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Abstract.

The response of soil carbon represents one of the key uncertainties in future climate change. The ability of Earth System

Models (ESMs) to simulate present day soil carbon is therefore vital for reliably estimating global carbon budgets required for

Paris agreement targets. In this study CMIP6 ESMs are evaluated against empirical datasets to assess the ability of each model

to simulate soil carbon and related controls: Net Primary Productivity (NPP) and soil carbon turnover time (τs). Comparing5

CMIP6 with the previous generation of models (CMIP5), a lack of consistency in modelled soil carbon remains, particularly

the underestimation of northern high latitude soil carbon stocks. There is a robust improvement in the simulation of NPP

in CMIP6 compared with CMIP5, however an unrealistically high correlation to soil carbon stocks remains, suggesting the

potential for an overestimation of the long-term terrestrial carbon sink. Additionally, the same improvements are not seen in

the simulation of τs. These results suggest much of the uncertainty associated with modelled soil carbon stocks can be attributed10

to the simulation of below ground processes, and greater emphasis is required on improving the representation of below ground

soil processes in future developments of models. These improvements would help reduce the uncertainty in projected carbon

release from global soils under climate change and to increase confidence in the carbon budgets associated with different levels

of global warming.

1 Introduction15

Soil carbon is the Earth’s largest terrestrial carbon store, with a magnitude of at least three times the amount of carbon contained

within the atmosphere (Jackson et al., 2017). The response of soil carbon to CO2-induced global warming has the potential

to provide a significant feedback on climate change, but this feedback is currently poorly known (Friedlingstein et al., 2006;

Gregory et al., 2009; Arora et al., 2013; Friedlingstein et al., 2014; Arora et al., 2020; Song et al., 2021). Carbon stored within

the atmosphere and global soils is exchanged via carbon fluxes, as part of the global carbon cycle (Canadell et al., 2021). The20

Earth’s terrestrial surface has acted as a carbon sink until now (Pan et al., 2011), but there is a possibility of a switch to a source

during the 21st century, which would accelerate climate change (Cox et al., 2000; Crowther et al., 2016). Due to the significant

quantities of carbon stored in soils globally, understanding and quantifying the potential release of carbon from soils is vital if

the existing Paris agreement targets are to be met (UNFCCC, 2015).
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Earth System Models (ESMs) are complex numerical models which simulate both climate and carbon cycle processes, and25

are used to make projections of climate change. The latest generation of the Coupled Model Intercomparison Project (CMIP)

CMIP6 (Eyring et al., 2016), includes an ensemble of ESMs, which are used in the most recent Intergovernmental Panel

on Climate Change (IPCC) report (AR6) (IPCC, 2021). The relationships between carbon and environmental drivers used in

models help to determine the response of the carbon cycle to climate change (Todd-Brown et al., 2013). Therefore, representing

present day carbon stores and spatial controls realistically within models is key for estimating carbon emission cuts required30

for Paris agreement targets (Friedlingstein et al., 2022).

Present day soil carbon can be approximately broken down into above ground and below ground controls, which influence

the spatial distribution of soil carbon stocks (Koven et al., 2015). The above ground control of soil carbon can be considered as

the input flux of carbon into the soil from vegetation. Both the amount of carbon from plant and root litter (known as litterfall),

and the fraction of this that is converted to longer-lived soil carbon pools, will influence the storage of soil carbon. Net Primary35

Productivity (NPP) can be used as a proxy for the litterfall flux, where the fluxes are equal when vegetation is in a steady

state. The below ground control of soil carbon can be quantified simply in terms of the soil carbon turnover time (τs), which is

defined as the time carbon resides in the soil (Koven et al., 2017; Carvalhais et al., 2014). τs can be considered as a proxy for

below ground controls on soil carbon storage (Koven et al., 2015).

In this study, the representation of late 20th century soil carbon stores and these related controls (NPP and τs) are evaluated40

in CMIP6 ESMs. Previously, similar studies have been conducted to evaluate soil carbon in the preceding generations of ESMs,

for example: Anav et al. (2013) and Todd-Brown et al. (2013) for CMIP5. There are some existing CMIP6 soil carbon related

studies, for example: Arora et al. (2020) evaluate carbon-concentration and carbon-climate feedbacks in 1% CO2 per year

forcing simulations, Burke et al. (2020) evaluates the representation of permafrost in models, and Ito et al. (2020) investigate

future soil carbon stocks under specific land-use conditions. This study is the first to specifically focus on global and spatial45

soil carbon and related controls in CMIP6, with a thorough evaluation against empirical datasets and comparison against the

preceding CMIP5 ensemble.

2 Methods

2.1 Earth system models

Soil carbon stores and related controls are examined in eleven CMIP6 ESMs (Eyring et al., 2016; Meehl et al., 2014), as listed50

in Table 1. Throughout the study, comparisons are made with ten ESMs from the previous CMIP generation (CMIP5, Taylor

et al. (2012)), as listed in Table 2. The ESMs included in this study were chosen due to the availability of the required data in the

online repository at the time of analysis (https://esgf-node.llnl.gov/search/cmip6/, https://esgf-node.llnl.gov/search/cmip5/).

Tables 1 (CMIP6) and 2 (CMIP5) present information about the included ESMs, specifically more details about the asso-

ciated Land Surface Model (LSM). It should be noted that there are similarities between some of the LSMs - either advances55

from earlier models, or even the same LSM within different ESMs. For example, CESM2 and NorESM2-LM both use the

Community Land Model version 5 (CLM5) (Arora et al., 2020). For some modelling centres, both the CMIP5 and CMIP6
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versions of the models are included and in these cases direct comparisons can be made to determine changes from CMIP5

to CMIP6. These generationally related CMIP5 and CMIP6 models are: CanESM2 and CanESM5, CCSM4 and CESM2,

GFDL-ESM2G and GDFL-ESM4, IPSL-CM5A-LR and IPSL-CM6A-LR, MIROC-ESM and MIROC-ES2L, MPI-ESM-LR60

and MPI-ESM1.2-LR, NorESM1-M and NorESM2-LM, and HadGEM2-ES and UKESM1-0-LL, respectively. The models

where only either the CMIP5 or CMIP6 version from the modelling centre was included are: BNU-ESM and GISS-E2-R

from CMIP5 and ACCESS-ESM1.5, BCC-CSM2-MR and CNRM-ESM2-1 from CMIP6. A key general change to note is

that CMIP6 has more models that include an interactive nitrogen cycle compared with CMIP5: ACCESS-ESM1.5, CESM2,

MIROC-ES2L, MPI-ESM1.2-LR, NorESM2-LM and UKESM1-0-LL in CMIP6 compared with CCSM4 and NorESM1-M in65

CMIP5. (The CMIP5 model BNU-ESM includes carbon-nitrogen interactions, however this process was turned off in CMIP5

simulations (Ji et al., 2014)). Additionally, an increased number of soil carbon pools is seen in some CMIP6 models (e.g.

CLM5 has 29 carbon pools compared with 20 in CLM4). Arora et al. (2020) include a comprehensive overview of the updates

seen in the individual CMIP6 models, which is presented in the ‘Model descriptions’ section of the associated Appendix.

Todd-Brown et al. (2013) include a summary of the temperature and moisture dependencies of soil respiration/decomposition70

as assumed in the CMIP5 models (see Table 1 of the Todd-Brown et al. (2013) study). The most common representation of the

temperature sensitivity of decomposition is the Q10 equation, which is defined by f(T ) =Q
(T−T0)/10
10 , where T is temperature

and T0 is a reference temperature. With the Q10 equation, decomposition increases exponentially with temperature (Davidson

and Janssens, 2006). The majority of other models used the Arrhenius equation to represent the temperature sensitivity, where

the main difference from the Q10 representation is that decomposition levels off at higher temperature levels (Lloyd and Taylor,75

1994). Of the remaining models, the GFDL model simulates an increased decomposition with temperature until some optimal

temperature above which it decreases (Shevliakova et al., 2009) (which Todd-Brown et al. (2013) defined as a ‘hill’ function)

and the GISS model implement a linear increase of respiration to temperature up to a maximum value (Del Grosso et al., 2005).

The representation of the decomposition sensitivity to soil moisture was found to be to be represented in two ways amongst

the CMIP5 models, where either decomposition was assumed to increase monotonically with increasing soil moisture, or less80

commonly to increase to some optimum moisture level and then decrease (again described as a ‘hill’ function by Todd-Brown

et al. (2013)). In this study we note that the representation of temperature and moisture functions remain similar from CMIP5

from CMIP6. The Q10 equation remains the most common representation of soil temperature sensitivity in models, followed

by the Arrhenius equation and then ‘hill’ functions. Similarly, the most common representation of the sensitivity of soil to

moisture in CMIP6 is a monotonically increasing function, followed by ‘hill’ functions of various sorts.85

2.2 Defining soil carbon variables

CMIP defines common output variables (Meehl et al., 2000), which allows for consistent comparison between the models,

and for cleaner evaluation of models against observational data. These common output variables also allow for consistent

comparison between model generations, in this case between CMIP6 and CMIP5. This study focuses on evaluation of near

present day soil carbon and related controls. Therefore the results presented in this study use the CMIP standard historical90

simulation (CMIP scenario historical), for both the CMIP6 and CMIP5 analysis. The historical simulation runs from 1850 to
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2015 in CMIP6 and from 1850 to 2005 in CMIP5, where the selected dates for each variable (stated below) were chosen to

allow for consistent comparison between CMIP5 and CMIP6, and to best match the modelled data to the empirical data.

To evaluate soil carbon, this study uses ‘Soil Carbon’ (CMIP variable cSoil) which represents the carbon stored in soils,

and where applicable ‘Litter Carbon’ (CMIP variable cLitter) which represents carbon stored in the vegetation litter. Total soil95

carbon (Cs) is defined to be the sum of these soil carbon and litter carbon variables (cSoil + cLitter), where for models that

do not report a separate litter carbon pool, the total soil carbon is taken to be simply the cSoil variable. This allows for a more

consistent comparison between the models and between the models and empirical data, due to differences in how soil carbon

and litter carbon are simulated (Todd-Brown et al., 2013; Arora et al., 2020). Modelled Cs is time averaged between the years

1950 to 2000 of the historical simulation, and is considered spatially (units of kg m2), and as global totals (units of PgC), where100

global totals are calculated as an area weighted sum using the model land surface fraction (CMIP variable sftlf ). To calculate

northern latitude totals, a sum between the latitudes 60◦ N and 90◦ N is considered.

The CMIP6 ESMs CESM2 and NorESM2-LM have two different variables to represent soil carbon: (1) CMIP variable cSoil,

which represents the full vertical soil profile, and (2) CMIP variable cSoilAbove1m, which represents soil carbon in the top

1m of soil. This is due to the representation of vertically resolved soil carbon in these models, which means there are separate105

carbon pools in the model that represent different soil depths (Lawrence et al., 2019). The CMIP variable cSoilAbove1m is used

throughout this study to represent soil carbon for the models CESM2 and NorESM2-LM, unless otherwise stated. The use of

this variable is to enable a more consistent comparison with both the other CMIP6 models and the CMIP5 models. Therefore,

an assumption of a 1m depth of soil for modelled soil carbon allows for the fairest evaluation, and evaluation is considered

against empirical datasets down to a depth of 1m (see below). However, comparisons with the cSoil variable for both CESM2110

and NorESM2-LM are included in Tables 4 and 6 of the Results.

In order to obtain a clean separation between above ground and below ground drivers of soil carbon variations, a quasi-

equilibrium approximation is made. We begin with the definition of the effective soil carbon turnover time (τs) (Varney et al.,

2020; Koven et al., 2017; Carvalhais et al., 2014), which represents the average time carbon resides in the soil:

τs =
Cs

Rh
(1)115

where Rh is the output flux of carbon from the soil known as the heterotrophic respiration, which is described as the carbon

loss from the decomposition by microbes. This definition of the turnover time implicitly neglects other processes that results

in soil carbon release, but which are not yet routinely included in ESMs (e.g. peat fires or dissolved organic carbon fluxes).

The definition of the effective turnover time (Eq. 1) ensures that the soil carbon at any one time is given by: Cs =Rhτs.

In an unperturbed steady-state (i.e. neglecting disturbances from land-use change, fires, insect outbreaks etc.), there is no net120

exchange of carbon between land and atmosphere, and therefore Rh is equal to litterfall, known as fallen organic material

from plants. When vegetation and soil carbon are close to a steady state, litterfall and Rh are also approximately equal to Net

Primary Productivity (NPP), where NPP is defined as the net carbon assimilated by plants via photosynthesis minus loss due

to plant respiration. In the contemporary period considered in this study, Rh has been found to be well approximated by NPP

(Varney et al., 2020). This is because the difference between NPP and Rh, which represents the Net Ecosystem Productivity125
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(NEP), is a small fraction of the NPP over the historical period (NPP ≈ 60 PgC yr−1; NEP ≈ 3 PgC yr−1). Therefore the

present day soil carbon can be approximated by:

Cs ≈NPP τs (2)

to a good accuracy. This allows for a clean separation of soil carbon variation into the above (NPP) and below (τs) ground

drivers of soil carbon spatial patterns, following the approach of previous published studies (Todd-Brown et al., 2013; Koven130

et al., 2015).

To evaluate these soil carbon controls on Cs, NPP and τs are evaluated separately. This study uses modelled ‘Net Primary

Productivity’ (CMIP variable npp), which is defined as the mass flux of carbon out of the atmosphere due to NPP on land.

NPP is also considered spatially (kg m2 yr−1), and as an area weighted global total flux (PgC yr−1). By definition τs is defined

by Eq. 1, and therefore is calculated by soil carbon (as defined above) divided by Rh. For Rh, the variable ‘Heterotrophic135

Respiration’ (CMIP variable rh) is used, which is defined as the mass flux of carbon into the atmosphere due to heterotrophic

respiration on land, primarily due to the microbial respiration that occurs in the soil, and where the units of Rh are the same

as that of NPP. The carbon fluxes (NPP and Rh) are time averaged over the period 1995 to 2005 for consistency between

the CMIP generations and to match the empirical datasets. τs can be considered on a spatial level, or as an effective global

τs, which is defined as average τs=mean(Cs)/mean(Rh) (where the mean represents an area weighted global average). The140

advantage of defining an effective global τs is that it is not dominated by large spatial outlying values. Using either method,

the units for τs are in years (yr) by definition.

The relationships of Cs, NPP and τs, with both temperature and soil moisture are also considered. For temperature, the

variable ‘near surface air temperature’ (CMIP variable tas), representing atmospheric temperature at the surface is considered,

where the dates 1995 to 2005 where chosen to be consistent with the carbon fluxes. The variable for atmospheric temperature145

is considered opposed to soil temperature as equivalent global observational datasets are required for the analysis. For soil

moisture, the variable ‘Moisture in Upper Portion of Soil Column’ (CMIP variable mrsos), which is defined as the mass

content of water in the soil layer in the upper portion of the soil (0-10cm depth) is considered, where the dates 1978 to 2000

were considered to match the empirical data. The standard output mrsos is in units of kg m2, however in this study a volumetric

soil moisture, referred to as θ, is used to allow for consistent comparison with the benchmark data. θ is calculated as mrsos150

divided by the depth of the soil layer in mm, which in this case is θ = mrsos/100. The variable mrsos for soil moisture was

considered opposed to the full soil column moisture (CMIP variable mrso) as this better matched the available empirical dataset

for soil moisture. It is noted that this represents surface soil moisture and does not match the depth over which soil carbon is

evaluated (0-1m). This is due to deeper soil moisture products not being as readily available due to limitations of remote sensing

methods in penetrating deeper ground. It is expected that the surface soil moisture will be related to deeper soil moisture to155

some extent but will be influenced by different processes. For example, high surface soil moisture after rainfall events could

run off and thus not always reach the deeper soil.
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2.3 Empirical datasets

2.3.1 Soil carbon

Observational Cs to a depth of 1m was obtained by combining the empirical Harmonized World Soils Database (HWSD) (FAO160

and ISRIC, 2012) and Northern Circumpolar Soil Carbon Database (NCSCD) (Hugelius et al., 2013) soil carbon datasets,

where NCSCD was used where overlap of the datasets occurs. This is a commonly used method when considering empirical

soil carbon and has been previously used in multiple studies, such as: Varney et al. (2020), Koven et al. (2017), and Todd-Brown

et al. (2013). This dataset is referred to here as the ‘Benchmark dataset’.

We use the 95% confidence intervals given by Todd-Brown et al. (2013), to derive standard deviations about the global165

mean soil carbon. To do this, the constructed 95% confidence intervals were used to calculate upper and lower bounds around

the mean value. Then assuming the data is normally distributed, these derived 95% confidence intervals were halved to obtain

confidence intervals equivalent to a standard deviation error on the mean (1412 ± 215 PgC). The uncertainty analysis completed

in Todd-Brown et al. (2013) is used for the benchmark soil carbon dataset as no quantitative uncertainty has been previously

or since defined for the HWSD and NCSCD datasets (Anav et al., 2013).170

Additionally, the benchmark dataset was compared with empirical estimates found in the literature to improve the robustness

and reliability of the evaluation. Todd-Brown et al. (2013) find that this derived uncertainty is consistent with other empirical

estimates of global soil carbon; for example, 1576 PgC in Eswaran et al. (1993), 1220 PgC in Sombroek et al. (1993), and 1502

PgC in Jobbágy and Jackson (2000). This study further compares with empirical estimates of 1395 PgC in Post et al. (1982)

and 1515 PgC in Raich and Schlesinger (1992). These empirical estimates are within one standard deviation of the global mean175

soil carbon given by the benchmark dataset (Table 3).

Moreover, additional empirical datasets are considered to improve the reliability of the benchmark dataset (Table 3). These

additional datasets include: (1) the World Inventory of Soil property Estimates (WISE30sec) dataset down to a depth of 2m

(Batjes, 2016), which includes a given standard deviation on the global total soil carbon consistent with our derived benchmark

uncertainty, (2) the named ‘S2017’ from Sanderman et al. (2017) soil carbon estimate (1m and 2m), which uses a data-driven180

statistical model and the History Database of the Global Environment (HYDE) land use data, (3) the Global Soil Dataset for

use in Earth System Models (GSDE), which provides a estimates for observational soil carbon down to a depth of up to 2.3m

(Shangguan et al., 2014), and (4) the Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS) estimate of soil

carbon to a depth of 1m, derived by the Oak Ridge National Laboratory Distributed Active Archive Centre (ORNL DAAC)

(IGBP, 2000). These datasets were combined to obtain a mean estimate for observational soil carbon down to a depth of 1m,185

where a global total soil carbon value of 1560 ± 214 PgC was found. This estimate is consistent with our benchmark dataset

estimate and further improves the confidence in our benchmark soil carbon estimate.

Furthermore, the spatial correlation coefficients between these additional datasets and our benchmark dataset are consid-

ered, where the following values correspond to the above datasets: (1) 0.554, (2) 0.625, (3) 0.482, and (4) 0.622. Map plots

comparing the empirical soil carbon datasets are shown in Fig. A1. The estimate for northern latitude total soil carbon has190

greater uncertainties associated with it, where the standard deviation deduced by combining the empirical datasets is 83 PgC.
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To account for this increased uncertainty in these regions, the deduced standard deviation of 83 PgC is used on the benchmark

soil carbon throughout this study, opposed to the 61 PgC derived using the Todd-Brown et al. (2013) uncertainty analysis.

2.3.2 Carbon fluxes

To estimate a benchmark NPP, the commonly used MODIS NPP (2000-2010) dataset (Zhao et al., 2005) is used. The MODIS195

NPP dataset does not have associated uncertainty estimates, so this study estimates a standard deviation error on benchmark

NPP as derived by Ito (2011). The MODIS NPP dataset is found to be consistent with 251 empirical present day estimates

of NPP found in the literature, which Ito (2011) used to estimate a global value of 56.2 ± 14.3 PgC yr−1 (compared with

a derived MODIS mean value of 56.6 yr−1). Moreover, due to the limited choice of observational derived NPP datasets

(Harper et al., 2018), models can be further evaluated against using a benchmark dataset for Rh, where Rh is estimated using200

the CARDAMOM (2001–2010) heterotrophic respiration dataset (Bloom et al., 2015). The empirical CARDAMOM Rh has

associated estimates of error, which were used to derive a standard deviation uncertainty on the empirical average Rh (51.7 ±
21.8 PgC yr−1). This study includes map plots comparing the two empirical datasets, which is shown in Fig. A2. Global totals

for Rh are also considered for comparison against NPP, where the CMIP6 and CMIP5 values are also shown in Appendix

Tables A1 and A2, respectively.205

2.3.3 Soil carbon turnover time

To estimate a benchmark τs, the estimates of observational Cs are divided by an estimate of Rh (see Eq. 1). To estimate an

uncertainty on effective global τs, this study derived upper (τ+s ) and lower (τ−s ) bounds based on the derived Cs and Rh

uncertainty estimates. The upper bound was calculated using the following: τ+s = C+
s / R−

h , where C+
s is equal to the mean

soil carbon plus one standard deviation and R−
h is equal to the mean heterotrophic respiration minus one standard deviation.210

The lower bound was calculated using the following: τ−s = C−
s / R+

h , where similarly C−
s is equal to the mean soil carbon

minus one standard deviation and R+
h is equal to the mean heterotrophic respiration plus one standard deviation. This method

gives a large uncertainty bound around the derived mean estimate (27.0+27
−11 yr), so the benchmark data is further compared to

empirical estimates. Raich and Schlesinger (1992) derive an estimate of mean soil carbon turnover of 32 yr, using estimates for

mean soil carbon pools and mean soil respiration rates. More recently, Carvalhais et al. (2014) derive an estimate for the mean215

global ecosystem carbon turnover time of 23+7
−4, which is a spatially explicit and observation based estimate. Ito et al. (2020)

derived an observational uncertainty range on soil carbon turnover time of 18.5 to 45.8 years, which was derived using similar

empirical estimates found in the literature. These estimates give more certainty on the values closer to the derived empirical

mean value for τs.

2.3.4 Soil moisture and air temperature220

To estimate soil moisture (θ), the Copernicus Climate Change Service (C3S) ‘Soil moisture gridded data from 1978 to present’

dataset (published 2018-10-25) is used, where the years 1978 to 2000 are considered. This dataset is based on the ESA Climate
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Change Initiative soil moisture, and estimates global surface soil moisture from a large set of satellite sensors (Copernicus

Climate Change Service, 2021; Liu et al., 2011, 2012; Wagner et al., 2012; Gruber et al., 2017; Dorigo et al., 2017). The

WFDEI Meteorological Forcing dataset is used to represent observational air temperatures (1995-2005) (Weedon et al., 2014),225

where dates are chosen to allow for consistency between CMIP generations. This study includes no uncertainty analysis on

the soil moisture and air temperature empirical datasets as these datasets are only used to evaluate spatial correlations between

variables and not to evaluate soil moisture and air temperature in the models.

2.4 Regridding

To allow direct comparisons between the empirical data and model output data, the model data was regridded to match the230

observational grid. In this case, the observational grid is a 0.5◦ by 0.5◦ resolution, 720 longitude and 360 latitude grid. The

regridding was done using Iris - the community-driven Python package for analysing and visualising Earth science data (Met

Office, 2010 - 2013). The regidding method assumed conservation of mass and used linear extrapolation, where extrapolation

points will be calculated by extending the gradient of the closest two points. Moreover, model land masks are used to calculate

the fraction of land in each coastal grid cell (CMIP variable sftlf ).235

2.5 Statistical analysis

It is difficult to evaluate the spatial distributions of modelled soil carbon and related spatial controls against empirical data

with a single metric, so the evaluation for both CMIP6 and CMIP5 involves multiple methods. These include: coefficients of

variation, spatial standard deviations, spatial Pearson correlation coefficients and Root Mean Square Errors (RMSEs). These

methods can be combined to give a more thorough evaluation of spatial soil carbon and associated controls in the CMIP6240

models compared to the previous generation of CMIP5 models.

The coefficient of variation is defined as the ratio of the ensemble standard deviation (std) to the ensemble mean in each grid

cell. This is used to show the amount of variability amongst the models in the ensemble scaled to the size of the ensemble mean,

so represents the variability spatially in the ensemble and shows how much variation is present across the ensemble in specific

regions. It is presented as hatching on a map figure (Fig. 3), where shaded ‘hatched’ regions show regions of high variability245

within the ensemble. These regions show areas where there is disagreement in the ensemble as there is large spread compared

with the mean, and was defined as where std/mean > 0.75. The regions where spatial Cs < 5 kg m2 were discounted as the

low values of soil carbon are present in these regions.

The spatial standard deviation is a measure of the spread in the data across the globe compared to the mean value. Pearson

correlation coefficients (r-values) were used as a spatial measure of the linear correlation between the empirical and modelled250

data, where a high r-value (near 1 or -1) represents a high correlation in the data and a low r-value (near 0) represents a

negligible correlation. RMSE were used as an absolute measure of the difference between the modelled data and empirical

data, where the lower the value the lower the difference error. The RMSE can be considered as the standard deviation of the

difference, and it is a measure to show the deviation of the modelled data in relation to the empirical data. This statistical data:

spatial standard deviations, Pearson correlation coefficients, and RMSEs, can be presented using a Taylor diagram. A Taylor255
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diagram is a mathematical graph used to indicate the performance of a model compared with a benchmark, which in this case

is the empirical datasets (Taylor, 2001).

3 Results

3.1 Soil carbon stocks: northern latitude underestimations remain in CMIP6

3.1.1 Global total evaluation260

Global total soil carbon (in the top 1m of soil) is shown to vary amongst the ESMs in CMIP6, with a range of 1294 PgC between

the models with the lowest and the highest values (Table 4). The global total soil carbon for two (CanESM5 and MIROC-ES2L)

out of the eleven CMIP6 models falls within the benchmark soil carbon uncertainty range, 1197 - 1627 PgC (mean ± stand

deviation). The models with the largest global total soil carbon are CNRM-ESM2-1 (1810 PgC), BCC-CSM2-MR (1770 PgC),

and UKESM1-0-LL (1760 PgC), values greater than the benchmark dataset but not the additional empirical datasets (Table 3).265

The models GFDL-ESM4 (516 PgC) and IPSL-CM6A-LR (639 PgC) have the lowest global total soil carbon values in the

ensemble, with global totals significantly lower (approximately 50% less) than the global totals seen in empirical data. It is

noted that if the full soil carbon profile is considered for CESM2 and NorESM2-LM opposed to a depth of 1m, the global total

soil carbon values are increased to 1870 PgC from 991 PgC in CESM2, and to 2430 PgC from 969 PgC in NorESM2-LM.

Both the CMIP5 and CMIP6 ensemble mean global totals fall within the benchmark uncertainty range (Tables 4 and 5). The270

ensemble mean global total soil carbon is found to have reduced in CMIP6 from CMIP5 (1206 ± 445 PgC Vs 1480 ± 810

PgC). However, a significant reduction is seen in the associated standard deviation of the ensemble mean global totals is seen

in CMIP6 compared with CMIP5 (± 445 PgC in CMIP6 from ± 810 PgC in CMIP5) and a reduced range of global total values

(a range of 1294 PgC is seen in CMIP6 opposed to 2493 PgC in CMIP5). This suggests that although a significant range in

global soil carbon still exists amongst the CMIP6 ESMs, there is an improved consistency between the models seen in CMIP6275

compared with the models in CMIP5. Although it is noted that this may be a factor of the selection of models included in each

ensemble rather than any change in process representation.

It is found from comparing the previous generation models in CMIP5 with the updated CMIP6 equivalent, that multiple

models in CMIP6 have lower quantities of soil carbon than in CMIP5, such as: GFDL-ESM4 from GFDL-ESM2G, IPSL-

CM6A-LR from IPSL-CM5A-LR, MIROC-ES2L from MIRCO-ESM and MPI-ESM1.2-LR from MPI-ESM-LR. For example,280

the CMIP5 model MPI-ESM-LR is reported to have the largest soil carbon magnitude amongst the CMIP5 models, with a

global total of 3000 PgC (Table 5), whereas the updated CMIP6 model MPI-ESM1.2-LR has a reduced global total soil carbon

value of 970 PgC, amongst the lowest values reported in CMIP6 and below observational derived range (Table 4). Conversely,

these reductions are negated in the ensemble mean by the remaining models which have greater quantities of soil carbon in

CMIP6 compared to their CMIP5 equivalent, such as CanESM5 from CanESM2, CESM2 from CCSM4, NorESM2-LM from285

NorESM1-M and UKESM1-0-LL from HadGEM2-ES. For example, the CMIP5 model NorESM1-M is amongst the lowest
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soil carbon values presented in this ensemble at 538 PgC (Table 5), whereas the updated CMIP6 model NorESM2-LM has an

increased global total of 969 PgC (down to 1m) (Table 1).

3.1.2 Northern latitude total evaluation

Northern latitude soil carbon (down to a depth of 1m, and where northern latitudes defined as 60◦ N - 90◦ N) is found to be290

underestimated in CMIP6, with eight out of the eleven CMIP6 models having lower northern latitude soil carbon values than the

derived observational range (Table 4). Two out of eleven CMIP6 models (CNRM-ESM2-1 and MIROC-ES2L) have northern

latitude totals that fall within the uncertainty range derived from the benchmark data, 318 - 484 PgC (mean ± stand deviation).

The CMIP6 models with the greatest northern latitude total soil carbon are BCC-CSM2-MR (575 PgC), CNRM-ESM2-1 (440

PgC), and MIROC-ES2L (347 PgC). The CMIP6 models with the lowest northern latitude soil carbon are IPSL-CM6A-LR295

(66 PgC), ACCESS-ESM1.5 (151), GFDL-ESM4 (163 PgC), MPI-ESM1.2-LR (175 PgC) and UKESM1-0-LL (194), values

significantly lower than the totals seen in empirical data.

The northern latitude soil carbon total was also underestimated in CMIP5, with six out of the ten CMIP5 models estimating

northern latitude totals lower then the empirical estimates (Table 5). The ensemble mean total northern latitude soil carbon is

lower in CMIP6 (266 ± 139 PgC seen in Table 4) than in CMIP5 (318 ± 246 PgC seen in Table 5), which is consistent with300

the global total results, however both the CMIP5 and CMIP6 mean values fall below the benchmark range. Similarly, as with

global soil carbon, a smaller standard deviation on the mean is found for CMIP6 compared with CMIP5 and there is a reduced

range in simulated northern latitude total values amongst the CMIP6 models, where despite a large range seen (66 to 575 PgC),

an even greater range is seen in CMIP5 (28.1 to 742 PgC). Moreover, improvements are seen amongst models from CMIP5

to CMIP6. For example, the CMIP5 model NorESM1-M had a northern latitude total soil carbon value of 31.0 PgC, which305

is significantly lower than what is expected based on the benchmark dataset (Table 5). However, the updated CMIP6 version

of this model, NorESM2-LM, has a northern latitude total soil carbon value of 300 PgC, which is much more in line with

the expected observational values (Table 4). An improved representation of northern latitude soil carbon is also seen CESM2

(compared with CCSM4), which has the same land surface model as NorESM2-LM (CLM5 (Lawrence et al., 2019)).

The CMIP6 models with the lowest global total values for soil carbon do not always correspond with the lowest northern310

latitude values for soil carbon. For example, UKESM1-0-LL global total soil carbon is amongst the highest global totals seen

in CMIP6, however low quantities of soil carbon are seen in the northern latitudes (approximately 10% of the global total).

Conversely, BCC-CSM2-MR, CESM2, GFDL-ESM4, and NorESM2-LM have approximately 30% of their global total stocks

in the northern latitude region, which is consistent with the ratio seen in the benchmark dataset. This result suggests that

representing global total soil carbon stocks consistent with the benchmark soil carbon, does not imply the consistency in the315

representation of northern latitude soil carbon stocks, and these should be evaluated separately. However, the large uncertainties

associated with the empirical datasets for the northern latitudes are noted (Table 3).
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3.1.3 Spatial evaluation

A lack of consistency in the simulation of soil carbon was found amongst the CMIP5 models, which can be seen in Fig.

1(a), where differences between the empirical and modelled data is shown. Northern latitude soil carbon was found to be320

underestimated in CMIP5, where areas of blue can be seen in the northern latitudes of the CMIP5 soil carbon map in Fig.

1(a). This underestimation of CMIP5 northern latitude soil carbon is accompanied by significant overestimations seen in mid-

latitude soil carbon. Specifically, large quantities of soil carbon which are inconsistent with our benchmark dataset can be

seen in the mid-latitude regions in the following CMIP5 models: CanESM2, GFDL-ESM2G, GISS-E2-R, MIROC-ESM, and

MPI-ESM-LR, and less significant overestimations are seen in HadGEM2-ES and IPSL-CM5A-LR (Fig. A3). Systematic325

errors remain in the CMIP6 models, however there are some improvements seen in the spatial simulation of soil carbon

from CMIP5. Soil carbon is still underestimated in the northern latitudes, where the areas of blue still remain the northern

latitudes of the CMIP6 soil carbon map in Fig. 1(a), though regions of overestimations in the northern latitudes are also seen

amongst the CMIP6 models in BCC-CSM2-MR, CESM2, CNRM-ESM2-1, and NorESM2-LM (Fig. 2), but it is noted that

this representation might be more consistent with observations if a dataset including deeper soil carbon stocks was considered.330

CMIP6 shows improvements in the representation of mid-latitude soil carbon, where less of an overestimation is seen in CMIP6

compared with CMIP5 (Fig. 1(a)). This overestimation can still be seen in four of the eleven CMIP6 models: ACCESS-

ESM1.5, CanESM2, MIROC-ES2L and UKESM1-0-LL, however the overestimations in CMIP6 are less inconsistent than

when compared with CMIP5 and the number of models showing this limitation in CMIP6 has been reduced (Fig. 2).

Despite the differences seen in the spatial representation of soil carbon between the individual models in CMIP6, the ensem-335

ble mean has more areas of agreement within the ensemble compared to the ensemble mean in CMIP5. This can be seen in Fig.

3(a), where there is less hatching (where hatched shaded areas represent regions of low agreement amongst the models in the

ensemble, see methods) in the CMIP6 map compared with the CMIP5 map. Specifically, ensemble mean soil carbon in CMIP6

has more areas of agreement in the mid-latitude region compared with the CMIP5 ensemble mean, where significant areas of

disagreement are seen. This disagreement is likely due to the overestimation which exists in some of the CMIP5 models (Fig.340

A3). Also, a reduction in the area of disagreement is seen in the northern latitudes in CMIP6 compared with CMIP5, however

this remains the region where the most disagreement exists across the generations. It is noted that this is a measure of agree-

ment within the ensemble and not between the models and empirical data, so is dependent on choice of ensemble members

(see Figures A6 and A7 for individual model maps).

The inconsistency of the simulation of spatial soil carbon in CMIP6 is further evaluated using the spatial standard deviations,345

the spatial Pearson correlation coefficients and RMSEs (see Methods), where the Taylor Diagram (Fig. 4(a)) presents all three

statistical assessments. The spatial standard deviation for soil carbon is shown on the radial axis between standard x and y

axes in Fig. 4(a). The range of spatial standard deviations amongst the CMIP6 models sees a slight reduction from the range

amongst the CMIP5 models, though significant differences remain. The CMIP6 models CNRM-ESM2-1, MIROC-ES2L and

UKESM1-0-LL best match the spatial standard deviation derived from the benchmark dataset (Tables 4 and 5). It is found350

that the spatial representation of modelled soil carbon in CMIP6 is poorly correlated to the empirical soil carbon, where the
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CMIP6 ensemble spatial correlation coefficient with the empirical data is found to be 0.250. The spatial correlation coefficients

between the individual CMIP6 and CMIP5 models with the empirical data can also be seen in Fig. 4(a), where the low spatial

correlation coefficients are shown by the curved correlation axis. The lowest spatial correlation coefficients amongst the CMIP6

models were r-values of 0.104 in IPSL-CM6A-LR and 0.115 in UKESM1-0-LL. The CMIP6 model that was the most spatially355

consistent with the empirical data is CNRM-ESM2-1, with an r-value of 0.630. The CMIP6 ensemble sees a slight reduction

in the RMSE compared to the CMIP5 ensemble, suggesting a slight improvement (Fig. 5(a)). Significant improvements in the

RMSE are seen in MIROC-ES2L from MIROC-ESM and MPI-ESM1.2-LR from MPI-ESM-LR. These results suggest small

improvements in the simulation of soil carbon across this CMIP generation, however the low spatial correlation coefficients

and variable RMSEs seen across the models in CMIP6 suggest inconsistencies with the benchmark data remain.360

3.2 Net Primary Productivity: improved in CMIP6 relative to CMIP5

3.2.1 Global total evaluation

Global total NPP amongst the CMIP6 models appears to be consistent with the benchmark dataset (Table 6), where the CMIP6

ensemble mean for NPP is approximately 95% of the benchmark mean. The CMIP6 ensemble mean global total NPP (53.0

± 9.39 PgC yr−1) is found to be slightly lower than the derived mean benchmark value, however it is comfortably within the365

observational uncertainty range (56.6 ± 14.3 PgC yr−1). The equivalent values for the CMIP5 models can be seen in Table 7,

where the CMIP5 ensemble total is also found to be within the observational uncertainty range (56.3 ± 15.4 PgC yr−1).

The standard deviation surrounding the CMIP5 ensemble mean is greater than in CMIP6. This reduced standard deviation in

CMIP6 is because several of the models have a simulated global total NPP that more closely matches the benchmark NPP global

total value compared with the previous CMIP5 generation. For example, GFDL-ESM4 from GFDL-ESM2G, IPSL-CM6A-LR370

from IPSL-CM5A-LR, MIROC-ES2L from MIROC-ESM, MPI-ESM1.2-LR from MPI-ESM1-M, and UKESM1-0-LL from

HadGEM2-ES. The majority of CMIP6 models see a reduction in NPP from the CMIP5 equivalent model, which in general

reduces the overestimation of NPP that was seen in the CMIP5 models (Table 7 and 6). However, is was not the case for

CanESM5 from CanESM2 which sees an increase in the magnitude of NPP from CMIP5 to CMIP6, resulting in a consequent

overestimation compared to the benchmark data. A reduced range of modelled global total NPP values is also seen in CMIP6375

from CMIP5, where the range is reduced from 48.5 PgC yr−1 in CMIP5 to 32.7 PgC yr−1 in CMIP6. These results suggest

that overall the representation of carbon fluxes in CMIP6 ESMs is more consistent than in CMIP5.

3.2.2 Spatial evaluation

Modelled NPP in CMIP6 appears to be spatially more consistent with empirical data than CMIP5. This is suggested by Fig.

1(b), where the difference between the modelled and benchmark NPP is shown for both CMIP5 and CMIP6. It can be seen in380

the CMIP5 map that NPP is overestimated in the tropical regions, specifically in Africa and South East Asia, and the equivalent

CMIP6 difference map shows a clear reduction in this overestimation. This tropical overestimation of NPP prominent in CMIP5

(Fig. A4), is still seen in the CMIP6 models CanESM5, MPI-ESM1.2-LR and UKESM1-0-LL. However, this is not seen in the
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CMIP6 ensemble mean as it is likely negated by underestimations seen in CESM2, CNRM-ESM2-1, and NorESM2-LM (Fig.

6). CMIP6 also sees more consistency with the benchmark dataset in the northern and mid-latitudes compared with CMIP5,385

where more white areas are seen in the CMIP6 map in Fig. 1(b). An underestimation of NPP is seen in both CMIP5 and CMIP6

on the west side of South America, though unusually high NPP is seen in this region in the MODIS NPP dataset (Fig. A2).

Moreover, greater agreement amongst the models within CMIP6 is seen compared the models in CMIP5. This can be seen in

Fig. 3(b), where less hatching representing areas of disagreement within the ensemble is seen in the CMIP6 compared with

CMIP5. Specifically, CMIP6 sees less hatching in the northern latitudes, the Middle East and South East Europe, as well as390

regions in South America, South Africa and Australia (see Figures A8 and A9 for individual model maps).

The improved empirical consistency of modelled NPP in CMIP6 is also suggested when further evaluated using the same

spatial metrics as with soil carbon. Despite a small range remaining in the spatial standard deviations amongst the CMIP6

models (shown by the radial axis in Fig. 4(b)), robust improvements in the spatial correlation coefficients (shown by the curved

axis in Fig. 4(b)) and RMSEs are seen across the ensemble compared with CMIP5 (Fig. 5(b)). Notable improvements in395

the representation of NPP are seen in GFDL-ESM4 compared with GFDL-ESM2G, IPSL-CM6A-LR compared with IPSL-

CM5A-LR, and UKESM1-0-LL compared with HadGEM2-ES, with reduced RMSEs seen in each updated model. A general

improvement in the spatial correlation coefficients is seen across all the CMIP6 models, where the circle markers (CMIP6

models) in Fig. 4(b), have higher correlation values than the cross markers (CMIP5 models). The general improvement has

resulted in the CMIP6 ensemble correlation coefficient (0.836) being greater compared with the equivalent CMIP5 value400

(0.711). The lowest correlations between modelled and observed NPP amongst the CMIP5 models are GISS-E2-R (0.274)

and CanESM2 (0.469). The updated version CanESM5 remains the lowest correlation seen in CMIP6 (0.655), however an

improvement in the correlation is seen. The updated version of the GISS model is not included in the CMIP6 ensemble

considered in this study, which could be a reason for the increased ensemble mean correlation. However, this effect does not

take away from the improvements seen across the CMIP6 models. HadGEM2-ES (0.764) and MPI-ESM-LR (0.764) were the405

CMIP5 models with the highest correlation to the benchmark NPP, and the updated CMIP6 equivalents of these models remain

the models with the greatest correlations, but again improvements in the correlations are seen (0.816 in UKESM1-0-LL and

0.785 MPI-ESM1.2-LR).

3.3 Soil carbon turnover time: no major improvements in CMIP6 compared to CMIP5

3.3.1 Global evaluation410

There are minor improvements suggested in the simulated effective global τs amongst select CMIP6 models (Table 6) compared

with CMIP5 (Table 7). The ensemble mean effective global τs was overestimated in CMIP5 (37.8 ± 19.7 yr) when compared

with the derived mean τs using the benchmark datasets (27.0+27
−11 yr), which is reduced to a less significant underestimation

in CMIP6 (23.3 ± 8.59 yr). Though both the CMIP5 and CMIP6 estimates fall within the observational uncertainty range.

The associated ensemble spread on effective mean τs is less in CMIP6 compared with CMIP5, with a ensemble standard415

deviation of approximately 50% less. A significant range is seen in the effective global τs values amongst the CMIP5 models,
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with 5 fold difference between the lowest and the highest values (Table 7). This range is mostly due to large overestimations

seen amongst the CMIP5 models, for example in CanESM2, GFDL-ESM2G and MIROC-ESM. A reduced range is seen in

amongst the models in CMIP6, however a 4 fold range still exists between the lowest and the highest values (Table 6). This

reduced range is partly due to reductions in the effective global τs values in CMIP6 models compared to the equivalent model420

in CMIP5, specifically, CanESM5 from CanESM2, GFDL-ESM4 from GFDL-ESM2G, MIROC-ES2L from MIROC-ESM,

and MPI-ESM1.2-LR from MPI-ESM-LR. Though overestimations do remain in CMIP6, for example in CNRM-ESM2-1,

where the slowest effective turnover time was seen. Moreover, the range is also reduced due to improvements seen in models

which underestimated τs in CMIP5, such as UKESM1-0-LL from HadGEM2-ES and CESM2 from CCSM4.

3.3.2 Spatial evaluation425

The comparison of spatial τs in CMIP6 with CMIP5 has more varied results than what was seen in simulated NPP. The CMIP5

ensemble showed an underestimation of τs in the northern latitudes, which is replaced with an overestimation of τs in CMIP6

when compared to the benchmark data (Fig. 1(c)). This northern latitude overestimation in the CMIP6 ensemble is a result of

the overestimations of τs in CESM2 and NorESM2-LM (Fig. 7), which dominate in the CMIP6 ensemble mean. It is noted

that this result may differ if deeper soil carbon stocks were considered. The northern latitude underestimation of τs is still430

seen within the CMIP6 models, such as CanESM5, CNRM-ESM2-1, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, MPI-

ESM1.2-LR, and UKESM1-0-LL (Fig. 7). An overestimation of mid-latitude τs was seen in the CMIP5 models MIROC-ESM

and MPI-ESM-LR (Fig. A5), which is no longer seen in the updated CMIP6 models MIROC-ES2L and MPI-ESM1-2-LR.

However, an overestimation of mid-latitude τs is seen in CMIP6 models BCC-CSM2-MR, CNRM-ESM2-1 and UKESM1-0-

LL (Fig. 7). The uncertainty in simulated northern latitude τs is also apparent in Fig. 3(c), where the hatching shows the lack435

of agreement within the CMIP6 ensemble in this region. However, more agreement within the CMIP6 ensemble is seen in the

same figure in the mid-latitudes and tropical regions compared with CMIP5 (see Figures A10 and A11 for individual model

maps).

The simulation of spatial τs in CMIP6 is further evaluated against the empirical data with the additional statistical metrics.

Modelled τs is found to be poorly spatially correlated to empirical τs in both the CMIP5 and CMIP6 models (shown by the440

curved axis in Fig. 4(c)). A slight increase in the ensemble mean spatial correlations is seen from CMIP5 (0.188) to CMIP6

(0.267), due to increases seen amongst individual models between CMIP5 and CMIP6, such as CESM2 from CCSM4, MPI-

ESM1.2-LR from MPI-ESM-LR, and NorESM2-LM from NorESM1-M. However, the consistency of modelled τs with the

benchmark datasets remains low. A particularly large range is seen in the spatial standard deviations of τs amongst the CMIP6

models, which is an increased range from CMIP5 (shown by the radial axis in Fig. 4(c)). The CMIP6 models with the most445

extreme overestimations of the spatial standard deviations compared to the derived benchmark value (NorESM2-LM, CESM2,

and ACCESS-ESM1.5), are also found to have large RMSEs (Fig. 5(c)). Amongst the remaining CMIP6 models, the RMSEs

for modelled τs remain relatively consistent between CMIP5 and CMIP6.
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3.4 Drivers of soil carbon spatial patterns: Soil carbon spuriously highly correlated with NPP in CMIP5 and CMIP6

3.4.1 Global drivers450

A negligible correlation (≈ 0) is found between the benchmark estimates of soil carbon and NPP, suggesting that soil carbon

is not spatially correlated to NPP in the real world. On the other hand, soil carbon and NPP (Cs-NPP) were found to be

significantly correlated in the models in both CMIP5 and CMIP6. The Cs-NPP spatial correlation was found to be greater

than 0.5 for six out of the ten CMIP5 ESMs and eight out of the eleven models in CMIP6 (Fig. 8(a)). However, a low spatial

correlation is found in the CMIP6 models CESM2 (0.134), NorESM2-LM (0.261), and BCC-CSM2-MR (0.214), values most455

consistent with the benchmark datasets. The Cs-τs spatial correlations found in the CMIP6 models tend to underestimate the

positive correlation seen in the benchmark datasets (Fig. 8(a)). The majority of CMIP6 models see a negligible or slightly

negative Cs-τs spatial correlation, despite a low positive correlation produced by the benchmark datasets. The models BCC-

CSM2-MR, MIROC-ES2L, and NorESM2-LM are most consistent with the benchmark Cs-τs correlation.

The modelled NPP to temperature (NPP-T) spatial correlations in CMIP6 are consistent with the positive relationship seen460

in the benchmark datasets, however the magnitude of this positive correlation varies amongst the models (Fig. 8(b)). The

magnitude of the positive NPP-T correlation is underestimated in CanESM5, GFDL-ESM4, and NorESM2-LM, but otherwise

relatively consistent amongst the CMIP6 models. Nonetheless, a much greater range in the modelled NPP-T correlations

was seen amongst the CMIP5 models, suggesting an improved representation of this relationship in CMIP6. The variation in

modelled NPP-θ correlations remains in CMIP6, with models disagreeing in the sign and magnitude of the correlation of NPP465

to soil moisture. The modelled NPP-θ correlation is the most consistent with the benchmark correlations in GFDL-ESM4,

MPI-ESM1.2-LR and UKESM1-0-LL (Fig. 8(b)).

It is generally agreed across the models in CMIP6 and CMIP5 that τs and temperature (T) are negatively correlated, with

the exception of MPI-ESM1.2-LR where a slight positive correlation is seen (Fig. 8(c)). This is consistent with the negative

τs-T correlation derived in the benchmark dataset. There is variation amongst the models in the magnitude of the negative470

correlation, with a significant overestimation seen in CanESM5. A negative correlation is also seen in the τs-θ correlation

derived with the benchmark datasets. Inconsistencies with this empirical relationship are seen amongst the models in both

CMIP5 and CMIP6, with many negligible and positive correlations deduced (Fig. 8(c)). The exception is again MPI-ESM1.2-

LR, which in this case is the model most consistent with the benchmark τs-θ correlation.

3.4.2 Regional drivers475

The spatial correlations of modelled Cs-NPP are shown to be overestimated at every latitude in both CMIP6 and CMIP5,

compared to the equivalent correlations derived from the empirical datasets. It can be seen that the CMIP6 ensemble mean

Cs-NPP correlation has an even larger positive bias compared to the benchmark correlation than in CMIP5. The empirical data

sees a reduced Cs-NPP correlation in the northern latitudes, whereas a slight but less significant reduction is seen in the models

(Fig. 9(a)). The spatial correlation between Cs-τs is shown to vary against latitude in the empirical datasets, where a greater480

correlation is seen in the tropical and northern latitude regions, and a negligible correlation is seen in the mid-latitudes (Fig.
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9(b)). The CMIP6 models simulate the negligible Cs-τs seen in the mid-latitudes relatively consistently with the benchmark

data, where an improved consistency is seen from CMIP5. However, the CMIP6 models do not simulate the tropical and

northern latitude positive Cs-τs correlations, where a negligible modelled correlation remains in these regions. CMIP5 is more

consistent with the benchmark correlations than in CMIP6, where a positive modelled correlation Cs-τs is seen (Fig. 9(b)).485

The spatial correlation between modelled soil carbon and soil moisture (Cs-θ) is consistent with the correlations seen in

the benchmark datasets at every latitude, with an improvement seen in the tropical correlation patterns in CMIP6 compared

with CMIP5 (Fig. 9(c)). Both the CMIP5 and CMIP6 ensembles span the benchmark Cs-θ correlation, though large model

ranges in the Cs-θ sensitivity are seen across all latitudes. However, there is a reduced ensemble spread in the Cs-θ correlation

from CMIP5 to CMIP6 in low and mid latitudes. An overestimation of the negative Cs-T correlation seen in the benchmark490

datasets is present in both the CMIP5 and CMIP6 models, except the high latitudes (Fig. 9(d)). This modelled Cs-T correlation

is particularly underestimated in the lower tropical latitudes, where a greater positive correlation is seen here in the benchmark

datasets. Fig. 9(d) suggests a slight improvement in the modelled tropical Cs-T correlation in CMIP6, and a worsening of

modelled Cs-T in the high latitudes than in CMIP5, when compared to the Cs-T correlations in the benchmark datasets.

4 Discussion495

4.1 Soil carbon stocks

4.1.1 Global total soil carbon

Simulating global soil carbon stocks that are consistent with empirical data is required to produce reliable projections of

future soil carbon storage and emission (Todd-Brown et al., 2013). This study deduces a CMIP6 ensemble mean global total

soil carbon of 1206 ± 445 PgC (Table 4), using regridded model resolutions (see methods). It is noted that Ito (2011) state500

a CMIP6 ensemble of 1553 ± 672 PgC, however the full soil carbon profile is considered for CESM2 and NorESM2-LM,

opposed to a depth of 1m considered in this study. Additionally, this study deduces a CMIP5 equivalent ensemble mean global

soil carbon value of 1480 ± 810 PgC (Table 5), using equivalent dates in the historical simulation (1950-2000). Todd-Brown

et al. (2013) state an ensemble mean soil carbon value of 1520 ± 770 PgC in CMIP5, however the Todd-Brown et al. (2013)

study includes the models BCC-CSM1.1, CESM1-CAM5 and INM-CM4, which are missing from the analysis in this study505

due to data availability. Anav et al. (2013) present a CMIP5 ensemble mean soil carbon value of 1502 ± 798 PgC, but this

calculation includes multiple model versions (for example, LR and MR) from the same modelling centre in their ensemble.

A caveat of this evaluation study is the non-independent nature of CMIP ESMs, where for example CESM2 and NorESM2-

LM share the same Land Surface Model (LSM). Additionally, the ensembles included here do not necessarily represent all

models that exist within each CMIP generation. However, the evaluation completed here allows for general improvements in510

the simulation of soil carbon stocks and fluxes between the CMIP5 and CMIP6 generations to be noted, and key areas for

future model development to be highlighted.
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Despite a suggestion of a reduced spread in model estimates of global total soil carbon within CMIP6 relative to CMIP5,

discrepancies remain in the consistency of these estimates with the observations between the two CMIP generations. It should

also be noted that CMIP6 does not simply contain updated versions of every model in CMIP5, some new models are included515

and some CMIP5 models not included in CMIP6. These factors together with the uncertainty associated with empirical datasets

has resulted in no robust conclusion being drawn on the improvement of soil carbon simulation in CMIP6 compared to CMIP5.

Due to the potential significant feedback that exists between soil carbon and global climate, this lack of consistency reduces

our confidence in future projections of climate change (Friedlingstein et al., 2006; Gregory et al., 2009; Arora et al., 2013;

Friedlingstein et al., 2014).520

4.1.2 Spatial soil carbon patterns

Modelled soil carbon was found to be poorly spatially correlated with the empirical data amongst models in both CMIP5 and

CMIP6 (Fig. 4(a)). An improvement in CMIP6 ESMs was seen in the spatial patterns across the mid-latitudes, which were

generally overestimated in CMIP5. However, significant underestimations of modelled soil carbon in the northern latitudes

still remain, which have a significant impact on model predictions of global total soil carbon stocks (Fig. 1(a)). This systematic525

underestimation was previously reported in the literature as a limitation of the CMIP5 models, where Todd-Brown et al. (2013)

found northern latitude soil carbon to be less consistent with the empirical data than on a global scale. This limitation remains

amongst models in the CMIP6 generation, where it was found that the majority of CMIP6 models underestimate northern

latitude soil carbon stocks regardless of whether the global soil carbon stocks are underestimated.

However, an exception to this northern latitude underestimation is seen within CMIP6 in the models CESM2 and NorESM2-530

LM. These ESMs include the land surface model (LSM) CLM5 (Lawrence et al., 2019), which is the first LSM to include the

representation of vertically resolved soil carbon in their CMIP simulations. This representation enables the inclusion of separate

carbon pools at varying depths in the soil, which aims to more consistently simulate soil carbon with the real world (Koven

et al., 2013). This is of particular importance in the northern latitudes, where carbon stocks are expected to exist at much

greater depths than the 1m considered in this study (Tarnocai et al., 2009; Ran et al., 2021). This can be seen in Table 3, where535

increased magnitudes of soil carbon stocks are shown when increased depths are considered using the empirical datasets. A

more thorough evaluation of soil carbon in both CESM2 and NorESM2-LM is suggested for future research, with a particular

focus on this improved northern latitude soil carbon stocks simulation, however this evaluation of deeper soil carbon stocks

(below 1m) is beyond the scope of this study.

Accurately simulating soil carbon in the northern latitude regions is of particular importance as it is a major part of the total540

global soil carbon pool (Jackson et al., 2017). Additionally, much of the carbon stored in these soil is held within permafrost,

which is known to be particularly sensitive to climate change. Permafrost thaw under climate change has the potential to release

significant amounts of carbon into the atmosphere over a short period of time with increased warming (Schuur et al., 2015;

Zimov et al., 2006; Burke et al., 2017; Hugelius et al., 2020), representing a significant feedback within the climate system.

Permafrost dynamics are generally poorly represented in ESMs, where Burke et al. (2020) found CMIP6 ESMs to have a similar545

representation compared with CMIP5. Underestimating soil carbon in the northern latitudes may result in underestimating the
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impact of this feedback in future climate change projections. Future improvements are needed to improve the simulation of

soil carbon stocks globally, but particularly within the northern latitudes.

4.2 Drivers of soil carbon change

To allow for a more in-depth understanding of the inconsistencies found between modelled and empirical soil carbon, the550

simulation of above and below ground controls of soil carbon were also evaluated. Simulations of contemporary soil carbon

can be disaggregated into the effects of litterfall, which is well approximated by plant Net Primary Productivity (NPP), and

effective soil carbon turnover time (τs), which is affected by both temperature and moisture of the soil (Koven et al., 2015).

If models are to reliably simulate soil carbon in a way that is consistent with empirical data, the spatial drivers of soil carbon,

NPP and τs, must also be simulated consistently with empirical data. Isolating the effects of NPP and τs on soil carbon helps555

us to break down the simulation of soil carbon to help understand the limitations and inconsistencies seen amongst the models.

4.2.1 NPP

An improved simulation of NPP is suggested in the ESMs included from CMIP6, compared with the ESMs from CMIP5. This

conclusion is suggested by: an increased number of models in our CMIP6 ensemble have global total NPP values consistent

with empirical data (Table 6), the overestimation of tropical NPP amongst CMIP5 models is seen to be reduced amongst560

the CMIP6 models (Fig. 1(b)), and more agreement is seen within CMIP6 relative to CMIP5 in the simulation of mid and

northern latitude NPP (Fig. 3(b)). Modelled NPP was found to be robustly more consistent with the empirical data in our

CMIP6 ensemble compared with the CMIP5 ensemble in all statistical evaluation metrics. Since CMIP5, multiple models

have seen an addition of a dynamic nitrogen cycle (Davies-Barnard et al., 2020), where the models with nitrogen cycles are

highlighted in Fig. 5 by the shaded bars. The results suggest an improvement in the simulation of NPP with the addition of565

dynamic nitrogen in models. However, CMIP6 models that do not represent a nitrogen cycle also mostly see improvements in

the simulation of NPP, suggesting NPP is more constrained by observations in the newest generation of models. CanESM5 is

the only ESM within CMIP6 included here to not see an overall improvement in the simulation of NPP, where NPP is found to

be overestimated compared with the benchmark dataset. It is likely that the inclusion of a nitrogen cycle in this model would

limit this overestimated NPP and improve consistency with the observations (Zhang et al., 2014; Exbrayat et al., 2013).570

Despite this apparent improved simulation of NPP in CMIP6, the spatial correlation between modelled soil carbon and

NPP was found to be inconsistent with the equivalent empirically derived relationship. This result was previously shown for

the CMIP5 models (Todd-Brown et al., 2013), and has been more recently shown for the CMIP6 models (Georgiou et al.,

2021), both agreeing with the results found here. The majority of CMIP6 models were found to have positive Cs-NPP spatial

correlations, opposed to a negligible spatial correlation found in the observations (Fig. 8(a)). Despite NPP driving the spatial575

pattern of soil carbon stocks due to carbon input from vegetation, a positive correlation was not expected in the real world due

to regions with high soil carbon not correlating with regions of high NPP. For example, in the observational derived data soil

carbon stocks are greatest in the northern latitudes due to long turnover times in these regions, whereas NPP is lower due to cold

temperatures in these regions limiting vegetation growth. The three CMIP6 models which did not significantly overestimate
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this correlation (CESM2, NorESM2-LM, and BCC-CSM2-MR) are three of the models with the most empirically consistent580

proportion of soil carbon stocks in the northern latitudes. Conversely the tropical regions see high NPP values, but warmer

temperatures result in faster turnover times and lower soil carbon stocks. NPP is expected to increase in the future under

climate change (Kimball et al., 1993; Friedlingstein et al., 1995; Amthor, 1995), which means an overly positive correlation

in models could result in a subsequent increase in modelled projections of soil carbon stocks. An overestimation of future soil

carbon storage could result in an overestimation of the future carbon sink and an inaccurate global carbon budget (Todd-Brown585

et al., 2013; Friedlingstein et al., 2022).

4.2.2 Soil carbon turnover time

The systematic improvements suggested from the evaluation of NPP simulation within our CMIP6 ensemble are not suggested

for the simulation of τs, where the simulation of τs appears to remain inconsistent with the empirical data in CMIP6 from

CMIP5. Improvements are suggested within CMIP6 relative to CMIP5, such as more agreement within the ensemble in the590

mid-latitudes and tropical regions, however less agreement is seen in the northern latitudes (Fig. 3(c)). Northern latitude τs

is generally underestimated in models, which corresponds to the underestimation of soil carbon seen in these regions. This

has been previously identified in ESMs, where it was found that the underestimation of global τs amongst the CMIP5 models

is primarily due to low values in the northern latitudes (Wu et al., 2018). The reduced agreement in CMIP6 is due to long

τs values existing in the northern latitudes of CESM2 and NorESM2-LM, alongside the general ensemble underestimations595

(Fig. 7). The increased northern latitude τs values in CESM2 and NorESM2-LM are likely to be due to the representation

of vertically resolved soil carbon pools, which allows for differential τs values for pools at varying depths. Despite these

individual improvements since CMIP5, large discrepancies exist within the CMIP6 ensemble between modelled and empirical

τs.

To simulate τs consistently with observations, the relationship of τs to both temperature (T) and moisture (θ) must also be600

simulated in a way that is consistent with observations. Generally, the τs-T relationship is consistently simulated, however

there is variation in the modelled temperature sensitivity of τs across the ensemble. The τs-θ relationship is less consistently

represented, where the majority of CMIP6 models do not match the empirically derived relationship. Despite a positive depen-

dence of soil respiration on soil moisture in the empirical data, many of the CMIP6 models display a contradictory positive

τs-θ correlation (Fig. 8). Many of the models use functions that increase respiration with soil moisture (see Section 2.1) so the605

increase of τs with increasing soil moisture indicated by positive τs-θ correlations in the models is unexpected. We note that

this effect occurs most strongly in the models with a very strongly negative τs-T relationship (Fig. 8(c)), so it could in fact

be an artefact of a negative correlation between temperature and soil moisture. In this context it is also important to consider

what soil moisture in LSMs represents (Koster et al., 2009). The aim within models is to act as the lower boundary condition

for atmospheric models, therefore their soil parameters may historically have been tuned to give appropriate evaporation rates610

and not necessarily to represent the soil moisture itself in an accurate way, so it may be more relevant to consider the large-

scale emergent patterns of τs than the direct relationships between soil moisture and respiration. It is noted that the empirical

relationship shows τs reducing with higher soil moisture, which suggests that the observations are picking up more on longer
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turnover times in dry areas rather than in saturated areas such as peatlands. This may be due to having only surface soil mois-

ture information, whereas peatlands, while saturated at depth, typically have a water table ∼10 cm below the surface and can615

be very dry at the surface (Evans et al., 2021). Thus while models do not include the necessary processes for peat formation

(Chadburn et al., 2022), this is unlikely to be the cause of the discrepancy since it would lead to even more of a positive τs-θ

correlation in the models.

Different processes control soil carbon formation in different ecosystems, including stabilisation by clay particles, trans-

formation by microbes, nitrogen and phosphorous availability, etc. (Witzgall et al., 2021). In the present study, the largest620

discrepancies in both soil carbon and turnover times are seen in permafrost and peatland areas (see Fig. 2 and Fig. 7). For

example, the west Siberian peatland complex stands out on the majority of the panels in these figures as an area of high model

error. This is partly because the soil carbon turnover times and quantities of soil carbon are largest in these regions, but also

partly due to the specific controlling processes in these ecosystems. A key part of soil carbon development in permafrost regions

is the fact that organic material can be preserved in frozen soil, including via cryoturbation and yedoma deposits, which have625

not yet been thoroughly represented in models (Beer, 2016; Zhu et al., 2016). There are a variety of other factors, such as plants

storing significantly more of their carbon below ground instead of above ground in cold climates, and recalcitrant vegetation

such as mosses, which are not represented in most ESMs (Sulman et al., 2021). Peatland formation is controlled primarily

by waterlogging, which reduces oxygen available for decomposition, but there are a huge number of additional physical and

biogeochemical feedbacks that take place (Waddington et al., 2015). These kinds of small-scale processes and inhomogeneities630

are difficult to resolve in global models with ∼100 km2 grid cells, and this should be weighed up against their relative impact

on global carbon budgets when considering including these processes in ESMs. However, it is suggested that the large-scale

discrepancies such as in the permafrost and large peatland areas can and should be resolved in future model versions.

Our results suggest much of the uncertainty associated with modelled soil carbon stocks can be attributed to the simulation

of below ground processes. The apparent improved consistency of NPP with empirical data suggests considerable efforts635

have been made to achieve an improved representation of above ground processes in CMIP6 ESMs since the release of the

CMIP5 ensemble. However, the same improvements are not apparent in the simulation of τs as systemic limitations remain

in the new generation of ESMs considered in this study, suggesting the same progress on the model development of below

ground processes has not been achieved between CMIP5 and CMIP6. Moreover, focus on above ground processes without

consideration of below ground processes can result in inconsistencies of soil carbon stocks. For example, the inclusion of a640

nitrogen cycle has been shown to lead to a reduction in soil carbon in the model, see Fig. 6 in Wiltshire et al. (2021), so tuning

of the baseline turnover rates is required to keep soil carbon stocks consistent with observed values.

The required improvement of soil carbon pool turnover rates has previously been identified for the CMIP5 ensemble (Nishina

et al., 2014), and more recently, Ito et al. (2020) find that the difference in turnover times amongst the CMIP6 models is respon-

sible for approximately 88% of the variation seen in global soil carbon stocks amongst the models and state that constraining645

key parameters which control soil carbon turnover processes is a key area for future model development. A key development

seen in CMIP6 since CMIP5 is the representation of vertically resolved soil carbon. Models which simulate non-vertically

resolved soil carbon typically turn over all the carbon based on the temperature near the soil surface. This could lead to reduced
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quantities of soil carbon and an underestimation of northern latitude soil carbon stocks, due to near surface soil being warmer

than the deeper soil, and as turnover is known to respond exponentially to temperature (Davidson and Janssens, 2006). Overall,650

further improvements in the representation of soil carbon turnover time, with a particular focus on the northern latitudes, is

identified as a key area for future model development.

5 Conclusions

The ability of Earth System Models (ESMs) to simulate present day soil carbon is vital to help predict reliable global carbon

budget estimates, which are required for Paris agreement targets. In this study, CMIP6 ESMs have been evaluated against655

empirical datasets to assess their ability to represent soil carbon and related controls: Net Primary Productivity (NPP) and the

effective soil carbon turnover time (τs = Cs/Rh). The evaluation is completed by comparison to the previous generation of

CMIP5 ESMs, to assess where improvements have been made and to identify priorities for future model development. Below

the key conclusions from this study are listed:

1. The spatial patterns of soil carbon in CMIP6 models appear to be more in agreement with each other than they were in660

CMIP5 and are more consistent with observations in the mid-latitudes, although caveats around the uncertainty in obser-

vations and the ensemble design make this conclusion uncertain. However, soil carbon is still heavily underestimated in

high northern latitudes (with the exception of two CMIP6 models that represent deep soil carbon).

2. Overall, we are not able to identify significant improvements in the simulation of the observed spatial pattern of soil

carbon across the globe from the CMIP5 to the CMIP6 generation.665

3. There is good evidence that spatial patterns of contemporary NPP are better simulated in CMIP6 than in CMIP5 gener-

ation models, when compared to satellite-derived estimates.

4. However, spatial patterns of τs continue to be poorly represented in CMIP6 models, in comparison to estimates derived

from observational datasets of soil carbon and heterotrophic respiration (Rh).

5. Importantly, soil carbon simulations in both the CMIP5 and CMIP6 ESM generations seem to be spuriously highly-670

correlated with NPP, which may make soil carbon in these models over responsive to future projected changes in NPP.

Taken together, these conclusions point to a need for a much greater emphasis on improving the representation of below ground

soil processes in next generation (CMIP7) of ESMs.

Data availability. The datasets analysed during this study are available online: CMIP5 model output [https://esgf-

node.llnl.gov/search/cmip5/], CMIP6 model output [https://esgf-node.llnl.gov/search/cmip6/], Harmonized World Soils Database (HWSD)675

and Northern Circumpolar Soil Carbon Database (NCSCD) [https://github.com/rebeccamayvarney/CMIP_soilcarbon_evaluation],

World Inventory of Soil property Estimates (WISE30sec) [https://www.isric.org/explore/wise-databases], Sanderman et al.
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MODIS Net Primary Production [https://lpdaac.usgs.gov/products/mod17a3v055], CARDAMOM Heterotrophic

Respiration [https://datashare.is.ed.ac.uk/handle/10283/875], Copernicus Climate Change Service (C3S) soil
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Figure 1. Maps presenting the difference between the modelled and benchmark data for the CMIP5 and CMIP6 ensembles, for: (a) Cs (kg

m−2), (b) NPP (kg m−2 yr−1), and (c) τs (yr).
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Figure 2. Maps of the difference in soil carbon (Cs) between the historical simulation of each CMIP6 model and the benchmark data.
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Figure 3. Ensemble mean maps for (a) Cs (kg m−2), (b) NPP (kg m−2 yr−1), and (c) τs (yr), presented for the CMIP6 ensemble, CMIP5

ensemble and the benchmark datasets. The hatched areas are used to show regions of low agreement within the ensemble (std/mean > 0.75),

and where regions of low soil carbon (< 5 kg m−2) have been excluded. Equivalent maps for the individual CMIP6 and CMIP5 models are

shown within the Appendix, see Figures A6 and A7 for Cs, Figures A8 and A9 for NPP and Figures A10 and A11 for τs, respectively.
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Figure 4. Taylor diagrams showing the spatial standard deviation (shown by the radial axis between standard x and y axes), the Pearson

correlation coefficients (shown by the curved correlation axis), and the RMSE (show by the grey contours), for the ESMs in both CMIP5 and

CMIP6 compared to the benchmark datasets, for (a) soil carbon (Cs), (b) NPP, and (c) soil carbon turnover time (τs).
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Figure 5. Bar charts comparing the Root Mean Squared Errors (RMSEs) in CMIP6 and CMIP5, for (a) soil carbon (Cs), (b) NPP, and (c)

soil carbon turnover time (τs).
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Figure 6. Maps of the difference in Net Primary Production (NPP) between the historical simulation of each CMIP6 model and the benchmark

dataset.
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Figure 7. Maps of the difference in soil carbon turnover time (τs) between the historical simulation of each CMIP6 model and the benchmark

datasets.
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Figure 8. Scatter plots investigating the relationships between different Pearson correlation coefficients of climate variables, (a) Cs-τs against

Cs-NPP, (b) NPP-T against NPP-θ, (c) τs-T against τs-θ.
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Figure 9. The latitudinal profiles of the Pearson correlation coefficients between soil carbon and (a) NPP (Cs-NPP), (b) soil carbon turnover

time (Cs-τs), (c) soil moisture (Cs-θ), and (d) temperature (Cs-T).
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Table 1. The 11 CMIP6 Earth System Models included in this study, and relevant features of their land carbon cycle components (Arora

et al., 2020).

Earth System Modelling Land Surface Nitrogen No. of live No. of dead Temperature References

Model Centre Model cycle carbon pools carbon pools & Moisture

ACCESS-ESM1.5 CSIRO CABLE2.4 Yes 3 6 Arrhenius Ziehn et al. (2020)

+ CASA-CNP & Hill Haverd et al. (2018)

Trudinger et al. (2016)

BCC-CSM2-MR BCC BCC-AVIM2 No 3 8 Hill Wu et al. (2019)

& Hill Ji et al. (2008)

CanESM5 CCCma CLASS-CTEM No 3 2 Q10 Swart et al. (2019)

& Hill Melton et al. (2020)

Seiler et al. (2021)

CESM2 CESM CLM5 Yes 22 7 Arrhenius Danabasoglu et al. (2020)

& Increasing Lawrence et al. (2019)

CNRM-ESM2-1 CNRM ISBA-CTRIP No 6 7 Q10 Séférian et al. (2019)

& Increasing Delire et al. (2020)

GFDL-ESM4 GFDL LM4.1 No 6 4 Hill Dunne et al. (2020)

& Increasing Zhao et al. (2018)

IPSL-CM6A-LR IPSL ORCHIDEE No 8 3 Q10 Boucher et al. (2020)

branch 2.0 & Increasing Cheruy et al. (2020)

Guimberteau et al. (2018)

MIROC-ES2L JAMSTEC MATSIRO Yes 3 6 Arrhenius Hajima et al. (2020)

VISIT-s & Increasing Ito and Oikawa (2002)

MPI-ESM1.2-LR MPI JSBACH3.2 Yes 3 18 Q10 Mauritsen et al. (2019)

& Increasing Goll et al. (2017)

Goll et al. (2015)

NorESM2-LM NCC CLM5 Yes 22 7 Arrhenius Seland et al. (2020)

& Increasing Lawrence et al. (2019)

UKESM1-0-LL UK JULES-ES-1.0 Yes 3 4 Q10 Sellar et al. (2020)

& Hill Wiltshire et al. (2021)

40



Table 2. The 10 CMIP5 Earth System Models included in this study, and relevant features of their land carbon cycle components (Arora

et al., 2013; Anav et al., 2013; Friedlingstein et al., 2014). Including temperature and moisture functions presented in Todd-Brown et al.

(2013).

Earth System Modelling Land Surface Nitrogen No. of live & dead Temperature References

Model Centre Model cycle carbon pools & Moisture

BNU-ESM BNU CoLM + Yes - Q10 Ji et al. (2014)

BNU-DGVM & Increasing Dai et al. (2003)

CCSM4 CCSM CLM4 Yes 20 Arrhenius Gent et al. (2011)

& Increasing Lawrence et al. (2011)

CanESM2 CCCma CLASS2.7 No 5 Q10 Arora et al. (2009)

+ CTEM1 & Hill Arora and Boer (2010)

GFDL-ESM2G GFDL LM3 No 10 Hill Dunne et al. (2012)

& Increasing Dunne et al. (2013)

Shevliakova et al. (2009)

GISS-E2-R NASA-GISS YIBs, No 12 Increasing Schmidt et al. (2014)

version 1.0 & Increasing Yue and Unger (2015)

HadGEM2-ES MOHC JULES + No 7 Q10 Jones et al. (2011)

TRIFFID & Hill Best et al. (2011)

Clark et al. (2011)

IPSL-CM5A-LR IPSL ORCHIDEE No 7 Q10 Dufresne et al. (2013)

& Increasing Krinner et al. (2005)

MIROC-ESM JAMSTEC MATSIRO No 6 Arrhenius Watanabe et al. (2011)

+ SEIB-DGVM & Increasing Ito and Oikawa (2002)

Sato et al. (2007)

MPI-ESM-LR MPI JSBACH No 6 Q10 Raddatz et al. (2007)

+ BETHY & Increasing Knorr (2000)

NorESM1-M NCC CLM4 Yes 20 Arrhenius Bentsen et al. (2013)

& Increasing Iversen et al. (2013)

Lawrence et al. (2011)
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Table 3. Table of global total and northern latitude total (northern latitudes defined as 60◦ N - 90◦ N) soil carbon estimates from multiple

empirical datasets, for varying soil depths where applicable.

Empirical Depth Global Northern Reference

dataset total latitude

Cs (PgC) total

Cs (PgC)

HWSD + NCSCD 1m 1412 ± 215 401 ± 61 FAO and ISRIC (2012)

Hugelius et al. (2013)

WISE30sec 1m 1371 ± 129 314 Batjes (2016)

2m 1952 ± 198 468

S2017 1m 1966 515 Sanderman et al. (2017)

2m 3141 893

GSDE 1m 1682 526 Shangguan et al. (2014)

2.3m 2593 849

IGBP DIS 1m 1567 377 IGBP (2000)
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Table 4. Table presenting global soil carbon values for the 11 CMIP6 models included in this study and the benchmark datasets. Including:

global total Cs in PgC, and northern latitude total (90◦N - 60◦N) Cs in PgC, and the spatial mean value of Cs and corresponding standard

deviation in kg m−2.

Earth System Model Global total Cs (PgC) Northern latitude total Cs (PgC) Mean Cs ± std (kg m−2)

ACCESS-ESM1.5 900 151 5.86 ± 5.35

BCC-CSM2-MR 1770 575 11.6 ± 16.6

CanESM5 1500 218 3.87 ± 6.52

CESM2 (cSoilAbove1m) 991 294 7.05 ± 16.6

CESM2 (cSoil) 1870 1036 13.8 ± 51.7

CNRM-ESM2-1 1810 440 12.2 ± 9.98

GFDL-ESM4 516 163 1.36 ± 3.43

IPSL-CM6A-LR 639 66.0 4.80 ± 3.37

MIROC-ES2L 1460 347 9.31 ± 10.7

MPI-ESM1.2-LR 970 175 6.68 ± 5.23

NorESM2-LM (cSoilAbove1m) 969 300 2.61 ± 6.97

NorESM2-LM (cSoil) 2430 1563 6.60 ± 41.3

UKESM1-0-LL 1760 194 12.0 ± 10.9

Ensemble mean 1206 ± 445 266 ± 139 2.80 ± 5.15

Benchmark dataset 1412 ± 215 401 ± 83 10.7 ± 9.28

43



Table 5. Table presenting global soil carbon values for the 10 CMIP5 models included in this study and the benchmark datasets. Including:

global total Cs in PgC, and northern latitude total (90◦N - 60◦N) Cs in PgC, and the spatial mean value of Cs and corresponding standard

deviation in kg m−2.

Earth System Model Global total Cs (PgC) Northern latitude total Cs (PgC) Mean Cs ± std (kg m−2)

BNU-ESM 681 135 5.31 ± 4.55

CCSM4 507 28.1 4.03 ± 3.24

CanESM2 1540 300 9.16 ± 9.11

GFDL-ESM2G 1420 635 9.47 ± 13.2

GISS-E2-R 2150 609 15.9 ± 20.8

HadGEM2-ES 1080 148 8.19 ± 6.24

IPSL-CM5A-LR 1350 346 9.77 ± 7.64

MIROC-ESM 2550 742 20.5 ± 15.1

MPI-ESM-LR 3000 204 23.5 ± 14.8

NorESM1-M 538 31.0 3.61 ± 3.34

Ensemble mean 1480 ± 810 318 ± 246 10.5 ± 6.02

Benchmark dataset 1412 ± 215 401 ± 83 10.7 ± 9.28
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Table 6. Table presenting global carbon fluxes and turnover time values for the 11 CMIP6 models included in this study and the benchmark

datasets. Including: global total NPP (PgC yr−1) and effective average soil carbon turnover time (yr).

Earth System Model NPP (PgC yr−1) τs (yr)

ACCESS-ESM1.5 45.6 19.0

BCC-CSM2-MR 51.2 34.1

CanESM5 75.5 18.1

CESM2 (cSoilAbove1m) 43.9 25.8

CESM2 (cSoil) - 50.4

CNRM-ESM2-1 45.6 41.5

GFDL-ESM4 52.6 11.2

IPSL-CM6A-LR 46.4 14.6

MIROC-ES2L 59.1 24.5

MPI-ESM1.2-LR 58.9 15.4

NorESM2-LM (cSoilAbove1m) 43.5 24.0

NorESM2-LM (cSoil) - 60.8

UKESM1-0-LL 60.8 28.1

Ensemble mean 53.0 ± 9.39 23.3 ± 8.59

Benchmark datasets 56.6 ± 14.3 27.0+27
−11
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Table 7. Table presenting global carbon fluxes and turnover time values for the 10 CMIP5 models included in this study and the benchmark

datasets. Including: global total NPP (PgC yr−1) and effective average soil carbon turnover time (yr).

Earth System Model NPP (PgC yr−1) τs (yr)

BNU-ESM 44.3 16.6

CCSM4 42.9 14.3

CanESM2 59.0 72.9

GFDL-ESM2G 74.4 57.3

GISS-E2-R 31.0 47.1

HadGEM2-ES 69.1 16.8

IPSL-CM5A-LR 76.6 19.4

MIROC-ESM 47.1 56.8

MPI-ESM-LR 73.5 42.7

NorESM1-M 45.0 34.5

Ensemble mean 56.3 ± 15.4 37.8 ± 19.7

Benchmark datasets 56.6 ± 14.3 27.0+27
−11
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Figure A1. Maps comparing empirical datasets of soil carbon (Cs). The benchmark dataset is a map plot showing Cs approximated to a

depth of 1m by combining the Harmonized World Soils Database (HWSD) (FAO and ISRIC, 2012) and Northern Circumpolar Soil Carbon

Database (NCSCD) (Hugelius et al., 2013), where NCSCD was used where overlap occurs. Additional map plots are shown for empirical Cs

estimated by: the World Inventory of Soil property Estimates (WISE30sec) (Batjes, 2016), the named ‘S2017’ from Sanderman et al. (2017),

the Global Soil Dataset for use in Earth System Models (GSDE) (Shangguan et al., 2014), and the Global Gridded Surfaces of Selected Soil

Characteristics (IGBP-DIS) (IGBP, 2000).
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Figure A2. Maps of empirical carbon flux datasets. Net Primary Production (NPP) is approximated using the MODIS NPP dataset (Zhao

et al., 2005), and Heterotrophic Respiration (Rh) is approximated using the CARDAMOM Rh dataset (Bloom et al., 2015).
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Figure A3. Maps of the difference in soil carbon (Cs) between the historical simulation (1950-2000) for the CMIP5 models and the bench-

mark dataset.
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Figure A4. Maps of the difference in NPP between the historical simulation (1995-2005) for the CMIP5 models and the benchmark dataset.
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Figure A5. Maps of the difference in τs between the historical simulation for the CMIP5 models and the benchmark datasets, where τs is

defined as the ratio of Cs (1950-2000) to Rh (1995-2005).
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Figure A6. Maps of soil carbon (Cs) in the historical simulation (1950-2000) for the CMIP6 models.
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Figure A7. Maps of soil carbon (Cs) in the historical simulation (1950-2000) for the CMIP5 models.
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Figure A8. Maps of Net Primary Productivity (NPP) in the historical simulation (1995-2005) for the CMIP6 models.
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Figure A9. Maps of Net Primary Productivity (NPP) in the historical simulation (1995-2005) for the CMIP5 models.
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Figure A10. Maps of soil carbon turnover times (τs) in the historical simulation for the CMIP6 models, where τs is defined as the ratio of

Cs (1950-2000) to Rh (1995-2005).
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Figure A11. Maps of soil carbon turnover times (τs) in the historical simulation for the CMIP5 models, where τs is defined as the ratio of

Cs (1950-2000) to Rh (1995-2005).
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Table A1. Table presenting global carbon fluxes (PgC yr−1), NPP and Rh, for the 11 CMIP6 models included in this study and the empirical

benchmark datasets.

Earth System Model NPP (PgC yr−1) Rh (PgC yr−1)

ACCESS-ESM1.5 45.6 45.1

BCC-CSM2-MR 51.2 48.9

CanESM5 75.5 75.0

CESM2 43.9 38.3

CNRM-ESM2-1 45.6 40.3

GFDL-ESM4 52.6 43.7

IPSL-CM6A-LR 46.4 39.9

MIROC-ES2L 59.1 52.7

MPI-ESM1.2-LR 58.9 53.4

NorESM2-LM 43.5 38.2

UKESM1-0-LL 60.8 57.5

Ensemble mean 53.0 ± 9.39 48.4 ± 10.5

Benchmark datasets 56.6 ± 14.3 51.7 ± 21.8
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Table A2. Table presenting global carbon fluxes (PgC yr−1), NPP and Rh, for the 10 CMIP5 models included in this study and the empirical

benchmark datasets.

Earth System Model NPP (PgC yr−1) Rh (PgC yr−1)

BNU-ESM 44.3 42.5

CCSM4 42.9 41.4

CanESM2 59.0 58.8

GFDL-ESM2G 74.4 62.7

GISS-E2-R 31.0 39.5

HadGEM2-ES 69.1 67.0

IPSL-CM5A-LR 76.6 62.4

MIROC-ESM 47.1 41.2

MPI-ESM-LR 73.5 59.9

NorESM1-M 45.0 41.3

Ensemble mean 56.3 ± 15.4 52.8 ± 10.7

Benchmark datasets 56.6 ± 14.3 51.7 ± 21.8
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