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Supplementary Text S1: Data assimilation experiments: differences with the stepwise approach7

Although the stepwise assimilation has been extended to ten years of atmospheric CO2 data (compared8

to only three years in Peylin et al. (2016)), there are few differences in the experimental set-up9

compared to the DA experiments considered in the present study: i ) the set of optimized parameters is10

not strictly identical: the stepwise study did not optimize the parameters controlling the maximum LAI11

value per PFT nor the root profile, which are included in this study, but instead did include two12

additional parameters, one controlling the albedo of vegetation and the other reducing the hydric13

limitation of photosynthesis, which are not considered here; ii) for optimization of the phenology using14

satellite NDVI data, the C4 grass PFT was calibrated in Peylin et al. (2016), which is not the case in this15

study (MacBean et al., ( 2015) found that phenology for semi-arid PFTs was not well captured by the16

model and further improvements to the phenology schemes for these PFTs are needed).; i ii ) the17

selection of the eddy-covariance sites is more selective in the present study (a few sites for which the18

model-data inconsistency was too important were discarded), which slightly reduces the number of site-19

years available for some PFTs; iv) finally, the a priori errors on model parameters (at the first and second20

steps) were set to 40% of the parameter variation range in Peylin et al. (2016), and were hence larger21

than what is prescribed in this study as a result of the consistency checks performed in Section 2.3.4.2.22

23

Supplementary Text S2: Processing of atmospheric CO2 data24

In order to analyze the fit to the atmospheric CO2 concentrations in terms of trend and seasonal cycle25

(magnitude and phase), the measured and modeled monthly time series are fitted using the CCGCRV26

package (ftp://ftp.cmdl.noaa.gov/user/thoning/ccgcrv/) following Thoning et al. (1989). It decomposes27

the time series into a first-order polynomial term (that represents the trend) and four harmonics, and28

then filters the residuals of that function in frequency space using a low-pass filter (cutoff frequency of29

65 days). The seasonal cycle corresponds to the harmonics plus the filtered residuals. For a given time30

series, we calculate the magnitude of the seasonal cycle for each year as the difference between the31

maximum and minimum value, and the carbon uptake period (CUP) as the sum of the days when the32

values of the seasonal cycle extracted from the CO2 concentration time series are negative (plant33

removing CO2 from the atmosphere by convention) (Peylin et al., 2016). Examples of observed and34

ftp://ftp.cmdl.noaa.gov/user/thoning/ccgcrv/
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simulated time series of atmospheric CO2 concentrations at four sites are provided on Figure S1, as well35

as the corresponding trends derived by CCGCRV.36

37

Supplementary Text S3: Consistency diagnostics on the errors38

Desroziers et al. (2005) tests39

Several attempts were performed to specify the errors on model parameters in order to approach this40

goal considering each data-stream independently. With an initial definition of the parameter error41

corresponding to 40% of their variation range, the diagnostics on the R matrix, show a strong42

overestimation for all data streams (ratios about 3 for NEE and LE, 2 for NDVI and 12 for atmospheric43

CO2), while the diagnostics on B were more consistent with ratios slightly higher than 1 but for NDVI44

(2.5). These results led us to revise the definition of B by decreasing the error for all parameters such45

that it corresponds to about 20% of the variation range for phenological parameters, and 12% for the46

other parameters (a value close to what was prescribed in Kuppel et al. (2013).47

48

Reduced chi-square49

For all experiments but those involving atmospheric CO2 measurements, the values of the reduced chi-50

square (after optimization) over all data are below 1 (Table S1), which corroborates the overestimation51

of the model-data and parameter errors observed previously. For fluxes and satellite data, this52

overestimation of the model-data error was expected, and even desired, given that the covariances in R53

were neglected by construction (off-diagonal elements set to zero). For CO2, the large value of 254

expresses a strong underestimation of the observation error not highlighted by the consistency55

diagnostics. Indeed, when determining RCO2, we purposely did not account for the structural error in56

ORCHIDEE that largely explains the strong bias between observed and simulated CO2 temporal profiles57

by about 1 ppm.yr-1. This underestimation is even inflated in the joint assimilation experiments, even58

though the reduced chi-square over all data remains close to 1.59

60

Data - stream
experiment F VI CO2 all data

F 0.91 0.91
VI 0.78 0.78
CO2 8.57 8.57
F+VI 0.95 0.50 0.73
F+CO2 0.97 11.56 1.4
VI+CO2 0.74 11.72 1.18
F+VI+CO2 0.99 0.75 11.3 1.09

F+VI+CO2-2steps 0.96 0.67 7.88 0.97
Table S1: Values of the reduced chi-square determined after model calibration for the various assimilation61
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experiments, for each data-stream.62

63

Supplementary Text S4: Optimisation performances64

All optimizations but two (F and VI) reached a pre-defined maximum number of iterations (set to 35 for65

L-BFGS-B), therefore causing a hard stopping of the optimization (cf, Table S2, which also provides the66

values of the misfit functions for all assimilation experiments, relative to the background and to the67

observations). For the last iterations however, the variations of the misfit functions were low in all these68

cases, indicating that the final iterations were close to the minimum. The comparison between the69

observation and parameter terms of the posterior cost function shows how the total cost function is70

dominated by the weight of the model-data misfit.71

The highest rate of change of the total cost function related to the observation term is obtained for the72

CO2 assimilation with a reduction of the misfit between model outputs and measurements by about 46.73

This is directly related to the correction of the large bias in the prior model with carbon pools at74

equilibrium relative to the prescribed prior error. Noticeably, the strong model improvement reached75

for CO2 comes with only a small variation in the model parameters as depicted by the posterior value of76

Jb. For the assimilation of the fluxes and satellite data alone (F and VI respectively), the model77

improvement is smaller, about 1.1, but shows a stronger departure of the parameters from their prior78

values compared to CO2 (Figure 3). The ratio of the norm of the gradient of the misfit function is also79

the highest for the CO2 experiment. On the opposite, it is slightly lower than one for VI which may80

indicate a possible issue of convergence towards the solution.81

82

The two-step approach for the assimilation involving the three data-streams results in an enhanced83

agreement of the model with all data as compared to the one-step optimization. In parallel, the change84

in parameter values (departure from the background) is also higher for the two-step approach (Figure 3).85

86

experiment Number of
iterations

Jo
prior

Jo
post

Jo prior/ Jo
post

(obs part)

Jo(F)
post

Jo(CO2)
post

Jb
post

Ratio norm
grad J

(prior/post)
F 34 75396 68305 1.10 68305 117.6 3.95
VI 29 65696 58517 1.12 37.9 0.94
CO2 35 1256783 27238 46.14 27238 7.8 759.5
F+VI 35 142118 108961 1.30 71353 79.3 0.97
F+CO2 35 1332190 109994 12.11 73232 36763 1.05 27.7
VI+CO2 35 1323494 92543 14.30 37257 1.3 132.3
F+VI+CO2 35 1398901 166797 8.39 74435 35918 1.6 168.7
F+VI+CO2-
2steps

35 1398901 148206 9.43 72654 25002 44.6
-

Table S2: Characteristics of the various assimilation experiments: number of iterations, value of the cost87

functions related to the observation (Jo) and parameter terms (Jb) prior and posterior to the assimilation (as88

well as ratio of the posterior to prior values for Jo), ratio of norm of the gradient of the misfit functions (prior vs89
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posterior).90

91
92

Supplementary Text S5: Analysis of the reduction of the model-data misfit93

Mono-data stream assimilations94

The increased consistency between model and flux data achieved after assimilation of F data is usually95

higher for NEE (median RMSD reduction of 10.4%, ranging from -69% to 38%) than for LE (0.3%; -42% /96

28% range). This is largely explained by the higher number of optimized parameters related to the97

carbon cycle relative to the water cycle, and by the optimization of the multiplicative factor of the soil98

carbon pools that corrects the bias in the ecosystem respiration inherent to the model spin-up99

(Carvalhais et al., 2010; Kuppel et al. 2012). The strong model improvement for FAPAR in the VI100

assimilation (22.2% median; -32% / 36% range) follows a strong decrease of the simulated growing101

season length for deciduous PFTs in better accordance with the satellite observations, as discussed in102

MacBean et al. (2015). It mainly results from an earlier senescence for the several PFTs while the change103

of leaf onset depends on the type of vegetation. Both for the F and VI experiments, the reduction of the104

model-data misfit can be negative for some sites/pixels. This reflects how the assimilation may degrade105

the model performance at some sites/pixels by seeking for a common parameter set. This is not106

observed for atmospheric CO2 data for which the optimized model is always closer to the observations107

than the prior model at all stations. Assimilating atmospheric CO2 concentration measurements corrects108

the strong overestimation of the prior model (as also described in Peylin et al. (2016)), with a median109

RMSD reduction of 76% (ranging from 10% at HUN to 90% at SPO). This improvement corresponds to an110

increase of the net land carbon sink at the global scale in order to correct the strong mismatch between111

the observed trend and the a priori model. It is mainly realized by the optimization of the multiplicative112

factor of the soil carbon pools. As seen in Figure 2 from the detrended seasonal cycles of atmospheric113

CO2 data (light red box), the changes in the modelled amplitude and phasing is smaller but still in better114

agreement with the observed data (median value of RMSD reduction of 14.4%; -21% / 55% range).115

116

Multiple-data stream assimilations117

The simultaneous assimilation of flux measurements and satellite NDVI data leads to enhanced model118

improvement as compared to when these data are assimilated alone: the median RMSD reductions are119

10.8% for NEE (10.4% in the F case) and 36.7% for FAPAR/NDVI (22.2% in the VI case). In the120

simultaneous assimilations involving atmospheric CO2 data, the most of the model improvement is121

attributed to CO2 while the benefit relative to fluxes and FAPAR/NDVI is weak: for NEE, the median122

RMSD reductions are only of 2.5% and 2.6% in the F+CO2 and F+VI+CO2 cases (as compared to 10% in123

the F case); for FAPAR, the median values are 1.2% and 1.4% for the VI+CO2 and F+VI+CO2 experiments124
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(22% in the VI case).125

The 2-steps assimilation F+VI+CO2 results in a higher model improvement regarding both NEE and126

FAPAR (respectively 5.5% and 11.2%) than the one-step approach.127

Regarding the raw atmospheric CO2 data, the median improvements are 76.1% for CO2, 76.3% for128

F+CO2, 73.6% for VI+CO2, 72.9% for F+VI+CO2 and only 25.6% for F+VI+CO2-2steps.129

More pronounced differences between experiments are obtained for the de-trended CO2 time series:130

while the median RMSD reduction is of 14% in the CO2 experiment, it is decreased to 7.8% in F+CO2,131

8.4% in VI+CO2, and 10.6% in F+VI+CO2; at the opposite the RMSD reduction is increased to 15.4% in132

F+VI+CO2-2steps.133

134

Supplementary Text S6: Global budget and uncertainty reduction135

For NEE, the global scale budget is about -2.4 GtC.yr-1 for all experiments using atmospheric CO2 as a136

constraint: the lower value of -2.28 GtC.yr-1 is found for F+CO2; the higher values of -2.49GtC.yr-1 and -137

2.48 GtC.yr-1 are obtained for CO2 / F+VI+CO2-2steps.138

In the northern and southern hemispheres, the CO2 assimilation results in the largest C sinks (-1.65 / -139

0.04 GtC.yr-1 for NH/SH) while the 2step assimilation induces the lowest one (-0.41 / 0.003 GtC.yr-1); the140

opposite result is obtained in the southern hemisphere with lower (-0.79 GtC.yr-1) / higher (-2.06 GtC.yr-1)141

budgets found for CO2 / F+VI+CO2-2steps.142

The reduction of the global scale GPP budget is respectively of -19.61 GtC.yr-1 and -17.91 GtC.yr-1 for the143

F and VI experiments, which correspond to the largest corrections obtained among the various144

assimilations considered.145

The averaged change in GPP is about -7.33 GtC.yr-1 globally for the CO2 assimilation experiment. The146

corrections for the joint assimilations involving CO2 data is even lower: the mean global change are -147

1.07 GtC.yr-1 for VI+CO2, -1.35 GtC.yr-1 for F+CO2 and -1.98 GtC.yr-1 for F+VI+CO2. For the F+VI+CO2 2-148

step experiment, the constraint on GPP is close to that obtained when CO2 data are assimilated alone (-149

7.70 GtC.yr-1).150

151

For the joint assimilations, the posterior errors on NEE is about 0.9 GtC.yr-1 globally and about 0.3152

GtC.yr-1 for the three regions considered. The lowest posterior errors on GPP are obtained for the two153

experiments that combine the three data streams (about 0.09 GtC.yr-1 at the global scale, and about154

0.04 GtC.yr-1 depending on the region). The values are close to the ones obtained with F+CO2.155

156
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Supplementary Text S7: Relative constraints brought by the different datasets with respect to PFTs157

and atmospheric stations158

We performed the analysis of the influence of each data stream by discriminating the influence of each159

PFT for flux and satellite data, and each station for atmospheric CO2 concentrations (Figure S3 -160

experiment F+VI+CO2). For the flux data, the results are mainly proportional to the number of161

observations available (hence, the lower results are obtained for BorDBF, TeDBF and TrEBF, for which162

the number of assimilated data is about one order of magnitude lower than for the other PFTs; see §163

2.2.1).164

For satellite NDVI data however, the number of data is the same for each PFT. The discrepancies165

between PFTs is thus less pronounced than for flux data and related to the ability of the selected166

parameters to correct the phenology of each PFTs (constrained by the NDVI data). For TrDBF and C3GRA,167

the inability to correct the start of the growing season (Kpheno,crit, remains close to the prior values, as168

seen in Figure 3) may explain the lower contribution of these PFTs.169

For atmospheric CO2 data, the DFS is relatively well distributed across stations, with a mean value of 1.9170

(range 0.19 – 14.5), in particular in the northern hemisphere. The higher values are found for a few171

southern hemisphere stations: Halley Station - HBA (6), Syowa - SYO (8.4), South Pole - SPO (11.9) and172

Cap Grim Observatory - CGO (14.5). Possible reasons for their larger impact may combine: a strong a173

priori model-data mismatch that is substantially corrected, ocean-driven concentration variations not174

well captured by the prescribed ocean flux but incidentally well corrected by remote land fluxes, etc.175

176



7

Name TropEBFF TropBRFVI TempENFF TempEBFF TempDBFF,
VI

BorENFF BorDBFF,VI BorDNFVI C3GrassF,VI

Photosynthesis
Vcmax 65

[35;95]
10

65
[35;95]
10

35
[19;51]
5.3

45
[25;65]
6.7

55
[30;80]
8.3

35
[19;51]
5.3

45
|25;65]
6.7

35
[19;51]
5.3

70
[38;102]
10.7

Gs,slope 9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

Topt 37
[29;45]
2.7

37
[29;45]
2.7

25
[17;33]
2.7

32
[24;40]
2.7

26
[18;34]
2.7

25
[17;33]
2.7

25
[17;33]
2.7

25
[17;33]
2.7

27.25
[19.2;35.2]

2.7

SLA 0.0154
[0.007;0.03]

0.0038

0.0260
[0.013;0.05]

0.0062

0.0093
[0.004;0.02]

0.0027

0.02
[0.01;0.04]

0.005

0.026
[0.013;0.05]

0.0062

0.0093
[0.004;0.02]

0.0027

0.026
[0.013;0.05]

0.0062

0.019
[0.009;0.04]

0.0052

0.026
[0.013;0.05]

0.0062

Soil water availability
Hum,cste 0.8

[0.2;3]
0.47

0.8
[0.2;3]
0.47

1
[0.25;4]
0.62

0.8
[0.2;3]
0.47

0.8
[0.2;3]
0.47

1
[0.25;4]
0.62

1
[0.25;4]
0.62

0.8
[0.2;3]
0.47

4
[1;10]
1.5

Phenology
LAIMAX 7

[4;10]
1

7
[4;10]
1

5
[3;8]
0.8

5
[3;8]
0.8

5
[3;8]
0.8

4.5
[2.5;6.5]

0.7

4.5
[2.5;6.5]

0.7

3
[1.5;4.5]

0.5

2.5
[1.5;3.5]

0.3

Kpheno,crit 1
[0.7; 1.8]
0.18

1
[0.7; 1.8]
0.18

1
[0.7; 1.8]
0.18

1
[0.7; 1.8]
0.18

1
[0.7; 1.8]
0.18

Tsenes 12
[2;22]
3.3

7
[-3;17]
3.3

2
[-8;12]
3.3

-1.375
[-11.4;9.4]

3.5

Lage,crit 730
[490;970]

80

180
[120;240]

20

910
[610;1210]

100

730
[490;970]

80

180
[90;240]

25

910
[610;1210]

100

180
[90;240]
27.5

180
[90;240]
27.5

120
[30;180]

25

KLAI,happy 0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

Respiration
Q10 1.9937

[1;3]
0.33

HRH,c -0.29
[-0.59;0.01]

0.1

MRc 1
[0.5;2]
0.25

KsoilC,site 1
[0.5;2]
0.1

KsoilC,reg 1
[0.7;1.3]

0.1

Table S3: Prior value, interval of variation (in square brackets) and 1-sigma prior error (italic), of the optimized177

parameter. Except for those related to respiration, all parameters are PFT-dependent. The exponents F and VI178

associated to each PFT name indicate the availability of flux (F) and satellite (VI) data.179

180

181
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182

Figure S1: Monthly mean atmospheric CO2 concentrations, for four stations (Mace Head - MHD (Ireland), Mauna183

Loa - MLO (Hawaii, USA) , Ryori - RYO (Japan), South Pole - SPO (Antarctic, USA)) over the period 2000–2009.184

The prior (blue) and the posterior (orange) model simulations are compared to the observations (black), and the185

corresponding RMSD is provided. The observation error is in grey. The dash lines correspond to the trend186

derived from the CCGCRV algorithm.187

188

189
190

191
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Figure S2: Prior and posterior parameter values and uncertainties for a set of optimized parameters (eight PFT-192

dependent parameters). The prior value is shown as the horizontal black line and the prior uncertainty (standard193

deviation) as the gray area encompassing it along the x-axis. For the PFT-dependent parameters, each box194

corresponds to a given PFT; empty boxes indicate that this parameter was not constrained for the corresponding195

PFTs. The white zone (non-dashed area) corresponds to the allowed range of variation. The optimized values are196

provided for each assimilation experiment ; the corresponding posterior errors are displayed as the vertical bars.197

Note that the prior values presented here are those used in this study, and not those of the stepwise (which are198

higher/lower for the photosynthesis and respiration / phenological parameters). For each assimilation199

experiment is also provided the uncertainty reduction (right y-axis) as the thick opaque horizontal bars.200

201

202
203

204
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205

206

207

Figure S3: Relative DFS for the F+VI+CO2 assimilation experiment. For Flux and Satellite data: relative DFS per208

PFT; for atmospheric CO2 data: relative relative DFS (contribution) of the different stations to the fit.209

210

211

212

213

214
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