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Supplementary Text S1: Data assimilation experiments: differences with the study of Peylin et al.9

(2016)10

There are few differences in the DA experimental set-up compared to the present study: i) the study of11

Peylin et al. (2016) considers three years of atmospheric CO2 data (from 2002 to 2004), while this study12

uses ten years of observations (2000-2009); ii) the set of optimized parameters is not strictly identical:13

the step-wise study did not optimize the parameters controlling the maximum LAI value per PFT nor the14

root profile, which are included in this study, but instead did include two additional parameters, one15

controlling the albedo of vegetation and the other reducing the hydric limitation of photosynthesis,16

which are not considered here; iii) for optimization of the phenology using satellite NDVI data, the C417

grass PFT was calibrated in Peylin et al. (2016), which is not the case in this study (MacBean et al., 2015)18

found that phenology for semi-arid PFTs was not well captured by the model and further improvements19

to the phenology schemes for these PFTs are needed).; iv) the selection of the eddy-covariance sites is20

more selective in the present study (a few sites for which the model-data inconsistency was too21

important were discarded), which slightly reduces the number of site-years available for some PFTs; v)22

finally, the a priori errors on model parameters (at the first and second steps) were set to 40% of the23

parameter variation range in Peylin et al. (2016), and were hence larger than what is prescribed in this24

study as a result of the consistency checks performed in Section 2.3.4.2.25

26

Supplementary Text S2: Processing of atmospheric CO2 data27

In order to analyze the fit to the atmospheric CO2 concentrations in terms of trend and seasonal cycle28

(magnitude and phase), the measured and modeled monthly time series are fitted using the CCGCRV29

package (ftp://ftp.cmdl.noaa.gov/user/thoning/ccgcrv/) following Thoning et al. (1989). It decomposes30

the time series into a first-order polynomial term (that represents the trend) and four harmonics, and31

then filters the residuals of that function in frequency space using a low-pass filter (cutoff frequency of32

65 days). The seasonal cycle corresponds to the harmonics plus the filtered residuals. For a given time33

series, we calculate the magnitude of the seasonal cycle for each year as the difference between the34

maximum and minimum value, and the carbon uptake period (CUP) as the sum of the days when the35

ftp://ftp.cmdl.noaa.gov/user/thoning/ccgcrv/
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values of the seasonal cycle extracted from the CO2 concentration time series are negative (plant36

removing CO2 from the atmosphere by convention) (Peylin et al., 2016).37

38

Supplementary Text S3: Consistency diagnostics on the errors39

Desroziers et al. (2005) tests40

Several attempts were performed to specify the errors on model parameters in order to approach this41

goal considering each data-stream independently. With an initial definition of the parameter error42

corresponding to 40% of their variation range, the diagnostics on the R matrix, show a strong43

overestimation for all data streams (ratios about 3 for NEE and LE, 2 for NDVI and 12 for atmospheric44

CO2), while the diagnostics on B were more consistent with ratios slightly higher than 1 but for NDVI45

(2.5). These results led us to revise the definition of B by decreasing the error for all parameters such46

that it corresponds to about 20% of the variation range for phenological parameters, and 12% for the47

other parameters (a value close to what was prescribed in Kuppel et al. (2013).48

49

Reduced chi-square50

For all experiments but those involving atmospheric CO2 measurements, the values of the reduced chi-51

square (after optimization) over all data are below 1 (Table S1), which corroborates the overestimation52

of the model-data and parameter errors observed previously. For fluxes and satellite data, this53

overestimation of the model-data error was expected, and even desired, given that the covariances in R54

were neglected by construction (off-diagonal elements set to zero). For CO2, the large value of 255

expresses a strong underestimation of the observation error not highlighted by the consistency56

diagnostics. Indeed, when determining RCO2, we purposely did not account for the structural error in57

ORCHIDEE that largely explains the strong bias between observed and simulated CO2 temporal profiles58

by about 1 ppm.yr-1. This underestimation is even inflated in the joint assimilation experiments, even59

though the reduced chi-square over all data remains close to 1.60

61

Data - stream
experiment F VI CO2 all data

F 0.91 0.91
VI 0.78 0.78
CO2 8.57 8.57
F+VI 0.95 0.50 0.73
F+CO2 0.97 11.56 1.4
VI+CO2 0.74 11.72 1.18
F+VI+CO2 0.99 0.75 11.3 1.09

F+VI+CO2-2steps 0.96 0.67 7.88 0.97
Table S1: Values of the reduced chi-square determined after model calibration for the various assimilation62



3

experiments, for each data-stream.63

64

Supplementary Text S4: Optimisation performances65

All optimizations but two (F and VI) reached a pre-defined maximum number of iterations (set to 35 for66

L-BFGS-B), therefore causing a hard stopping of the optimization (cf, Table S2, which also provides the67

values of the misfit functions for all assimilation experiments, relative to the background and to the68

observations). For the last iterations however, the variations of the misfit functions were low in all these69

cases, indicating that the final iterations were close to the minimum. The comparison between the70

observation and parameter terms of the posterior cost function shows how the total cost function is71

dominated by the weight of the model-data misfit.72

The highest rate of change of the total cost function related to the observation term is obtained for the73

CO2 assimilation with a reduction of the misfit between model outputs and measurements by about 46.74

This is directly related to the correction of the large bias in the prior model with carbon pools at75

equilibrium relative to the prescribed prior error. Noticeably, the strong model improvement reached76

for CO2 comes with only a small variation in the model parameters as depicted by the posterior value of77

Jb. For the assimilation of the fluxes and satellite data alone (F and VI respectively), the model78

improvement is smaller, about 1.1, but shows a stronger departure of the parameters from their prior79

values compared to CO2 (Figure 3). The ratio of the norm of the gradient of the misfit function is also80

the highest for the CO2 experiment. On the opposite, it is slightly lower than one for VI which may81

indicate a possible issue of convergence towards the solution.82

83

The two-step approach for the assimilation involving the three data-streams results in an enhanced84

agreement of the model with all data as compared to the one-step optimization. In parallel, the change85

in parameter values (departure from the background) is also higher for the two-step approach (Figure 3).86

87

experiment Number of
iterations

Jo
prior

Jo
post

Jo prior/ Jo
post

(obs part)

Jo(F)
post

Jo(CO2)
post

Jb
post

Ratio norm
grad J

(prior/post)
F 34 75396 68305 1.10 68305 117.6 3.95
VI 29 65696 58517 1.12 37.9 0.94
CO2 35 1256783 27238 46.14 27238 7.8 759.5
F+VI 35 142118 108961 1.30 71353 79.3 0.97
F+CO2 35 1332190 109994 12.11 73232 36763 1.05 27.7
VI+CO2 35 1323494 92543 14.30 37257 1.3 132.3
F+VI+CO2 35 1398901 166797 8.39 74435 35918 1.6 168.7
F+VI+CO2-
2steps

35 1398901 148206 9.43 72654 25002 44.6
-

Table S2: Characteristics of the various assimilation experiments: number of iterations, value of the cost88

functions related to the observation (Jo) and parameter terms (Jb) prior and posterior to the assimilation (as89

well as ratio of the posterior to prior values for Jo), ratio of norm of the gradient of the misfit functions (prior vs90
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posterior).91

92

93

94

Supplementary Text S5: Analysis of the reduction of the model-data misfit95

Mono-data stream assimilations96

The increased consistency between model and flux data achieved after assimilation of F data is usually97

higher for NEE (median RMSD reduction of 10.4%, ranging from -69% to 38%) than for LE (0.3%; -42% /98

28% range). This is largely explained by the higher number of optimized parameters related to the99

carbon cycle relative to the water cycle, and by the optimization of the multiplicative factor of the soil100

carbon pools that corrects the bias in the ecosystem respiration inherent to the model spin-up101

(Carvalhais et al., 2010; Kuppel et al. 2012). The strong model improvement for FAPAR in the VI102

assimilation (22.2% median; -32% / 36% range) follows a strong decrease of the simulated growing103

season length for deciduous PFTs in better accordance with the satellite observations, as discussed in104

MacBean et al. (2015). It mainly results from an earlier senescence for the several PFTs while the change105

of leaf onset depends on the type of vegetation. Both for the F and VI experiments, the reduction of the106

model-data misfit can be negative for some sites/pixels. This reflects how the assimilation may degrade107

the model performance at some sites/pixels by seeking for a common parameter set. This is not108

observed for atmospheric CO2 data for which the optimized model is always closer to the observations109

than the prior model at all stations. Assimilating atmospheric CO2 concentration measurements corrects110

the strong overestimation of the prior model (as also described in Peylin et al. (2016)), with a median111

RMSD reduction of 76% (ranging from 10% at HUN to 90% at SPO). This improvement corresponds to an112

increase of the net land carbon sink at the global scale in order to correct the strong mismatch between113

the observed trend and the a priori model. It is mainly realized by the optimization of the multiplicative114

factor of the soil carbon pools. As seen in Figure 2 from the detrended seasonal cycles of atmospheric115

CO2 data (light red box), the changes in the modelled amplitude and phasing is smaller but still in better116

agreement with the observed data (median value of RMSD reduction of 14.4%; -21% / 55% range).117

118

Multiple-data stream assimilations119

The simultaneous assimilation of flux measurements and satellite NDVI data leads to enhanced model120

improvement as compared to when these data are assimilated alone: the median RMSD reductions are121

10.8% for NEE (10.4% in the F case) and 36.7% for FAPAR/NDVI (22.2% in the VI case). In the122

simultaneous assimilations involving atmospheric CO2 data, the most of the model improvement is123

attributed to CO2 while the benefit relative to fluxes and FAPAR/NDVI is weak: for NEE, the median124

RMSD reductions are only of 2.5% and 2.6% in the F+CO2 and F+VI+CO2 cases (as compared to 10% in125
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the F case); for FAPAR, the median values are 1.2% and 1.4% for the VI+CO2 and F+VI+CO2 experiments126

(22% in the VI case).127

The 2-steps assimilation F+VI+CO2 results in a higher model improvement regarding both NEE and128

FAPAR (respectively 5.5% and 11.2%) than the one-step approach.129

Regarding the raw atmospheric CO2 data, the median improvements are 76.1% for CO2, 76.3% for130

F+CO2, 73.6% for VI+CO2, 72.9% for F+VI+CO2 and only 25.6% for F+VI+CO2-2steps.131

More pronounced differences between experiments are obtained for the de-trended CO2 time series:132

while the median RMSD reduction is of 14% in the CO2 experiment, it is decreased to 7.8% in F+CO2,133

8.4% in VI+CO2, and 10.6% in F+VI+CO2; at the opposite the RMSD reduction is increased to 15.4% in134

F+VI+CO2-2steps.135

136

Supplementary Text S6: Global budget and uncertainty reduction137

For NEE, the global scale budget is about -2.4 GtC.yr-1 for all experiments using atmospheric CO2 as a138

constraint: the lower value of -2.28 GtC.yr-1 is found for F+CO2; the higher values of -2.49GtC.yr-1 and -139

2.48 GtC.yr-1 are obtained for CO2 / F+VI+CO2-2steps.140

In the northern and southern hemispheres, the CO2 assimilation results in the largest C sinks (-1.65 / -141

0.04 GtC.yr-1 for NH/SH) while the 2step assimilation induces the lowest one (-0.41 / 0.003 GtC.yr-1); the142

opposite result is obtained in the southern hemisphere with lower (-0.79 GtC.yr-1) / higher (-2.06 GtC.yr-1)143

budgets found for CO2 / F+VI+CO2-2steps.144

The reduction of the global scale GPP budget is respectively of -19.61 GtC.yr-1 and -17.91 GtC.yr-1 for the145

F and VI experiments, which correspond to the largest corrections obtained among the various146

assimilations considered.147

The averaged change in GPP is about -7.33 GtC.yr-1 globally for the CO2 assimilation experiment. The148

corrections for the joint assimilations involving CO2 data is even lower: the mean global change are -149

1.07 GtC.yr-1 for VI+CO2, -1.35 GtC.yr-1 for F+CO2 and -1.98 GtC.yr-1 for F+VI+CO2. For the F+VI+CO2 2-150

step experiment, the constraint on GPP is close to that obtained when CO2 data are assimilated alone (-151

7.70 GtC.yr-1).152

153

For the joint assimilations, the posterior errors on NEE is about 0.9 GtC.yr-1 globally and about 0.3154

GtC.yr-1 for the three regions considered. The lowest posterior errors on GPP are obtained for the two155

experiments that combine the three data streams (about 0.09 GtC.yr-1 at the global scale, and about156

0.04 GtC.yr-1 depending on the region). The values are close to the ones obtained with F+CO2.157

158
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Name TropEBFF TropBRFVI TempENFF TempEBFF TempDBFF,
VI

BorENFF BorDBFF,VI BorDNFVI C3GrassF,VI

Photosynthesis
Vcmax 65

[35;95]
10

65
[35;95]
10

35
[19;51]
5.3

45
[25;65]
6.7

55
[30;80]
8.3

35
[19;51]
5.3

45
|25;65]
6.7

35
[19;51]
5.3

70
[38;102]
10.7

Gs,slope 9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

9
[6;12]
1

Topt 37
[29;45]
2.7

37
[29;45]
2.7

25
[17;33]
2.7

32
[24;40]
2.7

26
[18;34]
2.7

25
[17;33]
2.7

25
[17;33]
2.7

25
[17;33]
2.7

27.25
[19.2;35.2]

2.7

SLA 0.0154
[0.007;0.03]

0.0038

0.0260
[0.013;0.05]

0.0062

0.0093
[0.004;0.02]

0.0027

0.02
[0.01;0.04]

0.005

0.026
[0.013;0.05]

0.0062

0.0093
[0.004;0.02]

0.0027

0.026
[0.013;0.05]

0.0062

0.019
[0.009;0.04]

0.0052

0.026
[0.013;0.05]

0.0062

Soil water availability
Hum,cste 0.8

[0.2;3]
0.47

0.8
[0.2;3]
0.47

1
[0.25;4]
0.62

0.8
[0.2;3]
0.47

0.8
[0.2;3]
0.47

1
[0.25;4]
0.62

1
[0.25;4]
0.62

0.8
[0.2;3]
0.47

4
[1;10]
1.5

Phenology
LAIMAX 7

[4;10]
1

7
[4;10]
1

5
[3;8]
0.8

5
[3;8]
0.8

5
[3;8]
0.8

4.5
[2.5;6.5]

0.7

4.5
[2.5;6.5]

0.7

3
[1.5;4.5]

0.5

2.5
[1.5;3.5]

0.3

Kpheno,crit 1
[0.7; 1.8]
0.18

1
[0.7; 1.8]
0.18

1
[0.7; 1.8]
0.18

1
[0.7; 1.8]
0.18

1
[0.7; 1.8]
0.18

Tsenes 12
[2;22]
3.3

7
[-3;17]
3.3

2
[-8;12]
3.3

-1.375
[-11.4;9.4]

3.5

Lage,crit 730
[490;970]

80

180
[120;240]

20

910
[610;1210]

100

730
[490;970]

80

180
[90;240]

25

910
[610;1210]

100

180
[90;240]
27.5

180
[90;240]
27.5

120
[30;180]

25

KLAI,happy 0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

0.5
[0.35;0.7]

0.06

Respiration
Q10 1.9937

[1;3]
0.33

HRH,c -0.29
[-0.59;0.01]

0.1

MRc 1
[0.5;2]
0.25

KsoilC,site 1
[0.5;2]
0.1

KsoilC,reg 1
[0.7;1.3]

0.1

Table S3: Prior value, interval of variation (in square brackets) and 1-sigma prior error (italic), of the optimized159

parameter. Except for those related to respiration, all parameters are PFT-dependent. The exponents F and VI160

associated to each PFT name indicate the availability of flux (F) and satellite (VI) data.161

162

163
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164

Figure S1: Prior and posterior parameter values and uncertainties for a set of optimized parameters (eight PFT-165

dependent parameters and four non-PFT dependent). The prior value is shown as the horizontal black line and166

the prior uncertainty (standard deviation) as the gray area encompassing it along the x-axis. For the PFT-167

dependent parameters, each box corresponds to a given PFT; empty boxes indicate that this parameter was not168

constrained for the corresponding PFTs. The white zone (non-dashed area) corresponds to the allowed range of169

variation. The optimized values are provided for each assimilation experiment (the eight ones considered in this170

study and the one from Peylin et al. (2016) – "stepwise"); the corresponding posterior errors are displayed as171

the vertical bars. Note that the prior values presented here are those used in this study, and not those of the172

stepwise (which are higher/lower for the photosynthesis and respiration / phenological parameters). For each173

assimilation experiment is also provided the uncertainty reduction (right y-axis) as the thick opaque horizontal174

bars. For KsoilC_reg, the posterior values displayed here correspond to the mean over the eco-regions (without175

Antarctica) considered; the semi-transparent horizontal bars on either side of the posterior values correspond to176

the standard deviation of the estimates177

178

179

180

181
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