
 1 

Global evaluation of ELMv1-CNP and the role of the phosphorus cycle in the historical 1 

terrestrial carbon balance 2 

 3 

Xiaojuan Yang1*, Peter Thornton1, Daniel Ricciuto1, Yilong Wang2,3, Forrest Hoffman4 4 
1Environmental Sciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831, USA 5 

2Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic 6 

Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China 7 
3Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ- Université 8 

Paris Saclay, 91191, Gif-sur-Yvette CEDEX, France 9 
4Computational Sciences & Engineering Division, Oak Ridge National Lab, Oak Ridge, TN 10 

37831, USA 11 

 12 

 13 
 14 

 15 
 16 

*Corresponding Author: 17 
 18 

Phone: 865-5747615 19 
E-mail: yangx2@ornl.gov 20 

 21 
 22 

 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 

https://doi.org/10.5194/bg-2022-130
Preprint. Discussion started: 17 June 2022
c© Author(s) 2022. CC BY 4.0 License.



 2 

Abstract 38 

The importance of carbon (C)-nutrient interactions to the prediction of future C uptake has long 39 

been recognized. The Energy Exascale Earth System Model (E3SM) land model (ELM) version 1 40 

is one of the few land surface models that include both N and P cycling and limitation (ELMv1-41 

CNP). Here we provide a global scale evaluation of ELMv1-CNP using International Land Model 42 

Benchmarking (ILAMB) system. We show that ELMv1-CNP produces realistic estimates of 43 

present-day carbon pools and fluxes. Compared to simulations with optimal P availability, 44 

simulations with ELMv1-CNP produces better performance, particularly for simulated biomass, 45 

leaf area index (LAI), and global net C balance. We also show ELMv1-CNP simulated N and P 46 

cycling are in good agreement with data-driven estimates. We compared ELMv1-CNP simulated 47 

response to CO2 enrichment with meta-analysis of observations from similar manipulation 48 

experiments. We show that ELMv1-CNP is able to capture the field observed responses for 49 

photosynthesis, growth, and LAI. We investigated the role of P limitation in the historical 50 

balance and show that global C sources and sinks are significantly affected by P limitation, as 51 

the historical CO2 fertilization effect was reduced by 20% and C emission due to land use and 52 

land cover change was 11% lower when P limitation was considered. Our simulations suggest 53 

that introduction of P cycle dynamics and C-N-P coupling will likely have substantial 54 

consequences for projections of future C uptake.   55 
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1. Introduction  100 

The recent global carbon (C) budget showed that over the last half century global 101 

fossil CO2 emissions have increased from about 3 Pg C/yr in 1960s to about 9.5 PgC/yr in the 102 

last decade (Friedlingstein et al., 2019). It has also been shown that land ecosystems play 103 

important roles in controlling the fractions of CO2 emissions that remain in the atmosphere 104 

by taking up about 29% of total emissions (Le Quéré et al., 2018).  Large uncertainties 105 

remain on the net land-atmosphere C exchange, mainly due to difficulties in quantifying the 106 

complex C cycle processes such as CO2 fertilization effects, responses of carbon fluxes to 107 

temperature and precipitation variation, and C emissions associated with land use and land 108 

cover change (LULCC). These uncertainties will very likely hamper our ability to predict the 109 

future trajectories of atmospheric CO2.  110 

One of the important uncertainties relates to our understanding of C-nutrient 111 

interactions and nutrient limitation and how they are represented in models. The 112 

importance of nitrogen (N) availability to predicted land C storage has been long recognized 113 

(Hungate et al., 2003). Although there were only two models in CMIP5 (the fifth phase of 114 

the Coupled Model Intercomparison Project) that accounted for N dynamics and N 115 

limitation (Thornton et al., 2007; Thornton et al., 2009; Arora et al., 2013), many ESMs 116 

participating in CMIP6 (the Coupled Model Intercomparison Project phase 6) are now 117 

including N cycle and C-N interactions (Davies-Barnard et al., 2020; Lawrence et al., 2019; 118 

Goll et al., 2017a; Smith et al., 2014; Sellar et al., 2019). The comparisons between these 119 

models have been summarized in Arora et al. (2020) and Davies-Barnard et al. (2020). In 120 

recent years, significant efforts have also gone into understanding phosphorus (P) cycle 121 

dynamics and the role of P limitation in land C storage (Jiang et al., 2019; Hou et al., 2020; 122 

Reed et al., 2015; Wieder et al., 2015b; Sun et al., 2017). Increasing numbers of models 123 

have developed the capability to include P cycle processes and C-N-P interactions (Wang et 124 

al., 2010; Goll et al., 2012; Thum et al., 2019; Goll et al., 2017b; Yang et al., 2014; Yang et al., 125 

2019; Sun et al., 2021). It has been shown that considering P cycle dynamics and C-N-P 126 

interactions improves process representation and model fidelity compared with 127 

observational and experimental data in most models (Goll et al., 2017b; Yang et al., 2014). 128 
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Model simulations have also demonstrated the importance of P limitation to land C uptake 129 

(Zhang et al., 2014; Goll et al., 2012; Yang et al., 2016; Yang et al., 2019; Sun et al., 2021).  130 

Using an ensemble of 14 terrestrial ecosystem models to simulate the planned free-air CO2 131 

enrichment experiment AmazonFACE, Fleischer et al. (2019) showed that P availability 132 

reduced the projected CO2-induced C sink by about 50% compared to estimates from 133 

models assuming no phosphorus limitation. Taken together, understanding and 134 

representation of the role of P cycle dynamics in affecting terrestrial C balance is essential 135 

for the prediction of future terrestrial carbon uptake and atmospheric CO2 concentration.   136 

   Despite these recent efforts, P cycle dynamics and C-N-P interactions are not yet 137 

included in most CMIP6 models. The Energy Exascale Earth System Model(E3SM) is one of 138 

the few models that have been developed a coupled C-N-P capability in the land component 139 

in CMIP6 (Burrows et al., 2020). The land model in E3SM, herein referred to as ELMv1-CNP, 140 

has been first applied in the Amazon region to test its capability and to evaluate the 141 

importance of P limitation in this region (Yang et al., 2019). Yang et al. (2019) provides an in-142 

depth evaluation of ELMv1-CNP for the Amazon rainforest using field observational data, 143 

with a focus on how the introduction of P cycle dynamics and P limitation improved model 144 

simulated spatial variation of productivity. They show that effects of P limitation on C 145 

sources and sinks in the Amazon region are significant, reducing simulated CO2 fertilization 146 

of new carbon uptake by as much as 31%.  147 

This study expands the analysis in the Amazon region to the global scale and has two 148 

main aims: (1) to provide an evaluation of ELMv1-CNP performance on the global scale 149 

using both observational and experimental data, and (2) to quantify the role of P cycle 150 

dynamics and P limitation in affecting simulated C sources and sinks globally.  We first 151 

evaluate the performance of ELMv1-CNP using the ILAMB benchmarking system (Collier et 152 

al., 2018), which has been widely used in the evaluation of land surface models and ESMs 153 

(Lawrence et al., 2019; Bonan et al., 2019; Zhu et al., 2019; Friedlingstein et al., 2019). We 154 

then evaluate ELMv1-CNP simulated N and P pools and fluxes with an observation-based 155 

dataset. Realizing that the static benchmarking may not help constrain future model 156 

projections, we further evaluate ELMv1-CNP using experimental manipulations of 157 
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atmospheric CO2. Finally, we take advantage of the P-enabled capability in ELMv1-CNP to 158 

quantify the effect of P dynamics on the simulated ecosystem responses to increasing 159 

atmospheric CO2, increasing N deposition, LULCC, and climate change on the global scale.   160 

 161 

2. Method 162 

2.1 Model Overview 163 

ELMv1-CNP is based on the Community Land Model version 4.5 (CLM4.5), which 164 

includes coupled C-N biogeochemistry from CLM4 (Thornton et al., 2007) and 165 

improvements to canopy photosynthesis, soil biogeochemistry and representation of 166 

nitrogen cycle dynamics (Koven et al., 2013; Bonan et al., 2011; Oleson et al., 2013). 167 

Recognizing the critical role of the tropical forests in the global carbon cycle and C-climate 168 

interactions and the important role of P cycle dynamics and P limitation in tropical forests, 169 

we implemented a fully prognostic P cycle and C-N-P interactions into ELMv1-CNP, enabling 170 

ELMv1-CNP to be one of the few land surface models that include both N and P cycle 171 

dynamics and limitation. The main model features include (1) a fully prognostic P cycle 172 

tracking various soil inorganic P pools, vegetation P pools, litter and soil organic P pools (2) 173 

the representation of P limitation on plant productivity and litter and soil organic matter 174 

decomposition based on a supply-demand approach (3) resolving N vs P limitation using 175 

the Liebig law (4) the vertically-resolved soil inorganic and organic P dynamics (5) the 176 

decoupling of P cycle from C and N cycle during decomposition due to phosphatase activity 177 

(6) the representation of adsorption-desorption dynamics based on soil order.   178 

Besides the P cycling processes, the other important difference of ELMv1-CNP from 179 

CLM4.5 is the removal of instantaneous downregulation of photosynthesis from nutrient 180 

limitation.  Instead, longer-term downregulation of productivity is enabled through the 181 

implementation of C, N, and P nonstructural vegetation storage pools. In CLM4.5, nutrient 182 

limitation is calculated at each time step as a function of potential GPP, stoichiometry of 183 

plant tissues, and nitrogen uptake.  Any “excess” carbon due to nitrogen limitation is 184 

immediately released to the atmosphere through instantaneous downregulation. This 185 

nutrient limitation can be highly variable over time and affects diurnal and seasonal cycles 186 
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of gross primary productivity, which is not consistent with flux tower observations (Ghimire 187 

et al., 2016) or with short-term elevated CO2 experiments that were done with and without 188 

nutrient fertilization (Metcalfe et al., 2017).  In the current model, competition for available 189 

nutrients and plant uptake still occur every timestep given instantaneous demand that is a 190 

function of plant GPP and microbial nutrient immobilization (Oleson et al., 191 

2013).  However, nutrients taken up by plants are now first allocated to non-structural N 192 

and P storage pools instead of directly to structural pools. Nutrient limitation to allocation 193 

is determined by comparing plant nutrient demand (given GPP and stoichiometry) and the 194 

nutrient availability from the non-structural nutrient pools, which is a function of the pool 195 

size in relation to long-term demand. The “excess” carbon flux, which cannot be allocated 196 

due to nutrient limitation, is directed to the non-structural plant carbon (NSC) pool instead 197 

of downregulating GPP. This pool respires to the atmosphere with a given turnover time. 198 

Details about the representation of NSC can be found in the supporting information (Text 199 

S1)  200 

The model version used in this study is the publicly released ELM v1 and can be 201 

downloaded along with all the parameter files at https://github.com/E3SM-Project/E3SM. 202 

We also provide the key model parameters in Table S1 (PFT specific) and Table S2 (soil 203 

order specific).  204 

2.2  Simulations  205 

The simulations presented here were first spun up to bring C, N, and P pools to 206 

equilibrium by recycling the GSWP3 (Global Soil Wetness Project Phase 3) climate forcing 207 

data (http://hydro.iis.u-tokyo.ac.jp/GSWP3/) between 1901-1920, along with constant 208 

atmospheric CO2, N deposition and land cover type at year 1850. Spinup was accomplished 209 

through two steps: accelerated decomposition (AD) spinup and regular spinup. We ran the 210 

model for 250 years in the AD spinup mode. The purpose of the AD spinup is to accelerate 211 

the decomposition process and speed up the spinup process of the carbon and nutrient 212 

cycles. The AD spinup procedure was modified from that originally described by Thornton 213 

and Rosenbloom (2005), which used spatially invariant acceleration factors to accelerate 214 

decomposition in soil organic matter (SOM) pools. Here we updated the AD spinup by 215 
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including the impacts of temperature and soil moisture on the acceleration factor. This 216 

resulted in higher acceleration factors in cool and/or dry climates, which are typically slower 217 

to achieve steady state.  In addition, vegetation dead stem and coarse root mortality 218 

were accelerated by a factor of 10 to achieve steady state biomass more quickly. In the 219 

AD spinup, supplemental soil mineral P was applied for the entire simulation such that there 220 

was no P limitation on C and N dynamics.  During the transition between AD spinup and 221 

regular spinup, we initialized the soil inorganic pools using global P maps developed by 222 

(Yang et al., 2013).  Since the P cycle involves both biological and geochemical processes 223 

that occur on geological time scales, the initialization of P pools provides some reasonable 224 

estimates of soil P pools without running the model for millions of simulated years.  We 225 

then ran normal spinup for 600 years with active C, N, and P coupled biogeochemistry until 226 

C, N, and P pools reached equilibrium. The criteria for equilibrium are for global total NEE 227 

less than 0.1 PgC/yr averaged over 100 years, the threshold recommended for the C4MIP 228 

(Jones et al., 2016). We also ran a control simulation between 1850-2010 as a continuation 229 

of the normal spinup. We added the time series of labile P, secondary mineral P and 230 

occluded P for the control simulation (Fig. S1). There are very little changes in the inorganic 231 

P pools during the 161 years control simulation suggesting that these pools can be 232 

considered in equilibrium for the time scale of our interest. 233 

After the model was spun up, we ran the global historical transient simulations (1850–234 

2010) at 0.5 degree spatial resolution using GSWP3 v2 climate forcing data, along with 235 

historical transient atmospheric CO2 concentration, N deposition, land use and land cover 236 

change that are part of the CMIP6 protocols (https://luh.umd.edu/data.shtml). Input data 237 

and references are summarized in Table S3.  We also ran a suite of single-factor simulations 238 

to examine the individual effects of changing environmental factors.  In addition to the ELM 239 

v1 simulations with a fully active P cycle, we also performed historical transient and single-240 

factor simulations with P limitation switched off (supplementing P availability to fully meet 241 

demand at each grid cell and for each timestep). We denoted the default ELM v1 242 

simulations that have an active P cycle as the CNP configuration (ELMv1-CNP) and 243 
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simulations assuming P saturation (e. g. no P limitation on plant productivity or 244 

decomposition) as the CN configuration (ELMv1-CN).  245 

We also performed one additional simulation where we initiated a global step increase 246 

of atmospheric CO2 concentration, by +200ppm, starting from 2001 and continuing through 247 

2010. These simulations are designed to mimic the Free Air CO2 Enrichment (FACE) 248 

experiments (Ainsworth and Long, 2005). To quantify model sensitivities to elevated CO2, 249 

we calculated the effect size (treatment divided by control) over the10 years of simulation 250 

(2001-2010).   We then evaluated model sensitivities to elevated CO2 against meta-analysis 251 

from FACE experiments (Ainsworth and Long 2005).  252 

All of the simulations are summarized in Table 1. 253 

 254 

2.3. ILAMB  255 

We used the International Land Model Benchmarking system (Collier et al., 2018; Luo et 256 

al., 2012; Hoffman et al., 2017) to assess the model performance. The ILAMB package is a 257 

powerful tool for systematic evaluation of land model performance through comparison 258 

with observational data for biogeochemistry, hydrology, radiation and energy, and climate 259 

forcing. It was designed to use a wide array of observational data to constrain model 260 

results, including various land carbon pools and fluxes, inferred CO2 concentration      261 

variability, and functional relationships. For each variable, ILAMB scores model performance 262 

for period mean, bias, root-mean-square error (RMSE), spatial distribution, interannual 263 

coefficient of variation, seasonal cycle, and long-term trend. These scores are aggregated 264 

into an overall score representing multiple aspects of model performance for each variable. 265 

These aggregated absolute scores are then used to calculate the relative score, which 266 

indicates the relative performance of each model with respect to other models used in the 267 

same analysis.  ILAMB offers a variety of graphical diagnostics and tabular data to assist the 268 

user in understanding when, where, and to what degree model results deviate from 269 

observational data. The observational datasets used for the evaluation of carbon cycle in 270 

ILAMB are listed in Table S4.  271 
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 In order to understand how the implementation of P cycling dynamics affects model 272 

performance, we evaluated the performance of both ELMv1-CNP and ELMv1-CN. In order to 273 

provide a context in terms of model performance in ILAMB, we provide the ILAMB 274 

evaluation of several other land models included in the Land Surface, Snow and Soil 275 

moisture Model Intercomparison Project (LS3MIP) as part of CMIP6 (https://www.wcrp-276 

climate.org/wgcm-cmip/wgcm-cmip6). LS3MIP includes a collection of model experiments 277 

including both offline land model experiments and coupled experiments (Van Den Hurk et 278 

al., 2016). We used the results from the offline land model experiments. Like our 279 

simulations, these experiments were performed at 0.5by0.5 spatial resolution and using the 280 

GSWP3 forcing data. Other model configurations in LS3MIP are identical to that used in 281 

CMIP6 historical simulations, which we used for the simulations in this study.   282 

 283 

2.4. GOLUM-CNP 284 

 Since there is no nutrient cycle metrics in ILAMB, we also compared major N and P pools 285 

and fluxes along with nutrient use efficiencies from ELMv1-CNP with the data-driven 286 

estimates of N and P pools and fluxes from the Global Observation-based Land-ecosystems 287 

Utilization Model of Carbon, Nitrogen, and Phosphorus (GOLUM-CNP) (Wang et al., 2018). 288 

GOLUM-CNP combines data-driven estimates of N and P inputs and outputs and observed 289 

stoichiometric ratios with a steady-state diagnostic model, providing global steady-state N 290 

and P pools and fluxes for large biomes. Despite large uncertainties and the steady-state 291 

assumptions, GOLUM-CNP provides a global data-driven product that can be used to test 292 

nutrient cycles in land surface models.    293 

 294 

3. Results 295 

3.1 Evaluations of ELM v1 using ILAMB 296 

ILAMB includes many metrics that cover water, energy, and carbon pools and fluxes on 297 

both regional and global scales. Fig. 1 shows ILAMB benchmarking scores for ELMv1-CNP 298 

and ELMv1-CN, along with several other land models in CMIP6, which are provided to 299 

contextualize ILAMB scores for ELMv1-CNP.  The relative model performance scores are 300 
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shown in Fig. 1, indicating which model version performs better with respect to others. The 301 

full results produced by the ILAMB package can be found at https://compy-302 

dtn.pnl.gov/yang954/_build/.   303 

Fig. 1 shows that the performance of ELMv1-CNP is comparable to other land models in 304 

CMIP6. ELMv1-CNP exhibits performance similar to CLM5 (CESM2) in terms of aggregated 305 

scores for carbon cycle metrics, while CLM5 shows better performance with respect to 306 

overall functional relationships, mainly due to a better score for functional relationship of 307 

burned area. The performance of each model varies for different variables. For example, 308 

ORCHIDEE land surface model in IPSL-CM6A-LR performs relatively well in inferred 309 

atmospheric carbon dioxide, leaf area index and GPP relationships.   310 

Fig.1 also shows the comparison between ELM v1-CNP and ELM v1-CN, allowing us to 311 

quantify the impacts of including a prognostic P cycle and realistic P availability on model 312 

performance. For metrics in Fig. 1 that show the greatest differences between ELMv1-CNP 313 

and ELMv1-CN, the CNP version always has a higher score than CN. This is reflected in the 314 

relatively higher aggregated scores for carbon cycle variables and functional relationships 315 

in ELMv1 -CNP.  316 

 317 

 Fig. 2 shows the Global Net Ecosystem Carbon Balance metric in ILAMB for ELM v1-CNP 318 

and ELM v1-CN. The observational data sets for this metric are from the Global Carbon 319 

Project (Fig. 2a)(Le Quéré et al., 2016) and from the inversion-based estimate (Hoffman et 320 

al., 2014), both providing global totals of land carbon accumulation but for different 321 

historical time period (1850-2010 for Hoffman et al., 2014 and 1959-2010 for Le Quere et l., 322 

2016). The simulated global C balance by both ELMv1-CNP and ELMv1-CN are in the range 323 

of uncertainty of observational estimates, with ELMv1-CNP simulated historical global 324 

carbon accumulation being a better match with mean observational estimates, particularly 325 

after 1950. ELMv1-CN estimated a net accumulation of land carbon of 22 Pg C over the 326 

period 1850-2010, which is much higher than the mean observational estimate of - 8Pg C. 327 

ELMv1-CNP estimated land carbon accumulation of 7 Pg C.     328 
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 Fig. 3 shows the spatial distribution of vegetation biomass for the benchmark data and 329 

model bias in ILAMB. Overall both ELMv1-CN and ELMv1-CNP tend to overestimate 330 

biomass, compared to this specific global product of biomass (GEOCARBON). The high bias 331 

in the tropical region is much reduced in ELMv1-CNP simulations (Fig. 3a, 3b and 3c). The 332 

better performance of ELMv1-CNP is also reflected in the spatial Taylor diagram for 333 

biomass (Fig. 3d).  334 

Another important benchmark in ILAMB is the functional relationships between two 335 

variables, for example the relationship between GPP and precipitation and the relationship 336 

between LAI and precipitation. An accurate simulation of these relationships in addition to 337 

individual benchmarks is an indication that the models are representing the underlying 338 

processes correctly.  ELMv1-CNP produces a better functional relationship compared to 339 

ELMv1-CN. For example, for the relationship between LAI and precipitation ELMv1-CN 340 

overestimated LAI, particularly in regions with high precipitation, while the ELMv1-CNP 341 

configuration shows an improved relationship (Fig. 4). The improvement of the functional 342 

relationship is mainly due to the improvement in high precipitation regions, e.g. lowland 343 

tropical forest regions. In these regions, inclusion of P dynamics and P limitation reduced 344 

simulated bias in GPP and LAI, therefore leading to better match with the observations. 345 

 346 

3.2.  Evaluation of N and P cycling in ELMv1-CNP 347 

We evaluated simulated nutrient use efficiencies against that from GOLUM-CNP product 348 

on the biome level. Here we define nutrient use efficiency as the ratio between annual NPP 349 

and annual nutrient uptake (for both N and P), with NUE for nitrogen use efficiency and 350 

PUE for phosphorus use efficiency (Finzi et al., 2007).  ELMv1-CNP simulated NUE is higher 351 

in temperate and boreal forests and lower in grassland, which is consistent with GOLUM-352 

CNP (Fig. 5a). However, ELMv1-CNP predicted higher NUE in tropical lowland forests than 353 

GOLUM-CNP.  ELMv1-CNP simulated PUE is also generally consistent with GOLUM -CNP 354 

(Fig. 5b).  However, ELMv1-CNP simulated PUE in tropical forests is much lower than that 355 

from GOLUM-CNP.  356 
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We also evaluated ELMv1-CNP simulated N and P pools and major fluxes on the global 357 

scale for the period of 2001-2010 with the observationally derived products in GOLUM-358 

CNP. Fig. S2 shows the comparison of N and P uptake from ELMv1-CNP and GOLUM-CNP at 359 

the biome level. ELMv1-CNP simulated plant N and P uptake is in agreement with GOLUM-360 

CNP, with higher uptake fluxes in tropical forests and lower uptake in temperate and boreal 361 

forests. ELMv1-CNP simulated N uptake is lower in the tropical forests, compared to 362 

GOLUM-CNP (Fig. S2a). Conversely, simulated P uptake is higher than GOLUM-CNP 363 

estimates across the tropics (Fig. S2b).  364 

        365 

3.2 Evaluations using CO2 manipulation experiment 366 

Relative to the control simulation, increasing atmospheric CO2 concentration by 200ppm 367 

increased gross primary productivity by 23% (global mean) over the 10 years of simulation 368 

(2001-2010). Nearly all PFTs showed more than a 10% increase in productivity, with more 369 

significant increases occurring in tropical regions and middle latitudes (Fig. 6a). The 370 

modeled response ratio of NPP is also showing widespread increases, and on the global 371 

scale our results showed a 25.8% increase in NPP in response to CO2 enrichment (Fig. 6b). 372 

The simulated increases in GPP and NPP also showed, to a large extent, translated into 373 

increases in vegetation carbon (Fig 6c), with a global average response ratio of 18%. The 374 

modeled response ratio of LAI is much smaller, a 5% increase globally (Fig 6d). The globally 375 

aggregated simulated effect size of CO2 enrichment from ELMv1-CNP on GPP, NPP, LAI and 376 

NSC compare well to the observations from the meta-analysis (Fig. 7), particularly for GPP 377 

and LAI. ELMv1-CNP overestimated the responses of NPP. Both observations and 378 

simulations show large sensitivity of NSC to CO2 enrichment, with larger variability in the 379 

model simulations.   380 

 381 

3.3.  Carbon, nitrogen and phosphorus pools and fluxes 382 

3.3.1 Carbon budget 383 

Major components of the global land C budget for present day (mean of 2001–2010) in 384 

ELMv1-CNP are shown in Fig 8a. These are from historical simulations with transient climate 385 
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forcing, atmospheric CO2 concentration, land use and land cover change, and N deposition. 386 

For the present day, model simulated total ecosystem C is 2588.73 Pg C, with about 22% 387 

stored in vegetation (575.45 Pg C), about 5% stored in litter and coarse wood debris (122.5 388 

Pg C), and 73% stored in soil organic matter (1890.78 Pg C). Model simulated vegetation C is 389 

within the range of inventory-based estimates from IPCC AR5 (450–650 Pg C). Our simulated 390 

vegetation C is also comparable to or slightly higher than observational estimates from the 391 

literature: 455Pg C (GEOCARBON, (Avitabile et al., 2016; Santoro et al., 2015), 550±100 Pg C 392 

(Houghton, 2003), 560±94 Pg C (Defries et al., 1999), and 450 Pg C (Erb et al., 2018). Model 393 

simulated total soil C is within the range of estimates from IPCC AR5 (1500-2400 Pg C) and 394 

that from Jobbágy and Jackson (2000) (1750±250 PgC). Model simulated total soil C is lower 395 

than several other observational estimates from the literature: 2376-2456 (Batjes, 2014), 396 

3000 Pg C (Köchy et al., 2015). As for the top 1m soil carbon, model simulated values are 397 

within the range of estimate reported by Todd-Brown et al. (2013) (890-1660 Pg C), but 398 

lower than the observational based estimate of 1462–1548 Pg C  from Batjes (2014) and 399 

1325 Pg C from Köchy et al. (2015). Model simulated litter C (22.9 Pg C) is lower than the 400 

observational based estimate: 68 Pg C (Matthews, 1997) and 43±3 Pg C (Pan et al., 2011).  401 

Model simulated coarse wood debris C stock (99.6 Pg C) is higher than the observational 402 

based estimate: 75 Pg C (Matthews, 1997) and 43±3 Pg C (Pan et al., 2011). 403 

Model simulated present day GPP(134.15 Pg C/yr) is slightly higher than observational 404 

based estimate: 123±8 Pg C/yr (Beer et al., 2010), 119±6 Pg C/yr (Jung et al., 2011) and 123 405 

PgC/yr (IPCC AR5), and lower than 150-175 Pg C/yr from Welp et al. (2011) that is derived 406 

based on  oxygen isotopes of atmospheric CO2. A recent study based on satellite data 407 

suggested a global GPP of 140 Pg C/yr for year 2007 (Joiner et al., 2018). The comparisons 408 

between simulated carbon pools and fluxes and available observations are also included in 409 

Table 2.   410 

 411 

3.3.2. Nitrogen budget 412 

The ELMv1-CNP estimated N budget for the present day (2001–2010) is summarized in 413 

Fig 8b. Compared to the C cycle, there are fewer observational estimates for N pools and 414 
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fluxes. Most of the literature values are from other model simulations. Although not 415 

appropriate for direct model evaluation, these modeling estimates from the literature 416 

provide a broad context for us to evaluate our simulated pools and fluxes. 417 

Model simulated vegetation N is 4.36 Pg N, which is comparable to the estimates from 418 

some other modeling studies: 3.8 Pg N (Zaehle et al., 2010; Xu and Prentice, 2008), 5.3 Pg N 419 

(Xu and Prentice, 2008) and lower than the estimates of 16 Pg N(Lin et al., 2000) and 18 Pg 420 

N (Yang et al., 2009). Model simulated total soil organic matter N is 188.79 Pg N, which is 421 

reasonable considering the observational based estimate for 1m of 95 Pg N (Post et al., 422 

1985) and 133–140 Pg N (Batjes, 2014). ELMv1-CNP estimated biological nitrogen fixation  423 

(BNF) of 89 TgN/yr is within the range of estimates from literature. Vitousek et al. (2013) 424 

estimated that global BNF ranges between 40–100 TgN/yr using a mass-balance approach. 425 

A meta-analysis by Davies-Barnard and Friedlingstein (2020) suggested that global inputs of 426 

BNF in natural ecosystems range between 52 and 130 TgN/yr, with a median global value of 427 

88 TgN/yr. For the purpose of comparison, BNF estimates from CLM5 is 96.4 TgN/yr, slightly 428 

higher than our estimate. The comparisons between simulated N pools and fluxes and 429 

available observations are also included in Table 2.   430 

 431 

 432 

3.3.3 Phosphorus budget   433 
 434 
The ELMv1-CNP estimated P budget for the present day (2001–2010) is summarized in 435 

Fig 8c. Very few observational data are available for P on the global scale. The only 436 

observation-based global product is the global P maps developed by (Yang et al., 2013). 437 

Model simulated vegetation P is 0.36 Pg P, which is comparable to the estimates from other 438 

modeling studies ranging from 0.23 to 3 Pg P (Goll et al., 2012; Wang et al., 2010; Jahnke, 439 

1992). Model simulated soil organic P is 3.75 Pg P, which is slightly lower than previous 440 

studies 5.74 Pg P (Goll et al., 2012), 5-10 Pg P (Smil, 2000), and 8.6 Pg (Yang et al., 2013).  441 

Model simulated soil mineral P for the top 40cm and 60cm is 63.24 and 81.32 respectively, 442 

which are generally comparable to the estimate of 45 Pg P for top 50cm soil from Yang et al. 443 
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(2013). The comparisons between simulated P pools and fluxes and available observations 444 

are also included in Table 2.   445 

 446 

3.4. The effects of P limitation on historical carbon cycle  447 

ELMv1-CNP calculates the extent of both N and P limitation for plant growth on the 448 

global scale (Figs. 9a and 9b). Generally speaking, P is a more limiting nutrient in tropical 449 

evergreen forests and savannas in South America and Africa, while N is more limiting in 450 

temperate regions (Fig. 9a). The ratio between the P limitation factor and N limitation 451 

factor illustrates the degree of N-P colimitation (Fig. 9b). In many parts of the world, both 452 

N and P are limiting productivity.  453 

Fig. 10 shows the effects of P dynamics on historical land carbon accumulation.  454 

The introduction of P dynamics leads to a 19.5% reduction in C storage due to CO2 455 

fertilization between 1850 and 2010. The consideration of P dynamics also leads to a lower 456 

estimate of land use emissions (143.89 PgC vs 161.21 PgC) as CNP simulations generally 457 

show lower initial vegetation biomass. Increasing N deposition generally leads to a small 458 

carbon accumulation between 1850 and 2010 in both CN and CNP simulations. With P 459 

limitation, however, the carbon accumulation from N deposition is reduced by about a 460 

third. Climate, although responsible for the large seasonal and interannual variability of 461 

carbon fluxes, has only minor impacts on historical carbon accumulation on the global 462 

scale for both CN and CNP simulations. When changes of all environmental factors are 463 

considered, the impact of P dynamics on carbon accumulation is the balance between a 464 

smaller CO2 fertilization effect and lower land use emissions, with the net effect being 465 

slightly lower historical carbon accumulation.    466 

Fig. 11 shows the simulated spatial patterns of productivity and carbon storage and 467 

how they are affected by P dynamics and limitation. P dynamics strongly control land 468 

carbon uptake and storage, particularly in tropical regions. Globally NPP is highest in 469 

tropical evergreen forests and lower in middle to high latitude regions. Plant growth in 470 

tropical regions, however, is generally limited by P availability, particularly in the central 471 

and eastern Amazon basin and tropical Africa. The reduced productivity due to P limitation 472 
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translates into reduced vegetation carbon storage and soil carbon storage, with the 473 

exception of tropical savannas, where fire dynamics also play an important role in 474 

vegetation and soil carbon storage.    475 

 476 

4. Discussions 477 

4.1. ILAMB benchmarking 478 

This study presents a global assessment of the ELMv1-CNP. Yang et al. (2019) evaluated 479 

the performance of ELMv1-CNP in the Amazon region using plot-level observations from the 480 

RAINFOR network and found that the model captures well the observed productivity and 481 

biomass gradient across the Amazon basin. Here we further evaluate the global model 482 

performance using the ILAMB benchmarking system – an open source land model 483 

evaluation system that is designed to assess model performance at site level, regional, and 484 

global scales in an integrated and comprehensive way.  485 

We include several other land models in CMIP6 in our ILAMB analysis with the goal of 486 

providing a context for the performance of ELMv1-CNP. We found that ELMv1-CNP exhibits 487 

similar performance to other models. It is challenging to demonstrate a clear improvement 488 

or degradation for complex land surface models in ILAMB. For example, our analysis 489 

indicates that ELMv1-CNP performance is comparable to CLM5 in terms of the overall 490 

carbon cycle. Both ELMv1-CNP and CLM5 have a common ancestor CLM4.5, but they took 491 

very different approaches for further development. CLM5 had significant efforts undertaken 492 

in improving the representation of nitrogen cycle, while ELMv1-CNP was more focused on 493 

implementing a prognostic phosphorus cycle and C-N-P interactions. Model development 494 

activities in both models helped improved model performance through the lens of ILAMB 495 

but the sources of improvements are quite different. This highlights the need to include 496 

more process-level evaluations in ILAMB for the purpose of evaluating the impact of specific 497 

model improvements.   498 

Although CLM5 and ELM-CNP perform similarly in terms of ILAMB scores, it is worth 499 

noting the unique role of P cycle dynamics in affecting C cycling and the importance of 500 

including P cycle limitation in earth system models for better prediction of carbon-climate 501 
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feedbacks. The important role of soil P availability in affecting plant growth in tropical 502 

forests residing on highly weathered soils has long been recognized (Walker and Syers, 503 

1976; Vitousek et al., 2010; Butler et al., 2018; Elser et al., 2007). Recent work has also 504 

explored how increasing demand for P may attenuate predicted increase in NPP 505 

conceptually by comparing potential demand with potential nutrient availably in the 21st 506 

Century (Wieder et al., 2015b; Sun et al., 2017). Increasing numbers of land models have 507 

incorporated P cycle dynamics and P limitations (Sun et al., 2021; Nakhavali et al., 2021).  508 

Although both N and P limitation acts through reducing NPP, it is critical to include P cycling 509 

explicitly in models since P cycle dynamics are very different from the N cycling dynamics.  510 

The primary input for P is through rock weathering, which make it a very much non-511 

renewable nutrient for the terrestrial ecosystems, whereas N fixation, the primary input for 512 

N, is more biologically driven. P cycling involves the transformation of various forms of P 513 

through a series of biological, enzymatical and geochemical processes with the turnover 514 

time ranging from seconds to millions of years.  N cycle dynamics are relatively simpler, with 515 

two inorganic forms and mostly biological and enzymatical processes involved. In addition, 516 

the interactions between N and P cycling also points to the need to include P cycle explicitly 517 

in land models. Increasing numbers of studies have shown that biological N fixation could 518 

be constrained by soil P availability (Hungate et al., 2004; Reed et al., 2013; Barron et al., 519 

2008; Edwards et al., 2006; Crews et al., 2000). On the other hand, studies have also shown 520 

that increases in N availability can promote phosphatase activity and enhance biochemical 521 

mineralization and therefore accelerate P cycling (Mcgill and Cole, 1981; Wang et al., 2007; 522 

Houlton et al., 2008; Olander and Vitousek, 2000; Treseder and Vitousek, 2001; Marklein 523 

and Houlton, 2012). We will continue refine and improve the representation of the C-N-P 524 

interactions in the future development of ELM. 525 

Also, ILAMB, despite being a comprehensive benchmarking tool for land surface models, 526 

is limited in scope in terms of the benchmarking data included. For example, Quesada et al. 527 

(2012) found that the decreasing west-east gradient in productivity is mostly related to total 528 

soil P.  Yang et al. (2019) show that consideration of soil P availability improved model 529 

simulated productivity, enabling the model to capture the productivity gradient from west 530 
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to east across the Amazon basin. The problem is that this productivity gradient across the 531 

Amazon basin is not captured in ILAMB benchmark data so the “failure” of a CN model 532 

would not be captured by ILAMB. 533 

We show that the model performance generally improved with realistic P availability 534 

through the implementation of a prognostic P cycle in ELM. Compared to ELMv1-CN, 535 

ELMv1-CNP simulated biomass has lower bias across the tropical regions as P limitation 536 

leads to lower productivity and hence lower biomass.  ELMv1-CNP produces better ILAMB 537 

scores on the functional relationships between GPP, LAI and other forcing variables, mainly 538 

due to improved estimate of GPP and LAI in tropical regions. ELMv1-CNP also produces 539 

higher ILAMB scores for the integrated benchmarks such as global net ecosystem carbon 540 

balance and carbon dioxide concentration. We note that satisfactory performance for these 541 

two integrated metrics is most critical to a land model in ESMs as they are most relevant to 542 

the coupling between land ecosystems and radiatively-forced climate change.  543 

 544 

 Although the ILAMB benchmarking system is very useful for evaluating model 545 

performance from different aspects simultaneously, interpretation of ILAMB scores 546 

deserves extra caution with known observational bias considered. For example, ILAMB uses 547 

LAI estimated from remote sensing observations from the Moderate Resolution Imaging 548 

Spectroradiometer (MODIS) as benchmarking data, while studies have suggested that 549 

MODIS LAI may be biased low due to reflectance saturation in dense canopies in the 550 

tropical forests (Shabanov et al., 2005; Huete et al., 2002; Kobayashi and Dye, 2005). 551 

Another example is the observational data for biomass. There are significant differences 552 

between the “tropical” and “GlobalCarbon” datasets and the “GeoCarbon” dataset for 553 

tropical biomass, but they were given about the same default weight in the ILAMB scoring 554 

system. Mitchard et al. (2014) investigated the marked differences between different 555 

estimates of Amazon biomass and suggested the regional biases in some remote sensing 556 

products might be due to the lack of consideration of ecological variation in tree wood 557 

density and allometry. Further investigation of these datasets is needed to ensure the 558 

quality of biomass benchmarking data.   559 
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  560 

The current version of ILAMB includes analysis of 28 variables using more than 60 561 

datasets or data products. None of these variables, however, are directly related to nutrient 562 

cycles. As more land surface models are implementing N and P dynamics, it is becoming 563 

increasingly important to include metrics for nutrient stocks and fluxes. Davies-Barnard et 564 

al. (2020) assessed five nitrogen-enabled land surface models in CMIP6 and called out the 565 

need to have better constraints of nitrogen cycle processes. The need is equally urgent, if 566 

not more, to synthesize more observations to better constrain the P cycle processes, as less 567 

synthesized data are available for P. Encouragingly, recent studies have started to develop 568 

observational datasets based estimate of N and P cycling on the global scale for model 569 

evaluation, such as the GOLUM-CNP dataset we used in this study. We hope to highlight the 570 

need and engage the broader community in developing additional nutrient datasets that 571 

can be included in ILAMB.  572 

Other metrics that would be useful are the responses from N and P addition 573 

experiments. As Yang et al. (2014) showed, fertilization experiments at sites along the 574 

Hawaii chronosequence provided a useful evaluation testbed to assess model simulated 575 

responses to N and P fertilization effects. FACE experiments are useful for model evaluation 576 

as shown here (section 4.2) and in other studies (Wieder et al., 2019; Davies-Barnard et al., 577 

2020). Warming studies that include an explicit focus on nutrient cycle responses will be 578 

another good evaluation opportunity (Melillo et al., 2002). An existing challenge is to 579 

provide a common protocol to use these types of experiments in the ILAMB benchmarking 580 

system. 581 

 582 

4.2 Evaluations using GOLUM-CNP 583 

 584 
On the biome level ELMv1-CNP simulated nutrient use efficiencies are consistent with 585 

the observation-based estimates from GOLUM-CNP. This indicates that the representation 586 

of N and P cycling and C-N-P coupling is reasonable in ELMv1-CNP. In terms of nutrient 587 

uptake, both show the highest N and P uptake in tropical forests, due to the high N and P 588 

demand associated with high productivity. ELMv1-CNP predicted lower N uptake in the 589 
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tropics, compared to GOLUM-CNP. Nutrient uptake in ELMv1-CNP is a function of nutrient 590 

availability and nutrient demand, with demand being determined by available carbon for 591 

allocation, allocation fractions to different plant tissues and plant tissue stoichiometry.  The 592 

simulated NPP at the biome level matches well with NPP from GOLUM-CNP (Fig. S3).  The 593 

differences in nutrient uptake is therefore likely due to the different C:N and C:P  594 

stoichiometric ratios for different vegetation tissues used in ELMv1-CNP and GOLUM-CNP. 595 

C:N ratios of leaf, wood, and fine root in GOLUM-CNP are all lower than ELMv1-CNP (21, 596 

126, and 40 in GOLUM vs 30, 500, and 42 in ELMv1-CNP). This suggests for given amount of 597 

carbon allocation, N uptake would be lower in ELMv1-CNP.  C:P ratios of leaf, wood, and 598 

fine root in GOLUM-CNP also differ quite significantly from those in ELMv1-CNP (410, 5429, 599 

and 1250 in GOLUM vs 600, 3000, and 1000 in ELMv1-CNP).  The relatively higher P uptake 600 

in ELMv1-CNP can be attributed in large part to the difference in dead wood C:P ratios. 601 

Differences in allocation factors could also be contributing to the differences in nutrient 602 

uptake between ELMv1-CNP and GOLUM-CNP. For example, the mean allocation fraction to 603 

fine root is higher in GOLUM-CNP compared to ELM-CNP, while allocation fraction to leaf is 604 

lower in GOLUM-CNP, particularly in forest ecosystems (Fig. S4 and S6). GOLUM-CNP also 605 

has higher NPP allocation fraction to woody biomass in boreal forests (Fig. S5)    606 

 607 

       4.3. Evaluations using CO2 manipulation experiments 608 

Our simulated large increase in GPP with CO2 enrichment (23%) is in agreement with 609 

field observations that photosynthetic assimilation increased 28% under elevated CO2  610 

(Ainsworth and Long, 2005). Our simulated 26% increase in NPP is higher than the 17% 611 

increase in observed increase in dry matter production in the FACE experiments (Ainsworth 612 

and Long, 2005; Wieder et al., 2019). Our simulated 18% increase in biomass is higher than 613 

the estimates from Terrer et al. (2019), which provides a data-driven estimate of global CO2 614 

fertilization effect on biomass and show a relative increase in biomass of 12±3% for a 250 615 

ppm CO2 increase. A meta-analysis of woody plants responses to elevated CO2 shows a 616 

mean effects of 22.3% on biomass (Baig et al., 2015). Among CLM4, CLM4.5 and CLM5, 617 

ELMv1-CNP is more comparable to CLM5 with a strong simulated response of GPP, NPP, and 618 
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vegetation carbon in response to CO2 enrichment, while CLM4 and CLM4.5 showed very 619 

weak CO2 effects (Wieder et al., 2019).  620 

The much stronger sensitivity of photosynthesis to elevated CO2 in ELMv1-CNP is due to 621 

the removal of instantaneous downregulation of photosynthesis as a response to nutrient 622 

limitation. The instantaneous downregulation assumption in CLM4 and CLM4.5 has been 623 

shown to be inconsistent with experimental results (Metcalfe et al., 2017). Despite large 624 

uncertainty, it is encouraging that simulated NSC response to elevated CO2 is largely 625 

consistent with the observational data (Fig. 7).  The low sensitivity of LAI in ELMv1-CNP is 626 

also consistent with field observations. Our results suggest the assumption we made 627 

regarding the fate of photosynthate is reasonable. Yang et al. (2016) showed that enhanced 628 

phosphatase enzyme production response to increasing CO2 could have important impacts 629 

on P availability and sustain forest productivity under elevated CO2.  In simulating the 630 

planned free-air CO2 enrichment experiment AmazonFACE, ELMv1-CNP simulated 631 

phosphatase activity increased about 20% over 15 years (Fleischer et al., 2019). Here we 632 

show that introduction of NSC pools further improve the response of vegetation processes 633 

to changes in P availability and P limitation. 634 

 635 

Our findings are consistent with field studies that show the strong increase of NSC under 636 

eCO2, particularly when nutrient availability is low (Wong, 1990; Körner et al. (2005). 637 

Several studies evaluating CLM4.5 using carbon isotope data also suggested that model 638 

performance would be better with the introduction of an NSC pool (Mao et al., 2016; 639 

Raczka et al., 2016; Duarte et al., 2017). Further synthesis of field measurements on NSC in 640 

CO2 enrichment experiments are needed to evaluate and constrain the representation of 641 

NSC in models.  642 

  Our simulated strong sensitivity of photosynthesis to CO2 enrichment is consistent 643 

with recent studies that show large GPP growth during the twentieth century (Campbell et 644 

al., 2017; Haverd et al., 2020; Ehlers et al., 2015). Ellsworth et al (2017) also showed a large 645 

increase of photosynthesis in response to elevated CO2  in a temperate forest FACE 646 

experiment.  647 
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The increased sensitivity of GPP and NPP to CO2 enrichment in ELMv1-CNP, compared 648 

with the predecessors CLM 4 and CLM4.5, will very likely reduce the bias in the atmospheric 649 

fraction of human CO2 emissions in previous coupled simulations as noted by Hoffman et al. 650 

(2014). In fact, CO2 concentration metrics in ILAMB, which translate model simulated NEE 651 

into atmospheric CO2 signal using an atmospheric transport model (Collier et al., 2018), is 652 

intended for the evaluation of this sensitivity. The inferred atmospheric CO2 concentration 653 

from ELM v1 is very reasonable compared with observed NOAA flask data (Fig. S8 and S9).             654 

 655 

4.4. Model estimated carbon, nitrogen, and phosphorus pools and fluxes  656 

Global C, N, and P pools in our ELMv1-CNP simulation are in good agreement with 657 

recent independent global estimates, indicating that ELMv1-CNP is capable of simulating 658 

the contemporary C, N and P cycles. In Yang et al. (2019) it was shown that introduction of 659 

more realistic mortality processes improved the model representation of longitudinal 660 

spatial patterns of biomass across the Amazon basin. Here we show that an overall high 661 

bias in biomass production is corrected through limits of vegetation production in response 662 

to P availability, without compromising the improved spatial gradients obtained through 663 

the mortality mechanism.  It is worth mentioning that our understanding of nutrient stocks 664 

and fluxes is much less advanced in comparison with the global C cycle. This has been 665 

increasingly acknowledged for the global N cycle as increasing numbers of land surface 666 

models have incorporated N cycle dynamics and C-N interactions (Zaehle et al., 2010; 667 

Wieder et al., 2019; Davies-Barnard et al., 2020; Smith et al., 2014; Sellar et al., 2019; Goll 668 

et al., 2017a; Gerber et al., 2010). Biological N fixation and N-use efficiency have been 669 

identified as the key processes that need to be better constrained for land surface models 670 

(Davies-Barnard et al., 2020).  671 

Our understanding of P stocks and fluxes are even less advanced than that for the N 672 

cycle, as shown in this study and other modeling studies that include P as a limiting 673 

nutrient. This is mainly due to: (1) various forms of P with different level of availability for 674 

plants and microbes, (2) geochemical processes in conjunction with biological processes 675 

controlling P availability, and (3) technical challenges in measuring soil P. For example, 676 
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Hedley fractionation data provide a comprehensive picture of different P forms in soils and 677 

has been used for model evaluation and/or initialization in all the land surface models that 678 

include a prognostic phosphorus cycle (Wang et al., 2010; Goll et al., 2012; Yang et al., 679 

2014; Yang et al., 2019). However, this extraction method is time-consuming and 680 

challenging, and not many routine measurements have been made using this technique.  681 

As such, observational estimates of P pools and fluxes are extremely limited. Although 682 

recent global Hedley database development (Yang and Post, 2011; Hou et al., 2018) has 683 

been helpful in global model development and evaluation, more observational data on P 684 

stocks and fluxes are needed to better constrain P-enabled models. 685 

  686 

 687 

4.5.  Effects of accounting for the P cycle dynamics on simulated carbon balance 688 

4.5.1. Spatial variation of nutrient limitation  689 

Our simulated nutrient limitation pattern broadly agrees with the findings from Elser et 690 

al. (2007) which supports the generally accepted notion that tropical ecosystems residing 691 

on highly weathered soils are P limited (Walker and Syers, 1976; Lebauer and Treseder, 692 

2008). A recent study that predicted spatial patterns of N and P limitation using the ratios 693 

of leaf N and P resorption efficiencies also found a shift from P limitation to N limitation 694 

with increasing latitude (Du et al., 2020). Lebauer and Treseder (2008) showed that N 695 

limitation is widespread, even in tropical regions. This is consistent with our model 696 

simulations which show that although P is more limiting in tropical forests, N is also a 697 

limiting nutrient. The geographic distribution of nutrient limitation is generally in 698 

agreement with that from Goll et al. (2012) and Wang et al. (2010). Goll et al. (2012) 699 

suggests that P limits C uptake mainly in low latitude regions and high latitudes, while N is 700 

the limiting nutrient in temperate regions. It is worth mentioning that in Goll et al. (2012) N 701 

and P limitation generally have distinct geographic occurrence while this study suggests NP 702 

co-limitation occurs in many parts of the world. Wang et al. (2010) also showed that 703 

productivity in tropical forests and savanna is limiting by P, while most other biomes are 704 

limited by N. This is broadly consistent with our results but with a few key differences. 705 
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Wang et al. (2010) suggests that P is the limiting nutrient for savannas, whereas our results 706 

show savannas are more limited by N. This may have to do with the lack of representation 707 

of fire disturbance in Wang et al. (2010). Savannas are subject to regular wildfires, which 708 

could have significant effects on nutrient cycle dynamics and nutrient limitation. For 709 

example, it has been suggested that while combustion causes significant gaseous losses of 710 

N from burned ecosystems, P is largely retained as ash (Herbert et al., 2003). Braakhekke et 711 

al (2017) also showed that there are strong losses of N due to fire.  Furthermore, Wang et 712 

al. (2010) suggested that tropical forests are limited only by P, not by N, whereas our 713 

results indicate that N and P both limit tropical forest productivity, although P limitation is 714 

more dominant in most of the lowland tropical forests. This is consistent with a recent 715 

meta-analysis of nutrient fertilization experiments in tropical forests (Wright et al., 2018).   716 

 717 

4.5.2. The implications for global carbon cycle and climate  718 

 Historical C accumulation is a result of many complex and sometimes counteracting 719 

processes controlling C fluxes and stocks (Lawrence et al., 2019), including accumulation of 720 

carbon on land due to CO2 fertilization, accumulation due to nitrogen deposition, carbon 721 

fluxes due to climate variability and climate change, and losses and gains due to land cover 722 

conversion and regrowth following historical land cover changes (LULCC fluxes).Over the 723 

long term, two of the dominant processes controlling C accumulation in terrestrial 724 

ecosystems are C emissions due to LULCC and C uptake due to the CO2 fertilization effect. P 725 

cycle dynamics have important impacts on both of these processes, but with opposite sign. 726 

Globally, considering P cycle dynamics leads to lower carbon emissions associated with 727 

deforestation by about 11% (161.21 Pg in CN vs 143.89 in CNP). Conversely, CO2 728 

fertilization at the global scale is reduced by 20% when P limitation is included during the 729 

historical time period (134 Pg C vs 108 Pg C). In general, the ELMv1-CN simulation shows a 730 

CO2 fertilization effect on biomass that is too strong, which leads to a stronger than 731 

observed carbon sink compared to observational constraints from both Hoffman et al. 732 

(2014) and Le Quere et al. (2016).  ELMv1-CN simulation also produces stronger carbon 733 

emissions from LULCC due to having higher biomass compared to ELMv1-CNP. The CO2 734 
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fertilization effect in the ELMv1-CN simulations is strong enough to overcome the LULCC 735 

losses with the net result being too large of a sink throughout the historical time period for 736 

the CN model. Both model configurations lose carbon too slowly due to LULCC in the period 737 

from 1850–1940, when compared to the Hoffman et al. (2014) global estimate. Both 738 

models also predict continued losses over the period 1940–1965, while the Hoffman et al. 739 

(2014) estimate switches from net carbon loss to net carbon accumulation around 1940. 740 

These are clearly shown in Fig. S7, which shows the time series of simulated change in land 741 

carbon storage in response to changes in CO2, LULCC, N deposition, and climate during 742 

1850-2010. The ELMv1-CN and ELMv1-CNP models are similar to many other CMIP6 743 

models with respect to this bias in the timing of transition from net land carbon source to 744 

net land sink as shown in our ILAMB analysis of other land models in CMIP6.  745 

     746 

We also note that, over the historical time period, P became more limiting as simulated 747 

historical C accumulations became increasingly divergent between CN and CNP simulations. 748 

This is mainly caused by stimulated plant productivity under higher atmospheric CO2, which 749 

leads to higher plant demand for P that is not balanced by increased supply of newly 750 

mineralized P from the soil. This is consistent with other global modeling studies with 751 

explicit representation of P cycle dynamics (Goll et al., 2012; Zhang et al., 2014), as well as 752 

diagnostic studies that evaluated how CO2 fertilization simulated by CMIP5 models could 753 

be constrained by soil P availability using a mass balance approach (Wieder et al., 2015b; 754 

Sun et al., 2017).  Taken together, the limiting effect of P availability on C uptake will likely 755 

have substantial consequences for projections of future C uptake. 756 

 757 

 758 

4.6. Limitations and future development  759 

While the ELMv1-CNP simulations presented here show that the model is capable of 760 

representing contemporary C, N and P stocks and fluxes and capturing the observed 761 

ecosystem responses to changes in atmospheric CO2, the current configuration does have 762 

limitations.  763 
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While the model represents disturbances such as fire and the interactions between 764 

disturbances and nutrient cycle dynamics, these interactions and how they affect carbon 765 

cycle processes have not been well constrained with observational data. There is a growing 766 

body of literature investigating the biogeochemical signature of fire. For example, a meta-767 

analysis by Butler et al. (2018) shows that fire led to significantly higher concentration of 768 

soil mineral P and lower soil and litter C:P and N:P ratios, therefore decoupling the P cycle 769 

from the C and N cycles.  We will take advantage of these recent findings to improve model 770 

fidelity on this front.   771 

Another area that needs to be improved is the treatment of N fixation and how that is 772 

linked to P availability. N fixation in ELMv1-CNP is represented as a function of NPP 773 

(Cleveland et al., 1999). While providing a reasonable global estimate of N fixation, the 774 

approach ignores existing mechanistic understanding of nitrogen fixation processes 775 

(Wieder et al., 2015a). Furthermore, several lines of evidence suggest that both symbiotic 776 

and free-living  N fixation rates depend on the availability of other elements, such as P and 777 

molybdenum (Reed et al., 2013; Nasto et al., 2014). N fixation could have important 778 

implications for the spatial distribution of N limitation vs P limitation. In the future we plan 779 

to have a more mechanistic representation of N fixation in ELM.  780 

In ELMv1-CNP, P limitation is represented by downregulating plant growth when P 781 

demand is greater than soil P availability. The mechanisms by which P fundamentally limits 782 

ecosystem productivity remain uncertain (Jiang et al., 2019). Some studies proposed that 783 

there are linear or log-linear relationships between leaf P concentration and 784 

photosynthetic parameters, although the relationship has been shown to be weak (Walker 785 

et al., 2014). P fertilization experiments in P limited ecosystems do not support this 786 

proposed relationship. A P fertilization experiment on highly weathered soils in Australia 787 

showed that although leaf P concentration increased significantly (+50%) compared to 788 

unfertilized trees, photosynthetic capacity was unaffected (Crous et al., 2015).  789 

Another fertilization experiment in Hawaii showed that the increase of aboveground NPP 790 

with P fertilization was caused mainly by increases in LAI instead of photosynthesis per unit 791 

leaf area (Herbert and Fownes, 1995). Further laboratory and field experiments are needed 792 
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to help us better understand and represent the role of P in photosynthesis. Investigating 793 

the detailed mechanisms through which leaf P concentration affects photosynthesis is an 794 

active field of research (Jiang et al., 2019; Norby et al., 2017; Crous et al., 2015), and 795 

representing these relationships in land models remains an outstanding challenge.   796 

Uncertainty also remains regarding the ELMv1-CNP representation of sorption dynamics 797 

and biochemical mineralization and their responses to changes in atmospheric CO2 and 798 

climate (Fleischer et al., 2019). Motivated by our previous modeling studies, several recent 799 

field studies have started focusing on improving our mechanistic understanding and 800 

providing quantitative relationships for modelling these processes (Cabugao et al., 2017; 801 

Brenner et al., 2019).  A recent study that upscaled site-measurements of potential 802 

phosphatase activity to continental Europe using machine learning technique provides a 803 

potential pathway toward generating benchmark data for biochemical mineralization on 804 

regional to global scale (Sun et al., 2020). There are other mechanisms that could sustain 805 

productivity with increasing P limitation but were not considered in ELMv1-CNP, such as 806 

flexible stoichiometry and dynamic allocation. These will be investigated further in future 807 

versions of E3SM. However, as Fleischer et al. (2019) pointed out, since plant N:P ratios in 808 

highly P limited tropical forests are already at the high end of the observed spectrum, the 809 

role of stoichiometry plasticity in sustaining tropical productivity could be limited.  810 

While the representation of NSC has helped ELMv1-CNP to capture the interannual 811 

variability of atmospheric CO2 and to generate ecosystem responses to elevated CO2 812 

consistent with FACE measurements, the sizes and turnover times of NSC pools are not well 813 

constrained. We will synthesize limited measurements on NSC from literature that include 814 

observational and experimental data as well as measurements from isotopic studies to 815 

better understand the dynamics of the NSC pool and to evaluate and refine its 816 

representation in ELM.  We also advocate for more measurements on NSC and how they 817 

respond to environmental changes in diverse ecosystems to have a more complete 818 

understanding and quantification of NSC.  819 

Finally, although models such as ELMv1-CNP and CLM5 perform similarly when 820 

evaluated against present-day metrics as gathered in ILAMB, we expect that the 821 
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differences among models in their representation of observed processes and in their 822 

assumptions about how changes in atmospheric composition and climate will impact 823 

ecosystem processes will lead to diverging predictions under future climate scenarios. We 824 

will explore those differences and their consequences in future work. 825 

 826 

5. Conclusions 827 

In this study, we provide an evaluation of ELMv1-CNP using the ILAMB benchmarking 828 

system, comparison with CO2 manipulation experiments, and comparison with other 829 

observational and modeling studies. Benchmarking with ILAMB indicates ELMv1-CNP 830 

produces realistic estimates of present-day carbon pools and fluxes. Compared to a 831 

simulation with optimal P availability, ELMv1-CNP produces better performance, 832 

particularly for the metrics that are most relevant to land-atmosphere exchange. Our 833 

results from CO2 manipulation experiments suggest that ELMv1-CNP is able to capture 834 

observed responses to elevated CO2, including those for GPP, NPP, vegetation C, and LAI.  835 

Further analysis suggests that the introduction of a non-structural carbon pool in ELMv1-836 

CNP is largely responsible for these improvements.  Evaluating global C, N, and P pools and 837 

fluxes in the context of literature values suggests that ELMv1-CNP provides a reasonable 838 

representation of contemporary global scale C, N and P cycles.  839 

We highlight the data needs for global land model evaluation, particularly the need for 840 

more synthesis datasets on nutrient pools and fluxes, as well as observations from 841 

manipulation experiments that provide additional benchmark data for nutrient cycle 842 

evaluation. This need is becoming increasingly pressing as more land models are including N 843 

and P cycle dynamics and C-N-P interactions. We also identify challenges in constraining P 844 

cycle dynamics and point to the need for soil P measurements.  845 

Our simulations suggest, probably not surprisingly, that in general P is the more limiting 846 

nutrient in the tropical regions while N is more limiting in the middle to high latitudes.  847 

However, our results also suggest widespread N and P colimitation, even in the tropical 848 

regions where P limitation is more dominant. Our results show that C sources and sinks are 849 

significantly affected by P limitation, as the historical CO2 fertilization effect was reduced by 850 
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20% and C emission due to LULCC was 11% lower when P limitation was considered. We 851 

conclude that introduction of P cycle dynamics and C-N-P coupling will likely have 852 

substantial consequences for projections of future C uptake.   853 
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 1244 
 1245 

Figure 1: ILAMB carbon cycle scores for ELMv1-CNP and ELM-CN and a few land models in 1246 

CMIP6.  Shown here is the relative score, indicating the performance of each model relative to 1247 

other models. References for benchmarking data for each variable are provided in Table S4. 1248 

Outputs for other land models are from the LS3MIP offline simulations archive in CMIP6. These 1249 

simulations were performed using the same resolution and forcing data as this study. CLM4.5 is 1250 

the land model in CMCC-ESM2. CLM5 is the land model for CESM2. OCHIDEE is the land model 1251 

for IPSL. JABACH is the land model for MPP-ESM1.2. VISIT is the land model for MIROC6.   1252 
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 1253 
Figure 2: ELMv1-CNP and ELMv1-CN simulated global land carbon accumulation for the time 1254 

period (a) 1960-2010 and (b) and 1850-2010. Benchmark data (black lines with uncertainty 1255 

estimate in grey) are from (a) Global carbon project (Le Quere et al., 2016)  and (b) Hoffman et 1256 

al. (2014).  1257 
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 1259 
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 1261 
 1262 

 1263 
Figure 3: Global pattern of simulated biomass: (a) benchmark data, (b) ELMv1-CN bias (c) 1264 

ELMv1-CNP bias and (d) spatial Taylor diagram for model-benchmark comparison (red dot is for 1265 

ELMv1-CN and blue dot is for ELMv1-CNP). Benchmark data here is from the GEOCARBON 1266 

product (Saatchi et al.,2011). 1267 
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 1270 
 1271 

Figure 4:  ILAMB relationship plot between LAI and climatological annual precipitation and (a) 1272 

ELMv1-CN (b) ELMv1-CNP. Black line is the observationally derived relationship. Error bars 1273 

indicate one standard derivation of LAI for all grid cells within the precipitation bin. Observed 1274 

LAI is from MODIS LAI product. 1275 
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 1284 
 1285 
Figure 5: Violin plots of nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) from 1286 

ELMv1-CNP and GOLUM-CNP for seven biomes:  tropical rainforest (TRF), temperate deciduous 1287 

forest (TEDF), temperate coniferous forest (TECF), boreal coniferous forest (BOCF), temperate 1288 

grassland (TEG) and tropical grassland (TRG). Plots show the medians of all grid cells in each 1289 

biome (open circles) and the probability density distribution (balloons).  1290 
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 1295 
 1296 

Figure 6:  Spatial distribution of the effect size of CO2 enrichment on (a) GPP (b) NPP (c) 1297 

Vegetation carbon (d) LAI. Effect sizes were calculated for each grid cell as the mean annual 1298 

values of GPP, NPP, vegetation carbon and LAI from CO2 enrichment simulation divided those 1299 

from the control simulations between 2001-2010. 1300 
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 1302 
Figure 7: Observed (open circles) and simulated (solid circles) effect size of CO2 enrichment on 1303 

GPP, NPP, LAI, vegetation carbon and non-structural carbon. Observations show the mean 1304 

(±95% confidence interval; Ainsworth and Long, 2005). There are two observations of NSC 1305 

shown here, one is for sugar and the other is for starch, while model conceptualization of NSC 1306 

includes both sugar and starch. Simulated responses show the global mean effect sizes ( ± stand 1307 

derivation; calculated to provide an estimate of spatial variation). 1308 
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 1311 
 1312 

Figure 8: (left) terrestrial C cycle, (middle) N cycle, and (right) P cycle as simulated by ELMv1-1313 

CNP, shown here are mean values between between 2001-2010.  Vegetation and soil C, N and P 1314 

pools are in units of Pg C, Pg N and Pg P, respectively. C and N fluxes are given in Pg C yr-1 and 1315 

Pg N yr-1, and P fluxes are given in Tg P yr-1. 1316 
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 1327 
Figure 9: (a) Spatial variation of the extent of nutrient limitation on plant growth. Regions with 1328 

a negative value are more limited by N, while regions with a positive value are more limited by 1329 

P. Larger absolute values are associated with stronger limitation. Values plotted are the 1330 

proportion by which plant growth is reduced due to N limitation or P limitation: 1-𝑓! when 𝑓! 1331 

<𝑓" and  𝑓"-1 when 𝑓" <𝑓!, where 𝑓! is the limitation factor on plant growth considering P 1332 

supply and demand, while 𝑓"	is the limitation factor on plant growth considering N supply and 1333 

demand (Yang et al., 2014). (b) Spatial variation of the ratios between P limitation and N 1334 

limitation indicating the degree of co-limitation. Values plotted are the ratios between 𝑓" and 1335 

𝑓!:  𝑓"/𝑓!. Regions with values less than 1 indicate more N limitation and regions with values 1336 

greater than 1 are more limited by P. Values close to 1 indicate NP co-limitation.  1337 
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 1340 
Fig. 10: (a) Cumulative global carbon storage from 1850 to 2010 from ELMv1-CN and ELMv1-1341 

CNP simulations with changes in land use and land cover change (LUC), atmospheric CO2 (CO2), 1342 

climate (CLIM), N deposition (NDEP), and all factor combined (ALL). These are calculated as the 1343 

accumulation of NEE between 1850 and 2010 for the historical transient model simulations 1344 

listed in Table 1. 1345 
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 1348 
 1349 

Fig. 11: Average estimates and effects of phosphorus dynamics on (a,b)  net primary 1350 

productivity, (c,d)  vegetation carbon and (e,f) soil organic carbon for the years 2001-2010, as 1351 

estimated by ELM v1. The effects of P dynamics are expressed as percentage deviation between 1352 

CNP and CN configurations 1353 

 1354 

 1355 

 1356 

 1357 

 1358 

https://doi.org/10.5194/bg-2022-130
Preprint. Discussion started: 17 June 2022
c© Author(s) 2022. CC BY 4.0 License.



 50 

 1359 
Table 1: Summary of model simulations 1360 
 1361 

Experiment P 
coupling 

CO2 forcing LULCC Climate forcing N depos 

      
Ctrl_CN off 1850 1850 steady statea 1850 
Ctrl_CNP on 1850 1850 steady statea 1850 
Hist_CN_CO2 off transient 1850 steady statea 1850 
Hist_CNP_CO2 on transient 1850 steady statea 1850 
Hist_CN_LUC off 1850 tranisient steady statea 1850 
Hist_CNP_LUC on 1850 transient steady statea 1850 
Hist_CN_climate off 1850 1850 transientb 1850 
Hist_CNP_ 
climate 

on 1850 1850 transientb 1850 

Hist_CN_NDep off 1850 1850 steady statea transient 
Hist_CNP_Ndep on 1850 1850 steady statea transient 
Hist_CN_all off Transient A d transientb transient 
Hist_CNP_all on transient transient transientb transient 
FACE_CO2 on +200ppm 

(1991-2010) 
transient transientb transient 

a		Cycling	of	20-year	time	series	of	GSWP3	reanalysis	product	(1901-1920)	1362 
b		Historical	time	series	of	GSWP3	reanalysis	product	(1901-2010)	1363 
 1364 
 1365 

 1366 

 1367 

 1368 

 1369 

 1370 

 1371 
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 1373 

 1374 
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Table 2: Comparison of ELMv1-CNP Simulated Mean Global Stocks and Fluxes of C, N and P 1379 

between 2001 and 2010 to Observation-based Estimates   1380 

 ELMv1-
CNP 

Observation-based Estimates   

   Source  Methodology 
GPP (Pg C yr-1) 134.15 123±8  Beer et al., 2010 Using eddy covariance flux data and 

various diagnostic models 
150-175 Welp et al., 2011 Based on oxygen isotopes of 

atmospheric CO2 

119±6 Jung et al.,  2011 upscaled FLUXNET observations to the 
global scale using the machine learning 
technique, model tree ensembles 
(MTE). 

121.60 - 
129.42 

Zhang et al., 2017 
Light use efficiency theory, MODIS 
satellite data and climate data 

140 Joiner et al., 2018 
Satellite Data-Driven Models and Eddy 
Covariance Flux Data  

NPP (Pg C yr-1) 46.09 55±11 Turner et al., 2006 MODIS products 
33-49 Smith et al., 2016 MODIS NPP algorithm driven by long-

term Global Inventory Modeling and 
Mapping Studies (GIMMS) FPAR and LAI 
data 

Vegetation C 
(Pg C) 

575.45 550±100  Houghton, 2003 
 

Literature synthesis  

560±94 Defries et al., 1999  
Soil carbon 
(Pg C) 

1890.78 1750±250  Houghton, 2003 Literature synthesis 
2344 Jobbagy and Jackson, 

2000 
based on >2700 soil profiles in three 
global databases supplemented with 
data for climate, vegetation, and land 
use.  

3000 Kochy et al., 2015 Based on the Harmonized World Soil 
Database(HWSD), but with more 
detailed estimates for permafrost and 
tropical wetland soil carbon  

2376–2456  
 

Batjes, 2014 Top 2m. Based on 4353 soil profiles 
distributed globally and the FAO Soil 
Map of the World. 

Top 1m soil 
carbon (Pg C) 

1134.41 1462-1548 Batjes, 2014 Based on 4353 soil profiles distributed 
globally and the FAO Soil Map of the 
World. 

1325 Kochy et al., 2015 Based on the Harmonized World Soil 
Database(HWSD), but with more 
detailed estimates for permafrost and 
tropical wetland soil carbon 

1502 Jobbagy and Jackson, 
2000 

based on >2700 soil profiles in three 
global databases supplemented with 
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data for climate, vegetation, and land 
use.  

Soil organic N 
(Pg N) 

188.79 95 Post et al. 1985 Based on 3100 soil profiles and a global 
map of Holdridge life zones 

133-140 Batjes et al., 2014 Top 1m. Based on 4353 soil profiles 
distributed globally and the FAO Soil 
Map of the World 

N fixation 
(Tg N yr-1) 

89 40-100 Vitousek et al., 2013 Estimates for Pre-industrial.  Combining 
information on N fluxes with 15N 
relative abundance data for terrestrial 
ecosystems 
 

52-130 Davies-Barnard and 
Friedlingstein (2020) 
 

Based on a comprehensive meta-
analysis of field measurements 
 

N uptake 
(Tg N yr-1) 

760 570 Wang et al., 2018 Data-driven estimates. Observations 
include observed stoichiometric ratios, 
N and P external input fluxes, and the 
fraction of gaseous losses of N to total 
(gaseous and leaching) losses of N from 
a global data set of 15N measurements 
in soils 
 

N Leaching 
(Tg N yr-1) 

12 38 Wang et al., 2018 Data-driven estimates. See above 
 28 Mayorga et al., 2010 based on a mass-balance approach for 

the land surface (watershed) and river 
system for year 2000  

P uptake 
(Tg P yr-1) 

43 26 Wang et al., 2018 Data-driven estimates. See above 

P leaching 
(Tg P yr-1) 

0.46 2.6 Wang et al., 2018 Data-driven estimates. See above 

P occlusion 
(Tg P yr-1) 

1.85 1.3 Wang et al., 2018 Data-driven estimates. See above 
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