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 13 

Abstract. Trees predominantly take up mercury (Hg) from the atmosphere via stomatal assimilation of 14 

gaseous elemental Hg (GEM). Hg is oxidised in leaves/needles and transported to other tree anatomy 15 

including bole wood where it can be stored long-term. Using Hg associated with growth rings facilitates 16 

archiving of historical GEM concentrations. Nonetheless, there are significant knowledge gaps on the 17 

cycling of Hg within trees. We investigate Hg archived in tree rings, internal tree Hg cycling, and differences 18 

in Hg uptake mechanisms in Norway spruce and European larch sampled within 1 km of a HgCl2 19 

contaminated site using total Hg (THg) and Hg stable isotope analyses. Tree ring samples are indicative of 20 

significant increases in THg concentrations (up to 521µg·kg-1) from background period (BGP; facility 21 

closed; 1992—present) to secondary industrial period (2ndIP; no HgCl2 wood treatment; 1962–1992) to 22 

primary industrial period (1stIP; active HgCl2 wood treatment; ≈1900–1962). Mass dependent fractionation 23 

(MDF) Hg stable isotope data are shifted negative during industrial periods (δ202Hg: 1stIP: -4.32 ± 0.15‰; 24 

2ndIP: -4.04 ± 0.32‰; BGP: -2.83 ± 0.74‰; 1SD). Even accounting for a ≈-2.6‰ MDF shift associated with 25 

stomatal uptake, these data are indicative of emissions derived from industrial activity being enriched in 26 

lighter isotopes associated with HgCl2 reduction and Hg0 volatilisation. Similar MDF (δ202Hg: -3.90 ± 27 

0.30‰; 1SD) in bark Hg (137 ± 105 µg·kg-1) suggests that stomatal assimilation and downward transport is 28 

also the dominant uptake mechanism for bark Hg (reflective of negative stomatal uptake MDF shift) rather 29 

than deposition to bark. THg was enriched in sapwood of all sampled trees across both tree species. This 30 

may indicate long-term storage of a fraction of Hg in sapwood or xylem solution. We also observed a small 31 

range of odd isotope-MIF. Differences in Δ199Hg between periods of different industrial activities were 32 
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significant (Δ199Hg: 1stIP: 0.00 ± 0.03 ‰; 2ndIP: -0.06 ± 0.04 ‰, BGP: -0.13 ± 0.03 ‰, 1SD), and we 33 

suggest MIF signatures are conserved during stomatal assimilation (reflect source MIF signatures). These 34 

data advance our understanding of the physiological processing of Hg within trees and provide critical 35 

direction to future research into the use of trees as archives for historical atmospheric Hg. 36 

Key words 37 

Mercury biogeochemistry, tree rings, sapwood (hydroactive xylem), heartwood, phloem, bark, process and 38 

source tracing. 39 

1. Introduction 40 

Until the last 10—15 years, it was hypothesised that the major transfer pathway of mercury (Hg) from the 41 

atmospheric to terrestrial and aquatic matrices was the wet and dry deposition of Hg(II) as either gaseous 42 

oxidised Hg (GOM) or particulate bound-Hg (PBM) (Lin and Pehkonen, 1999; Lindberg et al., 2007; Selin, 43 

2009). However, studies began to suggest that dry deposition of gaseous elemental Hg (GEM) had to be 44 

more important than was thought because of inconsistencies between measurement data of atmospheric Hg 45 

species and modelling predictions (Selin et al., 2008; Zhang et al., 2009; Mao and Talbot, 2009). A major 46 

mechanism for dry deposition of GEM is uptake and assimilation to flora via stomata during plant 47 

respiration, an idea that was posited by scientists as far back as the late 1970s (Browne and Fang, 1978; 48 

Lindberg et al., 1979). The rate of GEM uptake correlates to photosynthetic activity of the plants (Laacouri 49 

et al., 2013), but is also species dependent since it is related to stomatal conductance and the number of 50 

stomata per leaf (Millhollen et al., 2006; Laacouri et al., 2013). Recent work has provided evidence that dry 51 

deposition of GEM to vegetation via stomatal uptake and subsequent transfer via leaf/needle senescence, 52 

abscission, and litterfall is likely to be the dominant mechanism for Hg deposition from the atmosphere to 53 

terrestrial matrices (Obrist et al., 2017; 2018; Jiskra et al., 2018).Similarly, there is strong evidence that 54 

GEM is also the major source of Hg in bole wood of trees (Scanlon et al, 2020, Wang et al., 2020; 2021). 55 

Using Hg stable isotope measurements, stomatal assimilation of GEM deposition has been estimated to 56 

supply 57—94 % of total Hg (THg) in vegetated terrestrial systems (Khan et al., 2019 and references 57 

therein). A major loss mechanism of Hg from forest ecosystems is during biomass burning (Friedli et al., 58 

2009; McLagan et al., 2021a; Dastoor et al., 2022).  59 

To assess Hg cycling within trees we must also reflect on alterative uptake mechanisms: (i) uptake from 60 

roots and (ii) deposition to above ground tree surfaces (stems, leaves, and bark) and potential sorption to and 61 

translocation into tree tissue. Hg uptake from roots has been studied for decades. Data overwhelmingly show 62 

minimal transport of Hg from the root zone to aerial mass of trees (Beauford et al., 1977; Lindberg et al., 63 

1979; Bishop et al., 1998; Moreno et al., 2005; Graydon et al. 2009; Cui et al., 2014; Cozzolino et al., 2016; 64 

Peckham et al., 2019a). Even in soils with elevated THg concentrations, upward transfer from roots is low in 65 

relative terms (Beauford et al., 1977; Lindberg et al., 1979; Graydon et al. 2009). Limited uptake of Hg and 66 

other metals via the roots has been attributed to restrictive barriers in the roots such as that provided by the 67 

endodermis (Kahle, 1993). Alternatively, Hg can also be deposited to surfaces of the aerial anatomy of trees, 68 

predominantly as GOM and PBM (Rea et al., 2002; Mowat et al., 2011; Laacouri et al., 2013). Hg on leaf 69 

surfaces contributes only a minor fraction of THg in foliage and accumulation rates are low due to both 70 

precipitation wash-off (Rea et al., 2000; 2001; Laccouri et al., 2013) and photoreduction and subsequent 71 

evasion of GEM (Graydon et al., 2006; Mowat et al., 2011). Several studies have demonstrated elevated bark 72 

THg concentrations relative to branch and bole wood (Siwik et al., 2010; Zhou et al., 2017; Liu et al., 2020). 73 

Therefore, it has been suggested that Hg in bark is chiefly derived from atmospheric deposition (Chiarantini 74 

et al., 2016; 2017) potentially with a greater proportion of GOM and PBM rather than GEM (Peckham et al., 75 

2019a). 76 
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Trees make up a large sink for atmospheric Hg and therefore play an important role in the global Hg cycle. 77 

Hg has no known biological function in plants (Moreno-Jiménez et al., 2006; Peralta-Videa et al., 2009; 78 

Cozzolino et al., 2016); thus, it is important to understand the physiological processing of Hg within trees 79 

from a phytotoxicological standpoint. After assimilation through leaf/needle stoma GEM is assumed to be 80 

oxidised to form Hg(II) compounds and integrate with internal leaf tissue (Laacouri et a., 2013; Demers et 81 

al., 2013). A recent study examining three evergreen species used Hg stable isotopes to show that reduction 82 

and re-release can occur (Yuan et al., 2018). Although the bole wood of trees has lower THg concentrations 83 

than bark and needles/leaves in both deciduous and evergreen species (Navrátil et al., 2017; Zhou et al., 84 

2017;  Liu et al., 2020), the overall Hg loading of the tree is the reverse: wood carries the largest total mass 85 

of Hg due to much greater overall biomass (Liu et al., 2020).  86 

Hg is transported from the foliage to bole wood via the phloem, which is the conduit for nutrient and 87 

photosynthetic product transfer from leaves/needles to the rest of the trees (Cutter and Guyette, 1993). 88 

Phloem (first layer of inner bark) lies between the cambium (tissue that promotes new xylem and phloem 89 

growth) and the inner barkcork and outer bark. Once oxidised to Hg(II) species in the leaves/needles, it likely 90 

associates with phytochelatin, cysteine compounds for phloem transport (O’Connor et al., 2019; Dennis et 91 

al., 2019). Phloem-to-xylem translocation (new xylem makes up sapwood and forms tree rings) is expected 92 

to occur throughout this downward transport (Arnold et al., 2018; Yanai et al., 2020; Nováková et al., 2021; 93 

2022). This translocation likely proceeds via rays, parenchyma cells that radially connect xylem and phloem 94 

conductive tissues and mediate water and nutrient transport, tree growth, and biotic and abiotic stressors 95 

(Nagy et al., 2014; Pfautsch et al., 2015; Gustin et al., 2022). THg is expected to be preserved in the newly 96 

forming xylem tree rings; and hence, THg concentrations in tree rings have been used as a proxy for 97 

historical atmospheric GEM concentration (Siwik et al., 2010; Wright et al., 2014; Clackett et al., 2018). 98 

This includes identification of elevated GEM concentrations, past and present, associated with atmospheric 99 

Hg emissions from industrial activities located near sampled trees (Odabasi et al., 2016; Navrátil et al., 2017; 100 

Scanlon et al., 2020; Nováková et al., 2022). A potential caveat to this method of chronicling historical 101 

atmospheric GEM concentrations is the translocation of Hg between tree rings that has been reported in 102 

certain studies; tree ring concentrations do not reflect reported industrial activity (Nováková et al., 2021; 103 

Wang et al., 2021). However, there are a number of studies that demonstrate this inter-ring translocation does 104 

not significantly influence results; tree ring Hg concentrations reflect reported industrial (Clackett et al., 105 

2018; Navrátil et al., 2018; Peckham et al., 2019b). Tree species may be a factor affecting inter-ring Hg 106 

translocation (Scanlon et al., 2020; Nováková et al., 2021). 107 

Hg stable isotopes represent a powerful and relatively new technique that can provide information relating to 108 

the biogeochemical cycling history and potentially source information of sampled Hg (Bergquist and Bloom 109 

2007; 2009). This premise assumes distinct “signature” ratios of different sources, and mass-dependant 110 

(MDF) and mass-independent (MIF) fractionations of the seven stable Hg isotopes that can be imparted by 111 

environmental transformation processes (Bergquist and Bloom 2007; 2009). Forest ecosystems are no 112 

exception to this. For instance, Hg stable isotopes added substantial evidence to the argument that GEM 113 

stomatal assimilation and eventual litterfall (or vegetation death) was the dominant mechanism for Hg 114 

deposition to soils in vegetated ecosystems (Wang et al., 2017; Jiskra et al., 2018; Yuan et al., 2018). Studies 115 

examining Hg stable isotopes in tree-rings are limited (Scanlon et al., 2020; Wang et al., 2021). Both studies 116 

associated differences in MIF (Δ199Hg) with varying sources over time, but Wang et al. (2021) suggested 117 

there were limitations to this interpretation due to inter-ring translocation of Hg. They also attribute 118 

differences in MDF (δ202Hg) with physiological differences (i.e., inter-ring translocation, stomatal 119 

conductance, and canopy dynamics), particularly as they relate to tree species, and environmental factors 120 

(i.e., soil conditions, slope, and winds) (Wang et al., 2021). 121 
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In this study, we examine THg concentrations and stable isotopes in two coniferous tree species, Norway 122 

spruce (Picea abies) and European larch (Larix decidua), surrounding a legacy Hg contaminated site in the 123 

German Black Forest. We aim to investigate if historical records of the industrial activities correlate with 124 

elevated THg concentrations in tree rings of sampled trees. There are no records of historical atmospheric Hg 125 

emissions or concentrations at this site, which was subject primarily to soil and water contamination 126 

(application of low-volatility HgCl2 solution) rather than combustion emissions to the atmosphere. Thus, we 127 

compliment tree-ring data with deployments of GEM passive air samplers (PASs) at the site to assess 128 

atmospheric GEM conditions at the former industrial site past (tree rings) and present (PASs). Using Hg 129 

stable isotopes, we aim to examine potential source related variations in MDF and MIF across the tree ring 130 

records and physiological processes that may separate pools of Hg in the transport mechanism from 131 

atmosphere to foliage to phloem to tree-ring/bole wood. Additionally, we aim to investigate if deposition and 132 

sorption of Hg to tree bark is the dominant mechanism for bark Hg (isotopically distinct from bole wood). 133 

2. Methods 134 

2.1. Study site 135 

The study area is in the High Black Forest (≈850 m a.s.l.) in Baden-Württemberg, Germany. Trees were 136 

sampled within a 1 km radius of a former kyanisation facility that treated timber with ≈0.66% HgCl2 solution 137 

for preservation with substantial losses of this contaminated solution to soils, groundwater, and stream water 138 

(Eisele, 2004, Richard et al., 2016; McLagan et al., 2022). Although the trees were sampled within a 1 km 139 

radius of the contaminated site, all trees were outside, and upslope of the area directly affected by Hg 140 

contamination to soils and groundwater. The location of the sampled trees, former industrial buildings, wood 141 

drying areas, and passive sampling locations are shown in Fig. 1. The history of the industrial activities at the 142 

site can be divided into three distinct periods:  143 

1. Primary (first) industrial period (1stIP; 1892-1961): Reports on this contaminated site describe the 144 

operation of the kyanisation facilities (wood treatment with 0.66 % HgCl2) from 1892 until site 145 

owners went bankrupt in 1961 (Weis, 2020; Eisele, 2004; Schrenk and Hiester, 2007). 146 

2. Secondary industrial period (2ndIP; 1962-1992): The site was acquired by another company and 147 

wood use and timber production as well as storage of timber treated with HgCl2 is reported to have 148 

continued at the site until 1992 (Eisele, 2004; Schrenk and Hiester, 2007). 149 

3. Background period (BGP; 1992-present): The site lay fallow between 1992 and 2002 before site 150 

remediation (2002—2004) and conversion of the area to a commercial space (Eisele, 2004; Schrenk 151 

and Hiester, 2007).  152 

These three periods will be referred to throughout the study under the descriptors of 1stIP, 2ndIP, and BGP, 153 

respectively. 154 

2.2. Sampling and sample preparation 155 

Bole wood (tree ring) samples were collected via two methods. The first was using a 450 mm long, 5.15 mm 156 

diameter increment borer (Haglöf Sweden). The tree core was sampled at breast height (≈1.2—1.5 m above 157 

ground). Whole tree core samples were placed in lab grade sampling straws and double zip-seal bags for 158 

transport back to the lab, immediately frozen at -20 °C upon return, subsequently freeze dried (-80 °C and 7 159 

pa), and then stored at room temperature in conical centrifuge tubes until analysis. Spruce 1—3, Spruce BG, 160 

and Larch 1—3 were all sampled by this method. Samples processed by this method were counted for rings, 161 

cut with a lab scalpel, and weighed into nickel boats for analysis after being freeze-dried.Samples were 162 

counted for the visibly defined rings and cut with a disposable scalpel. 163 
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The second method involved the collection of freshly cut (collected on day of tree felling) tree slices or 164 

“cookies” (see TOC art; Section S1) from ≈0.5 m above the ground. A ≈50 mm slice was cut from the 165 

middle of each tree cookie with a large table saw. Individual Tree ring ssamples of aggregated tree rings 166 

were cut from this slice with a plain edge chisel and . Aall exposed sides we cut away and discarded. 167 

Samples were then frozen and freeze dried, and then stored at room temperature in conical centrifuge tubes 168 

until analysis. Spruce ISO4—6 were sampled by this method.  169 

The number of tree rings (temporal resolution) in any given sample was typically 5 years but varied 170 

somewhat with higher resolution in samples from some trees during 1stIP and 2ndIP, and lower in some 171 

samples from Spruce ISO trees that required higher THg concentrations per sample for Hg stable isotope 172 

analyses. Samples were counted for rings, cut with a lab scalpel, weighed into nickel boats and then 173 

combusted at 750 °C for 300 seconds. Care was taken to remove bark and phloem from wood, but there may 174 

have been instances where some phloem remained attached to the newest tree ring sample. Bark was 175 

sampled from Spruce ISO4—6. Bark from Spruce ISO4 and Spruce ISO5 were divided into inner and outer 176 

bark (estimated as the middle of the bark) using a disposable scalpel. These bark samples were then frozen 177 

and freeze dried, and then stored at room temperature in conical centrifuge tubes until analysis. After sample 178 

preparation samples were frozen (-20 °C), then freeze dried (-80 °C and 7 pa), and subsequently stored at 179 

room temperature until analysis. Cleaning methods for equipment and surfaces is detailed in Section S1. As 180 

these samples are from living (or freshly cut) trees and not sampled on an annual temporal resolution (there 181 

were multiple tree rings in each sample) no cross dating methods were necessary; ring counting represents 182 

the most accurate method of dating. Sapwood was visually identified by colour changes (Bertaud and 183 

Holmbom, 2004). However, any uncertainty associated with identification of the exact number of sapwood 184 

rings is of little consequence to the study as the greatest THg enrichment in sapwood was in the youngest 185 

tree rings, which, we can state with certainty, were sapwood rings. 186 

2.3. Total Hg analyses 187 

THg concentration of samples collected with the increment borer were made using a thermal desorption, 188 

amalgamation and atomic adsorption spectrometry (DMA80, Milestone Instruments). Samples were counted 189 

for rings, cut with a lab scalpel (see borer cleaning methods), weighed into nickel boats and then combusted 190 

at 750 °C for 300 seconds. Reference materials, Apple leaves (SRM 1515, NIST) and China Soil (NCS-191 

DC73030; China National Analysis Centre for Iron and Steel), were measured throughout the analyses and 192 

the recoveries were 103 ± 3 % (n = 30) and 99 ± 5 % (n = 11), respectively. Details of the GEM passive air 193 

sampler methods and data can be found in Section S2. THg concentration for the ISO trees were calculated 194 

from the analysis of traps after the pre-concentration for isotope analysis (DMA-80L). All samples were 195 

considered on a dry-weight basis (after freeze-drying) to remove any potential bias associated with moisture 196 

loss during transport and storage before freezing. 197 

2.4. Hg stable isotope analyses 198 

Hg stable isotope analyses were performed on tree slice samples from trees: Spruce ISO4—6. No larch trees 199 

could be analysed for Hg stable isotopes as no larch tree slices could be collected. The low THg 200 

concentration in many sections of the wood is a challenge for Hg stable isotope analyses. Low concentration 201 

samples required pre-concentration and trapping by combusting samples in a DMA80 and then purging the 202 

released Hg from multiple boats of the same sample into 5 mL traps consisting of 40 % (v/v) inverse aqua 203 

regia that replaced HCl with BrCl. Further method details and quality control/assurance of these analyses are 204 

provided in Section S4 (see also McLagan et al. (2022)). Traps with insufficient concentrations for isotope 205 

analysis were pool using the purge and trap method detailed in Section S5. Hg stable isotope measurements 206 

were made using a Nu Plasma II (Nu Instruments) inductively coupled plasma mass spectrometer (MC-ICP-207 

MS) connected to an HGX-200 cold vapour generator for Hg introduction (Teledyne Cetac) and a 208 
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desolvating nebulizer for external mass bias correction by Tl doping using NIST-997 (Aridus 2, Teledyne 209 

Cetac) following a method previously established in our laboratory (see McLagan et al. (2022) and 210 

Wiederhold et al. (2010) for method details). All samples and standards were diluted to match concentrations 211 

within each session and samples were measured using standard bracketing with NIST-3133. Analytical 212 

precision (2SD) and accuracy (using repeated measurements of “in-house” ETH Fluka standard and NIST-213 

3133 standards) for these analyses are reported in Section S6 along with full Hg stable isotope datasets. 214 

Isotope ratios are reported as the deviation from the isotopic composition of the NIST-3133 standard using 215 

delta notation and expressed in per mil (‰) (details in Section S4). 216 

3. Results and Discussion 217 

3.1. Elevated tree ring total Hg concentrations during industrial activity 218 

Elevated THg concentrations were observed in both Norway Spruce (P. abies) and European larch (L. 219 

decidua) tree rings dated before the mid-1990s compared to tree rings from the background Norway spruce 220 

(Spruce BG), which was situated ≈5.5km west (upwind based on dominant westerly winds in the area) of the 221 

former industrial facility (Fig. 2; THg data in Section S4). These species were chosen due to suggested 222 

suitability for Hg archiving in previous studies (Hojdová et al., 2011; Nováková et al., 2021) and there was a 223 

distinct pattern in tree ring THg concentrations in across all sampled trees near the legacy contaminated site 224 

regardless of species. This resulted in four distinct periods: (i) slightly elevated THg concentration in 225 

sapwood (hydroactive xylem) rings (0—5, 0—10, or 0—15 year tree rings; see Section 3.3.2 for discussion), 226 

(ii) low THg concentration in rings from the BGP not influenced by any known industrial activity (1992—227 

sapwood), (iii) increasing THg concentrations in rings from what we term the 2ndIP (1962—1992), and (iv) 228 

very elevated THg concentrations during the active kyanising or 1stIP (before 1962) (Fig. 2). Not all sampled 229 

trees were of sufficient age to cover all of these periods (no larch trees reached the 1stIP), but all trees that 230 

were old enough did follow this trend albeit with some distinct inter-tree differences in THg concentrations 231 

(Fig. 2). 232 

The THg concentrations ranged from ≈1—10 µg·kg-1 from in heartwood tree rings fromin the BGP, and up 233 

to 521 µg·kg-1 in a sample dated from 1951—1953 during the 1stIP in Spruce 1, which is ≈400—500 m 234 

northeast of the former kyanisation building and wood drying areas. Additionally, THg concentrations of up 235 

to 211 µg·kg-1 were measured in a sample dated 1974—1976 (2ndIP) in Spruce 2, which was the closest tree 236 

sampled to the former facility (≈200—300 m south). However, this tree was planted after the 1stIP. Distance 237 

of the tree from the industrial source was a definite factor in the between tree variability in THg 238 

concentrations, which has also been documented by Navrátil et al. (2017) and Nováková et al. (2022). These 239 

THg concentrations are comparable to other studies with the high THg concentrations measured in tree rings 240 

such as Becnel et al. (2004) (Loblolly Pine and Red Maple; THg concentrations up to 644 µg·kg-1), Abreu et 241 

al. (2008) (Black Poplar; THg concentrations up to 280 µg·kg-1), and Nováková et al. (2022) (European 242 

larch; THg concentrations up to 249 µg·kg-1). However, the THg concentrations in our study are lower than 243 

the very high concentrations measured by Wang et al. (2021) (Masson Pine; THg concentrations up to 2140 244 

µg·kg-1), which is likely associated with the source being a former Hg mine known to have emitted large 245 

quantities of elemental Hg (Hg(0)) to the atmosphere. 246 

The THg concentrations in the tree rings generally provide a good representation of the industrial history of 247 

the site based on the applied ≈5-year sampling resolution. While the end of the 2ndIP falls in the middle of 248 

the 25—30 year tree ring samples, there is an increase in THg concentrations in all trees in samples 30—35 249 

year and greater (before 1990). This is most apparent in the Spruce 1 and Spruce 2, which are the two 250 

sampled spruce trees closest to the former kyanisation building and wood drying sites. The average THg 251 

concentration for Spruce 1 and Spruce 2 was significantly higher (p = 0.031 and p < 0.001, respectively) 252 

during the 2ndIP (1962—1990; Spruce 1: 23.1 ± 12.8 µg·kg-1; and Spruce 2: 134 ± 56 µg·kg-1) than during 253 
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the BGP (1990—sapwood; Spruce 1: 10.8 ± 2.6 µg·kg-1; and Spruce 2: 9.46 ± 3.65 µg·kg-1). There was a 254 

sharp increase in THg concentration in the closest larch tree to the site (Larch 1) at this time, but the tree 255 

only dated to 1978, which is less than halfway through the 2ndIP. Spruce 1 was also indicative of 256 

significantly higher (p = 0.007) THg concentrations during the 1stIP (150 ± 141 µg·kg-1) compared to the 257 

elevated THg concentrations of the 2ndIP. These agrees with other studies that have demonstrated good 258 

correlations between industrial activity and tree ring Hg (Clackett et al., 2018; Navrátil et al., 2017; 2018; 259 

Nováková et al. 2022). Nonetheless, several studies have suggested that Hg can translocate across tree rings, 260 

which results in temporal differences between tree ring Hg and reported industrial activities/inventories 261 

(Nováková et al., 2021; Wang et al., 2021). This should continue to be monitored closely in future studies, 262 

particularly considering the sapwood enrichment discussed in Section 3.3.2.  263 

Although the exact location of the three Spruce ISO trees (tree slices collected for Hg stable isotope analysis) 264 

is unknown, they were from a deforested stand of spruce between 200—500 m further from the wood drying 265 

site than Spruce 1 on an easterly facing slope (away from the site). Consequently, the mean THg 266 

concentrations in the Spruce ISO4—6 were generally lower than in Spruce 1. Nonetheless, the same trends 267 

were observable: mean THg concentrations during the active industrial period (before 1962, THg: 44.2 ± 268 

15.5 µg·kg-1) were significantly greater (p = 0.006) than during the 2ndIP (1962—1990, THg: 26.7 ± 15.7 269 

µg·kg-1), which were significantly greater (p = 0.001) than rings from 1990—sapwood (THg: 6.5 ± 4.6 270 

µg·kg-1) based on combined data from all three Spruce ISO trees. 271 

3.2. Isotopically fractionated Hg in tree rings associated with industrial 272 

emissions 273 

3.2.1. Mass dependant fractionation (MDF) 274 

The THg concentration data from tree rings suggest substantial emissions of Hg to the atmosphere during the 275 

industrial period. However, the original Hg contamination at these sites was the treatment of timber with 276 

HgCl2 solution, a species that has a high solubility and low volatility compared to Hg(0) (Henry’s Law 277 

constant: Hg(0): 1.4x10-3 mol·m-3·Pa-1; HgCl2: 2.7x104 mol·m-3·Pa-1; Schroeder and Munthe, 1998). Thus, 278 

the majority of any Hg releases to the atmosphere must have occurred via reduction of Hg(II) to Hg(0) and 279 

subsequent volatilisation as GEM. Kinetic processes such as reduction and evaporation result in the product 280 

(Hg released to the atmosphere in this case) becoming enriched in lighter isotopes (more negative δ202Hg; 281 

Bergquist and Blum, 2007; 2009). Like the THg concentrations, MDF values reflect a chronological trend: 282 

δ202Hg values from the 1stIP (δ202Hg: -4.32 ± 0.15 ‰, 1SD) were significantly more negative (p = 0.007) 283 

than during the 2ndIP (δ202Hg: -4.02 ± 0.31 ‰; 1SD), which in turn were significantly more negative (p < 284 

0.001) than rings from the BGP (δ202Hg: -2.76 ± 0.76 ‰, 1SD; sapwood 0–5 year samples not included, see 285 

Section 3.3.2) based on combined data from all three Spruce ISO trees (Fig. 3A). Wang et al. (2021) 286 

observed similar, although weaker, trends in Masson pines near Hg contaminated sites in China (range: 287 

−5.06 ‰ to −2.53 ‰; median: −3.74 ‰). MDF (δ202Hg) has also been examined in oak (-1.82 ± 0.09 ‰) and 288 

pitch pine (-2.98 ± 0.76 ‰; North America; Scanlon et al., 2020), conifers (-2.76 ± 0.46 ‰; China; Liu et al., 289 

2021), evergreen trees (-3.15 ± 0.22 ‰; China; Wang et al., 2020), and harvested one-year old Norway 290 

spruce saplings (-2.71 ± 0.27 ‰; Germany; Yamakawa et al., 2021). δ202Hg values in these studies were 291 

more similar to samples from the BGP in our study, which likely relates to their low bole wood THg 292 

concentrations associated with the remoteness of their study sites from contamination sources (Scanlon et al., 293 

2020; Wang et al., 2020; Liu et al., 2021; Yamakawa et al., 2021).  294 

McLagan et al. (2022) highlight the difficulties in characterising a specific source signature of Hg stocks 295 

used in industrial activities due to the variability in stock δ202Hg values, potential change in Hg supplies 296 

during the facility’s lifetime, and the possibility that the industrial use of Hg resulted in the Hg emitted to 297 

different environmental media being fractionated from the original Hg stock. The highly negative δ202Hg 298 
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values during both the 1stIP and 2ndIP support the hypothesis that there was significant loss of Hg to the 299 

atmosphere during the industrial activities, which would result in the residual HgCl2 in solution (major 300 

source of soil-groundwater contamination) being isotopically heavier than the original Hg stocks used at the 301 

site. Indeed, solid phase materials (listed as “SCA1” and “TSA” in McLagan et al., 2022) beneath the former 302 

kyanisation plant with THg concentrations >50 µg·kg-1 had mean δ202Hg values of 0.06 ± 0.23 ‰ (McLagan 303 

et al., 2022). This is at the positive end of the range of δ202Hg values reported for cinnabar ores and 304 

commercial liquid Hg0 stocks (Sun et al., 2016; Grigg et al., 2018). 305 

δ202Hg for GEM in background air is typically in the range of ≈-0.2 to 1.5 ‰ (Szponar et al., 2020 and 306 

references therein). Foliar uptake of GEM is reported to cause substantial MDF of between -2.3 and -2.9 ‰ 307 

(Demers et al., 2013; Enrico et al., 2016; Wang et al., 2021). If we subtract the middle of the estimated range 308 

of MDF caused by foliar uptake (δ202Hg: -2.6 ± 0.3 ‰) from the mean δ202Hg values measured in tree rings 309 

during 1stIP and 2ndIP we get δ202Hg estimates of -1.7 ± 0.2 ‰ and -1.4 ± 0.2 ‰ (propagated uncertainty), 310 

respectively, for GEM during these periods at the approximate location of the southeast facing forest stand 311 

where the Spruce ISO trees were sampled (see also Fig. 4). This agrees with other studies that suggest 312 

industrial sources of Hg are enriched in lighter isotopes compared to background air (Jiskra et al., 2019; 313 

Szponar et al., 2020, and references therein). These estimates assume Hg in tree rings is derived from foliar 314 

uptake of GEM from the atmosphere, which is suggested to be the dominant uptake pathway of Hg in trees 315 

(e.g., Beauford et al., 1977; Graydon et al. 2009; Cozzolino et al., 2016), and no further MDF during 316 

downward transport of Hg within the trees (as observed by Liu et al., 2021).  317 

Applying the same correction to the δ202Hg in tree rings from the BGP we get a δ202Hg estimate of -0.2 ± 0.3 318 

‰ for GEM during this time (see also Fig. 4). This is right on the lower end of the reported range for δ202Hg 319 

of typical background GEM and suggests there may still be some minor inputs of Hg from the still 320 

contaminated soils (McLagan et al., 2022) to the trees during the BGP. GEM concentrations were measured 321 

with PASs over the areas of the former kyanisation building and wood drying areas (2.9 ± 0.6 ng·m-3) and 322 

concentrations were approximately double typical European background concentrations (≈1.5—2.0  ng·m-3) 323 

(Sprovieri et al., 2016). Other studies that have observed more elevated GEM concentrations with co-located 324 

GEM PAS deployments: up to three orders of magnitude higher concentrations at a former Hg mine 325 

(McLagan et al., 2018) and 3—4x higher at a Hg contaminated waste site (McLagan et al., 2021b). 326 

Therefore, we can assume the slightly elevated GEM concentrations detected at the site in 2018 are 327 

associated with low-level GEM emission from the site. These minor emissions likely cause a small negative 328 

shift in δ202Hg values of the tree rings from what might be expected of “true” background values. To our 329 

knowledge this is the first study to address elevated GEM concentrations from a former Hg kyanisation 330 

facility.  331 

3.2.2. Mass independent fractionation (MIF) 332 

We also observed small variability in odd isotope-MIF in the Spruce ISO tree rings (Fig. 3B). The mean 333 

Δ199Hg for the 1stIP (Δ199Hg: 0.00 ± 0.03 ‰, 1SD) was significantly greater (p < 0.001) than for the 2ndIP 334 

(Δ199Hg: -0.06 ± 0.04 ‰, 1SD), which in turn was significantly greater (p < 0.001) than the BGP (Δ199Hg: -335 

0.13 ± 0.03 ‰, 1SD). The Δ199Hg of the 1stIP is right at the mean values for cinnabar ores (Δ199Hg: 0.01 ± 336 

0.10 ‰, 1SD) and liquid Hg(0) stocks (Δ199Hg: -0.01 ± 0.03 ‰, 1SD) (Sun et al., 2016; Grigg et al., 2018). 337 

Additionally, the mean Δ199Hg values from the solid phase materials at this contaminated site 338 

were -0.01 ± 0.06 ‰ (McLagan et al., 2022). Hence, we suggest Δ199Hg values in the tree rings during 1stIP 339 

are conserved from the industrial activities.  340 

Wang et al. (2021) made similar observations in Masson Pine tree rings near a former Hg mine in Guizhou 341 

Province of China: more positive Δ199Hg values during periods of more intense industrial activity. The more 342 

negative Δ199Hg values in tree rings from the BGP are similar to the more negative background GEM values 343 
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(typical range: -0.4 to 0.0 ‰; Szponar et al., 2020 and references therein). Scanlon et al. (2020) measured 344 

low THg concentration (<4.5 µg·kg-1) in red oak, white oak, and pitch pine tree rings and negative Δ199Hg 345 

values (-0.39 to -0.14 ‰) and also associated this with the characteristic GEM signature of background air. 346 

The difference in Δ199Hg between the 1stIP, 2ndIP, and BGP is likely related to the atmospheric mixing of 347 

background GEM with industrially derived Hg. Foliar uptake has been reported to impart a small negative 348 

Δ199Hg shift (≈-0.1 to -0.2 ‰; Demers et al., 2013; Yuan et al., 2018). Yet, our data were more indicative of 349 

sources (industrial or background); thus, any negative Δ199Hg shift may be small in Norway spruce and/or 350 

differences fall within the range of variability of the sources. 351 

Information on the specific processes driving odd-MIF (nuclear volume effect (NVE) vs magnetic isotope 352 

effect (MIE)) in the measured Hg can be derived from the ratio of Δ199Hg to Δ201Hg (Bergquist and Blum, 353 

2007; Blum et al., 2014). We derived a slope of 1.25 ± 0.13 (1SE) for bole wood using York orthogonal 354 

regression (Fig. S8.1; York et al., 2004), which is higher than other studies (1.04 in Wang et al., 2021; and 355 

1.05 in Scanlon et al., 2020 and Liu et al., 2021), but still lies in the range of the expected slope (1.0—1.3) 356 

for MIE related photochemical reduction of Hg(II) to Hg(0) (Bergquist and Blum, 2007; Zheng et al., 2009). 357 

The observed MIF data suggest MIE related photochemical reduction and subsequent Hg(0) evasion is likely 358 

the dominant pathway of Hg(0) to the atmosphere. However, we caution against the over interpretation of 359 

these data as there was a large difference in the slope using a different orthogonal regression method (Fig. 360 

S8.1; Deming 1943). This difference in methods can largely be explained by the limited extent of odd-MIF 361 

observed in the tree ring data.  362 

Both, Δ200Hg and Δ204Hg values show there was no significant even isotope-MIF in the bole wood samples 363 

(Section S8). Δ200Hg anomalies have been reported for Hg in precipitation samples and related to upper 364 

atmosphere oxidation of Hg(0) (Gratz et al., 2010; Chen et al., 2012). Thus, the near zero even-MIF supports 365 

the hypothesis that the Hg in tree rings relates to foliar uptake of atmospheric GEM (unaffected by even-366 

MIF) rather than root uptake of Hg deposited to soils via wet deposition of Hg(II).  367 

3.3. Physiological and species related factors impacting within tree Hg cycling 368 

3.3.1. THg concentration and stable Hg isotopes in bark 369 

THg concentrations in the bark of three Spruce ISO trees (137 ± 105 µg·kg-1) were significantly higher than 370 

THg in bole wood of BGP (p = 0.014), 2ndIP (p = 0.025), and 1stIP (p = 0.042). Furthermore, the bark was 371 

divided into inner (younger) and outer (older) bark of Spruce ISO4 and ISO5 trees and the outer bark was 2.0 372 

and 2.7x higher in THg concentrations, respectively. This is similar to the observations made by Chiarantini 373 

et al. (2016) for black pine and could be related to longer and more exposure of the outer bark to elevated 374 

atmospheric Hg concentrations leading to more Hg deposited to these layers. Nonetheless, the older, outer 375 

bark would have been closer to the phloem (inner most bark layer; likely pathway for downward transport of 376 

Hg in trees) during the 1stIP and 2ndIP when we expect GEM concentrations were much higher than they are 377 

presently. Moreover, the inner bark concentrations (Spruce ISO4: 57.7 µg·kg-1; Spruce ISO5: 163.1 µg·kg-1) 378 

were still elevated with reference to the BGP in particular. Arnold et al. (2018) and Peckham et al. (2019a) 379 

suggest that translocation of Hg from the phloem into the inactive inner bark layers may be an important 380 

source of Hg stored within bark, which they further suggest supports findings by Chiarantini et al. (2016) 381 

that inner bark layers have a higher proportion of “organic Hg” than the outer layers in black pine. 382 

If the predominant source of Hg in bark was via deposition of either GEM or GOM/PBM then we would 383 

expect to observe more positive δ202Hg values in the bark samples as this pathway is unaffected by the large 384 

negative MDF (≈-2.6 ‰) associated with stomatal uptake. However, the δ202Hg values for the bark samples 385 

were all highly negative (δ202Hg: -3.90 ± 0.30 ‰, 1SD) and similar to the highly negative values in tree ring 386 

samples from the 1stIP and 2ndIP. Furthermore, GOM/PBM is reported to have more positive Δ199Hg values 387 
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than GEM (Szponar et al., 2020), but the bark samples (Δ199Hg: -0.14 ± 0.06 ‰, 1SD) were similar if not 388 

slightly more negative than the bole wood from these industrial periods (Fig. 4). There was very little 389 

difference in δ202Hg or Δ199Hg between the inner and outer bark of either Spruce ISO4 or ISO5 tree (Table 390 

S4.1). In summary, our Hg stable isotope data suggests the stomatal uptake, internal transport, and 391 

translocation from phloem to inner bark is likely the dominant uptake pathway for Hg stored in bark. Liu et 392 

al. (2021) posited the same foliage assimilation pathway for bark Hg uptake based on similar δ202Hg and 393 

Δ199Hg values in both their bark and bole wood samples from subtropical evergreen species at a background 394 

site. Considering rays that connect xylem and phloem reach as far as the inner bark (Nagy et al., 2014; 395 

Pfautsch et al., 2015), this mechanism of bark Hg enrichment is a distinct possibility. More data across a 396 

range of species, particularly using Hg stable isotopes, would be beneficial to determine the robustness of 397 

this conclusion. 398 

3.3.2. Sapwood (hydroactive xylem) rings enriched in Hg 399 

THg concentrations were elevated in sapwood tree ring samples of all trees from both species, including 400 

Spruce BG, compared to tree rings from the BGP. The 0—5 year samples were elevated in all trees and the 401 

5—10 and 10—15 year samples were also higher in THg concentrations in some trees (Fig. 2). Although part 402 

of the phloem (first layer of bark) may have been included in some 0—5 year samples and contributed to 403 

enrichment of these samples, elevated THg concentrations in certain 5—10 and 10—15 year samples 404 

indicate this is not the sole determinant. Sapwood enrichment has also been observed in both Norway spruce 405 

(Hojdová et al., 2011) and European larch (Navrátil et al., 2018; Nováková et al., 2021; 2022) and various 406 

species of oak and pine (Wright et al., 2014; Navrátil et al., 2017; Scanlon et al., 2020; Wang et al., 2021). 407 

Our study represents perhaps the most pronounced and consistent (across all trees) example of this sapwood 408 

enrichment. Nováková et al. (2021) suggest the tree coring sampling method could be a potential source of 409 

this enrichment. However, we observe this in the Spruce ISO trees that were sampled by breaking up tree 410 

“cookies” rather than coring, which would rule out this possibility.  411 

We examine three alternate scenarios to explain this. The first is that GEM concentrations in the area have 412 

been elevated during the last decade compared to the BGP. While the PAS measured GEM concentrations 413 

were slightly elevated (≈2x European background concentrations) likely associated with minor on-going 414 

releases from contaminated topsoils, there is no evidence to suggest why GEM concentrations in the most 415 

recent 5—10 years would be higher than the earlier BGP. Additionally, the Spruce BG tree also had elevated 416 

THg concentrations in all samples under 15 years, which had little-to-no impact in tree ring Hg by the 417 

industrial facility during 1stIP or 2ndIP. The European Monitoring and Evaluation Programme (EMEP) has a 418 

long-term monitoring station ≈22km to the west of the former industrial site (≈16.5 km west of Spruce BG) 419 

and reports a mean total gaseous Hg (predominantly GEM) concentration of 1.49 ng·m-3 (±0.24 ng·m-3 420 

measurement uncertainty; ± 0.12 ng·m-3 SD of annual means) over the last decade (EMEP, 2022), which is a 421 

typical background concentration for Europe (Sprovieri et al., 2016). Hence, recently elevated GEM 422 

concentrations cannot explain the elevated sapwood THg concentrations. 423 

The second would relate to uptake of Hg from tree roots. The conductive or actively transporting component 424 

of xylem (hydroactive xylem) exists within the sapwood of trees. Its primary role is the upward transport of 425 

water and nutrients from tree roots to the aerial components and particularly leaves/needles. We have already 426 

discussed how this pathway has been shown to be a minor mechanism of Hg uptake in many studies (e.g., 427 

Beauford et al., 1977; Graydon et al. 2009; Cozzolino et al., 2016). Also, the sampled trees are outside the 428 

area in which surface contamination from the industrial activity occurred (particularly Spruce BG); any soil 429 

contamination must have come from atmospheric Hg emissions and subsequent deposition, of which 430 

stomatal uptake of GEM is the dominant conduit in forest ecosystems (Obrist et al., 2017; 2018; Jiskra et al., 431 

2018). We consider this mechanism highly unlikely to be driving sapwood enrichment. 432 
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The third scenario relates to tree physiology. Hg is transported downwards in trees via the phloem and has 433 

been reported to translocate from phloem to xylem (sapwood) throughout this process (Arnold et al., 2018; 434 

Yanai et al., 2020; Nováková et al., 2021). As sapwood ages it undergoes a physiological transition to 435 

heartwood, which is drier, contains predominantly dead cells, and is used for structure rather than transport 436 

(Bertaud and Holmbom, 2004; Metsä-Kortelainen et al., 2006). Hg that remains in the tree rings after the 437 

transition to heartwood likely binds to components that endure this change, but there is a caveat in our 438 

knowledge of this process (Yanai et al., 2020; Nováková et al., 2021). Since we use dry weight THg 439 

concentrations, if all the Hg translocated from phloem to xylem was conserved in the wood during the 440 

transition from sapwood to heartwood, then we would not expect to see any sapwood enrichment. Thus, we 441 

deem it likely that some fraction of Hg is retained in the xylem solution or structures/chemicals  enhanced in 442 

sapwood (compared to heartwood) of these species. Although we only have two samples from the 0—5 year 443 

tree rings analysed for stable isotopes, the δ202Hg data from Spruce ISO5 and ISO 6 are shifted negative (-444 

0.41 and -0.33 ‰, respectively) in these samples compared to the adjacent composite sample of tree rings in 445 

each respective tree (Fig. 3A; Section S6). Hence, the process controlling retention of this Hg in sapwood 446 

would seem to favour lighter isotopes, implying there could be either preferential retention of specific Hg-447 

compounds or a change in binding form during the retention process.  448 

Any upwards transport of xylem solution Hg may contribute to the slightly elevated THg concentrations that 449 

Yanai et al. (2020) observed in tree rings at higher elevations above the ground. Sapwood is also a storage 450 

reserve for energy (starch) and water (Taylor et al., 2002); therefore, some of the Hg in xylem solution may 451 

be stored long-term in the hydroactive xylem without being transferred as the sapwood rings transition to 452 

heartwood. While long-term storage of some Hg in sapwood could be a factor driving temporal differences 453 

between tree ring THg concentrations and reported industrial activity in the literature (Arnold et al., 2018; 454 

Wang et al., 2021), our data do not reflect such Hg translocation. Ultimately, further research will be needed, 455 

particularly using Hg stable isotopes, to further explore this hypothesis and the physiological mechanisms 456 

behind this enrichment.  457 

3.3.3. The impact of species on uptake and storage of Hg in tree rings 458 

There is extensive discussion in the literature on species specific differences in THg concentrations of tree 459 

rings, particularly as they relate to foliar uptake rates (Wohlgemuth et al., 2020) and inter-ring translocation 460 

(Arnold et al., 2018; O’Connor et al., 2019). Inter-ring translocation has led some studies to question the 461 

overall effectiveness using tree rings as an archive for atmospheric GEM, but many of these studies have 462 

utilised oak (Scanlon et al., 2020), some pine species (Wang et al., 2021; Nováková et al., 2021), and 463 

Populus (Arnold et al., 2018). Certain physiological characteristics of these species (i.e., more radially 464 

conductive xylem) that enhance this translocation may limit their applicability to tree ring atmospheric 465 

archiving (Arnold et al., 2018; Nováková et al., 2021; Gustine et al., 2022). Several studies have observed 466 

strong correlations between THg concentrations in spruce (Hojdová et al., 2011) and larch (Navrátil et al., 467 

2018; Nováková et al., 2021) tree rings and reported industrial activities and suggest these to be appropriate 468 

species for archiving atmospheric GEM concentrations. 469 

Despite the quite apparent physiological differences between European larch (deciduous conifer) and 470 

Norway spruce (evergreen conifer), trends in THg concentrations varied little between the sampled trees of 471 

either species. Sapwood was enriched, BGP THg was low, and concentrations increased into the 2ndIP at the 472 

same time (early 1990s) in both larch and spruce trees (all sampled larch were planted after the 1stIP) (Fig. 473 

2). Additionally, the good correlation between changes in THg concentrations and the timelines of the 1stIP, 474 

2ndIP, and BGP suggest the process driving sapwood Hg enrichment results in limited inter-ring Hg 475 

translocation in Norway spruce and European larch; the fraction of Hg transferred to heartwood must be 476 

relatively consistent under this scenario. Thus, our data too suggest Norway spruce and European larch are 477 

effective species for the chronicling of historic GEM concentrations.  478 
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3.3.4. Between and within tree variability in tree ring Hg 479 

Heterogeneity in the radial distribution of Hg has been observed in other studies and authors suggest 480 

sampling of multiple trees in each stand and different radial sections of trees provides more representative 481 

assessments (Wright et al., 2014; Peckham et al., 2019b). The sampling direction of the bole or height of the 482 

sampling can cause differences within replicate samples from the same tree. Factors affecting between tree 483 

variability include microtopography, tree age or species and related specific physiological differences such 484 

as photosynthesis rate, stomatal conductance and transpiration (Binda et al., 2021). No correlation between 485 

Hg concentration and tree core mass was reported by Scanlon et al. (2020) and they concluded that 486 

differences in radial growth do not dilute or concentrate Hg in tree rings. These authors therefore concluded 487 

that Hg concentrations are a suitable proxy to evaluate trends of GEM. We detected some variability in THg 488 

concentrations between Spruce ISO4, ISO5, and ISO6 from the same stand of trees (Fig. 2) and in 489 

“replicated” tree rings from different sides of the Spruce ISO tree slices (mean relative difference: 78 ± 35 490 

%; mean absolute difference: 5 ± 5 µg·kg-1; n = 10; Table S3.1). Yet, variability in the ratios of Hg stable 491 

isotopes within the bole wood was low (mean absolute difference: δ202Hg: 0.11 ± 0.08 ‰ 1SD; Δ199Hg: 0.08 492 

± 0.02 ‰ 1SD; n = 4; Table S4.2). This suggests factors influencing radial Hg heterogeneity cause little 493 

impact of Hg stable isotopes. We considered the stable isotopes analyses based on combined data from all 494 

three trees, but individual trees also followed these trends (Section S6). 495 
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 795 

Figure 1: Map showing the location of sampled trees, former industrial buildings and wood drying sites 796 

(before 1968), and passive sampler locations (labelled P1—P5). The location of Spruce background tree 797 

(Spruce BG) is ≈5.5 kilometres west southwest of the study site (direction indicated on map). SM – Former 798 

sawmill; K – former kyanisation hall/wood treatment area. The three Spruce ISO trees are from the 799 

deforested stand in the northwest of Fig. 1; exact location of each of these trees within this stand is unknown 800 

(trees felled by forest workers). ©Google Earth 2019. 801 
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 803 

Figure 2: THg concentrations in tree rings dated by year. Years of tree rings correspond to the middle 804 

point of samples of combined adjacent rings (i.e., 0—5 year = 2.5 years). Y-axis is split at 100 µg·kg-1 805 

changing from normal- to log-scale due to the very high concentrations measured in Spruce 1 and Spruce 2. 806 

1stIP (before 1962) and 2ndIP (1962—1992) are highlighted. 807 
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 809 

Figure 3: δ202Hg (Panel A) and Δ199Hg (Panel B) in tree rings dated by year for samples from Spruce 810 

ISO4—6 trees. Solid and dotted lines for each period represent the mean and standard deviation, 811 

respectively. Data displayed are the composite of all three trees (figures for individual trees are shown in 812 

Section S6). Data for THg plotted against MDF and THg against MIF are shown in Section S7. Error bars 813 

for individual datapoints represent session 2SD for secondary standard “ETH Fluka”. 814 
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 816 

Figure 4: Relationships between Δ199Hg and δ202Hg for tree rings samples from Spruce ISO4—6 trees 817 

analysed for Hg stable isotopes (data with solid markers). Figure includes the Δ199Hg and δ202Hg values for 818 

tree samples (bole wood, bark, foliage, and shoots) from other studies. Additionally, background TGM/GEM 819 

data were included to show the ≈-2.6 ‰ MDF associated with stomatal uptake of GEM (dark blue dotted 820 

line), and background precipitation samples were included to demonstrate that there was little influence 821 

from precipitation on found Hg in within trees. The red, purple, and light-blue dotted lines indicate the 822 

predicted GEM values in air at the site during the 1stIP, 2ndIP, and BGP, respectively, based off the mean 823 

measured δ202Hg values in tree rings for these respective periods (MIF was assumed to be zero for stomatal 824 

uptake in these calculations). 825 
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