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Abstract

Macrophytes form highly productive habitats that export a substantial proportion of their primary
production as particulate organic matter. As the detritus drifts with currents and accumulates in
seafloor depressions, it constitutes organic enrichment and can deteriorate Oz conditions on the
seafloor. In this study, we investigate the Oz dynamics and macrobenthic biodiversity associated
with a shallow ~2300 m? macrophyte detritus field in the northern Baltic Sea. The detritus,
primarily Fucus vesiculosus fragments, had a biomass of ~1700 g dry weight m™, approximately
1.5-fold larger than nearby intact F. vesiculosus canopies. A vertical array of Oz sensors placed
within the detritus documented that hypoxia ([02] < 63 umol L!) occurred for 23% of the time and
terminated at the onset of wave-driven hydrodynamic mixing. Measurements in five other habitats
nearby spanning bare sediments, seagrass, and macroalgae indicate that hypoxic conditions were
unique to detritus canopies. Fast-response Oz sensors placed above the detritus documented pulses
of hypoxic waters originating from within the canopy. These pulses triggered a rapid short-term (~5
min) deterioration of Oz conditions within the water column. Eddy covariance measurements of Oz

fluxes indicated high metabolic rates with that-daily photosynthetic production offsetting up to 81 %
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of the respiratory demands of the detritus canopy, prolonging its persistence within the coastal zone.
The detritus site had a low abundance of crustaceans, bivalves, and polychaetes when compared to

other habitats nearby, likely because their low-Oxz tolerance thresholds were often exceeded.
1. Introduction

Oxygen availability determines ecosystem health and the biogeochemical function of coastal waters

equilibrium with air, seawater typically contains an Oz concentration ([O2]) between 200-400 pmol

abiotic and biotic processes cause significant departures from equilibrium. The main source of Oz to
coastal waters is the atmosphere, where the diffusion of Oz is governed by the air-to-sea gas
exposed seafloor sediments, O is produced by primary producers as a by-product of
photosynthesis, and it is consumed by consortia of microbes and fauna directly, through aerobic
consumption exceeds supply for a sufficiently long period, Oz conditions deteriorate and become
hypoxic ([02] < 63 umol L"). Hypoxia is becoming more common, more intense, and is affecting

larger areas of coastal waters, increasingly placing ecosystems and the services they provide at risk

contrast, occurs more often due to local weather dynamics and tidal cycles but individual events are

expected to affect biodiversity and biogeochemical cycling to varying degrees. Seasonal and

periodic hypoxia and-periodie-Oa-depletion-are associated with large-scale mortality of organisms

and a switch between retention and removal of bioavailable nutrients such as nitrate, ammonium,

occurrence and impacts are less understood.
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Given the importance of Oz in coastal waters, [Oz2] is one of the most frequently measured

environmental parameters. Near-seabed [O:] -availability-is typically measured using long-term

seafloor, or by performing vertical profiles of water column [O2] down to ~1.0 m above the seafloor
using multiparameter sondes. National monitoring programs such as those maintained by the
Swedish Meteorological and Hydrological Institute and the Finnish Environment Institute provide a

wealth of essential open-access data, enabling important analyses detailing the prevalence and

records of hypoxia in the shallow subtidal zone are still somewhat scarce. In a compilation of

monitoring data for the northern Baltic Sea (Gulf of Finland and Archipelago Sea), Virtanen et al.

occurred in waters < 5 m depth. While this may reflect a true signal that hypoxia is more
widespread in deeper coastal waters, it is also likely that Hhypoxic conditions affecting-the-seafloor
may-therefore-remain—hidden’go undetected if measurements sensers-are loeatedperformed away
from the seafloor higherup-in-the-watereolumn; as is common practice (Conley et al., 2011;

with the currents and accumulates on the shoreline and in low-energy marine environments (e.g.

shallow seafloor depressions and in deeper waters), where it constitutes habitat structure and

abundance, detritus suppresses the diffusion of Oz from the water column to the sediment surface
and it exacerbates Oz depletion on the seabed as it decays. Large accumulations of unattached
ephemeral macroalgae such as the brown algae Ectocarpus siliculosus and Pylaiella littoralis are

common in eutrophic coastal waters such as the Baltic Sea, forming thin mats above the seafloor
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commonly associated with eutrophic waters such as the Baltic Sea (Carstensen and Conley, 2019;

dynamics within accumulations of drifting detritus and the potential implications for the associated
fauna remain poorly understood. Understanding the ecological and biogeochemical implications of

drifting macrophyte detritus is particularly important given the ambitions to vastly increase

In this study, we investigate the O2 dynamics and macrobenthic biodiversity associated with a
shallow ~2300 m? macrophyte detritus field composed of Fucus vesiculosus fragments in the
northern Baltic Sea. -To assess Oz production versus consumption rates of the detritus canopy, we
deployed an eddy covariance system on multiple occasions to extract benthic Oz fluxes non-
invasively. Using a vertical array of Oz sensors and an acoustic velocimeter, we monitored Oz
distribution within the canopy and the hydrodynamics above the canopy to assess the occurrence
and intensity of hypoxic events and their links to local hydrodynamics. We performed biodiversity
surveys to identify the prevailing taxa, and we compared hypoxic thresholds of these taxa to [O2]
measured in situ to identify potential stress. Measurements were also performed in five other

habitats nearby spanning bare sediments, seagrass, and macroalgae for comparison.
2. Materials and Methods
2.1. Study location

The study was performed in the microtidal Baltic Sea nearby the Tvarminne Zoological Station in
SW Finland. Although the focus of our study was to investigate drifting macrophyte detritus, we
selected an additional five study sites within the shallow subtidal zone (2-4 m depth) for
comparison, representing key habitats in the Baltic Sea: one site with bare sediments, two sites with
seagrass (predominantly Zostera marina; sheltered and exposed), and two sites with intact

macroalgae canopies (predominantly Fucus vesiculosus; sheltered and exposed) (Table 1).
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temperature compensation (HOBO U26-001, Onset), a 6 MHz acoustic velocimeter (Vector,

Nortek), a photosynthetic active radiation (PAR) sensor (RBRsolo with Licor PAR Quantum

(Fig. 1). The sensors were secured to the rail at various heights above the seabed using rail mount
clamps. For the study sites with canopies, two sensors were set inside the canopy; one sensor was
~5 cm above the seafloor and one was close to the top of the canopy (15-25 cm). The third sensor
was placed in the water above the canopy (~35 cm above the seafloor). The tripod was deployed by
divers from a small boat and was carefully positioned on the seafloor using a lift bag. The exact
sensor heights were noted by the divers once the instrument was on the seafloor. The instrument

was left to record data for 3-5 days at each site. The velocimeter sampled three-dimensional flow
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events. The high-frequency velocity data were used to calculate mean flow velocity magnitude ()

as the sum of streamwise (u) and traverse (v) components, as U = yu? + v2.

2.3. Benthic O: fluxes

An aquatic eddy covariance system was deployed at the detritus site to quantify benthic Oz fluxes at

the canopy-water interface on three occasions (June 2017, September 2017, and May 2018). Eddy
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using Reynolds decomposition, as w = w,+ w’ and € = C,+ C' (Berg et al., 2003), The turbulent /{ Formatted
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flux (Jec) was then computed in units of mmol O2 m™ h! as Jzc,= w'C’, where the overbar Formatted
3 . . . Formatted
represents a period of 15 min. The turbulent flux was then summed with a storage correction term to \(
calculate the total benthic flux (Joenthic, mmol O2 m™ h'!') (Rheuban et al., 2014), as: //‘{ Formatted
kac Formatted
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canopy. For the correction, as-we defined a matrix with the number of rows s corresponding to the

sensor measurement height above the seafloor (1 row per cm) (Camillini et al., 2021), To do this

the oxygen time series, consisting of [Op] measurements performed at three heights within the

canopy, were converted to a matrix using the software package OriginPro 2022. Since the

measurement height of the three sensors were spaced nonlinearly, the data were first converted to

XYZ column format using the w2xyz function. Next, the three rows, representing the [O>] time

series measurements at three heights, were expanded to i, rows, with g representing the sensor

measurement height in cm (from 0 to sz cm above seabed, 1 row per cm) using the XYZ Gridding

function. This generated a matrix of 2 rows consisting of linearly interpolated [O2]. Interpolation

was performed using the Random (Renka Cline) gridding method. Next, a storage correction term

was calculated for each 1 cm cell as described by Rheuban et al. (2014), and the total storage

correction was subsequently computed for the water volume below the sensor measurement height

as the sum of the s rows. an-average-ofthe-Ox-senserslocated-within-and-abeve-the-canopy

(Camithini-et-al;202H-The high-frequency [Op] time series from the fast-response microsensors
were also analyzed to identify any pulses of low [O2] -waters originating from within the canopy

and propagating upwards into the water column.

2.4. Benthic metabolic rates

The O2 flux time series was separated into individual 24 h periods (midnight to midnight). The
daytime flux (Fluxday, mmol O2 m™ h'") was computed as a bulk average of fluxes measured when
PAR > 1.0 umol m? s, The nighttime flux (Fluxnight, mmol O2 m? h™!) was calculated as the
average of the remaining fluxes, when PAR < 1.0 umol m™ s’!. These two values and the number of

daylight hours (hdsy) were used to estimate the daily photosynthetic rate, termed the gross primary

production (GPP, in mmol Oz m? d™), as GPP = Fluxgay + abs(Fluxpy;gnt ),* Raay, and daily _—| Formatted

respiration (R, in mmol Oz m2 d'), as R = abs(E luxyigne),* 24, assuming a light-independent /{ Formatted
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respiration rate. The latter is a common assumption, but it is known that it underestimates the true
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The relationship between seafloor PAR and the in situ benthic Oz flux was investigated using light-
saturation curves. Hourly Oz fluxes were plotted against the corresponding near-bed incident PAR

and the relationship between the two was investigated using a modified tangential hyperbolic

- { Formatted:

English (United Kingdom)

function by Platt et al. (1980), as O, flux = P, * tanh a—') — R, where Pm is the maximum rate of

,,,,,,,,,, A _ AAA _ _ _ _ AA A A _ L,,,,,,,,,,,,,,,,,,,,,,,TC

Formatted:

English (United Kingdom)

hourly gross primary production, « is the initial quasi-linear increase in Oz flux with PAR, 7 is near: N

NS
{ Formatted:
N

English (United Kingdom)

bed irradiance (PAR), and R is the dark respiration rate. The photosaturation parameter, /k (umol
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2.5. Biodiversity sampling
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seagrass sites, and the detritus sites) and two sites were rocky (two macroalgal sites) (Rodil etal., | {Formme":
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fine-mesh bag. In the laboratory, the detritus was rinsed through a 0.5 mm sieve to collect the
associated epifauna. Samples of algal detritus were dried at 60°C for 48 hours and the biomass was

calculated as dry weight /m?.

Macroinfauna at the four sedimentary habitats was sampled using six sediment cores (inner
diameter = 5.0 cm, depth = 15 cm). The samples were sieved through a 0.5 mm sieve and animals
were stored in alcohol for later identification. At the seagrass sites, representative macrophyte
samples were collected by divers from an area around the tripod frame at the end of the deployment

using four randomly-placed quadrats (20 x 20 cm). The seagrass within each quadrat was gently
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uprooted and was transferred into a net-bag. In the laboratory, the samples were rinsed through a
0.5 mm sieve to collect all the associated epifauna. The animals were stored in alcohol for later
identification, and the seagrass was frozen in sealed bags for further processing. The seagrass
samples were later thawed;—<

average-length-of the-eanepy—L. and individual shoots were counted to determine the canopy density

in m?. The above- and below-ground macrophyte biomass was separated, dried at 60°C for 48 hours

and weighed.

At the rocky sites, F. vesiculosus individuals (n = 4) were randomly collected from around the
instrument in fine-mesh bags. Randomly-placed quadrats (1 m?, n = 4) were used to quantify the
number of F. vesiculosus individuals per m?. At the laboratory, the collected F. vesiculosus samples
were carefully rinsed through a 0.5 mm sieve to collect the epifauna. The height of the F.
vesiculosus canopy was determined from the average length of the sampled individuals. Both F.
vesiculosus and epiphytes were separated to the extent possible, dried at 60 °C for 48 h and
weighed. To collect any macrofauna on the bare rock beneath the F. vesiculosus canopy, Kautsky-
type samplers were placed on the seafloor and the 20 cm x 20 cm area was gently scraped using a
spoon into a fine-mesh sampling bag. In the laboratory, all the macrofauna from the four replicates

were sieved through a 0.5 mm sieve and stored in alcohol.

The fauna from all habitats was sorted, identified to species level, counted, and weighed. The wet
weight for each species was noted with 0.0001 g accuracy. In cases where the fauna occurred in
very high numbers, the sample was placed in a water-filled tray and divided into eight sectors. Four

sectors were randomly chosen to calculate abundance and biomass. The length of gastropods and

calculated using established relationships between length and weight for Baltic Sea fauna (Rumohr - { Formatted: English (United Kingdom)

etal., 1987), _ - { Formatted: English (United Kingdom)

The abundance (ind m2) and biomass (AFDM/SFDM g m™) of the invertebrates across sites were
calculated. Primer (v.7 and PERMANOVA+) software was used to perform the nonmetric
multidimensional scaling (nMDS, with fourth-root-transformed data) to visualize macrofauna
assemblages between sites. ANOSIM based on the Bray-Curtis similarity matrix was also
performed in Primer (site as a fixed factor, 4999 random sample permutations) to compare

differences in macrofauna abundance and biomass between sites.
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3. Results

3.1. Environmental conditions

Average water depth ranged from 2.0 m to 4.0 m at the six study sites, and average water
temperature ranged from 9 °C to 16 °C during the study period (Table 1). Hypoxic conditions were
only detected at the detritus site. Bottom-water [O2] at the detritus site ranged from 1 umol L™! to
429 umol L', with hypoxic conditions occurring for 27 h out of the 120 h long deployment (i.e. for
23 % of the time) (Table 1). At the five other measurement sites, [O2] were well above hypoxic
conditions, with overall concentrations following diel patterns and ranging from 250 pmol L™! to

490 pmol L' (Table 1).

3.2. [0z

dynamicsOxygen-dyhe swies in detritus canopies o= { Formatted: Subscript

= { Formatted: Subscript

environment driven by light availability and flow velocity (Fig. 2). Within the upper layers of the ‘ {FOTmatted: English (United Kingdom)

canopy (i.e. ~10 to 25 cm above the seafloor), [O2] and temporal dynamics largely follow diel

patterns driven by light availability, with large ~250 umol L' diel excursions in [O2].- Iatheupper - { Formatted: English (United Kingdom)

canopy-regionThere, the [O2] was lowest in the morning (~160 pmol L") and highest in the evening
(~430 pmol L. In all cases, [O2] within the upper canopy region was above hypoxic thresholds.

However, under low average flow velocities < 2 cm s°!, [02] within the lower canopy region (< 10

cm) deviated substantially from the conditions above. No diel variations in [O2] -were observed - { Formatted: English (United Kingdom)

during these periods, and [Oz2] rapidly became hypoxic for sustained periods (> 24 h long), with
[O2] being very low (< 10 pmol L") during ~10 hr (~8 % of the time) (Fig. 2). As hypoxia persisted
throughout the night under low flow velocities, low [Oz] extended upwards into the canopy.
Hypoxic conditions ended at the onset of higher mean flow velocities of ~7 cm s, which initiated a

rapid (i.e. within 1.5 hr) oxygenation of the entire canopy.

10
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Fig. 2: (a) Flow velocity measured by the velocimeter 10 cm above the detritus canopy and (b) O2

distribution within the canopy as resolved by three O2 sensors located at 3 cm, 10 cm, and 35 cm
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above the seafloor. Deployment starting from 29" May 2018.,

3.3. Pulses of hypoxic waters

pulses of hypoxic water originating from within the canopy and propagating upwards into the water

column (Fig 3). Such pulses typically followed quiescent weather and occurred at the onset of
increased flow velocities. It took < 1 min to reduce [O2] in the water column from 220 pmol L™ to

11



R88
289
R90

R91

R92
R93
R94
R95
R96

R97
R98
299
BOO
BO1
B02
BO3

65 umol L. Subsequently, a recovery period followed where [Q2] -gradually increased back to - { Formatted: English (United Kingdom)

captured by the slow-response [O2] -optode sampling at 1 min intervals. - { Formatted: English (United Kingdom)
Flow velocity, 1's (cms™) ———[0,] above canopy (jmol L) {Formatted: English (United Kingdom)
Mean flow velocity, 10s (cms™) -~~~ Hypoxia threshold [ Formatted: English (United Kingdom)

8 lls
Recovery period s

Low-O, pulse

[0,] (umol L)

0 : ] |
0 2 4 6 8 10 |

Figure 3: High-frequency [O2] measured 10 cm above the detrital canopy documenteds pulses of

hypoxic water originating from within the canopy and propagating upwards into the water column.
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3.4. Benthic O: fluxes and detritus metabolic rates

The eddy covariance measurements at the detritus site produced three days of continuous flux data
in June 2017, three days of data in September 2017, and five days of data in June-May 2018.
Benthic O2 fluxes documented a dynamic O2 exchange rate driven by light availability and flow
velocity-(Fig—4). During quiescent periods with low flow velocity <2 cm s™!, a clear diel signal in
the Oz flux was observed, indicating substantial primary production associated to the detritus
canopy. Higher flow velocities stimulated Oz uptake rates by up to 5-fold, indicating that canopy
ventilation through mixing increased Oz uptake-(Fig—4).
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Fig. 6: Relationship between all hourly in situ benthic O fluxes at the detritus site and light

availability from the three flux datasets measured. A modified photosynthesis-irradiance curve by

Platt et al. (1980) is shown as the line-of-best-fit to the global dataset.

3.5. Macrobenthic diversity and abundance

The detritus site had a biomass of accumulated macrophyte (F. vesiculosus) detritus of 1666 + 223
g dry weight m? (mean + SE, n = 4), approximately 1.5-fold larger than nearby intact F. vesiculosus
canopies (Table 2). Detritus accumulation in the five other habitats was around 100-fold smaller.
The area of the detritus site estimated using Google Earth was 2300 m?, amounting to 3,80032 kg
dry weight of F. vesiculosus fragments. Macrofauna abundance ranged from 274900 + 900854 ind.
m? at the bare sediments site to 17300259 + 24002+ ind. m™ at the sheltered F. vesiculosus site
(mean = SE, n = 4) (Table 3). Macrofauna biomass ranged from 6 + 2 g m™ at the bare site to 41 =9
g m~ at the exposed seagrass site (mean = SE, n = 4), and the number of species ranged from 6 to
23, with the lowest values measured at the bare sediments and detritus sites, and the highest values

at the sheltered F. vesiculosus site (Table 3).

At the detritus site, there was a low abundance of epifaunal crustaceans when compared to other
habitats with canopies. Key species, such as the amphipod Gammarus spp. were notably absent, and
isopods such as Idotea spp. were present in low abundance (Table A3+). Similarly, there was a
notable absence of bivalves such as the soft-shelled clam, Mya arenaria, and the cockle

Cerastoderma glaucum. Polychaetes such as Hediste diversicolor and Marenzelleria spp. were also
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absent from the detritus site but present in other sedimentary habitats (Table A3+). The nMDS
ordination of the macrofaunal assemblages indicated a clear separation of points representing the
different habitat sites (ANOSIM: R? = 0.865; p < 0.001). The assemblages from the bare sand and
the detritus sites formed separated site groupings compared to the vegetated sites (‘Fucus’ and
‘seagrass’, both exposed and sheltered). Within the vegetated sites, the assemblages of the ‘seagrass

sheltered’ and the ‘Fucus sheltered’ sites were the most different (Fig. 77).
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Table 2: Vegetation abundance and biomass (dry weight) at the six study sites. Abundance is shoots
per m? for seagrass and individuals per m? for F. vesiculosus. Values are mean £ SE.
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"| Formatted:

Site Abundance | Above-ground | Belowground Detritus Biomass
per m? biomass biomass (g m?) other species
(gm?) (gm?) (gm?)
Macrophyte | | I o PR ] { Formatted: English (United Kingdom)
detritus
BE}I@ 7777777777 R R N I DU { Formatted: English (United Kingdom)
sediments
éhel.t@r,ed Z | 768492 - 12149 |-~ Q4] - - 58413—— - -1 L0 -1 { Formatted: English (United Kingdom)
marina
5%93;@,2; 1 2565+164 1 - - 69+7 |- 25+3- | 16+2 | -02+02 | [Formatted: English (United Kingdom)
§he.ltgr§cj F_| 1642 | 1244+58 | - ] SRS S T P [ Formatted: English (United Kingdom)
vesiculosus
xl::)ﬂ).,o§eg,li,,,,16i,2,,, - -H12+119 - 1- -~ I S U Y N —— '[Formatted: English (United Kingdom)
vesiculosus

English (United Kingdom)

. J J «J J J L J

. J J J U J

study sites.
Site Infauna Epifauna Total Infauna | Epifauna | Total | Number
abundance | abundance | abundance | biomass | biomass | biomass of
(ind. m?) (ind. m? | (ind.m? | (gm? | (gm? | (gm? | species
M?gQEhJVEe, ~4175+2885 |- 493+37 | - 4668+ | 51351 -d-9r3 - — { Formatted: English (United Kingdom)
detritus 2885
are 9719+854 | - | 2719854 | 6+2 | - | 6x2 | -6 1 '[Formatted: English (United Kingdom)
sediments
AShel.tgrg(i Z | 6110+ 787 | 3020+ 874 |- - 9130+ | 3046 |- 2401 33+6- | 18— 1 [ Formatted: English (United Kingdom)
marina 1176
E@Q§e§,z,- - 6959+ 620 | 3316772 | - 10275+ | 31+8 | 10+2 | 41+9 | 16 | { Formatted: English (United Kingdom)
marina 990
%heltgrgq ,,,,,,,,,,,, TS0 | 17259 o s | { Formatted: English (United Kingdom)
. ) 2421 2421 B
vesiculosus
E?ﬂ)_9§e£1,1i ,,,,,, ] 3551+ 609 35514609 - = - TF+x2 - |- 72112 | { Formatted: English (United Kingdom)
vesiculosus

18

= { Formatted:

English (United Kingdom)




B78

B79
B80
B81
B82

B83

B84

B85
B86
B87
B88
B89
B90
B91
B92
B93
B94
B95
B96
B97

A\ Bare sediments { Formatted: English (United Kingdom)

Stress: 0.09 |
' Shelterd Z. marina . . . .
{ Formatted: English (United Kingdom)

T [ Exposed Z. marina
’ Macrophyte detritus I
. Exposed F. vesiculosus p
+ Sheltered F. vesiculosus Iy

Jaera albifrons—
Chirononitis sp
Gammarus spp.

A )

farenzelleria spp
‘ I arvicardh " haunienge
lacoma balthica

Fig. 7#: A non-metric multidimensional scaling (nMDS) ordination of the macrofaunal assemblages
indicated a clear separation of points representing the different habitat sites. The assemblages from

the bare sand and the detritus sites formed separate site groupings compared to the vegetated sites.
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flux measurements (Figure 4) Theseresults-indicate that shallow detritus accumulation zones are

not just regions of organic matter remineralization, but rather they synthesize substantial amounts of
organic matter through primary production. The range in daily GPP:R from 0.53 to 0.81 indicates
that primary production can offset a substantial proportion of the respiratory demand, which extends

the persistence of detritus in the coastal zone. These observations are consistent with the laboratory

hyperbe hyperborearea and L. ochroleuca) fragments retain physiological and reproductive

capabilities for up to several months. Carbon retention within the coastal zone and export to deeper,
sedimentary accumulation regions would therefore be larger than would be predicted by

decomposition theory alone. Similarly, slow, and incomplete degradation of algae detritus under
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study site, hypoxic conditions uniquely occurred at the detritus site and for around a quarter of the

deployment time (Table 1). We can expect these conditions to be particularly challenging for
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Fig. 88: substantial detritus accumulation was observed in late winter (March 2021) when F.

vesiculosus froze into sea ice and got dislodged once the ice broke up. (Photo by Alf Norkko)
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Table Al: A summary of the eddy covariance flux measurements performed on the detritus canopy

during the three measurement campaigns. Daily integrated seabed PAR and detritus light-use

efficiency (LUE, calculated as daily GPP/ daily PAR) are also presented.
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