempt in the case of the NEE), we instead468

analyzed the posterior errors on NEE and GPP at regional to global scales, as the projection of the469

posterior error on parameters in the space of the model variables. The posterior error on C fluxes is470

then characterized by the covariance matrix Ra as:471

�� =�� .�.�� T (9)

with the Jacobian matrix�� , being the first derivative of the target quantity (e. g., NEE, GPP) to the472

optimized parameters derived from an assimilation experiment o.473

474

2.4.4 Assessment of the information content of each data stream475

For the joint assimilations using the three different data streams, we further analyzed the influence476

matrix S that quantifies their leverage on the model-data fit (Cardinali et al., 2004):477

� = �−1.�� .�.��T (10)

478

A diagonal element Sii is the rate of change of the simulated observable i with respect to variations in479

the corresponding assimilated observation i. Sii is referred to as "self-sensitivity" of "self-influence". A480

zero self-sensitivity indicates that this ith observation does not contribute to improving its simulation481
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by the model, whilst Sii = 1 indicates that the fit of the sole observation imobilizes an entire degree of482

freedom (i.e. one parameter). In addition to the total influence matrix (equation 10), we also483

determined the partial influence matrices associated to each data stream o, using the corresponding484

diagonal Ro matrices and in equation 10.485

We analyzed the trace (i.e. the sum of all diagonal elements) of S that quantifies a measure of the486

amount of information that can be extracted from all observations / all data streams. We used two487

derived quantities: the global average observation influence (OI) and the relative degrees of freedom488

for signal (DFS) associated with the data stream o, which measures its relative contribution to the fit.489

They are defined as follow (withm the total number of observations):490

491

�7 =
�㔹(�)
�

(11)

and492

��� = 100 ×
�㔹(��)
�㔹(�)

(12)

3 Results493

3.1 Model improvement for the different assimilation experiments494

3.1.1 Cost function reduction495

The reduction of the cost function varies between the different experiments with the lowest496

reductions for the single data streams experiments F and VI (around 10%). However, the correction497

of the model-data misfit when CO2 data are assimilated is much higher (at least factor of 10498

reduction). Noteworthy, this strong model improvement is obtained for a lower departure of the499

parameters from their prior values than when fluxes or satellite data are assimilated (cf. section 3.3,500

and Figure 6).501

A detailed description of the optimization performances with respect to the minimisation of the cost502

function is detailed in Supplementary Text S4 and Table S2.503

3.1.2 Overall fit to the observations504

The impact of assimilating one type of observation on all the data streams (including those that are505

not assimilated) was evaluated for the various assimilation experiments. The reduction of the model-506

data mismatch (i.e. reduction in prior RMSD) after assimilation of each data stream (or any507

combination of them) is illustrated in Figure 2. The length of the boxes (first and third quartiles) of508

the whisker plots highlight the spread in misfit reduction across sites/vegetation types. For fluxes,509

only the impact on NEE is shown, given the choice of optimizing parameters is mostly related to the510

carbon cycle. Using the parameter values optimized in either the F and VI assimilations has a strong511
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detrimental impact on the simulated atmospheric CO2 data because the soil carbon pools were not512

adjusted in these DA experiments. Therefore, we also analyzed the changes induced on the513

detrended seasonal cycles of atmospheric CO2 concentrations (Figure 2c) (hence removing the trend514

using the time series decomposition based on the CCGCRV routine (Thoning et al., 1989 - see515

Supplementary text S2 and Figure S1 for representative comparisons of observed vs modeled time516

series of atmospheric CO2 concentrations and their associated trend estimation).517

518

For a given data stream, the improvement is usually better for the experiment where that data519

stream is assimilated alone. One noteworthy exception is the assimilation of NDVI alone (VI520

experiment where only the phenology parameters are optimized) that results in a lower model521

improvement with respect to NDVI than when it is assimilated in combination with other data-522

streams (where a higher number of parameters are optimized in these joint assimilations, hence523

improv ing the timing of phenology and the amplitude of the annual cycle when flux or atmospheric524

CO2 data are also assimilated). For both experiments F and VI, the reduction of the model-data misfit525

can be negative, which reflects how the assimilation can degrade the model performance for a few526

pixels/sites by searching for a common parameter set. This is not observed with the assimilation of527

atmospheric CO2 data only for which the optimized model is always closer to the observations than528

the prior model (due to a correction of the CO2 trend), at all stations (see Supplementary Text S5 for529

a detailed description of the reduction in model-data misfit for each single-data stream assimilation530

experiment (F, VI, CO2)).531

532

The collateral impact of assimilating one data stream on the other simulated observables is evident533

in the misfit reductions shown in Figure 2 (e.g., examine the “VI” experiment on the NEE misfit534

reduction in Figure 2a). While using optimized phenological parameters retrieved from satellite data535

alone (experiment VI) degrades the modelled seasonality of NEE as compared to the measurements536

(median RMSD reduction of -3%), the optimization with respect to in situ flux data (F), with additional537

control parameters, leads to a general improved consistency between modelled FAPAR and satellite538

NDVI time series (median RMSD reduction of 8%). The impact on LE is much lower for all DA539

experiments (median values close to 0% in all cases, result not shown). One can also note the540

positive impact of the F and VI assimilations on the atmospheric CO2 data with median RMSD541

reductions of 15.8% and 11.2% respectively for the detrended time series. Such an improvement542

after assimilation of in situ flux data corroborates the findings of Kuppel et al. (2014) and Peylin et al.543

(2016). Noteworthy, this improvement is of the same order as that achieved when assimilating544

atmospheric CO2 data alone (median RMSD reduction of 14%). The parameters retrieved from the545
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CO2 experiment have also a small but positive impact at the site level with respect to NEE (median546

value of 3%) and FAPAR (0.8%).547

For the joint assimilation experiment (F+VI, F+CO2, VI+CO2, or F+VI+CO2; Figure 2), the model-data548

agreement is improved for all assimilated data streams, as expected, while the model degradation549

relative to the data not assimilated is generally not as severe as compared to the assimilation of550

individual data stream experiments described above, with the exception of the F+VI experiment. The551

latter experiment leads to enhanced model improvement compared to when flux and satellite NDVI552

data are assimilated alone (cf. Supplementary Text S5). In the simultaneous assimilations involving553

atmospheric CO2 data, most of the model improvement concerns CO2 (Figure 2c) while the benefit554

for the fluxes and FAPAR/NDVI is weak (RMSD reduction below 3%). Noteworthy, the 2-step555

assimilation F+VI+CO2 (see Section 2.3.3) results in an even higher model improvement for both NEE556

and FAPAR than the 1-step approach.557

The misfit reduction for the raw (i.e., not detrended) atmospheric CO2 data is high (median reduction558

~75%) and remains quite stable among the various different combinations of data streams that559

include atmospheric CO2 (Figure 2c solid bars experiments including “CO2”), with the exception of560

the F+VI+CO2-2steps experiments. The misfit reductions for the detrended CO2 time series are561

generally lower (median reduction less than ~15%) and there are more pronounced differences562

between experiments.563

These results and the low reduction in NEE and FAPAR RMSDs following the assimilation atmospheric564

CO2 data described above highlight the predominance of the correction of the trend in atmospheric565

CO2 time series through the fitting of the carbon pool parameters, over the tuning of the other model566

parameters related to photosynthesis and phenology (see Figure 6 and Figure S3). The 2-step567

approach permits to partially overcome that limitation, with the improvement of the mean seasonal568

cycle for the three data streams (Figure 2c).569

570

3.1.3 Specific improvements at CO2 stations571

572

Figure 3 further analyzes the impact of each assimilation experiment on the fit to the observed573

atmospheric CO2 concentrations in terms of the bias in the long-term trend (2000-2009) and fit to the574

mean seasonal cycle over the same period (i.e., bias in seasonal amplitude and length of the carbon575

uptake period - CUP - Supplementary text S2). For the trend analysis (Figure 3a), only experiments576

where atmospheric CO2 measurements are assimilated are considered.577

With the default (prior) parameter values, the fluxes simulated by ORCHIDEE and transported by578

LMDZ overestimate the trend by about 1 ppm.yr-1. When assimilating atmospheric CO2 data, most of579
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the parameter correction aims at reducing this bias. This is mostly achieved by tuning the regional580

KsoilC_reg parameters: The net land carbon sink is increased globally in order to match the observed581

trend at most stations (reducing the bias from around 1 ppm.yr-1 to 0.1 ppm.yr-1). Compared to the582

improvement in the bias in the trend, the improvements (reduction in bias) in the amplitude of the583

CO2 seasonal cycle and in the length of the carbon uptake period (CUP) (Figures 3b and c) are584

marginal. Note that our joint DA experiments lead to lower trend biases compared to the stepwise585

approach.586

For the amplitude of CO2 concentrations, the joint assimilations including CO2 data lead to lower587

improvements on average compared to any single data stream assimilation experiment. Interestingly,588

the highest improvements in CO2 amplitude are achieved when flux data are assimilated (F or F+VI),589

which reveals that the constraint on photosynthesis and respiration provided by FLUXNET590

measurements is consistent with the amplitude of the seasonal atmospheric CO2 cycle and within the591

ORCHIDEE-LMDz model (as already pointed out in Kuppel et al. (2014)). Surprisingly, the use of592

satellite vegetation indices (VI) leads to a slightly lower residual amplitude bias than when593

atmospheric CO2 data are assimilated, albeit a lower number of optimized parameters. For the length594

of the CUP , the relative model correction appears small for almost all experiments and is lower than595

what is achieved for the trend and amplitude. Some degradation (increased model-data bias) is even596

obtained for the cases F and F+CO2. This may be attributed to some inconsistency in the phasing of597

the CUP derived from the FLUXNET stations and from the atmospheric stations (given differences in598

the spatial and temporal scale constraints brought each data stream). Among the single data stream599

assimilations, the highest improvement is obtained for VI where the optimisation of the phenological600

parameters was the only improvement allowed for tuning the model. For the joint assimilations,601

those combining the three data streams provide the best performance and perform better than the602

stepwise approach.603

Among the joint assimilations with three data streams, the 2-step approach results in the largest604

reduction in amplitude and CUP bias, but, on the other hand, the larger trend bias.605

606

3.2 Impact of the assimilations on regional to global land C fluxes and errors607

608

Figure 4 now compares the carbon fluxes (NEE and GPP) at the global scale and for three large609

regions (northern and southern extra-tropics, and tropics) using hindcast simulations based on the610

different optimisations.611

NEE is close to equilibrium by construction in the prior model (about -0.3 GtC.yr-1 globally). Note first612

that experiments excluding CO2 data produce land carbon fluxes (from -10 (F+VI) to +6 (VI) GtC.yr-1,613
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not shown in Figure 3) that are not compatible with our understanding of the land C fluxes. For all614

experiments including atmospheric CO2 data, the assimilations lead to much more negative NEE615

(increased land carbon sink) compared to the prior for nearly all regions: the optimized carbon sinks616

are about -2.4 GtC.yr-1 at the global scale, similar to the stepwise approach (see Supplementary Text617

S6 for detailed results for each assimilation experiment). Therefore, our joint assimilations with618

atmospheric CO2 data result in a land C sink that is in the range of independent TBM estimates of the619

global net carbon budget (over the same period, the Global Carbon Project reports a global land sink620

of -2.9 GtC.yr-1 ± 0.8 standard deviation (see Table 5 of Friedlingstein et al., 2020)). Note that we have621

imposed (see method in §2.1.2) a net emission from land use change (i.e. deforestation) of +1.1622

GtC.yr-1 (2000 -2009) which is slightly lower than that reported in Friedlingstein et al. (2020) from the623

TBMs (1.6±0.5 GtC.yr-1) or the Bookkeeping methods (1.4±0.7 GtC.yr-1), hence our lower terrestrial624

carbon sink.625

These similar posterior global scale budgets however hide large regional contrasts. While the three626

joint assimilation experiments F+CO2, VI+CO2, and F+VI+CO2, lead to similar NEE budgets across627

regions (with magnitudes comparable to the stepwise assimilation set-up) , the CO2 and F+VI+CO2-628

2steps experiments result in distinctly different estimates. In the northern extra-tropics, the CO2629

assimilation results in the largest C sinks (numbers provided in Supplementary Text S6) while the630

F+VI+CO2-2steps assimilation leads to the lowest C sink. The reverse is obtained for the Tropics.631

With a global scale budget of 171 GtC.yr-1 for GPP, the prior ORCHIDEE model is on the high range of632

recent estimates of the global GPP, as synthesized in Anav et al. (2015), the mean value of which633

being around 140 GtC.yr-1. Depending on the data assimilated in this study , the posterior GPP ranges634

from 147 GtC.yr-1 (F+VI) to 170 GtC.yr-1 (VI+CO2) at the global scale. The largest differences with the635

prior are obtained for the experiments involving flux and satellite data (alone or the two combined).636

This is directly linked to large corrections in photosynthesis and phenology parameters for these637

experiments (see §3.3). In comparison, the assimilations involving atmospheric CO2 concentrations638

data are more conservative with respect to GPP. Assimilating atmospheric CO2 data alone lessens the639

GPP reduction by a factor of about three compared to assimilations with F and VI data, and the640

corrections for the joint assimilations using CO2 data is even lower (cf Supplementary Text S6 for641

details).642

By propagating the error on the parameters in the observation space (see Eq. 9), we calculated the643

uncertainty in NEE and GPP fluxes caused by parameter uncertainty for the prior and optimized644

models. The error statistics, initially calculated at monthly/grid scale resolutions, were aggregated645

over the same regions as above, fully accounting for the spatio-temporal correlations between grid646

cells (Figure 5).647
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At the global scale, the prior error standard deviation for NEE (4.7 GtC.yr-1) is high compared to the648

typical uncertainty associated to TBMs (about 0.5 GtC.yr-1, Friedlingstein et al. (2020)) or to649

atmospheric inversions (estimated uncertainty ~0.4 GtC.yr-1 in Peylin et al.(2013)). This is a650

consequence of neglecting negative error correlations between them (as done in nearly all C cycle DA651

studies). Given this high prior uncertainty, the posterior error for NEE and GPP are significantly652

reduced, as expected. Because of the strong dependence of the posterior errors on the optimisation653

set-up and the fact we do not consider the error of the model, we should only compare the relative654

error reduction between DA experiments. Noteworthy, the posterior errors in global NEE obtained655

for the experiments CO2 and VI+CO2 are about 15 times lower than the posterior errors resulting656

from the other data combinations (and three orders of magnitude lower than the prior error). This is657

due both i) to the need for the DA system to correct the large a priori mismatch of the atmospheric658

CO 2 growth rate and ii) to the lower number of optimized parameters in these configurations (Table659

2: about 60% more parameters being optimized in F+VI+CO2 than in CO2 or VI+CO2). The joint660

assimilations result in higher posterior errors on NEE, while they usually lead to the lower posterior661

errors on GPP. For GPP, the lowest posterior errors are found for the experiments combining F and662

CO2 data, while experiments F, CO2 and VI+CO2 lead to larger posterior errors. This is due to the fact663

that i) F and CO2 data provide a stronger constraint on the annual mean photosynthesis than VI data664

and that ii) F and CO2 data provide cross constraints on photosynthesis. Experiment VI, in which665

about ten times fewer parameters are optimized and targeting primarily the timing of phenology,666

results in the highest posterior GPP errors (although still a reduction from the prior).667

Finally, one can observe that the posterior errors are higher in the tropics for both NEE and GPP (and668

the reduction compared to the prior error is lower), which is even more prominent in the669

experiments using in situ flux data alone or with satellite data, a direct consequence of the lower670

data availability (eddy-covariance measurements) to constrain the model parameters for tropical671

PFTs.672

673

3.3 Parameter estimates and associated uncertainties674

675

Figure 6 shows the impacts of the different assimilation experiments on a subset of the retrieved676

parameter values and their associated uncertainties (the remaining parameters are shown in Figure677

S2).678

While the stepwise study showed only few changes in the parameter estimates between the679

sequential steps (and hence as a function of the data stream from which the parameters were680

constrained) (Peylin et al., 2016), our results show a large variability between the assimilation681
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experiments. For most parameters, the highest departures from the prior values are obtained for the682

single-data stream assimilations. Higher changes are obtained for flux or satellite data as compared683

to the estimates retrieved with atmospheric CO2 data alone which remain closer to the prior values.684

This reflects the lower constraint brought by the CO2 assimilation experiment on photosynthesis and685

phenology related processes, as already pointed out in §3.1.2. This is largely due to the correction of686

the trend bias via a few respiration related parameters, which prevails over the improvement of the687

other photosynthesis and phenology parameters.688

The joint assimilations usually result in a lower departure from the background. For the parameters689

constrained by two data streams, the optimized values generally fall in between those retrieved690

when these data streams are assimilated alone. This feature shows how the system tries to find a691

compromise solution and illustrates potential overfitting with only one data stream. The values692

optimized in the three experiments involving atmospheric CO2 data show little variability for all693

parameters, except in F+VI+CO2-2steps where the tuning of the multiplicative parameter of regional694

soil carbon pools KsoilC_reg is decoupled from the optimization of the other photosynthesis and695

phenological parameters. The decrease of KsoilC_reg parameters from the prior value is very small in all696

experiments, although these parameters are responsible for most of the correction of the697

atmospheric CO2 trend. This highlights the challenge of optimizing soil C disequilibrium with our698

approach based on a model spin-up followed by only a short transient period. The smallest KsoilC_reg699

changes are obtained for the 2-step approach. Note that in this approach, Q10 is also estimated in700

the first step; the corresponding estimate is similar to the value retrieved in the second step (which is701

displayed in Figure 3), below 0.5% difference, and consistent with the estimates of the other joint702

assimilation experiments. For some parameters/PFTs, the direction of the departure with respect to703

the prior value (increase or decrease) may differ depending on the data stream assimilated (as704

detailed in S5).705

At the first order, the estimated parameter uncertainties decrease with the number of observations706

assimilated, as expected from Equation 4, and given that the observations are treated as707

independent data. However, given that the estimated parameter errors strongly depend on the set-708

up of B and R matrices and that we did not use error correlations in these matrices, we should only709

focus on the relative error reduction between experiments. The uncertainty reduction achieved710

through the assimilation of atmospheric CO2 data is usually lower than when flux and satellite data711

are assimilated alone, and typically vary between 10% and 60% for most photosynthetic and712

phenological parameters. Most often, the joint assimilations involving two data streams result in an713

uncertainty reduction higher or of the same order than that achieved in the single-data assimilations.714

The joint assimilation combining the three data streams generally results in the highest uncertainty715

reduction, with values typically between 60% and 90%. The values are much higher than those716
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inferred from the stepwise approach, which are more on the order of the uncertainty reduction717

obtained in the CO2 assimilation experiment.718

719

3.4 Relative constraints brought by the different datasets720

721

We now quantify the impact of each of the three data streams on the analysis using the global722

average observation influence (quantified by OI) and information content (DFS) metrics defined in723

§2.4.4. We recall that OI (i.e. trace of S normalized by the number of observations) gauges the724

average influence that each single observation has on the analysis, while the relative DFS measures725

the overall weight of one data stream in the optimization (the difference between OI and DFS is due726

to the number of observations assimilated, Cardinali et al. (2014)). OI and DFS are determined for the727

joint assimilation experiments combining the three data streams.728

Because of the very large number of observations (above 300,000) involved in the assimilation, only729

the diagonal elements of the influence matrix (Eq. 10) can be calculated. The trace of S measures the730

equivalent number of parameters and is equal to 132. Such a value, lower than the number of731

parameters (182), indicates that the optimized parameters may not be fully independent (although732

parameter error correlations have been ignored in our B matrix) as already reported in Kuppel et al.733

(2012), or that some are not constrained during the optimisation process (as for instance LAIMAX734

which estimates remains at its a priori value for some PFTs, Figure S2 ).735

The values of OI are provided in Table 4 for flux, NDVI and atmospheric CO2 data. With about the736

same number of observations considered (Table 2, last column), one in situ flux measurement has737

about 10 times more weight than one NDVI observation. This is a consequence of the larger number738

of parameters constrained by flux measurements than by NDVI data in our set-up. The highest739

influence is found for atmospheric CO2 data, the relative weight of one atmospheric CO2740

measurement being 4 times larger than that of one flux observation, albeit the much lower number741

of data assimilated. Again, this is a consequence of the strong weight of the mismatch between the a742

priori simulated and the observed atmospheric CO2 trend, which is drastically reduced through the743

optimisation.744

However, the smaller number of atmospheric CO2 data assimilated, compared to flux and NDVI745

datasets, reduces the overall constraint on the analysis provided by atmospheric CO2 data, as gauged746

by its relative DFS. Hence, our optimization is mainly controlled by flux data which have an overall747

contribution of about 75%, that is about 5 times larger than the constraint brought by atmospheric748

CO2 data and 7 times larger than that of satellite NDVI. Differences between F+VI+CO2 and749

F+VI+CO2-2steps are relatively small for both OI and DFS but show a slightly lower weight of750
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atmospheric CO2 data for the 2 steps experiment. A complementary analysis in which the influence751

of each PFT and each atmospheric station is differentiated is provided in Supplementary Text S7.752

753

4 Discussion754

755

4.1 Benefits of simultaneous assimilations756

Joint/simultaneous assimilations are more complex to implement compared to stepwise/sequential757

assimilations. In principle a stepwise approach could lead to similar results than a simultaneous758

approach, if the posterior parameter error covariance matrix could be fully characterized at each759

assimilation step and further propagated as prior information in the next step. However, given that760

this is difficult in practice, and because of model non-linearities and equifinal solutions,761

stepwise/joint approaches lead to different optimized models (Kaminski et al., 2012; MacBean et al.762

2016). With a joint assimilation, biases and incompatibilities between data streams may impact more763

directly a larger set of parameters than in a stepwise assimilation. The characterization of the prior764

observation errors also becomes more critical as they condition the relative weight of the765

observations in the misfit function to minimize and their influence on the solution (analysis). Here,766

we designed several tests beforehand to refine the configuration of the framework for the767

simultaneous assimilations. Relying on consistency metrics of Desroziers et al. (2005), we improved768

the prior error statistics on the model parameters and checked that they were consistent with both769

the prior model-data mismatch and the observations errors for the different data streams. In spite of770

the limitation of their application to non-linear models like ORCHIDEE, their implementation has771

proved to be useful and has led to an improved consistency of the optimized models at regional and772

global scales.773

Single data stream assimilations usually lead to the best model - data fit for the assimilated data774

stream, as compared to joint assimilations. However, most often these single data stream775

assimilations also produce degraded results with respect to the data that were not assimilated. This776

reveals potential overfitting issues with a higher variability of the optimized parameter values than in777

the joint assimilations. Overfitting is a key issue for DA studies which can be partly alleviated when778

combining different data streams within a consistent framework: Because they bring different779

information on the model processes, they contribute to better circumscribing a set of model780

parameters. Among the several assimilation experiments considered, those where several data were781

assimilated simultaneously were those in which there was always an improvement in optimized782
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variables (i.e. no deterioration in model-data fit). The joint assimilations resulted in a reduced783

variability in parameter estimates and in optimized NEE and GPP.784

785

4.2 Realism of the regional to global-scale C fluxes786

The overarching objective of the study was more about assessing how to make the best of a787

synergistic exploitation of different data streams within a consistent assimilation framework rather788

than achieving an up-to-date re-analysis of the global carbon fluxes. Especially since we focused on a789

limited dataset both in terms of temporal coverage (no atmospheric CO2 data nor satellite data after790

2010, no in situ flux data beyond 2007) and of informational constraint. Indeed, we did not assess the791

potential of other data that can bring relevant (and possibly more direct) additional constraints on792

the dynamics of terrestrial carbon stocks and fluxes, such as aboveground biomass (Thum et al., 2017)793

or Solar Induced-Fluorescence (Bacour et al., 2019) which have already been investigated with794

ORCHIDAS, and with an updated version of the ORCHIDEE model. The expansion of the assimilated795

datasets to provide the most up-to-date constraint on modeled carbon fluxes will be the subject of796

future work.797

In spite of these limitations, we saw that the regional/global estimated NEE and GPP budgets are798

realistic and in agreement with independent estimates . There are still important differences in the799

model predictions for the different assimilation experiments (and we have not attempted to identify800

what was the most reliable optimized model, which would require the use of an ensemble of801

independent data, an effort beyond the scope of this paper). Still, our optimised simulations allow a802

more in depth exploration of the partitioning of the land carbon budget between the northern extra-803

tropics and the tropics . From the global carbon budget, a discrepancy exists between the partition804

estimated by the atmospheric CO2 inversions and by the terrestrial biosphere models (Kondo et al.,805

2020). Atmospheric inversions estimate a larger sink over the northern extra-tropics than TBMs806

(around 1.8 GtgC.yr-1 versus 1.0 GtC.yr-1 for the period 2010-2020), although with large variations807

between TBMs (Friedlingstein et al., 2020, Figure 8). Conversely, TBMs estimate a larger C sink over808

the tropics (Ahlström et al., 2015; Sitch et al., 2015), possibly due to strong CO2 fertilization effects in809

TBMs (Schimel et al., 2015), than the inversions, which estimate an approximately net neutral C sink810

(Peiro et al., 2022). The F+VI+CO2-2steps assimilation follows the typical partitioning pattern of811

TBMs’ behavior, with a stronger C sink in the tropics than in the northern hemisphere (Figure 4) . In812

contrast, all other multiple data stream experiments with CO2 included (F+CO2, VI+CO2 and813

F+VI+CO2) and the stepwise lead to an approximately equal C sink in the northern hemisphere and814

tropics (thus unlike the general pattern for TBMs, and more in line with atmospheric inversions); And815

on the other hand, the CO2 experiment leads to a similar regional partitioning as the atmospheric816
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inversions. For the F+VI+CO2-2steps experiment, the tropical sink is almost doubled as compared to817

the other simultaneous assimilation experiments in spite of a slightly reduced GPP.818

819

4.3 Caveats and perspectives concerning the initialisation of the soil carbon pools820

We showed that reaching the global terrestrial carbon sink was mostly achieved by correcting the821

initial soil carbon reservoirs in the ORCHIDEE model. Their tuning enables the correction of the822

biased trend between atmospheric CO2 time series measurements at stations and the prior823

ORCHIDEE-LMDz model. The impact of this biased trend on the optimization performance was824

highlighted by the quantification of the influence for the three data streams on the optimization,825

with atmospheric CO2 data having the largest average observation influence on the solution. A826

consequence of correcting the biased trend is that the model improvement with respect to other827

processes (photosynthesis, phenology) is hindered.828

From a more general perspective, the detrimental consequences of model-data biases become even829

more important when assimilating multiple observational constraints because of their830

interconnected contribution to the model calibration. It should be noted that the impact of831

systematic model-data errors is not inherent to our minimization approach (gradient-based) and has832

also been highlighted using random search approaches (Brynjarsdóttir and O’Hagan, 2014; Cameron833

et al., 2022). Thus, accounting for bias correction approaches into data assimilation schemes (Dee,834

2005; Trémolet, 2006; Kumar et al., 2012) becomes increasingly important as the complexity of835

models and the number of observational constraints increase.836

We attempted here to overcome this by setting up a 2-step assimilation process where the trend837

correction is mostly achieved in the first step by tuning the regional parameters controlling the soil838

carbon pools. In doing so, the 2-step approach optimizes the constraint brought by in situ and839

satellite data (in the second step) in the joint assimilation process. Therefore, the 2-step results in840

enhanced model-data consistencies compared to a standard simultaneous assimilation (as observed841

in Figure 2 and Figure 3) with a caveat regarding atmospheric CO2 data ( the improved fit is mostly842

with the detrended atmospheric CO2 data but not the raw data ) and the distribution of the land C843

sink (we saw above that this experiment tends to favor a tropical C sink) . We acknowledge the fact844

that this way of doing is not optimal and requires further investigation. Going beyond the steady845

state assumption following model spin-up has been discussed already (Carvalhais et al., (2010);846

MacBean et al., 2022), as steady state results in biased estimates of soil carbon reservoirs (Exbrayat847

et al., 2014). Extending the period for the transient simulations following spin-up, like it is done in the848

TRENDY experiment (Sitch et al., 2015), would have led to more realistic soil C imbalance and849

increased the consistency of the modelled atmospheric data with the measurements. Improving the850
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representation of soil carbon stock trajectories in TBMs is pivotal to predicting NEE in regional to851

global assessments of the capacity of the terrestrial ecosystems to absorb or not atmospheric CO2.852

We used here atmospheric CO2 data to optimize a scalar that accounts for the soil C disequilibrium.853

The optimization of scaling factors of soil carbon pools is a handy alternative to the optimization of854

the parameters controlling the turnover times and soil carbon input of the ORCHIDEE soil C model.855

This would require that the spin-up (over at least one thousand years) and transient simulations are856

included in the minimization process at each iteration; the prohibitive calculation times for857

performing this type of optimisation precludes us doing this for now. Exploiting in TBMs databases858

more directly related to regional soil carbon contents (such as the Harmonized World Soil Database859

(HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), the International Soil Carbon Network, Nave et al.860

(2016), or the global soil respiration database, Jian et al. (2021)) is not straightforward because of the861

errors associated with these datasets (Todd-Brown et al., 2013), and inconsistencies between the862

estimated quantities and the model state variables and underlying processes (as for instance the863

depth of the soil carbon) . In any case, what is sorely needed is data that track changes in C stocks864

over long time periods. Still, it is of primary importance for the science community to endeavor to865

bridge the gap between state-of-the art estimates of soil carbon stocks and the quantities that TBMs866

simulate over the historical period.867

868

5 Conclusion869

By assimilating simultaneously or separately up to three independent carbon-cycle related data870

streams (in situ measurements of net carbon and latent heat fluxes, satellite derived NDVI data, and871

measurements of atmospheric CO2 concentration at surface stations) within the ORCHIDEE global872

model (and an offline transport model based on pre-calculated transport fields with LMDz), we have873

been able to analyze their compatibility, complementarity, and usefulness, in the frame of a global-874

scale carbon data assimilation system. To do so, the study relied on different metrics to set-up and875

interpret the assimilation performances. The approach as well as the explored metrics are general876

enough to benefit to a broader set of data assimilation applications, supporting guidance for setting877

up such a C cycle DA framework and for better use of the data to be assimilated.878

We investigated how the different combinations of data streams constrain the parameters of the879

ORCHIDEE land surface model, and by consequence the simulated historical spatial and temporal880

distribution of the net and gross carbon fluxes (NEE and GPP), as well as FAPAR and atmospheric CO2881

concentrations. We quantified how the combination of these data-streams (two by two or882

alltogether) impacts the reliability of the model predictions. Although it leads to lower fitting883

performances with respect to the assimilation of any individual dataset (because the optimization884
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seeks for a trade-off solution between all data-streams) the simultaneous assimilation of the three885

data-streams is found to be the most consistent approach. In particular, it avoids model overfitting886

which can degrade the model predictions with respect to data-streams not assimilated. The887

successive model evaluations performed after the assimilation highlighted challenges in handling888

model-data bias in Bayesian optimisation frameworks.889

In this study, we focused on biases associated to the initialisation of the soil carbon pools in our set-890

up (the fact that they are out of equilibrium because of all historical land cover change and land891

mangement impacts). A carefull spin-up including a transient simulation to account for the impact of892

all past disturbances (climate, land cover, land management) is mandatory but likely not sufficient893

(due to uncertainties in the historical evolution of these drivers) to achieve accurate simulation of894

the space-time distribution of the global land C sink. Next steps should focus on including part of the895

spin-up (i.e. such as the transient simulation) in the assimilation procedure possibly in conjunction896

with initial C pool optimisation.897

Terrestrial ecosystem modelers are anticipating the many novel types of observations that are being898

made available for model evaluation and assimilation. As a result, and in parallel to the growing899

complexity of TBMs incorporating new biogeo- physical processes related to the carbon and water900

cycles, new observation operators are being developed to be able to make use of this new wealth of901

data. With these new perspectives ahead, the global land surface modeling community should902

investigate more deeply some of the issues highlighted in this study and linked to multiple data903

streams assimilation, initial model state optimisation and/or the inclusion of the spin up in the DA904

system, etc., in order to achieve significant reduction in land surface model projection uncertainties.905

906

907

Code availability908

The ORCHIDEE model code is open source (http://forge.ipsl.jussieu.fr/orchidee) and the associated909

documentation can be found at https://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation. The910

ORCHIDAS data assimilation scheme (in Python) is available through a dedicated web site911

(https ​ ://orchidas.lsce.ipsl.fr/). Information about the LMDz model, source code and contact is912

provided at https://lmdz.lmd.jussieu.fr/le-projet-lmdz-en-bref-en.913

914

Data availability915

This work used eddy covariance data acquired by the FLUXNET community916

(https://fluxnet.org/data/la-thuile-dataset/). The NDVI data are derived from the MODIS917

MOD09CMG collection 5 daily global reflectance products918
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https://fluxnet.org/data/la-thuile-dataset/
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(https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD09CMG). The919

surface atmospheric CO2 concentration data uses measurements from The NOAA Earth System920

Laboratory (ESRL) archive (ftp://ftp.cmdl.noaa.gov/ccg/co2/), the CarboEurope IP project921

(http://ceatmosphere.lsce.ipsl.fr/database/index_database.html), and the World Data Centre for922

Greenhouse Gases of the World Meteorological Organization Global Atmospheric Watch Programme923

(http://gaw.kishou.go.jp).924
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1208
Figure 1: Location of the flux tower sites (circles), satellite pixels (triangles), and atmospheric CO21209

stations (black stars) used in this study.1210

1211

1212
Figure 2: For all data streams, boxplots of the reduction of the model-data mismatch following the1213

different assimilation experiments. For a given data stream, the assimilation experiments in which1214

it is involved are labeled in black (x-axis) and the boxplot colors are dark colored; and in gray / light1215

colors otherwise (back-compatibility check). For the atmospheric CO2 concentration data at1216

stations, the misfit reduction is calculated both for the raw (not detrended) data (left solid boxplot1217

of each assimilation experiment, with colored boxplots) and the detrended data (right white1218

boxplot of each assimilation experiment).1219
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1220
Figure 3: Residual biases of the atmospheric CO2 time series between those measured at stations1221

and the simulations (prior and optimized for each assimilation experiment), in terms of trend,1222

magnitude of the seasonal cycle and length of the carbon uptake (CUP). The study results are1223

compared to those obtained using a sequential approach (Peylin et al., 2016). The bars show for1224

each quantity the mean bias relative to the measurements over the period 2000-2009. The1225

standard deviations of the differences between observations and simulations over all stations are1226

shown as the gray vertical lines, and the RMSD are provided below in italic.1227

1228

1229

Figure 4: Global and regional C budget for NEE and GPP, and for the northern hemisphere (30°N-1230

90°N), tropics (30°N-30°S) and southern hemisphere (30°S-90°S), regions, for the prior model and1231
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the model calibrated for the several assimilation experiments. For NEE, only the experiments1232

involving atmospheric CO2 data are shown. The period considered is 2000-2009.1233

1234
Figure 5: For NEE (left) and GPP (right) prior errors (top), and posterior errors obtained for each1235

assimilation experiment (bottom), over the regions considered. For NEE, only the experiments1236

involving atmospheric CO2 data are shown.1237

1238

1239

Figure 6: Prior and posterior parameter values and uncertainties for a set of optimized parameters1240

(two PFT-dependent parameters - SLA and Vcmax - and four non-PFT dependent). The prior value is1241

shown as the horizontal black line and the prior uncertainty (standard deviation) as the gray area1242

encompassing it along the x-axis. For the PFT-dependent parameters, each box corresponds to a1243
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given PFT; empty boxes indicate that this parameter was not constrained for the corresponding1244

PFTs. The white zone (non-dashed area) corresponds to the allowed range of variation. The1245

optimized values are provided for each assimilation experiment (the eight ones considered in this1246

study and the one from Peylin et al. (2016) – "stepwise"); the corresponding posterior errors are1247

displayed as the vertical bars. Note that the prior values presented here are those used in this1248

study, and not those of the stepwise (which are higher/lower for the photosynthesis and1249

respiration / phenological parameters). For each assimilation experiment is also provided the1250

uncertainty reduction (right y-axis) as the thick opaque horizontal bars. For KsoilC_reg, the1251

posterior values displayed here correspond to the mean over the ecoregions (without Antarctica)1252

considered; the semi-transparent horizontal bars on either side of the posterior values correspond1253

to the standard deviation of the estimates.1254

1255

1256

1257
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Name Description Data stream
Photosynthesis
Vcmax maximum carboxylation rate (µmol.m-2.s-1) F, CO2
Gs,slope Ball-Berry slope F, CO2
Topt optimal photosynthesis temperature (°C) F, CO2
SLA specific leaf area (m².g-1) F, CO2
Soil water availability
Hum,cste root profile (m-1) F, CO2
Phenology
LAIMAX maximum LAI value F, CO2
Kpheno,crit multiplicative parameter of the threshold that determines the start of

the growing season
F, VI, CO2

Tsenes temperature threshold for senescence (°C) F, VI, CO2
Lage,crit average critical age of leaves (days) F, VI, CO2
KLAI,happy LAI threshold to stop using carbohydrate reserves F, VI, CO2
Respiration
Q10 temperature dependency of heterotrophic respiration F, CO2
HRH,c Offset of the function for moisture control factor of heterotrophic

respiration
F, CO2

MRc Offset of the affine relationship between temperature and
maintenance respiration

F, CO2

KsoilC,site Multiplicative factor of initial slow and passive carbon pools F
KsoilC,reg Multiplicative factor of initial slow and passive carbon pools CO2
Table 1: List of the ORCHIDEE parameters to be optimized and data streams that constrain them (F1258

for in situ flux measurements, VI for normalized satellite NDVI data, CO2 for atmospheric CO21259

concentration data).1260

1261

1262

experiment name flux
data

NDVI
data

atmospheric
CO2

concentrations

number of
optimized
parameters

number of
observations

F x 133 150792
VI x 19 149916
CO2 x 114 6360
F+VI x x 152 300708
F+CO2 x x 182 157152
VI+CO2 x x 114 156276
F+VI+CO2

F+VI+CO2-2steps
x x x 182 307068

Table 2: Characteristics of the various assimilation experiments (flux data – F, satellite NDVI1263

vegetation index – VI, and atmospheric CO2 concentration – CO2).1264

1265

1266
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NEE LE VI CO2
�� 1.75 1.75 0.33 1.22

� ���.��
�T 1.49 1.49 0.21 1.16

ratioR 1.17 1.17 1.55 1.05

�� .�.�� T 1.45 8.30 0.2 15.17

� ��
�. ��

�T 0.92 5.45 0.24 6.29

ratioB 1.59 1.52 0.83 2.41

�� .�.�� T +�� 2.28 23.63 0.38 15.22

� ��
�.��

�T 1.75 22.11 0.31 6.39

ratioBR 1.17 1.07 1.23 2.38

�� .�.�� T 0.25 1.82 0.07 3.26

� ��
�.���

T -0.45 -5.12 -0.15 -2.13

ratioA -0.56 -0.36 -0.43 -1.53
Table 3: Consistency diagnostics of the error covariance matrices for the F (using NEE and LE data),1267

VI, and CO2, assimilation experiments. The ratios are calculated with the mathematical1268

expectation term as the denominator.1269

1270

OI Relative DFS

1-step 2-step 1-step 2-step

flux 0.000586 0.000577 74.65 76.9

NDVI 0.000048 0.000048 11.12 11.68

CO2 0.002654 0.002035 14.23 11.42

Table 4: Observation influence and relative DFS statistics of each data stream for the joint1271

assimilation experiments F+VI+CO2 and F+VI+CO2-2steps.1272

1273
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