
1 

 

Pronounced seasonal and spatial variability in determinants of 

phytoplankton biomass dynamics along a near–offshore gradient in 

the southern North Sea 

Viviana Otero1,§, Steven Pint1,§, Klaas Deneudt1, Maarten De Rijcke1, Jonas Mortelmans1, Lennert 

Schepers1, Patricia Cabrera1, Koen Sabbe2, Wim Vyverman2, Michiel Vandegehuchte1 and Gert Everaert1 5 

1 Flanders Marine Institute, Wandelaarkaai 7, Ostend, 8400, Belgium 

2 Department of Biology, Ghent University, Krijgslaan 281-S8, Ghent, 9000, Belgium 

§These authors contributed equally to this work 

Correspondence to: Steven Pint (steven.pint@vliz.be) 

Abstract 10 

Marine phytoplankton biomass dynamics are affected by eutrophication, ocean warming, and ocean acidification. These 

changing abiotic conditions may impact phytoplankton biomass and its spatiotemporal dynamics. In this study, we used a 

nutrient–phytoplankton–zooplankton model to quantify the relative importance of bottom-up and top-down determinants on 

phytoplankton biomass dynamics in the Belgian Part of the North Sea. Using four years (2014 – 2017) of monthly observations 

at nine locations of nutrients, solar irradiance, sea surface temperature, chlorophyll-a and zooplankton biomass, we 15 

disentangled the monthly, seasonal and yearly variation in phytoplankton biomass dynamics. To quantify how the relative 

importance of determinants changed along a near–offshore gradient, the analysis was performed for three spatial regions, i.e. 

nearshore region (< 10 km to the coastline), midshore region (10 – 30 km), and offshore region (> 30 km). We found that from 

year 2014 to 2017, phytoplankton biomass dynamics ranged from 1.4 to 23.1 mg Chla m-3. Phytoplankton biomass dynamics 

follow a general seasonal cycle as in other temperate regional seas, with a distinct spring bloom (5.3 – 23.1 mg Chla m-3) and 20 

a modest autumn bloom (2.9 – 5.4 mg Chla m-3). This seasonal pattern was most expressed in the nearshore region. The relative 

contribution of factors determining phytoplankton biomass dynamics varied spatially and temporally. Throughout a calendar 

year, solar irradiance and zooplankton grazing were the most influential determinants in all regions, i.e. explained 38% – 65% 

of the variation in the offshore region, 45% – 71% in the midshore region, and 56% – 77% in the nearshore region. In the near- 

and midshore regions, nutrients are most limiting the phytoplankton production in the month following the spring bloom (44% 25 

– 55%). Nutrients are a determinant throughout the year in the offshore region (27% – 62%). During winter, sea surface 

temperature is a determinant in all regions (15% – 17%). The findings of this study contribute to a better mechanistic 

understanding of the spatiotemporal dynamics of phytoplankton biomass in the southern North Sea. The parameterized causal 

relationships allow estimating how the base of the southern North Sea food web will change under future climate change and/or 

blue economy activities that affect one or more determinants of the phytoplankton biomass dynamics.  30 
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Introduction 

Marine phytoplankton, which forms the base of marine food webs, is responsible for about half of the world’s total primary 

production (Field et al., 1998). Net global marine primary production is estimated at 50.7 Gt carbon per annum (Carr et al., 35 

2006). Principal factors that determine marine primary production are solar irradiance, nutrient availability, and sea surface 

temperature (SST), mainly by limiting its growth rate and carrying capacity. According to Liebig’s law of the minimum, 

phytoplankton production will be as high as allowed by the least available resource (de Baar, 1994). However, in many cases 

co-limitation by resources is a better description of the factors that influence phytoplankton biomass dynamics (Harpole et al., 

2011; Price and Morel, 1991). Living in the Anthropocene, phytoplankton biomass dynamics are affected by human activities 40 

that directly or indirectly alter the abiotic marine environment, such as the burning of fossil fuels, eutrophication, and chemical 

pollution. To date, we have limited insight into how the combination of changing conditions may affect phytoplankton biomass 

dynamics at high-resolution spatiotemporal scales. 

 

In temperate marine regions, phytoplankton biomass dynamics follows an annual cycle consisting of spring and autumn 45 

phytoplankton blooms followed by periods of zooplankton grazing. Phytoplankton blooms are triggered by high nutrient 

availability and sufficient solar irradiance (Irigoien et al., 2005). After a few weeks of rapid growth, phytoplankton biomass 

becomes restricted by nutrient limitation and zooplankton grazing. As in other parts of the North Sea, the most important 

factors that determine the phytoplankton biomass in the Belgian part of the North Sea (BPNS) are nutrient concentrations, SST 

and solar irradiance (Arndt et al., 2011; Blauw et al., 2018; Capuzzo et al., 2018; Desmit et al., 2020). Everaert et al. (2015) is 50 

one of the first studies that quantified the relative importance of these conditions in the BPNS. Based on a relatively short time 

series at one location at the BPNS, it was found that SST and solar irradiance accounted for 20% (summer) to 50% (winter) of 

the observed seasonal variation (Everaert et al., 2015) and can thus be considered potentially key determinants. Nutrients 

appeared to be less determining than SST and solar irradiance in the BPNS (Everaert et al., 2015), which was also found for 

the entire North Sea by Llope et al. (2009) and McQuatters-Gollop et al. (2007). Nutrients become the dominant determinant 55 

of phytoplankton biomass (30%) in the month after the phytoplankton bloom. Besides these bottom-up determinants, there is 

also a strong top-down control of the phytoplankton biomass dynamics by zooplankton grazing, i.e. up to 50% of the 

phytoplankton growth limitation (Everaert et al., 2015). However, the BPNS is a heterogeneous and highly dynamic coastal 

area, so it is doubtful whether the quantifications in Everaert et al. (2015) are generalizable for the entire BPNS. The BPNS is 

relatively shallow with water depths gradually increasing to 45 m from the southeast towards the northwest (Van Lancker et 60 

al., 2015). Sea surface temperatures vary seasonally between 5°C and 20°C. The salinity is strongly influenced by the river 

plumes of the Scheldt, Rhine, Seine and Meuse (Lacroix et al., 2004) and varies between 29 to 35 PSU. Seawater from the 
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English Channel, which contains run-off from the Seine, flows northwards through the BPNS driven by the anti-clockwise 

current in the North Sea (Turrell, 1992). In case of nutrients, the Seine plays a major role, except in the vicinity of the Scheldt 

estuary and in the northern part of the BPNS i.e. mainly influenced by the influx of water of the Atlantic Ocean (Lacroix et al., 65 

2007). Overall, in heterogeneous and dynamic coastal areas such as the BPNS, the relative contribution of bottom-up and top-

down determinants may be likewise dynamic, both spatially and temporally. The BPNS being a prime example of such a 

system in combination with the availability of long term observations with high spatial resolution offers unique possibilities 

to study the scales at which the relative contributions of bottom-up and top-down determinants may shift. Having a better 

understanding of the spatial variation in the relative contribution of the determinants of phytoplankton biomass dynamics, can 70 

lead to a more adjusted and specified management of the BPNS and the further development of the blue economy in Belgium. 

 

In the present research, the aim is to analyse which factors drive marine phytoplankton biomass dynamics in the BPNS and 

how their relationship to primary production varies on a spatiotemporal scale. In particular, we analysed how the relative 

contributions of SST, nutrient regimes, solar irradiance and zooplankton grazing to the marine phytoplankton biomass change 75 

spatially and temporally. We used a nutrient–phytoplankton–zooplankton model from Soetaert and Herman (2009) adjusted 

by Everaert et al. (2015) to simulate changes in plankton density in the nearshore, midshore and offshore regions, based on 

monthly data collected from 2014 to 2017 at ten sampling locations in the BPNS. 

Materials and Methods 

2.1 Input data 80 

Three regions of interest were studied (Fig. 1), i.e. the nearshore region (10 km), the midshore region (10 – 30 km) and the 

offshore region (> 30 km). These regions were defined based on an integration of information about their distance to the coast, 

sediment composition, bathymetry (Ivanov et al., 2021; Maes et al., 2020), and prior knowledge about different abiotic 

conditions (Ivanov et al., 2020). LifeWatch measuring stations are located in each of these regions (indicated as triangles in 

Fig. 1). LifeWatch is a European Research Infrastructure within the European Strategy Forum on Research (ESFRI) that 85 

focuses on biodiversity research and activities, such as measuring of the biotic and abiotic environment. LifeWatch stations in 

the near- and midshore are visited monthly (Mortelmans et al., 2019). We used data from two stations, i.e. 130 for nearshore 

and 330 for midshore and pooled the data of seven sampling stations for the offshore region (Fig. 1). The data of all offshore 

stations, i.e. seven stations, were pooled in this study due to the lower temporal sampling. In the offshore region, the LifeWatch 

stations are visited seasonally, whereas stations in the near- and midshore are visited monthly.  90 

 

Four open-access datasets obtained from LifeWatch sampling campaigns, which are coordinated by the Flanders Marine 

Institute, at nine locations in the BPNS from 2014 to 2017 were used. A first open-access dataset related to the nutrient 

concentrations, i.e. NH4, NO3, NO2, PO4 and SiO4, was used and the measurements were performed by a Skalar AutoAnalyser 
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system (VLIZ, 2021a; Mortelmans et al., 2021). A second open-access dataset consisted of seawater temperature 95 

measurements performed by a CTD (VLIZ, 2021a). A third open-access dataset comprised zooplankton abundances obtained 

through ZooScan analysis (VLIZ, 2021c; Mortelmans et al., 2021). A fourth and final dataset used in this research contained 

information on the in situ pigment concentrations, i.e. Chla the measurements were performed by HPLC (VLIZ, 2021a 

Mortelmans et al., 2021). 

The gathered data was assembled in two data sets, a first containing the data related to nutrient and pigment concentrations, 100 

and seawater temperature, and a second for the zooplankton abundances. Only data of the selected taxa, i.e. Calanoida, 

Noctiluca, Harpacticoida and Appendicularia, were used in this study. All data were timestamped and were location specific.  

 

In addition to the SST dataset gathered from LifeWatch, a second SST dataset with a higher temporal coverage was required 

to infer daily time series, i.e. input data for our nutrient–phytoplankton–zooplankton model, by means of generalized additive 105 

models. SST data from the Westhinder station, i.e. data from the Westhinder measuring pile complemented with data from 

Westhinder - buoy (2% of the data set), that is part of the Flemish Banks Monitoring Network (MVB; IVA MDK, n.d.) was 

used to infer daily time series for nutrients and SST. Due to large data gaps in the SST data set of the Westhinder station in 

2018, we have chosen to use the data set from 2014 – 2017 in order to avoid increasing random noise when calibrating the 

model by including an extra data set of SST. 110 

 

 

Figure 1. Map of the Belgian part of the North Sea (BPNS) showing the sampling locations used in this study for the near-, mid- and 

offshore regions. The square mark shows the Westhinder station from the Flemish Banks Monitoring Network in the BPNS. The 

black outline indicates the Belgian Exclusive Economic Zone.  115 

2.2 Time trends for input data  

Generalized additive models (GAM) were used to infer daily trends for nutrient concentrations, i.e. N, P and Si, in the three 

regions of interest (Appendix D). The daily time trends are used as input for the nutrient–phytoplankton–zooplankton model. 
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Dissolved inorganic nitrogen (DIN) was calculated as the sum of ammonium (NH4
+), nitrate (NO3

-) and nitrite (NO2
-). 

Measurements of NH4, NO3, NO2, PO4 and SiO4 registered in the LifeWatch database were converted into nitrogen, phosphorus 120 

and silica equivalent weight, respectively. The covariates used in the GAM models were month and year as in Everaert et al. 

(2015). The Akaike Information Criterion (AIC) was calculated using the package ‘stats’ (R Core Team, 2018) and the 

minimum AIC was used to select the best-fit GAM models (Table E2). The corresponding R2 of the best-fit GAM model 

provides an indication of how well the model fits the observational data (Table E1). 

Daily SST for near- and midshore stations were calculated using GAM models based on temperature observations from 125 

LifeWatch. For the offshore region, SST data of the Westhinder station (Fig. 1) were used. In case that multiple temperature 

loggings were available per day, the median daily SST was used as input for the model. 

2.3 Ecological model 

A nutrient–phytoplankton–zooplankton (NPZ) model as presented in Everaert et al. (2015), which was adjusted from Soetaert 

and Herman (2009), was used to simulate spatiotemporal changes in plankton density in the BPNS from 2014 to 2017. The 130 

model time step is expressed in mmol N m-3 d-1 and the state variables are expressed in mmol N m-3. The necessary input data 

for the NPZ model are (i) nutrient concentrations, (ii) SST, and (iii) solar irradiance (photosynthetically active radiation (PAR)) 

corrected for the diffusion attenuation coefficient (Kd; Fig. 2, Appendix A). PAR and nutrients, i.e. DIN, PO4 and SiO4, were 

implemented in the NPZ model as saturating Michaelis–Menten equations as in Arndt et al. (2011). As such, the Michaelis–

Menten equations describe the determining factor of a variable of interest, i.e. PAR, DIN, PO4 or SiO4, for each time step. The 135 

outcome of these equations varies from one to zero, with a value of one indicating no limitation for plankton growth, and a 

value of zero indicating a complete limitation of the plankton growth (Soetaert and Herman, 2009). The amount of PAR 

available was corrected for the diffuse attenuation coefficient by means of the Lambert–Beer law (Kirk, 1994; Lund-Hansen, 

2004). The influence of SST on the plankton growth followed the Thomann and Mueller (1987) equation (Appendix A). A 

detailed equation-based description of the model and its variable-specific forcing functions is available in Appendix A. The 140 

NPZ model and corresponding calculations were performed in R (R Core Team, 2018; version 3.4.4; R packages in Appendix 

A). 
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Figure 2. Structure of the nutrient–phytoplankton–zooplankton ecological model. Input data were obtained from LifeWatch and 

Flemish Banks Monitoring Network (MVB) regarding sea surface temperature. Generalized additive models (GAM) were used to 145 
obtain daily data for nutrients based on monthly observations (see section 2.1). 

2.4 Selection of model parameters and validation 

The NPZ model requires parameterization of thirteen parameters (Table 1 and B1). For the model parameterization, we 

followed a two-step approach to find the most optimal model calibration for each region of the BPNS to mimic the 

biogeochemical processes in each respective region (Fig. 3). In a first step, 5,000 unique sets of parameters were run for each 150 

region of interest. The initial minimum and maximum parameter values used to define these unique sets of parameters were 

based on values reported in literature (Appendix B). In a second step, a new set of 5,000 unique parameterizations were run 

for each region of interest and for two seasons, i.e. spring and autumn. In this second step, the minimum and maximum 

parameter values were based on the 10% best parameterization for either spring or autumn conditions from the first step. To 

rank these 10% best models, we calculated the Root Mean Square Error (RMSE) by comparing the NPZ model predictions of 155 

phyto- and zooplankton density with the observed pigment chlorophyll-a (VLIZ, 2021a), i.e. a proxy for phytoplankton 

biomass, and zooplankton densities (VLIZ, 2021c), respectively. We calculated the total RMSE for each unique 

parameterization as the cumulated error for phytoplankton and zooplankton. For each unique model parameterization that we 

tested, we cumulated the error over the different time steps. We considered the best parameterizations as those with the lowest 

10% RMSE. In this second step, we retained a set of parameters (Table 1) to describe spring conditions, i.e. the situation after 160 

winter solstice and before summer solstice, and a set of parameters to describe the autumn conditions, i.e. situation after 

summer solstice and before winter solstice. 
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Figure 3. Key steps of model development, i.e. calibration, fitting and validation. In a first step, 5,000 unique sets of parameters were 

run for each region of interest. The initial minimum and maximum parameter values used to define these unique sets of parameters 165 
were based on values reported in literature (Appendix B). The nutrient–phytoplankton–zooplankton (NPZ) model is driven by daily 

nutrient and sea surface temperature data generated from LifeWatch and Flemish Banks Monitoring Network (MVB) observations. 

In a second step, a new set of 5,000 unique parameterizations were run for each region of interest and for two seasons, i.e. spring 

and autumn. In this second step, the minimum and maximum parameter values were based on the 10% best parameterization for 

either spring or autumn conditions from the first step. To rank these 10% best models, we calculated the Root Mean Square Error 170 
(RMSE) by comparing the NPZ model predictions of phyto- and zooplankton density with the observed pigment chlorophyll-a and 

zooplankton densities, respectively. 

To assess the model fit, we compared the NPZ phytoplankton biomass predictions (expressed in mmol N m-3) with the observed 

phytoplankton biomass data (expressed in mg Chla m-3). To enable the comparison, we converted the unit of the NPZ 

phytoplankton biomass predictions and the unit of the LifeWatch phytoplankton biomass data to mg Chla m-3. To do so, we 175 
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used the Chl:N ratio parameter of the corresponding simulation (Table 1). To compare the NPZ zooplankton production 

predictions (expressed in mmol N m-3) with the LifeWatch zooplankton observations (expressed in ind m-3), we converted the 

latter to the same unit. To do so, we calculated the taxon-specific body mass per individual (mg C ind-1), converted this mass 

to a molar mass (mmol C m-3), and used a taxon-specific C:N ratio to convert the molar mass finally to mmol N m-3. Details 

about this conversion are available in Appendix C (Table C1 & C2). 180 

 

Table 1. The seasonal minimum and maximum values of the thirteen parameters used as input for the nutrient–phytoplankton–

zooplankton model for each region. 

Parameter Unit Period Nearshore region Midshore region Offshore region 

maxUptake day-1 
Spring 

Autumn 

0.38 – 0.66 

0.40 – 0.78 

0.38 – 0.61 

0.38 – 0.80 

0.50 – 1.12 

0.38 – 0.90 

excretionRate day-1 
Spring 

Autumn 

0.16 – 0.18 

0.11 – 0.17 

0.12 – 0.16 

0.11 – 0.15 

0.11 – 0.15 

0.11 – 0.14 

maxGrazing day-1 
Spring 

Autumn 

0.87 – 0.96 

0.88 – 0.96 

0.85 – 0.92 

0.85 – 0.93 

0.88 – 0.97 

0.89 – 0.97 

ksGrazing mmol N m-3 
Spring 

Autumn 

2.15 – 3.27 

1.31 – 2.27 

1.54 – 2.15 

1.19 – 1.59 

1.48 – 2.22 

1.25 – 1.94 

pFaeces day-1 
Spring 

Autumn 

0.29 – 0.41 

0.25 – 0.40 

0.27 – 0.40 

0.24 – 0.32 

0.27 – 0.40 

0.25 – 0.37 

mortalityRate 
(mmol N m-3)-1 

day-1 

Spring 

Autumn 

0.28 – 0.39 

0.32 – 0.44 

0.28 – 0.41 

0.35 – 0.42 

0.29 – 0.41 

0.33 – 0.45 

ChlNratio 
mg Chla 

(mmol N)-1  

Spring 

Autumn 

7.00 – 7.86 

6.62 – 7.55 

6.78 – 7.60 

5.33 – 6.84 

6.65 – 7.47 

4.33 – 6.61 

ksPAR Einst m-2 s-1 
Spring 

Autumn 

126 – 227 

121 – 205 

133 – 224 

126 – 200 

103 – 210 

115 – 210 

Tobs °C 
Spring 

Autumn 

9.86 – 13.84 

10.41 – 12.83 

10.11 – 13.29 

9.66 – 13.86 

9.54 – 13.62 

10.08 – 13.62 

ksDIN mmol N m-3 
Spring 

Autumn 

1.33 – 4.21 

1.17 – 3.64 

1.62 – 3.94 

2.22 – 4.11 

1.92 – 3.70 

2.07 – 4.29 

ksP  mmol P m-3 
Spring 

Autumn 

0.30 – 0.43 

0.33 – 0.40 

0.28 – 0.44 

0.29 – 0.46 

0.30 – 0.44 

0.30 – 0.44 

ksSi mmol Si m-3 
Spring 

Autumn 

0.41 – 0.66 

0.35 – 0.63 

0.43 – 0.67 

0.40– 0.67 

0.34 – 0.67 

0.39 – 0.65 
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Kd* m-1 
Spring 

Autumn 

0.73– 0.90 

0.77 – 0.92 

0.44 – 0.60 

0.45 – 0.60 

0.28– 0.38 

0.28 – 0.38 

2.5 Relative contributions 

The relative importance of the SST, PAR, DIN, PO4, SiO4 and zooplankton grazing for phytoplankton biomass dynamics were 185 

calculated as in Everaert et al. (2015). To do so, we made use of the forcing functions that were integrated in the model (cfr. 

2.3). For each determinant, the absolute limitation was calculated as one minus the limitation factor. Then, the relative 

contribution of each determinant was calculated as the absolute limitation divided by the sum of all absolute limitations. 

Afterwards, the monthly relative contribution of each determinant was calculated based on the average relative contribution 

of the 5% best simulations, i.e. simulations with lowest RMSE, for each region of interest. Normality and homogeneity of the 190 

relative contribution data were tested by means of the Shapiro–Wilk test (p < 0.05) and the Levene’s test (p < 0.05) respectively, 

using the packages ‘stats’ (R Core Team, 2018) and ‘lawstat’ (Gastwirth et al., 2020). Potential differences in determinants 

between regions were examined using the Kruskal–Wallis test (‘stats’ package; R Core Team, 2018) and the Dunn test 

(‘dunn.test’ package; Dinno, 2017) in R (R Core Team, 2018).  

Results 195 

3.1 Model fit 

GAM models were used to create time trends of nutrients and SST (Fig. E1). SST had the highest R2 values and the parameter 

with the lowest R2 varied between regions (Table E1). 

 

To assess the model fit, the model predictions of phyto- and zooplankton were compared to field observations, i.e. the RMSE 200 

was calculated for each unique parameterization. The nearshore region had a total RMSE of 1.24 – 1.38. The mid- and offshore 

regions had a total RMSE of 0.39 – 0.46 and 0.32 – 0.42, respectively. We found that the RMSE for phytoplankton in the 

nearshore was 1.09 – 1.31, midshore 0.30 – 0.40, and offshore 0.26 – 0.38. For zooplankton, the RMSE was 0.07 – 0.23 in the 

nearshore, 0.06 – 0.13 in the midshore, and 0.04 – 0.09 in the offshore. 

3.2 Phytoplankton time trends 205 

We found clear spatial differences in the phytoplankton biomass dynamics in the BPNS. The closer to the coastline, the higher 

the amplitude of the spring phytoplankton bloom and the more distinct the seasonal pattern (Fig. 4). In the nearshore region, 

the phytoplankton biomass ranged from 3.5 to 23.1 mg Chla m-3, and followed a clear seasonal trend, with highest chlorophyll-

a concentration in spring and lowest chlorophyll-a concentration in winter (Fig. 4a). In the midshore region, the maximum 

phytoplankton biomass was estimated to be 8.8 mg Chla m-3, and the minimum phytoplankton biomass was 1.8 mg Chla m-3 210 

(Fig. 4b). In the offshore region, spring blooming periods were still noticeable, but less prominent (1.4 – 5.3 mg Chla m-3) in 
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terms of absolute phytoplankton biomass compared to the nearshore region. In each of the selected regions, the autumn 

blooming periods were noticeable, but they became relatively more pronounced with increasing distance to the coastline (Fig. 

4). Overall, spring blooms were observed for each region and were followed by a smaller peak at the end of summer (Fig. 4).  

 215 

We observed a response of the zooplankton population to the spring phytoplankton bloom (Fig. 5 and F2). As theoretically 

expected from a classic predator–prey pattern, there is a time lag between the peak in phytoplankton density and zooplankton 

density (Fig. 5 and F2). Note that higher, i.e. almost four times higher, zooplankton densities in the spring blooms are observed 

in the nearshore stations as compared to the offshore stations. In the nearshore region, zooplankton density ranged from 0.002 

to 0.41 mmol N m-3 (Fig. F1), in mid- and offshore regions these ranges were 0.003 – 0.12 mmol N m-3 and 0.002 – 0.10 mmol 220 

N m-3 respectively (Fig. F1). 

 

 

Figure 4. Phytoplankton biomass simulations using the nutrient–phytoplankton–zooplankton model in the nearshore, midshore and 

offshore region in the Belgian part of the North Sea. The bold lines indicate the average phytoplankton biomass predictions and the 225 
shaded areas indicate the 95% confidence interval. The dots are observed values collected during the LifeWatch campaigns. 
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Figure 5. Phyto- (solid line) and zooplankton (dashed line) density simulations using the nutrient–phytoplankton–zooplankton model 

in the nearshore region of the BPNS. The lines represent the average phyto- and zooplankton density predictions. 230 

3.3 Relative contributions 

We found that solar irradiance and zooplankton grazing are the most important determinants of phytoplankton biomass 

throughout the year (Fig. 6). Together they contribute for 38% to 77% to the phytoplankton biomass dynamics in the BPNS. 

The contribution of zooplankton grazing is the highest after spring blooms (31%) and during autumn months (35%). PAR 

plays a more important role in phytoplankton biomass mainly in autumn (43%). We found that nutrients and SST play a 235 

relatively less important role in phytoplankton biomass dynamics. The total contribution of nutrients is maximum 44%. During 

spring bloom, PO4 plays an important role, while SiO4 and DIN take over during early summer (Fig. 6 and Appendix G). PO4 

is the most limiting nutrient (12% – 29%), followed by DIN (3.6% – 26%) and SiO4 (1.2% – 15%), respectively. The SST 

only plays a limiting role during winter (max. 17%, Fig. 6). 
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 240 

Figure 6. Monthly averaged relative contributions for each determinant of phytoplankton biomass dynamics for the three regions, 

i.e. nearshore, midshore and offshore. The shaded areas indicate the 95% confidence interval. Potential determinants are dissolved 

inorganic nitrogen (DIN), phosphate (PO4), silicate (SiO4), solar irradiance (PAR), sea surface temperature (SST), and zooplankton 

grazing. 

The relative contributions gradually changed along the nearshore–offshore transect (Fig. 6 and 7). For example, PAR’s relative 245 

contribution is the highest in the nearshore region (30% – 43%) and decreases towards the open sea (14% – 34%). Zooplankton 

grazing is less important in the offshore (22% – 31%) than in the nearshore region (21% – 35%) or the midshore region (23% 

– 34%). There is also a nearshore–offshore gradient in terms of the relative contribution of nutrients (Fig. 7). For each of the 

individual nutrients, i.e. DIN, PO4, SiO4, we found them more limiting in the offshore region (8.5% – 26%; 15% – 29%; 3.9% 

– 15%, respectively) than in the nearshore region (3.7% – 11%; 12% – 27%; 1.2% – 13% respectively). SST is equally limiting 250 

in all three regions (Fig. 7). 
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Figure 7. Monthly averaged relative contributions for each potential determinant of phytoplankton biomass dynamics in nearshore, 

midshore and offshore region. Statistically significant differences at α = 0.05 between regions are indicated by ‘a’, ‘b’, or ‘c’. Potential 

determinants are dissolved inorganic nitrogen (DIN), phosphate (PO4), silicate (SiO4), solar irradiance (PAR), sea surface 255 
temperature (SST), and zooplankton grazing. 

Discussion 

Using a NPZ model, we reproduced phytoplankton and zooplankton dynamics in the BPNS (Fig. 4 and 5), and we quantified 

the relative contribution of the key determinants of phytoplankton biomass, i.e. nutrients, solar irradiance, SST and 

zooplankton grazing (Fig. 6 and 7). This was done for three regions, i.e. near-, mid- and offshore to examine the spatiotemporal 260 

variation. Only a few studies, e.g. Everaert et al. (2015), Llope et al. (2009) and McQuatters-Gollop et al. (2007), have 

quantified the temporal relative contribution of phytoplankton biomass’ key determinants. We found clear regional differences 

and seasonal patterns in the relative contribution of the key determinants of phytoplankton biomass dynamics. 
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4.1 Comparison phyto- and zooplankton modelling results 

Our observed chlorophyll-a concentrations (nearshore: 3.5 – 23.1 mg Chla m-3, midshore: 1.8 – 8.8 mg Chla m-3, and offshore: 265 

1.4 – 5.3 mg Chla m-3), as well as the NPZ model predictions based on these data, are in line with findings of both modelling, 

e.g. Arndt et al. (2011) and Lancelot et al. (2005), and field studies, e.g. Desmit et al. (2020) and Muylaert et al. (2006), in the 

BPNS (Fig. 8). In neighbouring regions, similar chlorophyll-a values were observed by e.g. Alvarez-Fernandez and Riegman 

(2014), Lancelot et al. (2005), European Environment Agency (2019), Colella et al., 2016 and Lundsør et al. (2020; Fig. 8). 

Although the chlorophyll-a concentrations are in line with previous studies, we noticed that there is some variability between 270 

previous studies and our observations. A potential reason for this is that the data used in this study is more recent. Indeed, with 

the inclusion of recent observations, Desmit et al. (2020) found a decrease in the annual mean chlorophyll concentration for 

offshore regions over a time span of 40 years. This is supported by Xu et al. (2020), demonstrating a decreasing trend in 

chlorophyll-a in the offshore region of the central North Sea. 

In the BPNS, our model indicated a clear seasonal pattern with low phytoplankton biomass in winter (min. 1.4 mg Chla m-3), 275 

and increasing phytoplankton biomass during spring. This spring bloom (max. 23.1 mg Chla m-3), typically consisting of 

diatoms and Phaeocystis spp. (Muylaert et al., 2006), occurs in March and April and is followed by a smaller bloom in autumn 

(max. 7.7 mg Chla m-3). We found a decrease in phytoplankton biomass overall, and a decrease of the amplitude of the spring 

bloom (23.1 mg Chla m-3 nearshore to 5.3 mg Chla m-3 offshore) with increasing distance to the coast (Fig. 4). These regional 

differences were also observed by Desmit et al. (2020; 20 mg Chla m-3 nearshore to 12 mg Chla m-3 offshore) and Muylaert et 280 

al. (2006; 60 mg Chla m-3 nearshore to 15 mg Chla m-3 offshore) in the BPNS. Muylaert et al. (2006) and Desmit et al. (2020) 

have also observed that the seasonal pattern, i.e. a spring bloom followed by a smaller autumn bloom, was more distinct closer 

to the coast (Fig. 4). Jiang et al. (2020) found a high interannual variability in the peak biomass, which is also observed in our 

field observations, but is less expressed in our modelling results. Nevertheless, in nearshore regions we see that the autumn 

bloom is more modest, i.e. three to four times smaller in amplitude, than the spring bloom. 285 

 

The classic bimodal bloom pattern that we (Fig. 5) and others (e.g. Lancelot et al. (2005) and Muylaert et al. (2006)) have 

observed in the BPNS was not found by Nohe et al. (2020) between 2003 and 2010. They found that the spring bloom was 

more intense and extended, and that there was no autumn bloom. Nohe et al. (2020) suggest that increased SST and water 

transparency, and changes in nutrient concentrations and ratios are potential reasons for the lack of an autumn bloom. This 290 

lack of an autumn bloom is in strong contrast with our findings with more recent data, i.e. 2014 – 2017. Similar to our study, 

Speeckaert et al. (2018) did find two blooms, i.e. a spring bloom followed by a smaller autumn bloom in 2016. Whereas Nohe 

et al. (2020) observed a mean diatom cell density of 3.9 • 105 cell l-1 in autumn in the period 2003 – 2010, Speeckaert et al. 

(2018) found a peak cell density of 2.0 • 106 cell l-1 with Guinardia spp. being the dominant diatom in the autumn bloom in 

2016. This autumn bloom is also observed in data from the LifeWatch Flowcam (VLIZ, 2021b) for 2017 and later (Fig. H1, 295 

H2 and H3). This suggests that the BPNS may have shifted back to a two-bloom pattern. 
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Figure 8. An overview of the phytoplankton biomass in the Belgian part of the North Sea and other regions, e.g. Netherlands, France, 

Skagerrak and Mediterranean Sea, aggregated from literature and this study, i.e. simulated phytoplankton biomass and LifeWatch 

observations. 300 

The seasonal dynamics of zooplankton correspond largely with data found by Deschutter et al. (2017), Van Ginderdeuren et 

al. (2014) and Mortelmans et al. (2021) for copepods which largely dominate the zooplankton community in the BPNS 

(Brylinski, 2009; Van Ginderdeuren et al., 2014). The delayed increase in zooplankton density corresponding with the spring 

bloom, illustrating the zooplankton grazing on phytoplankton in our model (Fig. 5 and F2; Lancelot et al., 2005), depicts the 

population dynamics of a classic predator–prey relationship (Wright, 1958). Zooplankton grazing is an important determinant 305 

of phytoplankton biomass dynamics, but the predator–prey relationship is complex and changes under different abiotic 

conditions (Behrenfeld and Boss, 2018). 

The LifeWatch observations and our model results suggest higher zooplankton density in nearshore regions (Fig. 4), agreeing 

well with the findings of Mortelmans et al. (2021) and of Deschutter et al. (2017) for the BPNS. This was also observed in 

other areas in the world (Leitão et al., 2019; Moore and Sander, 1979). Van Ginderdeuren et al. (2014) observed that the 310 

highest copepod densities occurred in their ‘midshore region’ of the BPNS, but that region overlaps with our nearshore region 

(Fig. 1). 

4.2 Relative contribution of the key determinants 

The relative contribution of the determinants changes seasonally (Fig. 6). During autumn and winter, when there is the least 

amount of light in the BPNS (± 8h per day), PAR is the major determinant (max. 43%). Obviously, sufficient solar irradiance 315 

is needed for photosynthesis (Reece et al., 2011). SST becomes more limiting for phytoplankton growth during mid-winter 

and early spring (max. 17%). This was also found by Everaert et al. (2015). They found that the combined relative contribution 

of SST and PAR varied from 20% during summer to 50% during winter, which is similar to our results (summer: 14% and 
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winter: 51%). In shallow coastal areas like the BPNS, SST is a key factor affecting phytoplankton bloom dynamics (Trombetta 

et al., 2019) as the low temperature decreases the growth rate of marine phytoplankton (Edwards et al., 2016). In early spring 320 

when solar irradiance and temperature increases, phosphorus becomes depleted due to the spring bloom (Arndt et al., 2011; 

Lancelot et al., 2005; van der Zee and Chou, 2005) and becomes the major determining factor (29%). Nitrogen becomes 

increasingly limiting in early summer (26%), together with silica in the nearshore (13%) and midshore (10%) regions. The 

increased phytoplankton density during spring bloom results in a higher zooplankton density after the spring bloom in early 

May (Mortelmans et al., 2021). Together with zooplankton density, the grazing pressure on phytoplankton increases. During 325 

summer and autumn, zooplankton grazing is an important determinant with a high relative contribution on the phytoplankton 

biomass (31% and 35%, respectively) as zooplankton biomass remains high (Mortelmans et al., 2021) whereas phytoplankton 

biomass decreases, changing the phytoplankton–zooplankton ratio. This correspond with the findings of Gowen et al. (1999) 

for the Irish Sea, who found that the percentage of phytoplankton biomass grazing is highest after spring bloom in May. From 

the winter onwards, zooplankton grazing’s relative contribution decreases as their abundance has decreased together with their 330 

food supply, i.e. phytoplankton, which is mainly limited again by the low solar irradiance completing the seasonal cycle of the 

determinants (Fig. 6). 

  

Besides their temporal variability (cfr. previous paragraph), the key determinants affecting phytoplankton biomass also vary 

spatially. The influence of nutrients on the phytoplankton biomass dynamics increases with distance to the coastline (Fig. 7). 335 

The main reason for this is related to the fact that nearshore regions tend to be nutrient rich due to riverine discharges. As the 

river runoff creates a nearshore–offshore gradient in nutrients with lower nutrient availabilities in offshore regions (Fig. E1, 

Arndt et al., 2011; Van Der Zee and Chou, 2005), all nutrients have a higher relative contribution in limiting phytoplankton 

biomass (Fig. 6 and 7), i.e. nitrogen (8.5% – 26%), phosphorus (15% – 29%) and silica (3.9% – 15%). The difference in 

relative contributions between nearshore and offshore is most obvious for nitrogen, i.e. DIN being more limiting offshore 340 

(max. 26%) than nearshore (max. 11%). Phosphorus on the other hand is limiting phytoplankton biomass in offshore regions 

for a longer period. This could be related to the water depth as phosphorus is largely regenerated from the sediment and 

offshore there is a much higher water mass to sediment ratio (van der Zee and Chou, 2005). Silica becomes limiting earlier in 

the offshore region than in the near- and midshore region, as the low SiO4 reserve in the offshore region is depleted quickly 

during the spring bloom (Muylaert et al., 2006). The gross part of riverine nutrient resources (Scheldt, Rhine, Meuse and Seine; 345 

Lacroix et al 2007) is depleted before it reaches the offshore region (Arndt et al., 2011). Our results largely agree with the 

findings of Burson et al. (2016), i.e. nearshore regions in the North Sea are P limited and, mid- and offshore regions of the 

BPNS are N and P co-limited. The impact of zooplankton grazing on phytoplankton biomass is smaller in offshore regions, 

which could be due to the lower zooplankton density (Fig. F1) and thus lower grazing pressure. In the nearshore region, PAR 

is a major determinant year-round (30% – 43%), whereas in mid- and offshore regions (14% – 34%) this is more in balance 350 

with the other determinants (Fig. 7). The high turbidity in the nearshore region (Fettweis and Van Den Eynde, 2003; Lacroix 
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et al., 2007) is restricting phytoplankton’s access to sunlight and causes PAR to be a major determining factor throughout the 

year. The more offshore, the less influential PAR is in terms of phytoplankton biomass dynamics. 

 

Overall, the relative contributions of the key determinants of phytoplankton biomass dynamics showed a clear spatiotemporal 355 

variation. Quantifying the relative contribution and identifying the spatiotemporal variation offer a better understanding of 

how key determinants’ limitations to phytoplankton biomass will change under changing conditions, e.g. related to climate 

change. However, every method has its advantages and limitations, and below we consider those of our modelling approach 

before addressing potential implication of this study. 

4.3 Modelling with field data: advantages and limitations 360 

Often multiple driver-related research has been performed in laboratories. A big advantage of this is that model species can be 

kept in optimal conditions, e.g. temperature, light, nutrients, etc., to isolate the effects of the stressor in question. However, 

these optimal conditions are rarely experienced by organisms in their natural environment (Holmström et al., 2005), hampering 

the conversion of the laboratory-based conclusions towards field conditions. Therefore, we have selected a modelling approach 

using field data, which has the advantage that the natural background variation of bottom-up drivers of marine ecosystems are 365 

implicitly included in the results (Coull and Chandler, 1992), So, by using field data to quantify the relative contribution, we 

can assess the impact of the determinants under their natural and continuously changing conditions. 

 

The phytoplankton biomass dynamics modelled in this study agree well with the field observations from LifeWatch (Fig. 4). 

We acknowledge that the periods with low phytoplankton growth in the offshore region correspond less well with the field 370 

observations. This is likely attributable to the seasonal sampling strategy in that region, i.e. no monthly measurements 

(Mortelmans et al., 2019). As such, we had less data available for the offshore region to calibrate our model. 

For the NPZ model, different functional groups of phytoplankton were grouped and by doing so, we may have missed species–

specific limitations. It is known that reactions to changes in determinants, such as with climatic changes, are quite species 

specific (Berdalet et al., 2007; Schlüter et al., 2012). Also, the variation in C:Chla ratio under different environmental 375 

conditions was not taken into account (Jakobsen and Markager, 2016). This may partially explain the inability to model the 

lower chlorophyll-a concentration observed during the winter period as C:Chla ratio describes a seasonal pattern in temperate 

coastal waters and is related to nutrients (Jakobsen and Markager, 2016). Looking at the nearshore–offshore gradient in this 

study, another gradient, i.e. east–west gradient, may have been overlooked. The latter may alter the relative contribution of 

phytoplankton biomass’ determinants regarding the distance from the Scheldt estuary. Other studies found a southeast–380 

northwest gradient in nutrients and phytoplankton biomass (Lancelot et al., 2005; Muylaert et al., 2006). 

https://doi.org/10.5194/bg-2022-11
Preprint. Discussion started: 17 January 2022
c© Author(s) 2022. CC BY 4.0 License.



18 

 

4.4 Future perspectives and implications 

Our model is well suited to simulate the phyto- and zooplankton dynamics and could be used to fill in data gaps in the 

measuring of phytoplankton and zooplankton. Besides, our model and results could be used to evaluate how the key limitations 

of phytoplankton biomass change under climate change conditions. 385 

 

During the Anthropocene, human activities have caused ocean warming (IPCC, 2019), acidification (IPCC, 2019) and 

eutrophication (Paerl et al., 2006) resulting in an on average increasing SST, decreasing pH levels and increased nutrient 

concentrations compared to the pre-industrial times. To date, it is not clear which long-term changes in abiotic conditions are 

most important in the context of marine phytoplankton biomass dynamics. It is hypothesized that the relative contribution of 390 

the dominant determinants will change due to changing environmental conditions. According to the IPCC forecasts, the marine 

environment is expected to warm, and consequently become more acidic (IPCC, 2021). Further, they predict that SST will be 

less limiting for phytoplankton biomass in our area, while nutrients will become more limiting (IPCC, 2019). Regarding solar 

irradiance limiting phytoplankton biomass, no change is expected (IPCC, 2019). Although, it can be expected that the 

magnitude of the relative contribution of a determinant may in- or decrease under influence of another phytoplankton biomass 395 

determining factor. For example, zooplankton grazing on phytoplankton is expected to increase with the warming of seawater 

(Everaert et al., 2018; IPCC, 2019) and as such, the relative contribution of zooplankton grazing is expected to increase. These 

changes in environmental abiotic conditions may have a significant impact on the marine phytoplankton biomass (Capuzzo et 

al., 2018). Indeed, based on field data (Desmit et al., 2020), modelling results (Xu et al., 2020) and laboratory experiments 

(Edwards et al., 2016), it is found that changing abiotic environmental conditions impact the marine phytoplankton diversity 400 

and the functioning of marine phytoplankton. Modelling and quantifying the relative contribution of phytoplankton’s 

determinants provides a more holistic view rather than a one-to-one relation that is obtained from directly measuring 

phytoplankton biomass. The quantification of relative contribution, could give more insight in the underlying mechanisms, 

e.g. changes in the relative contribution of the key determinants of phytoplankton biomass may indicate a disruption of the 

phytoplankton community, such as a change in community structure (Benedetti et al., 2021; Ferreira et al., 2020). 405 

 

Even though phytoplankton biomass dynamics are resilient to a certain extent (Wiltshire et al., 2008), Wells et al. (2020) 

stressed the importance of having a better understanding of the effects of each of the key determinants on various subgroups 

of phytoplankton in order to predict whether the ecosystem will change. We provided a first step in this direction with our 

NPZ model that has the potential to be further developed to a more detailed taxonomical level. 410 
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Conclusion 

In this study, we quantified phytoplankton biomass dynamics and the relative contribution of its determinants using a NPZ 

model along a near–offshore gradient and a period of four years (2014 – 2017). By doing so, a better understanding of the 

spatiotemporal variations in these contributions is provided. We found that the relative contributions of phytoplankton 

determinants alter spatially and temporally. Solar irradiance (up to 43%) and zooplankton grazing (up to 35%) are the most 415 

influential determinants for phytoplankton biomass and this throughout the year. A clear spatial gradient was observed for 

most of the determinants, e.g. nutrients and zooplankton grazing are more limiting offshore, while the opposite is true for solar 

irradiance. We suggest modelling and quantifying the relative contribution of phytoplankton determinants to have a better 

understanding of the effects of each of the key determinants on phytoplankton in order to predict whether the ecosystem will 

change under future climate scenarios and/or blue economy activities. 420 

Appendix A. Nutrient–Phytoplankton–Zooplankton Model Equations 

We simulated phytoplankton and zooplankton abundances from 2014 to 2017 using the nutrient–phytoplankton–zooplankton–

detritus (NPZD) ecosystem model proposed by Soetaert and Herman (2009) and adjusted by Everaert et al. (2015), i.e. a 

nutrient–phytoplankton–zooplankton (NPZ) model. 

 425 

Figure A1. Nutrient–phytoplankton–zooplankton–detritus (NPZD) model structure. Based on Soetaert and Herman (2009) and 

Everaert et al. (2015). *Sea surface temperature data were generated using generalized additive models in nearshore and midshore 

stations. Offshore stations SST data were retrieved from the Westhinder station from the Flemish Banks Monitoring Network. 

The equations that determine the rates of change in the abundance of nutrients, phytoplankton (PHYTO) and zooplankton 

(ZOO) in the model are: 430 
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       dPHYTO/dt = Nuptake (f1) - Grazing (f2) 

       dZOO/dt = Grazing (f2) - Faeces (F3) - Excretion (f4) - Mortality (f5) 

        

where t indicates time in days, PHYTO phytoplankton, ZOO zooplankton. Daily abundance of nutrients is determined as the 

total sum of DIN, PO4 and SiO4 based on the generalized additive models (GAM) of each type of nutrient.  435 

 

NUTRIENTS  = GAM (DIN) + GAM (PO4) + GAM (SiO4) 

 

Nuptake (f1) = maxUptake * PAR_lim * Temp_lim * P_lim * DIN_lim * Si_lim *PHYTO  

Grazing (f2) = maxGrazing* (PHYTO/(PHYTO+ksGrazing))*ZOO 440 

Faeces (f3) = pFaeces * Grazing 

Excretion (f4) = excretionRate * ZOO 

Mortality (f5) = mortalityRate * ZOO2 

Chlorophyll = chlNratio * PHYTO 

 445 

where Nuptake is the phytoplankton nitrogen uptake, PAR_lim the limitation factor for PAR, Temp_lim for sea surface 

temperature (SST), P_lim for PO4, DIN_lim for DIN and Si_lim for SiO4. Parameters of the model are maxUptake, 

mineralizationRate, excretionRate, maxGrazing, klGrazing, pFaeces, mortalityRate and ChlNratio. 

 

The equations used to define the limitation factors follow saturating Michaelis–Menten equations (Soetaert and Herman, 2009). 450 

These equations are: 

PAR_lim = PAR/(PAR+ksPAR) 

Temp_lim = theta^(Temp - Tobs) 

DIN_lim = DIN /(DIN+ksDIN) 

P_lim = P/(P + ksP) 455 

Si_lim = Si/(Si + ksSi)  

PAR (f7) = I0 e -kd * z 

Theta = 1.185 - 0.00729*Temp 

 

where ksPAR, Tobs, ksDIN, ksP and ksSi are parameters of the model.  460 

 

The equation for PAR (f7) is defined based on the Lambert-Beer law (Kirk, 1994; Lund-Hansen, 2004): 

PAR (f7) = I0 e -kd * z 
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Where I0 is the surface irradiance (µEinst m−2 s−1), z depth (m), and kd the diffuse attenuation coefficient (m-1).  465 

 

In the model, the surface irradiance is modelled as photosynthetically active radiation defined in Soetaert and Herman (2009): 

I0 = 0.5*(540+440*sin(2*pi*t/365-1.4)) 

 

where t indicates the day of the year.  470 

 

The diffuse attenuation coefficient (kd) describes the rate at which light diminishes with depth due to absorption and scattering 

in the water column (Devlin et al., 2009; Kirk, 1994; Lund-Hansen, 2004). Kd is used as a proxy of the influence of SPM on 

PAR (Devlin et al., 2009). Kd values were calculated based on the PAR and depth data recorded in the Marine Information and 

Data Acquisition System (MIDAS). 475 

 

Depth (z) used in equation f7 is 3m as LifeWatch data is measured at 3m depth (Mortelmans et al., 2019). 

 

The NPZ model and corresponding calculations were performed in R (R Core Team, 2018; version 3.4.4) using the following 

packages ‘doParallel’ (Microsoft Corporation and Weston, 2020), ‘dplyr’ (Wickham et al., 2020), ‘foreach’ (Microsoft and 480 

Weston, 2020), ‘ggplot2’ (Wickham, 2016), ‘ggpubr’ (Kassambara, 2019), ‘lubridate’ (Grolemund and Wickham, 2011), 

‘parallel’ (R Core Team, 2018), ‘plyr’ (Wickham, 2011), ‘RColorBrewer’ (Neuwirth, 2014), ‘reshape2’ (Wickham, 2007), 

‘stats’ (R Core Team, 2018), ‘viridis’ (Garnier, 2018), ‘xts’ (Ryan and Ulrich, 2020). 

Appendix B. NPZD Model Parameters  

Table B1. Possible value parameters for the nutrient–phytoplankton–zooplankton (NPZ) model based on literature. These intervals 485 
are used as a reference to create the different sets to calibrate the NPZ model.*Minimum and maximum values for kd were calculated 

for each region of interest based on CTD data recorded in MIDAS. 

Parameter 
Minimum possible 

value 

Maximum possible 

value 
References 

maxUptake 0.25 (day-1) 1.5 (day-1) Everaert et al. (2015) 

excretionRate 0.1 (day-1) 0.2 (day-1) Everaert et al. (2015) 

maxGrazing 0.8 (day-1) 1 (day-1) Everaert et al. (2015) 

ksGrazing 1 (mmol N m-3) 4 (mmol N m-3) Everaert et al. (2015) 

pFaeces 0.2 (day-1) 0.5 (day-1) Everaert et al. (2015) 
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mortalityRate 0.25 ( (mmol N m-3)-1 

day-1) 

0.5 ( (mmol N m-3)-1 day-

1) 

Everaert et al. (2015) 

ChlNratio 1 (mg chla / mmolN ) 8 (mg chla / mmolN ) Alvarez-Fernandez and 

Riegman (2014) 

ksPAR 30 (Einst m−2 s−1) 250 (Einst m−2 s−1) Everaert et al. (2015) 

Tobs 7 °C 15 °C Everaert et al. (2015) 

ksDIN 0.25 (mmol N m−3) 5 (mmol N m−3) Everaert et al. (2015) 

ksP  0.2 (mmol P m−3) 0.5 (mmol P m−3) Everaert et al. (2015) 

ksSi 0.2 (mmol Si m−3) 0.8 (mmol Si m−3) Lancelot et al. (2005) 

Kd* 0.6 (m-1) 

0.27 

0.21 

1 (m-1) 

0.67 

0.44 

Nearshore station 

Midshore station 

Offshore stations 

 

Table B2. Root Mean Square Error (RMSE) for each of the regions of interest based on the second iteration, the 10% best simulations 

which correspond to the number of simulations indicated in the last column. Each region of interest has a different number of best 490 
simulations as some combination of set of parameters results in exponential behaviour. Only the simulations that converged were 

considered to select the 10% best (i.e. lowest RMSE) out of the 5000 possible simulations. 

Region of interest RMSE - Median (Q1 – Q3) Number of simulations 

Nearshore region 1.34 (1.32 – 1.36) 259 

Midshore region 0.44 (0.43 – 0.45) 498 

Offshore region 0.40 (0.37 – 0.41) 499 

 

Table B3. Number of observations available of Chlorophyll-a and zooplankton densities for the nearshore, midshore and offshore 

region (Fig. 2) from 2014 to 2017. 495 

Variable Nearshore 

region 

Midshore 

region 

Offshore 

region 

Chlorophyll-a 39 37 98 

Zooplankton 40 37 96 
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Appendix C. Zooplankton conversion 

The most common zooplankton found in the Belgian part of the North Sea (BPNS) are copepods (Van Ginderdeuren et al., 

2014). The most common species are Acartia clausi, Temora longicornis, Paracalanus parvus, Centropages hamatus, 

Pseudocalanus elongatus, Centropages typicus, Calanus helgolandicus and Euterpina acutifrons (Van Ginderdeuren et al., 

2014). The dinoflagellate Noctiluca scintillans were also seasonally found in high densities and the Appendicularia Oikopleura 500 

dioica was found year round (Van Ginderdeuren et al., 2014). Therefore, the taxa Calanoida, Noctiluca, Harpacticoida and 

Appendicularia were selected from the LifeWatch database to calculate the zooplankton abundance (ind m-3). 

 

The body mass per individual of each taxon was defined based on the most common species of each group (Table C1). The 

body mass per individual was calculated as the median value of body mass (mg C ind-1) for the most common species of each 505 

taxon. Afterwards, the body mass in Carbon was converted to mmol C by dividing by the molecular weight of C (12.0107 gr 

/ mole). Finally, the mmol C m-3 is converted to mmol N m-3 based on the C:N ratio of each taxon (Table C2). 

 

Table C1. Body mass per individual (mg C ind-1) of the most common species of taxa found in the Belgian part of the North Sea. 

Taxon Body mass (mg C ind-1) Species Reference 

Calanoida 0.0006 Acartia clausi, Temora 

longicornis, Paracalanus 

parvus, Centropages 

hamatus, Pseudocalanus 

elongatus, Centropages 

typicus and Calanus 

helgolandicus  

Brun et al. (2016) 

Noctiluca 0.0003 Noctiluca scintillans Löder et al. (2012) 

Harpacticoida 0.001 Euterpina acutifrons Sautour and Castel 

(1995) 

Appendicularia 0.002 to 0.006 Oikopleura dioica Lombard et al. (2009) 

 510 

Table C2. C:N ratio for each of the most common taxa present in the Belgian part of the North Sea. 

Taxon C:N ratio Species Reference 

Calanoida 5.5 – 7 Acartia spp., Temora sp., 

Centropages, Oithona 

sp., Pseudo/Paracalanus 

spp. 

Van Nieuwerburgh et al. 

(2004) 
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Noctiluca 2.3 – 4.4 Noctiluca scintillans Tada et al. (2000) 

Harpacticoida 4.26 – 4.74 

7.7 – 8.1 

Euterpina acutifrons Szyper (1989) 

Abdel-Moati et al. (1993) 

Appendicularia 4.08 Oikopleura dioica Lombard et al. (2009) 

Appendix D. Smoothers for generalized additive models (GAM) in the three regions of interest, i.e. near-, mid- and 

offshore region.  

NH4 

 

PO4 

 

NO2 

 

SiO4  

 

NO3 SST 
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Figure D1. Smoothers for day and year input variables, i.e. Ammonium (NH4), Phosphate (PO4), Nitrite (NO2), Silicate (SiO4), 

Nitrate (NO3), and sea surface temperature (SST), for generalized additive models in the nearshore region. The smoothers are 515 
calculated from 2011 to 2017 as the three first years are used as dummy years. 
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NO3 

 

SST 

 

Figure D2. Smoothers for day and year input variables, i.e. Ammonium (NH4), Phosphate (PO4), Nitrite (NO2), Silicate (SiO4), 

Nitrate (NO3), and sea surface temperature (SST), for generalized additive models in midshore region. The smoothers are calculated 

from 2011 to 2017 as the three first years are used as dummy years. 520 

 

NH4 PO4 

https://doi.org/10.5194/bg-2022-11
Preprint. Discussion started: 17 January 2022
c© Author(s) 2022. CC BY 4.0 License.



27 

 

  

NO2 

 

SiO4 

 

NO3 

https://doi.org/10.5194/bg-2022-11
Preprint. Discussion started: 17 January 2022
c© Author(s) 2022. CC BY 4.0 License.



28 

 

 

Figure D3. Smoothers for day and year input variables, i.e. Ammonium (NH4), Phosphate (PO4), Nitrite (NO2), Silicate (SiO4), and 

Nitrate (NO3), for generalized additive models (GAM) in the offshore region. The smoothers are calculated from 2011 to 2017 as the 

three first years are used as dummy years. Daily sea surface temperature (SST) data were extracted from the Flemish Banks 

Monitoring Network, no GAM were applied. 525 

Appendix E. Time trends GAM in the three regions of interest 

Time trends of nutrient and SST data were created using the GAM models for each region of interest (Appendix D). Detailed 

comparisons of observations are found in table E1 and E2 and figure E1. 

Table E1. Performance of generalized additive models to create daily time trends of nutrient data, i.e. Dissolved Inorganic Nitrogen 

(DIN), Phosphate (PO4) and Silicate (SiO4), and sea surface temperature (SST) data in the three regions of interest 530 

Region of interest Nutrient And SST RMSE R2 

Nearshore region DIN (mmol N m-3) 9.61 0.30 

PO4 (mmol P m-3) 0.30 0.32 

SiO4 (mmol Si m-3) 6.43 0.39 

SST (°C) 1.82 0.94 

Midshore region DIN (mmol N m-3) 5.69 0.37 

PO4 (mmol P m-3) 0.23 0.30 

SiO4 (mmol Si m-3) 3.65 0.29 
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SST (°C) 0.88 0.96 

Offshore region DIN (mmol N m-3) 2.33 0.55 

PO4 (mmol P m-3) 0.05 0.87 

SiO4 (mmol Si m-3) 1.30 0.30 

 

Table E2. Performance of different generalized additive models for each variable of interest, i.e. Phosphate (PO4),  Ammonium 

(NH4), Nitrite (NO2), Nitrate (NO3), Silicate (SiO4), and sea surface temperature (SST), in nearshore, midshore and offshore using 

data from 2011 to 2017. Models in bold were selected for modelling the corresponding variable. 

Nearshore region 

Variable 
k- k- 

AIC  
Adjusted 

R2 
K performance 

s(day) s(year) 

PO4 

3 3 58.1 0.19 p-value < 0.05 for day, and 0.38 for year 

4 4 50.26 0.30 p-value < 0.05 for day, and 0.23 for year 

5 5 46.96 0.35 p-value < 0.05 for day, and 0.07 for year 

6 6 47.6 0.36 p-value < 0.05 for day, and 0.06 for year 

NH4 

3 3 203.54 0.04 p-values > 0.05 for both smoothers 

4 4 201.27 0.12 p-values > 0.05 for both smoothers 

5 5 202.06 0.11 p-values > 0.05 for both smoothers 

NO2 

3 3 44.04 0.08 p-value < 0.05 for day, and 0.86 for year 

4 4 33.44 0.25 p-value < 0.05 for day, and 0.79 for year 

5 5 34.31 0.25 p-value < 0.05 for day, and 0.81 for year 

NO3 

3 3 336.38 0.25 p-values < 0.05 for day, and 0.56 for year 

4 4 334.55 0.31 p-values < 0.05 for day and 0.26 for year 

5 5 335.36 0.32 p-values < 0.05 for day, and 0.24 for year. 

SiO4 

3 3 481.08 0.28 p-value < 0.05 for day, and 0.22 for year 

4 4 476.2 0.35 p-value < 0.05 for both smoothers 

5 5 471.5 0.41 p-value < 0.05 for both smoothers 

6 6 472.28 0.41 p-value < 0.05 for both smoothers 

Midshore region 

Variable 
k- k- 

AIC  
Adjusted 

R2 
K performance 

s(day) s(year) 

PO4 

3 3 10.82 0.21 p-values < 0.05 for day, and 0.67 for year 

4 4 4.53 0.30 p-values < 0.05 for day, and 0.71 for year 

5 5 4.96 0.31 p-values < 0.05 for day, and 0.69 for year 

NH4 

3 3 136.188 0.09 p-values > 0.05 for both smoothers 

4 4 136.19 0.09 p-values > 0.05 for both smoothers 

5 5 136.188 0.09 p-values > 0.05 for both smoothers 
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NO2 

3 3 -27.8 0.37 p-values < 0.05 for day, and 0.68 for year 

4 4 -26.36 0.37 p-values < 0.05 for day, and 0.72 for year 

5 5 -25.81 0.37 p-values < 0.05 for day, and 0.72 for year 

NO3 

3 3 271.38 0.37 p-values < 0.05 for day, and 0.31 for year 

4 4 273.25 0.38 p-values < 0.05 for day, and 0.41 for year 

5 5 274.05 0.38 p-values < 0.05 for day, and 0.39 for year 

SiO4 

3 3 362.68 0.28 p-value < 0.05 for day, and 0.54 for year 

4 4 363.23 0.28 p-value < 0.05 for day, and 0.56 for year 

5 5 363.47 0.28 p-value < 0.05 for day, and 0.55 for year 

Offshore region 

Variable 
k- k- 

AIC  
Adjusted 

R2 
K performance 

s(day) s(year) 

PO4 

3 3 -281.69 0.80 p-value < 0.05 for both smoothers 

4 4 -288.22 0.82 p-values < 0.05 for both smoothers 

5 5 -306.43 0.84 p-values < 0.05 for both smoothers 

6 6 -327.19 0.87 p-values < 0.05 for both smoothers 

NH4 

3 3 232.78 0.05 p-values >= 0.05 for both smoothers 

4 4 230.73 0.09 p-values > 0.05 for both smoothers 

NO2 

3 3 -46.83 0.37 p-values < 0.05 for both smothers 

4 4 -72.92 0.51 p-values < 0.05 for both smoothers 

5 5 -92.81 0.60 p-values < 0.05 for both smoothers 

6 6 -125.85 0.70 p-values < 0.05 for both smoothers 

NO3 
3 3 430.44 0.62 p-values < 0.05 for day, and 0.10 for year 

4 4 431.57 0.62 p-values < 0.05 for day, and 0.14 for year 

SiO4 

3 3 401.81 0.26 p-values < 0.05 for day, and 0.07 for year 

4 4 399.83 0.28 p-value < 0.05 for day, and 0.37 for year 

5 5 396.58 0.31 p-value < 0.05 for day, and 0.47 for year 

6 6 396.99 0.31 p-value < 0.05 for day, and 0.47 for year 

 535 
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Figure E1. Time trends created using generalized additive models to generate input data for the nutrient–phytoplankton–

zooplankton model. The first three years (2011 to 2013) are used as dummy years to stabilize the initial conditions of the 

model. These years are removed and final results are only considered from 2014 to 2017. 
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Appendix F. Simulated Zooplankton abundances  540 

 

Figure F1. Zooplankton density simulations using the nutrient–phytoplankton–zooplankton model in nearshore, midshore 

and offshore regions in the Belgian part of the North Sea. The bold lines indicate the average zooplankton density 

predictions and the shaded regions represent the 95% confidence interval. The dots are observed values collected during 

the LifeWatch campaigns. 545 
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Figure F2. Phyto- and zooplankton density simulations using the nutrient–phytoplankton–zooplankton model in 

nearshore, midshore and offshore regions in the Belgian part of the North Sea. The lines represent the average phyto- and 

zooplankton density predictions. 

Appendix G. The relative contributions of the determinants of phytoplankton biomass dynamics in the near-, mid- and 550 

offshore region 

 

Figure G1. Average monthly relative contributions for each determinant of phytoplankton biomass dynamics in the 

nearshore region. Potential determinants are dissolved inorganic nitrogen (DIN), phosphate (PO4), silicate (SiO4), 

photosynthetically active radiation (PAR), sea surface temperature (SST), and zooplankton grazing. 555 
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Figure G2. Average monthly relative contributions for each determinant of phytoplankton biomass dynamics in the 

midshore regions. Potential determinants are dissolved inorganic nitrogen (DIN), phosphate (PO4), silicate (SiO4), 

photosynthetically active radiation (PAR), sea surface temperature (SST), and zooplankton grazing. 560 
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Figure G3. Average monthly relative contributions for each determinant of phytoplankton biomass dynamics in the 

offshore region. Potential determinants are dissolved inorganic nitrogen (DIN), phosphate (PO4), silicate (SiO4), 565 
photosynthetically active radiation (PAR), sea surface temperature (SST), and zooplankton grazing. 
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Appendix H. Diatom cell density in 2017 

 

Figure H1. Diatom cell density in 2017 observed with the LifeWatch Flowcam. 

 570 

Figure H2. Diatom cell density in 2017 observed with the LifeWatch Flowcam with a y-axis limited at 5000 cell l-1. 
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Figure H3. Diatom cell density from May 2017 to December 2020 observed with the LifeWatch Flowcam. 
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