
Response to the reviewers 

 

We thank the two reviewers for their careful assessment of our work. We address the reviewers’ comments 

point by point. Added or revised text is given in blue fonts, the line numbers refer to the previously submitted 

manuscript without track changes. For convenience, we added a revised version of the manuscript with the 

planned changes highlighted after our reply to the Community Comment. 

 

Reviewer #1 

Review of “Observation-constrained estimates of the global ocean carbon sink from Earth system model” 

The study applies observational constraints to adjust Earth system model estimates of the global ocean 
carbon sink. The observational constraints are the sea surface salinity in the subtropical-polar front in the 
Southern Ocean (as applied previously by the authors in Terhaar et al, 2021), the Atlantic Meridional 
Overturning Circulation (AMOC) and the Revelle buffer factor. These observational choices are plausible 
and the benefits of applying them are clearly set out in an iterative manner in Figure 3. The outcome is a 
slight elevation of the global ocean carbon sink and almost a halving of the model uncertainty, which are 
important improvements.  

Thank you.  

The study is comprehensive and written up in a detailed manner. In places the level of detail seemed to 
detract from the central message, such as discussing the details of the biological contributions when that 
appears to be a rather minor contribution in the global carbon uptake for anthropogenic timescales. 

As suggested by the reviewer, the details about the biological contribution were removed from the 
text. Only one sentence was kept highlighting the minor contribution.  

The only concern I raise is the particular choice of the observational constraints and while this set of 
choices is plausible, there are other choices that might have led to similar improvements. 

So including a discussion of other choices would be helpful to the reader. For example, would a measure 
of the strength of the winds at key locations provide a similar benefit to the measure of the AMOC or a 
measure of the winter mixed layer thickness derived from Argo be beneficial? The AMOC might be used 
here as a proxy for ocean ventilation, but that need not be the case with gyre-scale subduction not being 
causally related to the AMOC. The use of the Revelle buffer factor is a plausible constraint, but the 
justification for that could be expanded, see possible theoretical links that can be explored or are there 
other references that can be utilised? 

We have extended the introduction and discussion of the Revelle buffer factor as well as the 
references and now better describe the role of the Revelle factor as a plausible constraint: 

“While the circulation determines the volume that is transported into the deeper ocean, the 
Revelle factor (Revelle and Suess, 1957; Sabine et al., 2004) determines the concentration of Cant 

in these water masses. The Revelle factor describes the biogeochemical capacity of the ocean to 
take up Cant. This biogeochemical capacity is strongly dependent on the amount of carbonate ions 



in the ocean that react with CO2 and H2O to form bicarbonate ions (Egleston et al., 2010; 
Goodwin et al., 2009; Revelle and Suess, 1957). The more CO2 is transferred via this reaction to 
bicarbonate ions, the more can be taken up again from the atmosphere. The available amount of 
carbonate ions for this reaction depends sensitively on the difference between ocean alkalinity 
and dissolved inorganic carbon (CT) (Figure A.1.2) (Egleston et al., 2010; Goodwin et al., 2009; 
Revelle and Suess, 1957), highlighting the importance of alkalinity for the global ocean carbon 
uptake (Middelburg et al., 2020). As the buffer factor influences the Cant uptake, it also exerts a 
strong control on the transient climate response, i.e., the warming per cumulative CO2 emissions 
(Katavouta et al., 2018; Rodgers et al., 2020).” 

We also extended the Discussion in the Revelle factor as a predictor: 

“Eventually, we have also tested the robustness of the biogeochemical predictor, by varying the 
definition of the Revelle factor. First, the Revelle factor was only calculated north of 45°N and 
south of 45°S, assuming that the high-latitude regions are responsible for the largest Cant uptake, 
and second, the global Revelle factor was calculated by weighting the Revelle factor in each cell 
by the multi-model mean cumulative Cant uptake from 1850 to 2100 in that cell so that the Revelle 
factor in cells with larger uptake is more strongly weighted. Under both definitions, the results 
remain almost unchanged (Table A.1.4). Furthermore, the Revelle factor has been shown here to 
improve the Cant uptake in the Atlantic and Southern Ocean and has been earlier shown to 
determine the Cant uptake in the tropical Pacific Ocean (Vaittinada Ayar et al., 2022), suggesting 
that the Revelle factor is a robust predictor of global and regional ocean Cant uptake.“ 

Furthermore, other observational constraints for the circulation might indeed provide similar 
improvements. For emergent constraints, it is important to find the best compromise between the 
best linear relationship and between the best observable predictor variable. Even a perfect 
emergent relationship (r2=1) does not help to reduce uncertainties if the predictor variable cannot 
be observed accurately.  

In the Southern Ocean, we have chosen the inter-frontal surface salinity as the best compromise. 
Although the surface density or even the volume of ventilated waters or a stratification index 
(Bourgeois et al. (2022)) may provide a more direct relationship to mode and intermediate water 
formation, the salinity is a good proxy (as demonstrated in Terhaar et al. (2021)) and easier to 
observe than the sea surface density or ocean interior variables which usually come with larger 
uncertainties than sea surface salinity. We now write: 

“For the Southern Ocean, the verification of the link between sea surface salinity and Cant 
uptake was previously done by linking the sea surface salinity, to the density, and to the 
volume of intermediate and mode waters in each model. Furthermore, the robustness of 
the constraint was tested against changes in the definition of the inter-frontal zone 
(Terhaar et al., 2021). In addition, other potential predictors were tested, such as the 
magnitude and seasonal cycle of sea-ice extent, wind curl, and the mixed layer depth, and 
upwelling strength of circumpolar deep waters. All these variables are known to influence 
air-sea gas exchange, freshwater fluxes, and circulation and, in turn, salinity and Cant 
uptake. However, none of these factors alone explains biases in the surface salinity and 
Cant uptake in the Southern Ocean. Therefore, the sea surface salinity that emerges as a 
result of all these individual processes represents, so far, the best variable in terms of 
mechanistic explanation and observational uncertainty to bias-correct models for 
Southern Ocean Cant uptake. Further evidence for the underlying mechanism of the 
relationship between Southern Ocean sea surface salinity and Cant uptake was provided 



by a later study that analysed explicitly the stratification in the water column (Bourgeois 
et al., 2022). Here, we further showed that the Southern Ocean Cant uptake constrained by 
the Revelle factor and the inter-frontal sea surface salinity compares much better to 
observation-based estimates than the unconstrained estimate, further corroborating the 
identified regional constraint and mechanism (section 3.2.1).“ 

Along the same lines, we explored other predictors in the North Atlantic. One of these, the area 
where the water column is weakly stratified, was also included in the present manuscript (Table 
A.1.4) and which yields similar results. We had also investigated the mixed layer depth, which 
turned out to be biased in the ESMs by very deep mixed layers up to 5000 m so that the observed 
and simulated mixed layers are not comparable. Furthermore, Goris et al. (2018) also showed 
that the relative amount of Cant that is stored below 1000 m can be used as a constraint. However, 
the observation-based estimates of the relative amount of Cant have large uncertainties. In the end, 
we have chosen the AMOC because it eventually determines the amount of water that is 
transported southward and hence from the surface to the deep below 1000 m and hence comprises 
indications from different relationships. Moreover, it is relatively well observed and hence 
provides a good observable constraint. 

In summary, this is a comprehensive study that provides a plausible adjustment of Earth system model 
output to improve their projections of the global ocean carbon sink. I think that this work is important and 
I recommend acceptance subject to the minor points raised being addressed. 

Thank you.  

Detailed points; 

L47 The text is assuming that the AMOC is leading to the basin-scale subduction. I think that this 
statement is combining together two different processes. Subduction in ocean basins is primarily linked to 
the gyre circulation and the vertical and lateral transfer from the winter mixed layer to the thermocline. 
The AMOC is a longitudinally-averaged overturning circulation that contributes to the ventilation process 
by redistributing heat and tracers, but is not the same as subduction. 

 
 Changed from subducted to ventilated as suggested by the reviewer. 

L50 The Revelle factor certainly does affect the capacity of the ocean  to take up carbon. This aspect 
could be expanded more. The  air-sea partitioning of carbon is affected by the buffer factor (Goodwin et 
al., 20008 & 2009; Katavouta et al., 2018). In addition, the air-sea equilibration timescale, tau, for carbon 
dioxide is affected by the buffer factor, tau =(h/K_g)(DIC/(B CO2) where h is mixed layer thickness, K_g 
is exchange velocity, DIC is dissolved inorganic carbon, B is the buffer factor and CO2 is dissolved CO2. 

 
 As suggested by the reviewer, the sentences about the Revelle factor were extended to an  
             independent paragraph (see response above). 

L106 Improve syntax,”so-estimated”    
L109 Improve wording   
L163 Adjust wording  

 
           All Changed. 



L173 An important point is being made as the role of the salinity and AMOC in determining water-mass 
formation. A list of 4 references are provided, but are they being cited as to their work on water-mass 
formation or did they propose the connections tbetween salinity and the AMOC to water-mass formation? 

The references were provided because they state the importance of these regions for water-mass 
formation. Thanks to the reviewer, we realized that they were badly placed and replaced them 
with references that directly address the link between the salinity, the AMOC, and the water-mass 
formation (Goris et al., 2018, 2022; Terhaar et al., 2021). 

Figure 3 is very clear and key to the study.  

 Thank you. 

L230-231. Perhaps reword to make clearer.  

The sentence was cut in two sentences to make it clearer. 

L251 Cut hence.  

Changed as suggested. 

L297 Buckley and Marshall provided a review of heat transport, but did they make the point about 
anthropogenic carbon uptake? 

The reference was changed to Winton et al. (2013).. 

Appendix A3 Equation (2) and perhaps (3) are central to the study. I would recommend that this 
subsection moved into the heart of the paper. 

As suggested by the reviewer, the entire appendix A3 was moved into the main part of the paper. 
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Reviewer #2 – Roland Séférian 

In this manuscript, Terhars et al. investigate how Earth system models estimates of the global ocean 
carbon sink can be constrained by a combination of physical parameters (the sea-surface salinity and the 
strength of the Atlantic Meridional Overturning Circulation) and a biogeochemical parameter (the Revelle 
factor). 

The manuscript is timely, clearly written and proposes a sound methodology. The results are well 
explained and discussed through the manuscript. This work presents an important basis for the research 
community studying the ocean carbon cycle as this work proposes a first approach to bring together 
estimates of ocean carbon sink based on observational data with those based on Earth system models’ 
simulations. I liked very much the fact that the authors explain step by step the use of a suite of emergent 
constraints and then perform several validations to test the robustness of their approach. 

 Thank you. 

I only have one major comment and a set of minor comments/suggestions that aims to clarify some point 
of the paper.  

Major comments: 

Although the authors did a great job in defining and applying observational constraints to improve Earth 
system models’ simulations/projections, they miss to thoroughly discuss how each physical or biological 
parameters are correlated between each other. For instance, pattern of sea-surface salinity is linked to 
water mass properties, which is in turn, tightly linked to large-scale circulation (deacon cells and the 
strength of the AMOC). Same caveat could hold for the buffer factor (globally average) which result from 
biological but also from chemical properties of the models. 

The regression was done in one step determining the three coefficients (slope) together. 
Therefore, a possible, but non-existent, correlation between the different parameters is accounted 
for (see response directly below). 

If constraining fields are correlated between each other in the observations and/or in the ESMs, this might 
bring light on a more mechanistic explanation of the “cascade of errors” = hydrodynamics => large-scale 
circulation => buffer factor rather than a “sum of errors” = hydrodynamics + large-scale circulation + 
buffer factor. This might be needed as a justification of applying this set of observational constraints 
(avoid cherry picking). 

We have tested this hypothesis. The correlation coefficient (r2) between the AMOC and the inter-
frontal sea surface salinity is 0.03, the one between the AMOC and the Revelle factor is 0.00, and 
the one between the Revelle factor and the sea surface salinity is 0.10. The correlation is in no 
case significant (p<0.05). Therefore, we can assume that it is a “sum of errors” and not a 
“cascade of errors” and can safely apply the 3D constraint. The following text has been added to 
the main manuscript: 

“The three predictors are not statistically correlated (r2 = 0.00 for salinity and AMOC, r2 = 0.03 
for Revelle factor and AMOC, and r2 = 0.10 for salinity and Revelle factor) and can hence be 
used in a multi-linear regression.” 

In addition, for this ‘biological’ parameter, I think further discuss should be needed in the light of Figure 
A.1.2 which shows the correlation between surface buffer factor and the difference between alkalinity 



(AT) and total dissolved inorganic carbon (CT) at surface. It highly biases in either CT or AT that might 
result from the calibration of model alkalinity (as highlighted in several model reference papers or in 
Table 3 of Seferian et al. 2020 (https://link.springer.com/article/10.1007/s40641-020-00160-0/tables/3). 

We have made a further analysis and show the Revelle factor against the surface average 
alkalinity and dissolved inorganic carbon (Figure R1 and Figure A.1.3 in the manuscript). Blue 
dots indicate the models with no tuning or calibration as indicated in Séférian et al. (2020). One 
dot is slightly hidden behind a green dot. Calibration or tuning does not seem to lead to better 
results in this special case. The following sentence has been added to the Conclusion: 

“Although biogeochemical variables were tuned or calibrated in more ESMs in CMIP6 than in 
CMIP5 (Séférian et al., 2020), this tuning does not seem to result in better results than in untuned 
ESMs yet (Figure A.1.3).” 

 

Figure R.1 Surface ocean Revelle factor against the surface alkalinity and dissolved inorganic carbon. 
Basin-wide averaged surface ocean Revelle factor as simulated by 18 ESMs from CMIP6 against the 
basin-wide averaged surface ocean CT (left), and AT (right). The observation-based estimates from 
GLODAPv2 are shown as black crosses. The Revelle factor in each ESM was adjusted for biases in the 
surface ocean CT (see Appendix A.1). The blue dots indicate models without calibration and/or tuning as 
in table 3 from Séférian et al. (2020). 

Finally, in the light of deficiency/weakness of observational-based estimates of the ocean carbon sink, it 
might be interesting to decompose your approach on regional/basin scale uptake. Driving mechanisms, 
long-term trends and variability of the North Atlantic carbon sink is better understood than those of the 
Southern Ocean (which suffer from incomplete observational mapping across seasons). As such, does the 
model (and your observational constraints) help to improve the agreement between model and 
observation-based estimates. Besides, does the ratio in carbon uptake in the North Atlantic and the 
Southern Ocean is well captured between models. In the context of this paper, I wonder how far this ratio 
might be an additional constraint to test or a verification measure to assess the robustness of your 
approach. 

As suggested by the reviewer, we have decomposed our approach on a regional scale by 
analysing the North Atlantic and Southern Ocean separately. In each case, we have used the 
respective circulation constraint (AMOC for the North Atlantic, inter-frontal sea surface salinity 
for the Southern Ocean) and the basin-wide averaged surface ocean Revelle factor. The regional 
fluxes were adjusted for the late starting date in the same way as the global fluxes were adjusted. 
The 12 Pg C that were estimated to have entered the ocean before 1850 (Bronselaer et al., 2017) 



were divided according to the relative uptake of each region in the multi-model mean from 1850 
to 2005, i.e., 42% (5.1 Pg C) in the Southern Ocean and 15% (1.8 Pg C) in the North Atlantic. 

For the Southern Ocean, we have added the following section to the manuscript: 

“3.2.1 Southern Ocean 
While the constraints were applied globally, they can also be applicable regionally as shown for 
the inter-frontal sea surface salinity in the Southern Ocean (Terhaar et al., 2021). Here, we update 
the regional constraint in the Southern Ocean with the now additionally available ESMs and 
extent the constraint by adding the basin-wide averaged Revelle factor in the Southern Ocean as a 
second variable. For the period from 1765 to 2005, the simulated multi-model mean air-sea Cant 
flux that is adjusted for the late starting date is 63.5 ± 6.1 Pg C. Please note that the numbers here 
are for fluxes from 1765 to 2005 and are not the same as in Terhaar et al. (2021b), where fluxes 
from 1850 to 2005 were reported. The two-dimensional constraint shows a higher correlation 
coefficient (r2=0.70) than the one-dimensional constraint when only the inter-frontal sea surface 
salinity is used as a predictor (r2=0.62). Slight differences to Terhaar et al. (2021b) exist due to 
the additional ESMs that are by now available. When exploiting this relationship with 
observations of the Southern Ocean Revelle factor (12.19±0.01) and the sea surface salinity, the 
best estimate of the cumulative air-sea Cant flux from 1765 to 2005 in the Southern Ocean 
increases to 72.0±3.4 Pg C. In comparison, observation-based estimates for the same period 
report 69.6±12.4 Pg C (Mikaloff Fletcher et al., 2006) and 72.1±12.6 Pg C (Gerber et al., 2009). 
The constrained thus reduces the uncertainty not only globally but also in the Southern Ocean by 
44%.”  

For the Atlantic Ocean, we now write: 

“3.2.2 Atlantic Ocean 
As for the Southern Ocean, we also apply a two-dimensional constraint to the Atlantic Ocean, 
using the AMOC and the basin-wide averaged surface ocean Revelle factor in the North Atlantic 
as predictor. The unconstrained cumulative air-sea Cant flux from 1765 to 2005 in the North 
Atlantic adjusted for the late starting date is 21.9 ± 3.3 Pg C. For this period, the two-dimensional 
constraint results in a relationship with a correlation coefficient of 0.57. If only the AMOC had 
been used the correlation factor would have been 0.49. When exploiting this relationship with 
observations of the North Atlantic Revelle factor and AMOC, the best estimate of the cumulative 
air-sea Cant flux from 1765 to 2005 in the Atlantic Ocean increases to 22.7±2.2 Pg C. In 
comparison, observation-based estimates are 20.4±4.9 Pg C (Mikaloff Fletcher et al., 2006) and 
20.4±6.5 Pg C (Gerber et al., 2009).  The constrained and unconstrained estimates are both 
above the observation-based estimates but within the uncertainties. The constrained estimate is 
even higher than the unconstrained one, but only by 0.8 Pg C, and its uncertainty is reduced by 
33%.” 

As suggested by the reviewer, we have also analyzed the ratio of the Cant uptake in the Atlantic 
and Southern Ocean (Fig R2). No significant relationship can be found (r2=0.05, p=0.38), 
although the models tend to underestimate the ratio albeit with a large uncertainty. The 
constrained estimate of the ratio is close to the observation-based estimate, giving further 
confidence to the robustness of our estimates. No changes are made to the manuscript.  

  



 

Figure R.2 Cumulative global ocean anthropogenic carbon uptake against the ratio of uptake in the 
Atlantic and Southern Ocean. The cumulative global uptake was calculated from 1765 to 2010. The ratio 
was calculated from 1765 to 2005, the same period over which the data-based fluxes were available. The 
mean is shown for Mikaloff-Fletcher et al. (2006) (black dashed line), for Gerber et al. (2008) (magenta 
dashed line) and for the here derived constrained local estimates from section 3.2.1 and 3.2.2 in the 
revised manuscript (red dashed line). The uncertainty is only shown for Mikaloff-Fletcher et al. (2006), 
accounting for uncertainties in transport, and would even be larger for Gerber et al. (2009), accounting 
for both transport and Cant reconstruction uncertainties. 

Regarding the conclusions of the paper, I think the authors could make a stronger point resulting from this 
work. First, I might be relevant to discuss the consequence of this work on the carbon budget 
(Friedlingstein et al. 2022), especially in the context of the budget imbalance term. Revised (contrained) 
estimates appears to be about 10% higher than the unconstrained estimates. The magnitude of the revision 
is thus greater than the budget imbalance. What would be the consequence then? a weaker land-surface 
carbon sink? 

Here, we have only addressed the budget imbalance for the historical period from 1850 to 2020. 
Over such a long time period (i.e. 171 years), different phasing in simulated decadal and inter-
annual variabilities as simulated by fully coupled Earth system models average out and Earth 
System Models can be well compared to observation-based estimates. We find that the ocean sink 
was underestimated, and this adjustment of the ocean sink accounts for roughly two thirds of the 
budget imbalance. The remaining one third would still have to be explained otherwise. We thank 
the reviewer for supporting this point. Although this was clearly indicated in the Results section, 
we have now also precised this in the Conclusion: 

“The here provided improved estimate of the size of the global ocean carbon sink may help to 
close the carbon budget imbalance since 1850 (Friedlingstein et al., 2022)” 

For the historical period, our results suggest that the ESMs from CMIP6 underestimate the long-
term uptake. Due to the different phasing of simulated unforced interannual-to-decadal 
variabilities in the ESMs, the unforced, internal decadal variability over the last decades cannot 
be assessed by ESMs. However, the ESMs allow also to quantify the long-term mean flux (e.g., 
multi-decadal) from increasing atmospheric carbon and climate change. Given that the here 
quantified CMIP based ESM estimates agree with the observation-based that were used in the 
Global Carbon Budget 2021 over the entire period from 1990 to 2020 and that both estimates are 



larger than the hindcast models that were used in the Global Carbon Budget 2021, it is highly 
unlikely that natural variability sustains in a particular phase for a 30-yr period in the ESMs. Our 
results suggest that the hindcast models in the Global Carbon Budget 2021 indeed underestimate 
the ocean carbon sink. Unfortunately, the hindcast model output of the Global Carbon Budget 
models is not openly accessible, and we thus cannot not make an analysis of the different 
predictors to explain this difference. Therefore, we are left with recommending that such an 
analysis should be done. 

As suggested by the reviewer we have extended the Conclusion along these lines: 

“Moreover, biases in these quantities and corrections for the late starting date may well be the 
reason for offset between models and observations over the last 30 years (Hauck et al., 2020; 
Friedlingstein et al., 2022). Although the here identified constraints cannot correct for 
misrepresentation of the unforced decadal variability, such variability plays likely a minor role 
when averaging results over longer periods. Indeed, we find good agreement between our 
estimate and the observation-based estimate from the Global Carbon Budget 2021 for the period 
from 1990 to 2020. This agreement suggests that the hindcast models underestimate the ocean 
Cant uptake. This underestimation is thus likely the explanation for the difference between models 
and observation-based product in the Global Carbon Budget (Friedlingstein et al., 2022). 
However, the output of the Global Carbon Budget hindcast models is not publicly available for 
evaluating possible data-model differences for the inter-frontal sea surface salinity, the AMOC, 
and the Revelle factor.”  
 
We also added a sentence to the abstract: 
 
“Our constrained results are in good agreement with the air-sea Cant estimates over the last three 
decades based on observations of the CO2 partial pressure at the ocean surface in the Global 
Carbon Budget 2021, and suggest that existing hindcast ocean-only model simulations 
underestimate the global ocean anthropogenic carbon sink.” 

On the other hand, in a context of improving estimates of the carbon feedbacks, what would be the 
revision of the Beta and Gamma as inferred from your approach. In might be interesting to include in your 
work ssp585-bgc (which has been conducted by most of the modelling center) and see how your approach 
works on ocean Beta and Gamma. 

This is indeed an interesting idea. However, as far as we can find the model output on https://esgf-
node.llnl.gov/search/cmip6/, only 7 ESMs have provided the ssp585-bgc runs. It would not be 
statistically robust to fit a 3-dinemsional multi-linear regression based on 7 data points. 
Furthermore, uncertainties exist with respect to beta and gamma in the SSP runs due to non-CO2 
radiative forcing and land-use change that are not existing in the idealized 1% runs, which are 
usually used to calculate beta and gamma (e.g. Arora et al. 2020). However, in the 1%, there is 
no historical period over which the predictors in the models could be identified. Therefore, we 
decided not to include such an analysis and leave it to subsequent studies to explore this further. 

Minor comments: 

L12: explain the buffer factor in the abstract 

As suggested by the reviewer, we have added the following sentence to the abstract: 



“The Revelle factor quantifies the chemical capacity of seawater to take up carbon for a given 
increase in atmospheric CO2.” 

Figure 1: please use the same temporal baseline for panel a) and b). from 1950 onwards? 

The x-axis in Figure 1a was chosen over the period where data exists for all estimates, the CMIP6 
models and observation-based and hindcast model estimates from the Global Carbon Budget 
2021. We prefer to keep the zoom to make all these estimates comparable. In Figure 1b, we have 
chosen 1950, so that the longer-term perspective can be seen. We keep the manuscript unchanged. 

L106 Improve syntax,”so-estimated” 

Changed. 

L157: Many other papers have used emergent/observational constraints (Boé et al., Bourgeois et al., Cox 
et al., Douville et al., Plazzotta et al., Schlund et al., etc....) — They can also be listed here. 

We have added Bourgeois et al. (2022) because it also focuses on the ocean carbon sink and is 
already part of the reference list. The other references could be added but the reference list is 
already long. If the reviewer wants us to add another reference for a special reason, we can do 
that at any time. 

Figure 2: please add ‘the strength of’ before “the Atlantic meridional…” 

Changed as suggested. 

Figure 3: Please add R-square for each panels c, e and g as an indication of the quality of the fit  

It is not possible to add R-squared for each panel, as all three predictors are fitted at the same 
time. However, we can calculate the difference in r2that each predictor makes when added last. 
For example, the air-sea CO2 flux from 1994 to 2007 has an r2 of 0.87. If the Revelle factor is 
removed, r2 decreases to 0.75, if the AMOC is removed r2decreases to 0.64, and if the inter-
frontal salinity is removed r2 decreases to 0.59. Thus, the salinity seems to have the largest 
impact, the AMOC the second largest and the Revelle factor the least impact. To highlight the 
simultaneous fit, we followed the recommendation by both reviewers to bring the core equations 
into the main part of the manuscript. 

On this figure, it is unclear if model estimate are based on multiple realisation or just one single member 

For clarification, we have added the following sentence to the figure legend: 

“For each ESM, one ensemble member was used as the difference between ensemble members 
has been shown to be small compared to the inter-model differences (Terhaar et al., 2020, 2021).” 

L237: one can also consider the CO2 mole fraction that is *really seen* by the ocean carbon module 
because of various treatment of the air-sea CO2 exchange (Hauck et al. 2020, already mentioned in this 
work) 

As suggested by the reviewer, we have added the following words to the sentence: 



“…neglecting the water vapour pressure when calculating the local pCO2 in each ocean grid cell 
(Hauck et al., 2020) as is done in CMIP models (Orr et al., 2017),…” 

L341: Conclusion — see above comments 

The Conclusion was changed according to the above-mentioned comments. 

Appendix: Biogeosciences allows more materials than short/letter paper, I would recommend to move 
some of the material of the appendix into the heart of the paper. Some of them are central to your work. 

We have moved some parts into the main part, as suggested by the reviewer. 

Table A.1.1 please consider adding data citation doi (where relevant) for improving the reproducibility of 
the work. 

The table is already large, and we prefer not to overload it. However, we have no strong opinion 
and can add the doi if the editor and reviewer prefers to.  
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Comment by Nicolas Gruber 

The first criticism is that the Earth System Models (ESM) applied are structurally biased and therefore not 
suited for the task because they are not eddy-resolving. If taken seriously and indeed true, this would 
dismiss almost the entire modeling literature, including many of the commentator’s studies. We add a 
discussion on results from eddy-resolving models, drawing from our earlier analysis (Terhaar et al, 
2021).  

The second issue raised is the role of interannual-to-decadal climate variability of global or basin-scale 
air-sea carbon fluxes. We agree that the phasing of internal, unforced variability in fully coupled ESMs is 
by design not in line with observation-based estimates. Also, the magnitude of this variability maybe 
biased. However, this variability is largely irrelevant on century time scales and thus for large parts of 
our study and main results, such as the entire historical period and the next hundred years.  
 
We now also present an air-sea carbon flux estimate for the 31-year period from 1990 to 2020, likely long 
enough to largely avoid potential biases from interannual-to-decadal climate variability. Over this longer 
period, the constrained ocean Cant sink based on ESMs is in excellent agreement with the surface ocean 
observation-based estimates of the ocean Cant sink and significantly larger than the hindcast models in the 
Global Carbon Budget. 

Finally, the commentator asks for a comparison of model results with reconstructions of ocean 
anthropogenic carbon. We now provide such a comparison. We also include a comparison with air-sea 
flux results from two ocean inversion studies. A comparison with CFC-11 data was already included. All 
these comparisons support our conclusions. 

A detailed point-by-point response is given below. 

Assessment: 

Terhaar et al. use an emergent constraint approach to make essentially two arguments: Current ocean 
CO2 uptake estimates are 9-11% too low, and that their constraints permit them to reduce the present and 
past CO2 uptake by 42-59%. The topic is relevant, the method is sound, the paper is overall well written 
(with some exceptions), and the results are important. Thus, this study clearly deserves to be published. 

But I have two important concerns that need to be addressed, in my opinion, before I can endorse the 
publication of this manuscript. 

Robustness: In my opinion, the major conclusions, particularly the latter regarding the substantial 
uncertainty reduction, are not robust as presented. By using a class of non eddy-resolving models, which 
disregard a set of critical processes in the ocean that are known to be relevant for controlling the uptake of 
transient tracers through their impact on deep water formation, the results are potentially seriously biased. 
Thus while the results appear precise, they may not represent an accurate estimate of the global uptake. 
 

Caveats of our study are discussed in section 5 of the manuscript. We did not discuss mesoscale 
eddies, as their role was analyzed in our previous study (Terhaar et al., 2021). We provide the text 
from Terhaar et al. (2021) here again: 

“Mesoscale eddies in the Southern Ocean influence the transport of tracers, such as heat, salinity, 
carbon, and nutrients (58–61). However, the explicit simulation of these mesoscale eddies 
requires high horizontal and vertical ocean model resolutions, especially in high latitudes such as 



the Southern Ocean (62). Most of the CMIP5 and CMIP6 models use ocean models with 
horizontal resolution of about 1° (22, 63). To date, conducting transient simulations with fully 
coupled ESMs in higher resolution is computationally too expensive, especially because these 
simulations also need a sufficiently long spin-up to reach a stable equilibrium (64, 65). Therefore, 
the effect of eddies on the mean ocean circulation and the transport of ocean tracers, such as 
salinity and carbon, are parametrized within the CMIP models. While the eddy parametrization 
has an effect on the simulated sea surface salinity and Cant uptake (58–61), this effect cannot be 
quantified by the state-of-the art CMIP6 ESMs due to their relatively coarse resolution and merits 
further investigation when eddy-resolving ocean models incorporated in global coupled ESMs 
will become more widely available.” 

We added the following text to the manuscript:  

“ 
In addition, parametrizations of non-represented processes such as mesoscale and sub-mesoscale 
circulation features like small-scale eddies may lead to biases in the model ensemble. For 
individual models, it has been shown that changes in horizontal resolution and hence a more 
explicitly simulated circulation change the model physics and biogeochemistry, and hence also 
the ocean carbon and heat uptake (Lachkar et al., 2007, 2009; Dufour et al., 2015; Griffies et al., 
2015). However, an increase in resolution does not necessarily lead to improved simulations and 
the changes in oceanic Cant uptake maybe lower or higher, depending on the model applied. When 
increasing the NEMO ocean model from a non-eddying version (2° horizontal resolution) to an 
eddying version (0.5°), Lachkar et al. (2009) find a decrease in the sea surface salinity by around 
0.1 at the Southern Ocean surface that brings the model further away from the observed salinity, 
a decrease of the volume of Antarctic intermediate water and a decrease in the Southern Ocean 
uptake of CFC and hence likely also of Cant. This example corroborates the underlying mechanism 
of the emergent constraint in the Southern Ocean that higher sea surface salinity directly affects 
the formation of Antarctic intermediate water and the uptake of Cant. Another example can be 
found within the ESM ensemble of CMIP6. The MPI-ESM-1-2-HR and MPI-ESM-1-2-LR have a 
horizontal resolution of 0.4° and 1.5° respectively but the same underlying ocean model. The 
high-resolution version has an inter-frontal salinity of 33.98, a Southern Ocean surface Revelle 
factor of 12.82, and a Southern Ocean Cant uptake from 1850 to 2005 of 56.4 Pg C. The coarser 
resolution version has an inter-frontal sea surface salinity of 33.92, a Southern Ocean surface 
Revelle factor of 12.89, and a Southern Ocean Cant uptake of 58.0 Pg C. These differences are 
much smaller than the inter-model differences (33.66-34.15 for salinity, 12.14-13.11 for the 
Revelle factor, and 48.8-71.1 Pg C for the Southern Ocean Cant uptake) that result from different 
ocean circulation and biogeochemical models, sea ice models, and atmospheric and land 
biosphere models, as well as the coupling between these models. These examples show that higher 
resolution does not necessarily lead to better results, effects potentially the predictor and the 
predicted variable in the same way, and that differences in the underlying model components and 
spin-up and initialization strategies lead so far to much larger differences between ESMs than 
resolution does(Séférian et al., 2020). As long as simulations with higher resolution, which are 
also spun-up over hundreds of years (Séférian et al., 2016), are not yet available, and potentially 
important processes such as changing riverine fluxes and freshwater from land ice are not 
included, it remains speculative if higher resolution would lead to a reduction of inter-model 
uncertainty, or even a better representation of the observations. Moreover, the here-identified 
relationships that are based on the current understanding of physical and biogeochemical 
oceanography and that were tested for robustness in several ways may likely also exist across 
ensembles of eddy-resolving models.“ 

The notion that all processes need to be represented to estimate Cant uptake is flawed. Early box-
diffusion model (Oeschger et al., 1975), calibrated with radiocarbon, are able to estimate global 



ocean uptake within the error limits of observations. This class of models does not explicitly 
resolve ocean dynamics but produces very useful results. They have passed the test of history as 
they exist for 50 years and their predictions are still valid (Cubasch et al., IPCC AR5, WG1, 
Chapter 1, 2013). Within the physical realm, the pioneering ocean-atmosphere models of 
Manabe, Bryan and co-workers (e.g., S. Manabe and K. Bryan, J. Atmospheric Sciences 26 
(1969): 786-89) had coarse resolution and flux correction but produced groundbreaking results. 
We are not willing to dismiss the usefulness of an entire class of models (ESMs CMIP5 and 
CMIP6 models, Global Carbon Budget, RECCAP-ocean) because they do not resolve small-scale, 
weather-like features. Furthermore, literally all 17 ESMs used in this study fall within the 
uncertainty range of the observation-based estimate of 29 ± 5 Pg C by Gruber et al. (2019) before 
they are used to constrain the Cant uptake, indicating that they are well capable of representing 
the historical Cant uptake. 

Eddy-resolving models represent a highly interesting scientific frontier. We are looking forward 
to emerging eddy resolving simulations to demonstrate that they are useful to faithfully project 
Cant uptake on the global and multi-centennial scale, which are relevant to the anthropogenic CO2 
and climate perturbation.  

Observational constraints: The study is entirely based on rather indirect constraints, i.e., the salinity of 
parts of the Southern Ocean, the surface buffer factor, and the AMOC (in decreasing order of relevance), 
while there are many direct constraints that the authors have decided to disregard. This may be a valid 
approach to provide an independent estimate, but it then behooves the authors to demonstrate that the 
constrained models are actually doing better against the unused observational constraints. Particularly 
relevant here is the three-dimensional distribution of anthropogenic CO2 in the ocean interior. Are the 
models that are within the best constrained range also those models that reproduce the reconstructed 
distribution the best? 

The statement that we disregard or decided to disregard direct constraints is not true.  

First, we compare the simulated CFC-11 concentrations (direct constraints) by ESMs to observed 
CFC-11 concentrations from GLODAPv2 (Appendix A.4 in the revised manuscript).  

Second, we largely discussed the possible direct constraints in section 2 and concluded: 

“Overall, the difference between ocean hindcast models, observation-based CO2 flux estimates, 
and interior ocean Cant estimates as well as the uncertainties in the climate-driven change in CT 
and pre-industrial outgassing indicate that uncertainties of the past ocean Cant sink remain larger 
than the uncertainties of these individual products (Crisp et al., 2022) and do not allow to 
constrain the ocean Cant sink” 

 
The uncertainty in the purely observation-based ocean carbon sink estimates, such as the one 
from Gruber et al. (2019) for the period from 1994 to 2007, encompasses all CMIP6 models and 
can hence not be used to reduce the uncertainty of the model ensemble.  
 
We have compared our estimate of global Cant uptake for the period from 1994 to 2007 with the 
estimate from Gruber et al. (2019) and find agreement within uncertainties. We now compare air-
sea Cant fluxes in the Southern Ocean and the North Atlantic from two ocean inversion studies 
with our results as suggested by reviewer #2. We find again agreement within uncertainties of the 
inversions. The manuscript was adapted accordingly (please see revised manuscript or responses 
to reviewer #2). 
 



Although the 3D Cant distribution is not necessarily correct if the Cant air-sea fluxes are improved, 
we have compared the Cant distribution in the model that performs best (GFDL-ESM4) with 
respect to the 3 predictor variables (Global ocean Revelle factor of 10.37, inter-frontal sea 
surface salinity of 34.00, and an AMOC of 18.25) with Sabine et al. (2004) and Gruber et al. 
(2019). For the comparison, we have scaled the interior ocean Cant with a correction factor as in 
the manuscript but with respect to 1800 as Sabine et al. (2004) quantify changes in ocean Cant 
since 1800 (Tables R1-R4, and Tables A.5.1-A.5.4 in the revised manuscript). Please note that 
different methods to reconstruct Cant yield different estimates as for example illustrated by Fig.  
4 in Kathiwala et al. (2013). Therefore, our comparison should be viewed with caution. 
 
 
 

 
 
Table R1: Distribution of Cant inventories in Pg C by basin and latitude band for 1994. The first 
number in each cell are derived from GFDL-ESM4 and the second number is from Table S1 in 
Sabine et al. (2004). 
 

 Atlantic Pacific Indian World 

50-65°N 6 / 4 1 / 1 / 7 / 5 

14-50°N 18 / 16 12 / 11 1 / 1 31 / 28 

14°S-14°N 5 / 7 11 / 8 5 / 6 21 / 21 

14-50°S 9 / 11 20 / 18 15 /13 44 / 42 

>50°S 5 / 2 6 / 6 3 / 2 14 / 10 

total 45 / 40 49 / 44 23 / 22 117 / 106 

 
Table R2: Distribution of Cant inventories in Pg C by basin and latitude band for 1994. The first 
number in each cell is the multi-model mean and standard deviation across all 18 ESMs from 
CMIP6 and the second number is from Table S1 in Sabine et al. (2004). 
 

 Atlantic Pacific Indian World 

50-65°N 4±1 / 4 1±0 / 1 / 5±1 / 5 

14-50°N 14±3 / 16 11±1 / 11 1±0 / 1 27±3 / 28 

14°S-14°N 4±1 / 7 9±2 / 8 4±1 / 6 17±3 / 21 

14-50°S 8±2 / 11 17±3 / 18 15±2 /13 39±6 / 42 

>50°S 3±1 / 2 6±1 / 6 3±1 / 2 11±3 / 10 

total 33±6 / 40 43±5 / 44 22±3 / 22 102±13 / 106 

 
Table R3: Distribution of Cant inventory change in Pg C by basin and hemisphere from 1994 to 
2007. The first number in each cell are derived from GFDL-ESM4 and the second number is from 
Table 1 in Gruber et al. (2019). 
 

 Atlantic Pacific Indian Other basins Global 
Northern 
hemisphere 

6.6 /  
6.0±0.4 

5.1 /  
5.2±0.6 

0.9 /  
0.8±0.4 

1.6 / 
1.5±0.6 
 

14.2 / 
13.5±1.0 

 
Southern 
hemisphere 

 
4.6 / 
5.9±1.2 

 
7.9 /  
8.0±1.2 

 
7.7 /  
6.3±3.4 

 
/ 

 
20.2 / 
20.1±3.8 

 
Entire basin 

 
11.2 /  
11.9±1.3 

 
13±0 /  
13.2±1.3 

 
8.6 /  
7.1±3.4 

 
1.6 / 
1.5±0.6 
 

 
34.4 / 
33.7±4.0 



Table R4: Distribution of Cant inventory change in Pg C by basin and hemisphere from 1994 to 
2007. The first number in each cell is the multi-model mean and standard deviation across all 18 
ESMs from CMIP6 and the second number is from Table 1 in Gruber et al. (2019). 
 

 Atlantic Pacific Indian Other basins Global 
Northern 
hemisphere 

6.7±1.0 /  
6.0±0.4 

5.0±1.0 /  
5.2±0.6 

0.7±0.4 /  
0.8±0.4 

1.1±0.3 / 
1.5±0.6 
 

13.4±1.8 / 
13.5±1.0 

 
Southern 
hemisphere 

 
3.5±1.0 / 
5.9±1.2 

 
7.4±1.0 /  
8.0±1.2 

 
5.6±1.3 /  
6.3±3.4 

 
/ 

 
16.5±2.1 / 
20.1±3.8 

 
Entire basin 

 
10.1±1.5 / 
11.9±1.3 

 
12±1 /  
13.2±1.3 

 
6.3±1.5 /  
7.1±3.4 

 
1.1±0.3 / 
1.5±0.6 
 

 
29.9±3.2 / 
33.7±4.0 

 
 

We have added the following text to the main manuscript: 
 
“In addition to the evaluation with observations of CFC, the comparison of the interior ocean Cant 

distribution demonstrates first that the ESMs on average represent the observation-based 
distributions within the margins of error (Tables A.5.1 and A.5.3). Only in the Southern 
hemisphere, the ESM average remains below, as expected due to the average ESM bias towards 
too low inter-frontal sea surface salinities, too little formation of mode and intermediate waters, 
and hence too little storage of Cant in the Southern hemisphere. When using the model that 
represents best the three predictors, GFDL-ESM4 (Dunne et al., 2020; Stock et al., 2020), the 
comparison to observation-based interior ocean Cant distribution becomes almost identical 
(Tables A.5.2 and A.5.4), suggesting that a better representation of these parameters indeed 
improves the simulation of Cant uptake and its distribution in the ocean interior.” 
 
Furthermore, we have added the comparison as an appendix, next to the CFC evaluation: 

“A.5 Comparison between simulated and observation-based estimates of the interior ocean Cant 
accumulation 

Another way to test the here identified emergent constraint is the comparison to observation-
based estimates of the interior ocean Cant accumulation. Here, we compare model results against 
the estimate for interior ocean Cant accumulation from 1800 to 1994 (Sabine et al., 2004) and 
from 1994 to 2007 (Gruber et al., 2019a), although different reconstruction methods yield 
different results (e.g., Khatiwala et al., 2013, their Fig. 4). While a good representation of the 
interior ocean Cant distribution is not necessarily related to a correct estimate of the air-sea Cant 
flux, it can provide an indication of the model performances and the robustness of the applied 
corrections. For both comparisons, we compare the multi-model mean and standard deviation 
and results from the ESM that represents best the three observational predictors (i.e., GFDL-
ESM4). GFDL-ESM4 has a global ocean Revelle factor of 10.37, an inter-frontal sea surface 
salinity of 34.00, and an AMOC of 18.25.  The biases that may exist in the multi-model mean, such 
as too little Cant in the Southern hemisphere due to a too low multi-model averaged sea surface 
salinity, should be smaller for GFDL-ESM4. 

 
The comparison to the observation-based estimate of Cant accumulation from 1800 to 1994 
(Sabine et al., 2004) demonstrates that the ESMs represent the distribution of Cant in the ocean 
between the basins and different latitudinal regions well (Table A.5.1). Small underestimations 
exist in the Indian and Atlantic tropical ocean as well as in the southern subpolar Atlantic Ocean. 
The differences in the Indian Ocean may well be to observational uncertainties that are especially 
large in this relatively under-sampled ocean basin (Sabine et al., 2004; Gruber et al., 2019a). The 



underestimation in Southern Atlantic and the Atlantic sector of the Southern Ocean are consistent 
with an underestimation of the formation of mode and intermediate waters in the Southern Ocean 
due to a too low sea surface salinity. This underestimation is strongly reduced in the GFDL-ESM4 
model (Table A.5.2) indicating that the better representation of the inter-frontal sea surface 
salinity in the Southern Ocean also improves the simulated distribution of Cant in the ocean. 
Furthermore, GFDL-ESM4 also simulates slightly higher Cant in the North Atlantic, consistent 
with its slightly too high AMOC.  

 
The comparison for the period from 1994 to 2007 also indicates that the ESMs on average 
simulate the Cant interior storage pattern as estimated based on observations (Gruber et al., 
2019a) (Table A.5.3). The ESMs agree with the observation-based estimates with respect to the 
basin and hemispheric distribution. However, they underestimate on average the storage in the 
Southern hemisphere in line with the underestimation of the formation of intermediate and mode 
waters in the Southern Ocean. When only considering GFDL-ESM4 (Table A.5.4), this 
underestimation is reduced and all other regions show very good agreement. 

 
Remaining small difference in both comparisons may be also due to different alignments of the 
basin boundaries, an unknown distribution of the Cant that entered the ocean before 1850 and has 
been advected 50 years longer in the ocean interior in case of Sabine et al. (2004), a different 
decadal variability in GFDL-ESM4 than in the real world in the case of Gruber et al. (2019a), 
and uncertainties in the observation-based estimates. Despite all these potential pitfalls, the 3-D 
repartition of Cant between observation-based products and ESMs agree and the model that best 
simulates the three key predictors, GFDL-ESM4, is almost identical to the observation-based 
estimates.” 

In summary, I have serious concerns about the conclusion drawn here. Given the structural biases that are 
inherent in the models and the rather indirect nature of the constraints, the proposal of a strongly reduced 
uncertainty for the oceanic uptake of CO2 seems far-fetched. To me this seems like a classical case for 
overconfidence stemming from a limited perspective of all the issues at stake. 

All three authors reject the insinuation of overconfidence and limited perspective. We find such 
offensive language not appropriate for a review.  

Unfortunately, the author of the comment does not explain the meaning of "issues at stakes". A 
critical issue we have not included yet in the Conclusion is research funding and the combination 
of ocean data with data from the atmosphere, land biosphere, ocean sediments and remote 
sensing as well as modelling. Important is also to improve our understanding of Earth system 
variability over the last million year and beyond for better projections of the future. We added in 
the Conclusion section: 
 
"Despite this step forward in the understanding of ESMs, a comprehensive research strategy that 
combines the measurements of important physical, biogeochemical, and biological parameters in 
the ocean with other data streams and modelling is needed. A comprehensive approach is 
necessary to improve our still incomplete understanding of the global carbon cycle and its 
functioning in the climate and Earth system over the past and under ongoing global warming." 
 
Indirect constraints are seen to be robust by the community if the underlying mechanism can be 
explained. Sanderson et al. (2020) write in a review about emergent constraints:  

 
“Bottom-up approaches such as the process decomposition of factors controlling carbon uptake 
in the Southern Ocean (Terhaar et al., 2021) or the “cloud controlling factors” for individual 
types of cloud feedback (Klein et al., 2017) have the potential to isolate and quantify structural 



assumptions in composite elements of a net response, allowing the individual assessment of 
constraints in each component and the isolation of ensemble structural assumptions in the 
associated processes. 
… 
ECs could play a useful role by defining reduced-space metrics that consider only those aspects of 
model performance that are relevant to a particular future response. Multi-metric emergent 
constraints may provide a useful “third way”: they are less sensitive to structural errors than 
single-metric emergent constraints and can be targeted toward processes that may drive future 
responses more accurately than generic performance metrics, which do not explicitly account for 
the relevance of an observable to a given response (Baker and Taylor, 2016; Collier et al., 
2018).” 

 
 

Recommendation: 

I recommend a major revision that revisits the uncertainties of the approach taken and the conclusions that 
the authors draw from their work. The power of the emergent constraint rests primarily with the future, 
while the relevance (and novelty) for the past and presence is much less clear. I thus strongly encourage 
the authors to de-emphasize the discussion of the relevance for the present (which is anyway less evident 
since the coupled models produce their own climate variability)  and instead focus the study on what the 
constrained ensemble can say about the future. 

We are somewhat puzzled by the statement that emergent constrains are of no or limited use for 
the past and the present. Unfortunately, the comment provides no example or reference that would 
support such a statement.  

One can think of process-based emergent constraints as a bias correction. This bias must be 
accounted for over all years, in the past, present, and the future. The constrained ESM estimate 
hence gives a bias-corrected value for the Cant uptake over any time. 

Although decadal or inter-annual variability on the air-sea Cant flux is averaged out over an 
ensemble of ESMs, we have never claimed that decadal variability does not impact the flux 
estimates from 1994 to 2007. 

In the legend of Table 1, we had written: 

“Uncertainties from the decadal variability on shorter timescales, e.g., for 1994-2007, are not 
included.” 

When presenting the numbers in the main text the first time, we had written: 

“Thus, the mismatch between observation-based air-sea Cant flux estimates from 1994 to 2007 and 
the here provided results may not exist over a longer period of time and be caused by a different 
timing and magnitude of decadal variabilities in ESMs and the real world (Landschützer et al., 
2016; Gruber et al., 2019b; Bennington et al., 2022), as well as uncertainties in the observation-
based products (Bushinsky et al., 2019; Gloege et al., 2021, 2022).” 

 
and 

 



“However, even after correcting these hindcast simulations upwards by employing the here 
identified emergent constraint, their corrected estimate may remain below the CMIP-derived 
estimate here due to the historical decadal variations in the Cant uptake that is not represented 
with the same phasing in fully coupled ESMs (Landschützer et al., 2016; Gruber et al., 2019b; 
Bennington et al., 2022).” 
 
To underline that point, we have added a constraint estimate for the entire period over which the 
Global Carbon Budget 2021 provides observation-based estimates of the air-sea Cant flux and 
added the following lines to the paragraph above: 
 
“Indeed, when the entire period for which observation-based air-sea Cant flux estimates from the 
Global Carbon Budget are available (1990-2020), the constrained estimate of the ocean Cant sink 
based on ESMs (80.7 ± 2.5 Pg C) is very similar as the observation-based estimate from surface 
ocean pCO2 observations (81 ± 7 Pg C) (Table 1).” 
 
Reviewer 2 and this review provide conflicting advice with respect to the focus of this study. 
Reviewer 2 is asking us to emphasize more the relevance of our results for the Global Carbon 
Budget. We follow the advice of reviewer 2, an expert in the field of hindcast simulations and 
ESMs. Accordingly, and to avoid misunderstandings, we now write in the manuscript: 

“The here provided improved estimate of the size of the global ocean carbon sink may help to 
close the carbon budget imbalance since 1850 (Friedlingstein et al., 2022)” 

and 

“Moreover, biases in these quantities and corrections for the late starting date may well be the 
reason for offset between models and observations over the last 30 years (Hauck et al., 2020; 
Friedlingstein et al., 2022). Although the here identified constraints cannot correct for 
misrepresentation of the unforced decadal variability, such variability plays likely a minor role 
when averaging results over longer periods. Indeed, we find good agreement between our 
estimate and the observation-based estimate from the Global Carbon Budget 2021 for the period 
from 1990 to 2020. This agreement suggests that the hindcast models underestimate the ocean 
Cant uptake. This underestimation is thus likely the explanation for the difference between models 
and observation-based product in the Global Carbon Budget (Friedlingstein et al., 2022). 
However, the output of the Global Carbon Budget hindcast models is not publicly available for 
evaluating possible data-model differences for the inter-frontal sea surface salinity, the AMOC, 
and the Revelle factor. ” 

Detailed arguments: 

Regarding Robustness: 

Emergent constraints essentially rely on the relationship between biases in the models and the biases that 
result from them with regard to a particular outcome – here the ocean uptake of CO2. While this is a well-
tested method, its limits always need to be carefully evaluated. This is especially the case when an attempt 
is made to improve knowledge about a process for which a lot of information is already available, such as 
the past and present uptake of CO2 by the ocean. 

We agree. 



A fundamental underlying assumption in the method is that while individual models can be (and should 
be) biased, there is no common bias across all models that would lead to an overall bias set of models. 
This assumption is violated here. None of the employed ocean models is eddy-resolving – meaning that 
they all share similar biases with regard to a number of critically important processes. The role of eddies 
for determining global ocean circulation is well established, particularly with regard to the processes in the 
Southern Ocean, where the interplay between Ekman drift induced overturning circulation and eddy-
driven circulation is particularly important (see Marshall and Speer (2012) and Rintoul (2018)) for 
determining the structure and magnitude of the subduction of mode and intermediate waters, i.e., the 
important conduits for how anthropogenic CO2 is entering the thermocline of the Southern Ocean. This 
process is not well captured by most coarse-resolution models, as evidenced, e.g., by their poorly modeled 
distribution of salinity. Lachkar et al. (2007) showed the impact of resolution on the uptake of 
anthropogenic CO2, CFCs and ∆14C quite impressively, highlighting how it not only alters the global 
uptake, but also the processes and the locations of the uptake. Given this evidence, I have substantial 
concerns that the relationship established here is as robust as the authors make us believe. (note on the 
side: this would not be the first time an emergent constraint falls apart once additional processes are taken 
into account). 

This comment was already made above. Please see our previous answer.  

I think also a bit more critical thinking would do this study well. One needs to recall that in the end, 
emergent constraints can only emerge from a model suite if at least some of the models are flawed. In 
addition, emergent constraints study often just emphasize the variables that work. They rarely state (also 
not in the case of this study) of all the variables that did not work. For example, it turns out that 
interfrontal salinity in the Southern Ocean ends up to be the most important constraint. But why not 
interfrontal density, which is actually dynamically the more important variable? And why not winds, and 
why not winter mixed-layer depths and why not many other variables that are clearly relevant for the 
determining the anthropogenic CO2 uptake in the Southern Ocean? The lack of consideration of the fact 
that these emergent constraints emerge from a substantial amount of  trial and error approach also tends to 
lead to overconfidence. 

All authors find the wording of this comment (i.e., a bit more ciritical thinking) irritating.  

Taken the comment at face value, all scientists publishing a best estimate and uncertainty ranges 
are overconfident and uncritical as all models are “flawed” and by necessity only an 
approximation of reality.  

The specific comment on salinity versus density is surprising as salinity variations are known to 
govern density variations in cold waters with limited temperature variations (see for example in 
Descriptive Physical Oceanography: An Introduction by Lynne D Talley). In Terhaar et al. 
(2021), we wrote: 

“Across the CMIP6 and CMIP5 model ensembles the volume of ocean interior water ventilated by 
surface waters that lies between the PF and the STF, namely, SAMW and AAIW, increases with 
increasing sea surface density (r2 = 0.74; figs. S2 to S5). Sea surface density is, thus, a physically 
supported indicator of the formation rate of SAMW and AAIW (12, 41, 43, 44) and, in turn, of Cant 
uptake by the Southern Ocean (12, 41). The sea surface density variations in the cold Southern 
Ocean depends strongly on variations in surface salinity (r2 = 0.84; fig. S2A) (13, 42–45) and 
less on variations in surface temperature (r2 = 0.01; fig. S2B). […]While the relationship between 
the volume of subducted SAMW and AAIW and the Southern Ocean Cant uptake might be more 
direct, we chose the sea surface salinity as the observable quantity because its observations are 



less uncertain. Sea surface salinity provides the best compromise between a good linear 
correlation and low observational uncertainties.” 

We added the following text to the revised manuscript: 

“In addition, other potential predictors were tested, such as the magnitude and seasonal cycle of 
sea-ice extent, wind curl, and the mixed layer depth, and upwelling strength of circumpolar deep 
waters. All these variables are known to influence air-sea gas exchange, freshwater fluxes, and 
circulation and, in turn, salinity and Cant uptake. However, none of these factors alone explains 
biases in the surface salinity and Cant uptake in the Southern Ocean. Therefore, the sea surface 
salinity that emerges as a result of all these individual processes represents, so far, the best 
variable in terms of mechanistic explanation and observational uncertainty to bias-correct models 
for Southern Ocean Cant uptake.”   

Regarding data constraints. 

The authors compare their emergent constraints only with regard to the global uptake numbers with other 
data based constraints. But the proof of the pudding is the eating. Unless the authors can demonstrate that 
the constrained models are indeed doing better with regards to the observational constraints for the 
oceanic uptake of anthropogenic CO2, I have little confidence in their results. Of course, the observational 
constraints come with their own uncertainties, but there are a number of well established features in terms 
of basin and depth distributions that can be exploited (note e.g., that the Sabine et al. 2004 and the Gruber 
et al. 2019 estimates are statistically fully independent since they use a fundamentally different 
methodology). I also think that the ocean models should demonstrate their ability to represent the air-sea 
CO2 fluxes, since these are increasingly dominated by the anthropogenic CO2 flux components. 

This comment was already made above. Please see our previous answer.  

Detailed comments: 

P5, line 116 “However, … significantly smaller than the previously assumed flux of -5 Pg C (Gruber et 
al., 2019a),”: Given that the ESMs employed here have their own climate variability, this comparison is 
fundamentally not tenable. The 5 Pg C could be related to anthropogenic climate change, but it could also 
be related to naturally occurring interannual to decadal climate variability. Thus the authors are comparing 
two different things here. 

The estimate of Cant uptake from 1994 to 2007 of 34 Pg C by Gruber et al. (2019) includes the 
steady-state Cant uptake and the non-steady state Cant uptake. However, it does not include the 
non-steady state flux of CT. This flux includes natural fluxes of CT across the air-sea interface due 
to climate change and climate variability. While the flux due to climate change leads to a 
cumulative flux over time, the flux due to climate variability should average out over several 
decades but may exist over a decade or two.  

The ESMs quantify the effect of long-term climate change and CO2 increase. The ESM also 
simulated externally forced and internal climate variability. Using an ensemble of models and 
averaging over 14 years or longer typically removes unforced, internal variability, whereas 
forced variability (e.g., due to the voclanic eruptions such as Pinatubo or variations in emissions 
of CO2 or other radiative forcing agents) are preserved. The statement that ESMs have their own 
climate variability is thus partly misleading.  



There is little evidence for a relevant deviation of Cant uptake due to climate variability during the 
period 1994 to 2007, both globally and in the Southern Ocean (Figure R.3). Uncertainties are 
simply too large.  

  

Fig R.3: From IPCC, AR6, WGI, Fig. 5.8 (Canadell et al., 2021). 

 

We have updated the sentences accordingly: 

“The difference of 5 Pg C between the interior and surface ocean mean estimates was attributed 
to outgassing of ocean CO2 caused by a changing climate and climate variability (Gruber et al., 
2019a). However, simulations from ESMs of the sixth phase of the Coupled Model 
Intercomparison Project (CMIP6) estimate the climate-driven and externally forced climate 
variability-driven air-sea CO2 flux from 1994 to 2007 to be only -1.6±0.5 Pg C (Table A.1.3). 
When averaging over an ensemble of ESMs, forced variability (e.g., due to the volcanic eruptions 
or varying emissions of CO2 and other radiative agents) is still preserved. However, unforced 
interannual-to-decadal variability is largely removed when averaging over an ensemble of ESMs. 
Although comparisons suggest that the ocean Cant uptake was low compared to atmospheric CO2 
in the 1990s and high in the 2000s (Rödenbeck et al., 2013, 2022), a comparison of different Cant 
uptake estimates for different decadal-scale periods does not reveal any clear variability-related 
deviation for the 1994-2007 period (IPCC, WGI, Chapter 5, Figure 5.8 (Canadell et al., 2021)). 
Overall, uncertainties remain at present too large for any quantitative conclusions, but it seems 
unlikely that unforced variability causes an air-sea CO2 flux of -3.4 Pg C (difference between -5 
Pg C from Gruber et al. (2019a) and -1.6 Pg C from ESMs), twice as large as the simulated flux 
from forced variability and climate change. It hence remains a challenge to derive the total ocean 
Cant sink from interior estimates that do not account for climate-driven changes in CT.” 



P13, line 247ff Along similar lines, I think the discussion of the budget imbalance stands on weak grounds 
here. This may or may not reflect anthropogenically forced trends, but with the ESMs not simulating the 
weather and climatic events over the past 20 years correctly, the power of these statements is very limited. 
This is the reason why I recommend that the authors focus their paper more strongly on the future, where 
the ESMs have their strengths. The past 20 years is not their forté.  

We do not understand the comment as we addressed the budget imbalance over the entire 
historical period since 1850 over which weather and decadal climatic events average out. The 
cited passage in the first submission reads: 

“Over the historical period from 1850 to 2020, the here identified constraint increases the 
simulated ocean Cant uptake by 15 Pg C (r2 = 0.80) from 174 ± 13 Pg C to 189 ± 7 Pg C (Table 1). 
The constrained estimate of the Cant agrees within the uncertainties with the estimate from the 
Global Carbon Budget for the same period (170±35 Pg C) (Friedlingstein et al., 2022), which is a 
combination of prognostic approaches until 1959 (Khatiwala et al., 2013; DeVries, 2014), and 
ocean hindcast simulations and observation-based CO2 flux products from 1960 to 2020 
(Friedlingstein et al., 2022). However, our new estimate is 19 Pg C larger and could explain 
around three quarters of the budget imbalance (BIM) between global CO2 emissions and sinks over 
this period (25 Pg C) (Friedlingstein et al., 2022) and contribute to answering an important 
outstanding question in the carbon cycle community. “ 
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Abstract. The ocean slows global warming by currently taking up around one quarter of all human-made CO2 emissions. 

However, estimates of the ocean anthropogenic carbon uptake vary across various observation-based and model-based 

approaches. Here, we show that the global ocean anthropogenic carbon sink simulated by Earth System Models can be 

constrained by two physical parameters, the present-day sea surface salinity in the subtropical-polar frontal zone in the 10 

Southern Ocean and the strength of the Atlantic Meridional Overturning Circulation, and one biogeochemical parameter, the 

Revelle factor of the global surface ocean. The Revelle factor quantifies the chemical capacity of seawater to take up carbon 

for a given increase in atmospheric CO2. By exploiting this three-dimensional emergent constraint with observations, we 

provide a new model- and observation-based estimate of the past, present, and future global ocean anthropogenic carbon sink 

and show that the ocean carbon sink is 9-11% larger than previously estimated. Furthermore, the constraint reduces 15 

uncertainties of the past and present global ocean anthropogenic carbon sink by 42-59% and the future sink by 32-62% 

depending on the scenario, allowing for a better understanding of the global carbon cycle and better targeted climate and ocean 

policies. Our constrained results are in good agreement with the air-sea Cant estimates over the last three decades based on 

observations of the CO2 partial pressure at the ocean surface in the Global Carbon Budget 2021, and suggest that existing 

hindcast ocean-only model simulations underestimate the global ocean anthropogenic carbon sink. The here identified key 20 

parameters for the ocean carbon sink should be quantified when presenting simulated ocean anthropogenic carbon uptake as 

in the Global Carbon Budget and be used to adjust these simulated estimates if necessary. The larger ocean sink results in 

enhanced ocean acidification over the 21st century, which further threatens marine ecosystems by reducing the water volume 

that is projected to be undersaturated towards aragonite by around 3.7-7.4 million km3 more than originally projected.  

1 Introduction 25 

The emissions of anthropogenic CO2 (Cant) since the beginning of the industrialization through fossil-fuel burning, cement 

production and land-use change have altered the global carbon cycle and climate (Friedlingstein et al., 2022). Around 40% of 

the additional carbon since 1850 has accumulated in the atmosphere, where it represents the main anthropogenic greenhouse 



 

2 
 

gas (IPCC, 2021). More than half of the emitted Cant has been taken up by the land biosphere (~30%) and the ocean (~25%) 

(Friedlingstein et al., 2022). The remaining ~5% are the budget imbalance, a mismatch between carbon emissions and sink 30 

estimates which cannot be explained yet (Friedlingstein et al., 2022). By taking up each around a quarter of the Cant emissions, 

the land biosphere and ocean sinks slow down global warming and climate change.  

 

The ocean Cant sink is defined here as a combination of the uptake of newly emitted carbon and the change in the natural carbon 

inventory in the ocean due to changes in temperatures, winds, and the freshwater cycle caused by climate change (Joos et al., 35 

1999; Frölicher and Joos, 2010; McNeil and Matear, 2013). The uptake rate of Cant on sub-millennial timescales is mainly 

determined by the ocean circulation, and carbonate chemistry, and only partly by biology (Sarmiento et al., 1998; Joos et al., 

1999; Caldeira and Duffy, 2000; Sabine et al., 2004; Hauck and Völker, 2015). The rate limiting process is(Sarmiento et al., 

1998; Joos et al., 1999; Caldeira and Duffy, 2000; Sabine et al., 2004), despite the overall importance of marine biology for 

natural carbon fluxes (Falkowski et al., 1998; Steinacher et al., 2010). The rate limiting process of Cant uptake is the circulation 40 

that transports surface waters with high Cant concentrations into the deeper ocean and allows waters with low or no Cant 

concentrations to upwell back to the ocean surface. The largest part of this ocean upwelling occurs in the Southern Ocean 

where strong westerlies drive northward Ekman transport of surface waters, which are then replaced by older, deeper water 

masses (Marshall and Speer, 2012; Talley, 2013; Morrison et al., 2015). These predominantly northward flowing waters take 

up Cant from the atmosphere and are eventually transferred to mode and intermediate waters that sink back into the ocean 45 

interior (Marshall and Speer, 2012; Talley, 2013). This overturning makes the Southern Ocean the largest marine Cant sink 

(~40% of global ocean Cant uptake) (Caldeira and Duffy, 2000; Mikaloff Fletcher et al., 2006; Gerber et al., 2009; Gruber et 

al., 2009; Frölicher et al., 2015; Terhaar et al., 2021b)(Caldeira and Duffy, 2000; Mikaloff Fletcher et al., 2006; Frölicher et 

al., 2015; Terhaar et al., 2021b). Another region of large uptake rates is the North Atlantic (Caldeira and Duffy, 2000; Mikaloff 

Fletcher et al., 2006; Gruber et al., 2009; Goris et al., 2018)(Caldeira and Duffy, 2000; Mikaloff Fletcher et al., 2006), where 50 

the Atlantic Meridional Overturning Circulation (AMOC) transports surface waters with high Cant (Pérez et al., 2013) and 

subsurface waters with low Cant concentrations northward (Ridge and McKinley, 2020). The subsurface waters outcrop in the 

subpolar North Atlantic where they take up Cant from the atmosphere (Ridge and McKinley, 2020). These high  Cant waters are 
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then subductedventilated by the AMOC into the deep ocean where the Cant is efficiently stored (Joos et al., 1999; Winton et 

al., 2013).  55 

 

While the circulation determines the volume that is transported into the deeper ocean, the Revelle factor (Revelle and Suess, 

1957; Sabine et al., 2004) determines the concentration of Cant in these water masses. The Revelle factor describes the 

biogeochemical capacity of the ocean to take up Cant. In addition to the circulation and marine chemistry, biology also 

modulates the global ocean Cant uptake through changes in the net primary production and export fluxes of organic matter and 60 

biogenic particles from the surface ocean to the interior ocean (Riebesell et al., 2007; Hauck and Völker, 2015) and in the 

remineralization or dissolution of organic matter and biogenic material at depth (Bendtsen et al., 2002; Gangstø et al., 2008; 

Kwon et al., 2009; Roth et al., 2014). However, the contribution of biology to Cant uptake is estimated to be relatively small 

compared to the impact of circulation and the Revelle factor(Sarmiento and Sundquist, 1992; Sarmiento et al., 1992; Joos et 

al., 1999; Plattner et al., 2001; Frölicher and Joos, 2010; Terhaar et al., 2019; Canadell et al., 2021), despite its overall 65 

importance for natural carbon fluxes (Falkowski et al., 1998; Steinacher et al., 2010)This biogeochemical capacity is strongly 

dependent on the amount of carbonate ions in the ocean that react with CO2 and H2O to form bicarbonate ions (Egleston et al., 

2010; Goodwin et al., 2009; Revelle and Suess, 1957). The more CO2 is transferred via this reaction to bicarbonate ions, the 

more can be taken up again from the atmosphere. The available amount of carbonate ions for this reaction depends sensitively 

on the difference between ocean alkalinity and dissolved inorganic carbon (CT) (Figure A.1.2) (Egleston et al., 2010; Goodwin 70 

et al., 2009; Revelle and Suess, 1957), highlighting the importance of alkalinity for the global ocean carbon uptake (Middelburg 

et al., 2020). As the buffer factor influences the Cant uptake, it also exerts a strong control on the transient climate response, 

i.e., the warming per cumulative CO2 emissions (Katavouta et al., 2018; Rodgers et al., 2020). 

 

In addition to slowing global warming, the Cant uptake by the ocean also causes ocean acidification (Orr et al., 2005; Gattuso 75 

and Hansson, 2011; Kwiatkowski et al., 2020), i.e., a decline in ocean pH and carbonate ion concentrations. The decline in 

carbonate ion concentrations has negative effects on the growth and survival of many marine species, especially on calcifying 

organisms whose shells and skeletons are made up of calcium carbonate minerals (Orr et al., 2005; Fabry et al., 2008; Kroeker 
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et al., 2010, 2013; Doney et al., 2020). Calcium carbonate minerals in the ocean exists mainly in its metastable forms of 

aragonite and high-magnesium calcite and its more stable form calcite. The stability of calcium carbonate minerals is described 80 

by their saturation states (W), which describe the product of the concentrations of calcium ([Ca2+]) and carbonate ions ([CO32-

]) divided by their product in equilibrium. Reductions of saturation states of aragonite (Warag) and calcite (Wcalc) have shown to 

negatively impact organisms and ecosystems (Langdon and Atkinson, 2005; Kroeker et al., 2010; Bednaršek et al., 2014; 

Albright et al., 2016). Once, saturation states drop below one, the water is undersaturated and actively corrosive towards the 

respective mineral form. 85 

 

Accurately quantifying the ocean anthropogenic carbon sink is thus of crucial importance for understanding and quantifying 

the carbon cycle, global warming and climate change, as well as ocean acidification. A better knowledge of the size of the 

historical and future ocean carbon sink and reduced uncertainties will hence not only lead to an improved understanding of the 

overall carbon cycle and global climate change (IPCC, 2021), but also allow targeted climate and ocean policies (IPCC, 2022). 90 

One of the key tools to assess the past, present, and future ocean carbon sink are Earth System Models (ESMs). However, the 

simulated ocean Cant sink varies across the different ESMs (Frölicher et al., 2015; Wang et al., 2016; Bronselaer et al., 2017; 

Terhaar et al., 2021b) and the model differences grow over time, i.e., ESMs that simulate a small ocean Cant uptake over the 

last decades also simulate a small uptake over the 21st century (Figure 1b) (Wang et al., 2016). Therefore, a better knowledge 

of the ocean Cant sink in the last decades would be one possibility to reduce uncertainties in the simulated ocean carbon from 95 

1850 to 2100. 
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Figure 1. Simulated ocean anthropogenic carbon uptake from Earth System Models. (a) Simulated annual mean air-sea Cant fluxes 

from 17 CMIP6 Earth System Models from 19951990 to 2020 before (orange line) and after the constraint is applied (blue line). After 2014, 

results from SSP5-8.5 were chosen as this is the only SSP for which each model provided results and differences in atmospheric CO2 mixing 100 
ratios in SSP5-8.5 (Meinshausen et al., 2020) are small compared to observations until 2020 (maximum difference of 2.5 ppm in 2020) 

(Trends in Atmospheric Carbon Dioxide (NOAA/GML)) until 2020 (maximum difference of 2.5 ppm in 2020).. In addition, mean air-sea 

Cant fluxes based on multiple observation-based estimates (black solid line) and hindcast simulations (black dashed line) from the Global 

Carbon Budget 2021 (Friedlingstein et al., 2022) are shown. For readability, the uncertainties of these estimates (on average 0.24 Pg C yr-1 

for observation-based estimates and 0.28 Pg C yr-1 for hindcast simulations) are not shown in the figure. (b) Simulated cumulative ocean 105 
Cant uptake since 1765 for the historic period until 2014 (17 ESMs) and for the future from 2015 to 2100 under SSP1-2.6 (blue, 14 ESMs), 

SSP2-4.5 (orange, 16 ESMs), and SSP5-8.5 (red, 17 ESMs). Thin lines show the results from each individual ESM, the dashed lines the 

multi-model mean, the solid lines the constrained estimate, and the shading the uncertainty around the constrained estimate. Furthermore, 

the observation-based ocean Cant inventory estimate in 2010 from Khatiwala et al. (2013) is shown. As ESM simulations in CMIP6 start in 

1850, the air-sea Cant fluxes were corrected upwards for the late starting date in the constrained estimate following Bronselaer et al. (2017) 110 
(see Appendix A.1). Furthermore, the observation-based ocean Cant inventory estimate in 2010 from Khatiwala et al. (2013) is shown. 

2 Quantifying the past ocean anthropogenic carbon sink with observations and hindcast simulations and existing 
uncertainties 

The large background concentration of dissolved inorganic carbon (CT)CT in the ocean and the vast ocean volume make it 

difficult to directly observe the relatively small anthropogenic perturbations in the ocean interior. Therefore, different methods 115 

have been developed to estimate the accumulation of anthropogenic carbon (Cant) in the ocean (Khatiwala et al., 2013), such 

as the DC* method (Gruber et al., 1996; Sabine et al., 2004) or the Transient Time Distribution method (Hall et al., 2002) 
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based on observations of inert tracers, like CFCs. These estimates result in an estimated ocean Cant inventory in 2010 of 155±31 

Pg C (Khatiwala et al., 2013) (Figure 1b, Table 1), but do not or only partly include climate-driven changes in CT. 

 120 

Further development of the DC* method into the eMLR(C*) method (Clement and Gruber, 2018) and more observations 

through new techniques, such as (Bio-)ARGO-floats (Claustre et al., 2020), and more research cruises (Lauvset et al., 2021) 

allowed to quantify the increase in marine Cant on shorter timescales and with reduced uncertainty. The so-estimated increase 

in Cant from 1994 to 2007 by the eMLR(C*) method is 34±4 Pg C (12% uncertainty, Table 1) (Gruber et al., 2019a), again not 

accounting for potential climate-driven changes in CT. In addition to interior Cant estimates, surface ocean observations of the 125 

partial pressure of CO2 (pCO2) and new statistical methods, such as neural networks (Landschützer et al., 2016), have 

allowedled to establisha variety of observation-based estimates of the air-sea CO2 flux (Rödenbeck et al., 2014; Zeng et al., 

2014; Landschützer et al., 2016; Gregor et al., 2019; Watson et al., 2020; Iida et al., 2021; Gregor and Gruber, 2021; Chau et 

al., 2022). When subtracting the pre-industrial outflux of CO2 due to riverine carbon fluxes (Sarmiento and Sundquist, 1992; 

Aumont et al., 2001; Jacobson et al., 2007; Resplandy et al., 2018; Lacroix et al., 2020; Regnier et al., 2022) from these air-130 

sea CO2 flux estimates, the global ocean Cant uptake can be derived (Friedlingstein et al., 2022), resulting in an estimated ocean 

Cant uptake from 1994 to 2007 of 29±4 Pg C (14% uncertainty, Table 1).  

 

The difference of 5 Pg C between the interior and surface ocean mean estimates was attributed to outgassing of ocean CO2 

caused by a changing climate and climate variability (Gruber et al., 2019a). However, simulations from ESMs of the sixth 135 

phase of the Coupled Model Intercomparison Project (CMIP6) estimate this climate-driven air-sea CO2 flux from 1994 to 2007 

to be -1.6±0.5 Pg C (Table A.1.3), significantly smaller than the previously assumed flux of -5 Pg C (Gruber et al., 2019a), 

leaving an unexplained difference between both observation-based products although their uncertainty ranges 

overlapHowever, simulations from ESMs of the sixth phase of the Coupled Model Intercomparison Project (CMIP6) estimate 

the climate-driven and externally forced climate variability-drive air-sea CO2 flux from 1994 to 2007 to be only -1.6±0.5 Pg C 140 

(Table A.1.3). When averaging over an ensemble of ESMs, forced variability (e.g., due to the volcanic eruptions or varying 

emissions of CO2 and other radiative agents) is still preserved. However, unforced interannual-to-decadal variability is largely 



 

7 
 

removed when averaging over an ensemble of ESMs. Although comparisons suggest that the ocean Cant uptake was low 

compared to atmospheric CO2 in the 1990s and high in the 2000s (Rödenbeck et al., 2013, 2022), a comparison of different 

Cant uptake estimates for different decadal-scale periods does not reveal any clear variability-related deviation for the 1994-145 

2007 period (IPCC, WGI, Chapter 5, Figure 5.8 (Canadell et al., 2021)). Overall, uncertainties remain at present too large for 

any quantitative conclusions, but it seems unlikely that unforced variability causes an air-sea CO2 flux of -3.4 Pg C (difference 

between -5 Pg C from Gruber et al. (2019a) and -1.6 Pg C from ESMs), twice as large as the simulated flux from forced 

variability and climate change. It hence remains a challenge to derive the total ocean Cant sink from interior estimates that do 

not account for climate-driven changes in CT. 150 

 

 

 

 

 155 

Table 1. Global ocean air-sea Cant flux estimates based on 17 ESMs from CMIP6 before and after constraint as well as previous 

estimates over different time periods. Prior uncertainty is the multi-model standard deviation. The uncertainty of the starting date 

corrected values also includes the uncertainty from that correction. The constrained uncertainty is a combination of the starting 

date correction, the multi-model standard deviation after the constraint is applied, and the uncertainty from the correction itself 

(see Appendices A.1 and A3). Uncertainties from the decadal variability on shorter timescales, e.g., for 1994-2007, are not included. 160 

The star indicates estimates that do not account for climate-driven changes in the ocean carbon sink. 

Period Cumulative air-sea Cant flux (Pg C) 

 
CMIP6 Global Carbon Budget 2021    

(Friedlingstein et al., 2022) 
Others 

 Prior 
Starting date 

corrected 
Constrained 

observation-based / hindcast 

simulations 
Estimate Source 
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1994-2007 26.8 ± 2.1 28.8 ± 2.2 31.5 ± 0.9 29 ± 4 / 26 ±3 34 ± 4* 
(Gruber et al., 

2019a) 

1765-2010  164 ± 12 177 ± 7  155 ± 31* 
(Khatiwala et 

al., 2013) 

1850-2014 138 ± 10 157 ± 12 171 ± 6 150 ± 30   

1960-2020 106 ± 8 117 ± 9 128 ± 4 115 ± 25   

1850-2020 154 ± 11 174 ± 13 189 ± 7 170 ± 35   

2020-2100 

(SSP1-2.6) 
150 ± 11 156 ± 11 173 ± 8     

2020-2100 

(SSP2-4.5) 
244 ± 16 251 ± 17 277 ± 9     

2020-2100 

(SSP5-8.5) 
399 ± 29 407 ± 30 445 ± 12     

 
 

 

An alternative way of estimating the strength of the ocean carbon sink is the use of global ocean biogeochemical models forced 165 

with atmospheric reanalysis data (Sarmiento et al., 1992; Friedlingstein et al., 2022). From 1994 to 2007, the ocean 

biogeochemical hindcast models that participated in the Global Carbon Budget 2021 (Friedlingstein et al., 2022) simulate a 

Cant uptake of 26±3 Pg C (Table 1). This estimate is 3 Pg C below the surface observation-based estimate and the difference 

increases further after 2010 (Figure 1a). Compared to the interior ocean Cant estimate, the simulated uptake by these hindcast 

models is 3-6 Pg C (10-19%) smaller depending on the correction term that is used for climate change induced outgassing of 170 

natural CO2. Such differences between observation-based and simulated ocean Cant uptake could be explained regionally by 

systematic biases in models (Goris et al., 2018; Terhaar et al., 2020a, 2021a, b), as well as data sparsity (Bushinsky et al., 

2019; Gloege et al., 2021). 
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Overall, the difference between ocean hindcast models, observation-based CO2 flux estimates, and interior ocean Cant estimates 175 

as well as the uncertainties in the climate-driven change in CT and pre-industrial outgassing indicate that uncertainties of the 

ocean Cant sink over the last decades remain substantial. The uncertainty of the Cant sink appears larger than the uncertainty 

typically given for an individual estimate of the Cant sink from a specific data product.  
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Table 1. Global ocean air-sea Cant flux estimates based on 17 ESMs from CMIP6 before and after starting date corrected and 180 

constraint as well as previous estimates over different time periods. Prior uncertainty is the multi-model standard deviation. The 

uncertainty of the starting date corrected values also includes the uncertainty from that correction. The constrained uncertainty is 

a combination of the starting date correction, the multi-model standard deviation after the constraint is applied, and the uncertainty 

from the correction itself (see section 3.1 and appendix A.1). Uncertainties from the decadal variability on shorter timescales, e.g., 

for 1994-2007, are not included. The star indicates estimates that do not account for climate-driven changes in the ocean carbon 185 

sink. 

Period Cumulative air-sea Cant flux (Pg C) 

 
CMIP6 Global Carbon Budget 2021    

(Friedlingstein et al., 2022) 
Others 

 Prior 
Starting date 

corrected 
Constrained 

observation-based / hindcast 

simulations 
Estimate Source 

1994-2007 26.8 ± 2.1 28.8 ± 2.2 31.5 ± 0.9 29 ± 4 / 26 ±3 34 ± 4* 
(Gruber et al., 

2019a) 

1990-2020 69.7 ± 5.1 74.4 ± 5.4 80.7 ± 2.5 81 ± 7 / 68 ± 8    

1765-2010  164 ± 12 177 ± 7  155 ± 31* 
(Khatiwala et 

al., 2013) 

1850-2014 138 ± 10 157 ± 12 171 ± 6 150 ± 30   

1960-2020 106 ± 8 117 ± 9 128 ± 4 115 ± 25   

1850-2020 154 ± 11 174 ± 13 189 ± 7 170 ± 35   

2020-2100 

(SSP1-2.6) 
150 ± 11 156 ± 11 173 ± 8     

2020-2100 

(SSP2-4.5) 
244 ± 16 251 ± 17 277 ± 9     

2020-2100 

(SSP5-8.5) 
399 ± 29 407 ± 30 445 ± 12     
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Overall, the difference between ocean hindcast models, observation-based CO2 flux estimates, and interior ocean Cant estimates 

as well as the uncertainties in the climate-driven change in CT and pre-industrial outgassing indicate that uncertainties of the 190 

past ocean Cant sink remain larger than the uncertainties of these individual products (Crisp et al., 2022) and do not allow to 

constrain the ocean Cant sink. 

3 Constraining the ocean anthropogenic carbon sink in Earth System Models 

Another way to constrain the past, present and future global ocean anthropogenic carbon sink is the use of process-based 

emergent constraints (Orr, 2002) that identify a relationship across an ensemble of ESMs between a relatively uncertain 195 

variable, such as the Cant uptake in the Southern Ocean, and a variable that can be observed with a relatively small uncertainty, 

such as the sea surface salinity in the subtropical-polar frontal zone in the Southern Ocean. The identified relationship is then 

combined with observations, in this example the sea surface salinity, to better estimate the uncertain variable, here the Cant 

uptake in the Southern Ocean (Terhaar et al., 2021b). Such relationships must be explainable by an underlying mechanism 

(Hall et al., 2019), i.e., higher sea surface salinity in the frontal zone leads to denser sea surface waters and stronger mode and 200 

intermediate water formation, which enhances the transport of Cant from the ocean surface to the ocean interior and allows 

hence for more Cant uptake. In recent years, process-based emergent constraints (Orr, 2002; Matsumoto et al., 2004; Wenzel et 

al., 2014; Kwiatkowski et al., 2017; Goris et al., 2018; Eyring et al., 2019; Hall et al., 2019; Terhaar et al., 2020a, 2021a, b) 

have successfully reduced uncertainties in simulated processes across ensembles of ESMs.(Orr, 2002; Matsumoto et al., 2004; 

Wenzel et al., 2014; Kwiatkowski et al., 2017; Goris et al., 2018; Eyring et al., 2019; Hall et al., 2019; Terhaar et al., 2020a, 205 

2021a, b; Bourgeois et al., 2022) have successfully reduced uncertainties in simulated fluxes across ensembles of ESMs. In 

the ocean, for example, a bias towards too little Cant uptake was identified in the Southern Ocean (Terhaar et al., 2021b). 

Similarly, ESMs from CMIP5 were shown to underestimate the future uptake of Cant in the North Atlantic due to too little 

sequestration of Cant into the deeper ocean (Goris et al., 2018). However, the relatively uncertain observation-based estimates 

of Cant sequestration (see section above) did not allow to reduce uncertainties. Despite a better understanding of the regional 210 

Cant uptake, uncertainties of the global ocean Cant sink could not yet been reducedSimilarly, the Cant uptake in the tropical Pacific 

Ocean across ESMs could be reduced with observations of the local surface ocean carbonate ion concentrations (Vaittinada 
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Ayar et al., 2022), which is anti-correlated to the Revelle factor. Despite a better understanding of the regional Cant uptake, 

uncertainties of the global ocean Cant sink have not been reduced yet. 

 215 

Here, we identify a mechanistic constraint for the global ocean Cant sink across 17 ESMs from CMIP6 (Table A.1.1). We 

demonstrate that a linear combination of three observable quantities, (1) the sea surface salinity in the subtropical-polar frontal 

zone in the Southern Ocean, (2) the strength of the AMOC at 26.5°N, and (3) the globally averaged surface ocean Revelle 

factor, can successfully predict the strength of the global ocean Cant sink across the CMIP6 ESMs (r2 of 0.87 for the global 

ocean Cant uptake from 1994 to 2007). The sea surface salinity in the subtropical-polar frontal zone in the Southern Ocean and 220 

the AMOC determine the strength of the two most important regions of mode, intermediate, and deep-water formation 

(Marshall and Speer, 2012; Talley, 2013; Buckley and Marshall, 2016; McCarthy et al., 2020).(Goris et al., 2018, 2022; Terhaar 

et al., 2021b). In addition, the Revelle factor accounts for biases in the biogeochemical buffer capacity of the ocean, i.e., the 

relative increase in ocean CT for a given relative increase in ocean pCO2 (Revelle and Suess, 1957). As the Revelle factor 

quantifies relative increases in ocean CT, the increase in surface ocean Cant depends on the Revelle factor and the natural surface 225 

ocean CT. Therefore, the Revelle factor in the ESMs was adjusted for model biases in natural surface ocean CT (see Appendix 

A.1). Compared to observations, CMIP6 models represent the observation-based average strength of the AMOC from 2004 to 

2020 (16.91 ± 0.49 Sv) (McCarthy et al., 2020) right but have a large inter-model spread (16.91 ± 3.00 Sv), underestimate the 

observed inter-frontal sea surface salinity (34.07 ± 0.02) and have a large inter-model spread (33.89 ± 0.13), and overestimate 

the surface-averaged Revelle factor that was derived by GLODAPv2 (10.45 ± 0.01) by 0.24 (10.73 ± 0.24) with largest Revelle 230 

factor biases in the main Cant uptake regions (Figure 2). The underestimation of the CT-adjusted Revelle factor by the ESM 

ensemble is mainly due to a bias towards too small concentrations of surface ocean carbonate ion concentrations (Sarmiento 

et al., 1995), caused by a too small difference of surface ocean alkalinity and CT (Figure A.1.2).  
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 235 

Figure 2. Sea surface salinity in the Southern Ocean, the Atlantic Meridional Overturning Circulation, and the Revelle factor at the 

ocean surface from observations and Earth System Models. Annual mean sea surface salinity from the (a) World Ocean Atlas 2018 

(Zweng et al., 2018; Locarnini et al., 2018), (b) 17 Earth System Models from CMIP6 from 1995 to 2014, and (c) the difference between 

both. The black lines in (a,b) indicate the annual mean positions of the Polar and Subtropical Fronts. The strength of the monthly-averaged 

Atlantic Meridional Overturning Circulation, here defined as the maximum of the streamfunction at 26.5°N, from 2004 to 2020 as (d) 240 
observed by the RAPID array (McCarthy et al., 2020), (e) as simulated by 17 Earth System Models from CMIP6, and (f) the difference 

between both. Each model simulation is shown in (e) and (f) as a thin red line, the multi-model average is shown as a thick red line, and the 

multi-model standard deviation is shown as red shading. The annual mean sea surface Revelle factor calculated with mocsy2.0 (Orr and 

Epitalon, 2015) from (g) gridded GLODAPv2 observations that are normalized to the year 2002 (Lauvset et al., 2016), from (h) output of 

17 Earth System Model simulations from CMIP6 in 2002 and adjusted for biases in the surface ocean CT (see Appendix A.1), and (i) their 245 
difference. 
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3.1 Applying the constraint and uncertainty estimation 

For the three-dimensional emergent constraint, multi-linear regression was used. First, it was assumed that the ocean Cant 

uptake for every model M (𝐶!"#$ ) can be approximated by a linear combination of the inter-frontal sea surface salinity in the 250 

Southern Ocean in model M (𝑆𝑆𝑆%&'#()*"	,-)!"	$ ), the AMOC strength in model M (𝐴𝑀𝑂𝐶$), and the globally-averaged surface 

ocean Revelle factor in model M (𝑅𝑒𝑣𝑒𝑙𝑙𝑒./&0!/$ ): 

 

𝐶!"#$ = 𝑎 ∗ 𝑆𝑆𝑆%&'#()*"	,-)!"	$ + 𝑏 ∗ 𝐴𝑀𝑂𝐶$ + 𝑐 ∗ 𝑅𝑒𝑣𝑒𝑙𝑙𝑒./&0!/$ + 𝑑 + 𝜀.                     (1) 

 255 

The parameters a, b, and c are scaling parameters of the three predictor variables, d is the y intercept, and 𝜀 describes the 

residual between the predicted Cant flux by this multi-linear regression model and the simulated Cant uptake by model M. The 

free parameters a, b, c, and d were fitted based on the simulated inter-frontal sea surface salinity in the Southern Ocean, AMOC, 

Revelle factor, and Cant uptake. The three predictors are not statistically correlated (r2 = 0.00 for salinity and AMOC, r2 = 0.03 

for Revelle factor and AMOC, and r2 = 0.10 for salinity and Revelle factor) and can hence be used in a multi-linear regression. 260 

 

The constrained Cant flux is estimated by replacing the simulated inter-frontal sea surface salinity in the Southern Ocean, 

AMOC, and Revelle factor by the observed ones and by setting 𝜀 to zero. As the Revelle factor describes the inverse of the 

ocean capacity to take up Cant from the atmosphere, equation (1) should in principal be used with 1
2)3)//)!"#$%"

& . However, using 

𝑅𝑒𝑣𝑒𝑙𝑙𝑒./&0!/$  facilitates understanding and the presentation of the results and only introduces maximum errors of around 0.1% 265 

for the Revelle factor adjustment for the models that simulate the largest deviations from the observed Revelle factor. To 

estimate the uncertainty, all model results were first corrected for their biases in the three predictor variables, i.e., if a model 

has a salinity that is 0.2 smaller than the observed salinity, the simulated Cant uptake by this model is increased by 𝑎 ∗ 0.2. The 

same correction is made for the other two predictor variables (Figure 3). If the three predictor variables were predicting the 

Cant flux perfectly, the bias-corrected Cant uptake from all models would be the same. The remaining inter-model standard 270 
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deviation therefore represents the uncertainty from the multi-linear regression model due to other factors that influence the 

ocean Cant uptake. The second part of the uncertainty originates from the uncertainty in the observations of the predictor 

variables that influences the magnitude of the correction. This uncertainty (∆𝐶!"#&04)	is calculated as follows: 

 

∆𝐶!"#&04 = 8(𝑎 ∗ ∆𝑆𝑆𝑆%&'#()*"	,-)!"	&04 )5 + (𝑏 ∗ ∆𝐴𝑀𝑂𝐶&04)5 + :𝑐 ∗ ∆𝑅𝑒𝑣𝑒𝑙𝑙𝑒./&0!/&04 ;5,                      (2) 275 

 

with ∆𝑆𝑆𝑆%&'#()*"	,-)!"	&04 , ∆𝐴𝑀𝑂𝐶&04 , and ∆𝑅𝑒𝑣𝑒𝑙𝑙𝑒./&0!/&04  being the uncertainty of the three observed predictor variables. 

Eventually, the overall uncertainty of this constrained Cant flux is estimated as the square-root of the sum of the products of the 

square of both uncertainties. 

By exploiting this multi-variable emergent constraint with observations, the simulated Cant uptake by ESMs from 1994 to 2007 280 

increases from 28.8 ± 2.2 Pg C to 31.5 ± 0.9 Pg C (Figures 1 & 3, Tables 1 & A.1.2). Biases in the Southern Ocean salinity 

are responsible for around 60% of the bias in the global ocean Cant uptake in the CMIP6 models while the bias in the Revelle 

factor explains the remaining 40% (Figure 3). The AMOC, whose multi-model mean in ESMs is similar to observations, does 

not change the central Cant uptake estimate but allows to reduce uncertainties (Figure 3). The constrained Cant uptake is 0.5 Pg 

C smaller than the interior ocean Cant estimate based on observations (Gruber et al., 2019a) when subtracting the multi-model 285 

mean climate-driven CO2 flux estimate from the CMIP6 models (Table A.1.3) and 2.5 Pg C larger than the observation-based 

air-sea Cant flux estimates from 1994 to 2007. However, after 2013 the observation-based air-sea Cant flux estimates become 

slightly larger than the constrained CMIP6 ESM estimates (Figure 1). Thus, the mismatch between observation-based air-sea 

Cant flux estimates from 1994 to 2007 and the here provided results may not exist over a longer period of time and be caused 

by a different timing and magnitude of decadal variabilities in ESMs and the real world (Landschützer et al., 2016; Gruber et 290 

al., 2019b; Bennington et al., 2022), as well as uncertainties in the observation-based products (Bushinsky et al., 2019; Gloege 

et al., 2021, 2022). 
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Figure 3. Global ocean anthropogenic carbon simulated by Earth System Models from CMIP6 corrected for biases in sea surface 295 
salinity in the Southern Ocean, the Atlantic Meridional Overturning Circulation, and the Revelle factor. (a) Global ocean 

(a)

(b)

(d)

(f)

(c)

(e)

(g)
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anthropogenic carbon (Cant) uptake from 1994 to 2007 as simulated by 17 ESMs from CMIP6 and corrected for the late starting date 

(Bronselaer et al., 2017). For each ESM, one ensemble member was used as the difference between ensemble members has been shown to 

be small compared to the inter-model differences (Terhaar et al., 2020a, 2021b). In the years 1994 and 2007, only half of the annual Cant 

uptake was accounted for to make it comparable to interior ocean estimates that compare changes in Cant from mid 1994 to mid 2007 and not 300 
from the start of 1994 to the end of 2007 (Gruber et al., 2019a). (b) Cant uptake after correcting the simulated Cant uptake from (a) for biases 

in the Southern Ocean Sea surface salinity (Terhaar et al., 2021b) from (c). The dots in (c) represent individual models before (red) and after 

(orange) the sea surface salinity correction. (d) Cant uptake after correcting sea surface salinity corrected Cant uptake from (b) for biases in 

the Atlantic Meridional Overturning Circulation from (e). The dots in (e) represent individual models before (orange) and after (blue) the 

Atlantic Meridional Overturning Circulation correction. (f) Cant uptake after correcting the sea surface salinity and Atlantic Meridional 305 
Overturning Circulation corrected Cant uptake from (d) for biases in the global ocean surface Revelle factor from (g). The dots in (g) represent 

individual models before (blue) and after (green) the Revelle factor correction. The simulated Revelle factor by the ESMs was adjusted for 

biases in the surface ocean CT (see Appendix A.1). The dashed coloured lines in (a), (b), (d), (f) show the multi-model mean and the shading 

shows the uncertainty, which is a combination of the multi-model standard deviation after correction and the uncertainty of the correction 

factor due to the uncertainty of the observational constraint (see Appendix A.1). The dashed black lines in (c), (e), (g) show the observations 310 
from the World Ocean Atlas 2018 (Zweng et al., 2018; Locarnini et al., 2018), the RAPID array (McCarthy et al., 2020), and GLODAPv2 

(Lauvset et al., 2016) with their uncertainties as grey shading, the coloured lines show linear fits, and the arrows illustrate the correction for 

individual models. 

 

Both,3.2 Exploiting the constraint with observations 315 

By exploiting this multi-variable emergent constraint with observations, the simulated Cant uptake by ESMs from 1994 to 2007 

increases from 28.8 ± 2.2 Pg C to 31.5 ± 0.9 Pg C (Figures 1 & 3, Tables 1 & A.1.2). Biases in the Southern Ocean salinity 

are responsible for around 60% of the bias in the global ocean Cant uptake in the CMIP6 models while the bias in the Revelle 

factor explains the remaining 40% (Figure 3). The AMOC, whose multi-model mean in ESMs is similar to observations, does 

not change the central Cant uptake estimate but allows to reduce uncertainties (Figure 3). unconstrained and The constrained 320 

ESM estimates, are larger than the hindcast simulation estimates and uptake in ESMs does not stop to grow after 2015 as it 

does in the hindcast simulations. The combination of Cant uptake of 31.5 ± 0.9 Pg C is 0.9 Pg C smaller than the interior ocean 

Cant estimate of 34 ± 4 Pg C based on observations (Gruber et al., 2019a) when subtracting the multi-model mean climate-

driven CO2 flux estimate from the CMIP6 models estimates,of 1.6 Pg C (Table A.1.3). This difference of 0.9 Pg C is smaller 

than the uncertainties. Furthermore, the constrained Cant uptake of 31.5 ± 0.9 Pg C is 2.5 Pg C larger than the observation-325 

based air-sea CO2 flux-based Cant uptake estimates, and simulated Cant uptake by ESMs estimates suggests that the hindcast 
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simulations underestimate the ocean Cant uptake and thatCant flux estimates from 1994 to 2007 of 29 ± 4 Pg C from the Global 

Carbon Budget 2021 estimate of the(Table 1) but both estimates agree within the uncertainties. When comparing short period, 

for example the years after 2013, the observation-based air-sea Cant flux estimates can deviate from the constrained CMIP6 

ESM estimates (Figure 1) due to unforced climate variability-driven CO2 flux. Thus, the small difference between observation-330 

based ocean Cant uptake estimates from 1994 to 2007 and the here provided results may not exist over a longer period of time 

and be caused by a different timing and magnitude of decadal variabilities in ESMs and the real world (Landschützer et al., 

2016; Gruber et al., 2019b; Bennington et al., 2022), as well as uncertainties in the observation-based products (Bushinsky et 

al., 2019; Gloege et al., 2021, 2022). Indeed, when the entire period for which observation-based air-sea Cant flux estimates 

from the Global Carbon Budget are available (1990-2020), the constrained estimate of the ocean Cant sink based on ESMs 335 

(80.7 ± 2.5 Pg C) is very similar as the observation-based estimate from surface ocean pCO2 observations (81 ± 7 Pg C) (Table 

1). 

 

The good agreement between the air-sea Cant flux estimates from ESMs and surface ocean pCO2 observations in combination 

with interior ocean Cant of a similar magnitude suggests that the air-sea Cant flux from hindcast simulations over the last 340 

decadesthree decades (68 ± 8 Pg C) and possibly also over the 1994-2007 period (26 ± 3 Pg C) underestimates the ocean Cant 

uptake (Table 1). Therefore, the Global Carbon Budget 2021 estimate of the ocean Cant uptake over the last decades, which is 

an average of the estimate of Cant uptake from observation-based methods and hindcast models, should hence be corrected 

upwards. Reasons for this underestimation may be an underestimation of the AMOC or the Southern Ocean inter-frontal sea 

surface salinity, an overestimation of the Revelle factor, a too small ensemble of models (8 models) that is biased towards low 345 

uptake models, too short spin-up times (Séférian et al., 2016), neglecting the water vapour pressure when calculating the local 

pCO2 in each ocean grid cell (Hauck et al., 2020) as is done in CMIP models (Orr et al., 2017), or different pre-industrial 

atmospheric CO2 mixing ratios (Bronselaer et al., 2017; Friedlingstein et al., 2022). However, even after correcting these 

hindcast simulations upwards by employing the here identified emergent constraint, their corrected estimate may remain below 

the CMIP-derived estimate herefor the period from 1994 to 2017 due to the historical decadal variations in the Cant uptake that 350 

is not represented with the same phasing in fully coupled ESMs (Landschützer et al., 2016; Gruber et al., 2019b; Bennington 
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et al., 2022)(Landschützer et al., 2016; Gruber et al., 2019b; Bennington et al., 2022). A detailed analysis by the individual 

modelling teams would be necessary to identify the reason for underestimation in the individual hindcast models. as the output 

is not openly available.  

 355 

Over the historical period from 1850 to 2020, the here identified constraint increases the simulated ocean Cant uptake by 15 Pg 

C (r2 = 0.80) from 174 ± 13 Pg C to 189 ± 7 Pg C (Table 1). The constrained estimate of the Cant agrees within the uncertainties 

with the estimate from the Global Carbon Budget for the same period (170±35 Pg C) (Friedlingstein et al., 2022), which is a 

combination of prognostic approaches until 1959 (Khatiwala et al., 2013; DeVries, 2014), and ocean hindcast simulations and 

observation-based CO2 flux products from 1960 to 2020 (Friedlingstein et al., 2022). However, our new estimate is 19 Pg C 360 

larger and could explain around three quarters of the budget imbalance (BIM) between global CO2 emissions and sinks over 

thisthe period 1850 to 2020 (25 Pg C) (Friedlingstein et al., 2022) and contribute to answering an important outstanding 

question in the carbon cycle community.  

 

Overall, this new estimate of the ocean Cant uptake, based on ESMs and constrained by observations, presents hence an 365 

independent and new estimate of the past and present ocean Cant uptake that is around 10% larger and  42-59% less uncertain 

and around 10% larger than the multi-model average and its standard deviation, respectively. The lower bound of the 

uncertainty correction is for the past ocean Cant uptake since 1765 where the late-starting date correction introduces an 

uncertainty that cannot be reduced without running the simulations from 1765 onwards. Towards the end of the 20th century, 

the uncertainty from this correction becomes smaller so that the emergent constraint can reduce uncertainties by almost 60%. 370 

 

3.2.1 Southern Ocean 

While the constraints were applied globally, they can also be applicable regionally as shown for the inter-frontal sea surface 

salinity in the Southern Ocean (Terhaar et al., 2021b). Here, we update the regional constraint in the Southern Ocean with the 

now additionally available ESMs and extent the constraint by adding the basin-wide averaged Revelle factor in the Southern 375 

Ocean as a second variable. For the period from 1765 to 2005, the simulated multi-model mean air-sea Cant flux that is adjusted 
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for the late starting date is 63.5 ± 6.1 Pg C. Please note that the numbers here are for fluxes from 1765 to 2005 and are not the 

same as in Terhaar et al. (2021b), where fluxes from 1850 to 2005 were reported. The two-dimensional constraint shows a 

higher correlation coefficient (r2=0.70) than the one-dimensional constraint when only the inter-frontal sea surface salinity is 

used as a predictor (r2=0.62). Slight differences to Terhaar et al. (2021b) exist due to the additional ESMs that are by now 380 

available. When exploiting this relationship with observations of the Southern Ocean Revelle factor (12.19±0.01) and the sea 

surface salinity, the best estimate of the cumulative air-sea Cant flux from 1765 to 2005 in the Southern Ocean increases to 

72.0±3.4 Pg C. In comparison, observation-based estimates for the same period report 69.6±12.4 Pg C (Mikaloff Fletcher et 

al., 2006) and 72.1±12.6 Pg C (Gerber et al., 2009). The constrained thus reduces the uncertainty not only globally but also in 

the Southern Ocean by 44%.  385 

 

3.2.2 Atlantic Ocean 

As for the Southern Ocean, we also apply a two-dimensional constraint to the Atlantic Ocean, using the AMOC and the basin-

wide averaged surface ocean Revelle factor in the North Atlantic as predictor. The unconstrained cumulative air-sea Cant flux 

from 1765 to 2005 in the North Atlantic adjusted for the late starting date is 21.9 ± 3.3 Pg C. For this period, the two-390 

dimensional constraint results in a relationship with a correlation coefficient of 0.57. If only the AMOC had been used the 

correlation factor would have been 0.49. When exploiting this relationship with observations of the North Atlantic Revelle 

factor and AMOC, the best estimate of the cumulative air-sea Cant flux from 1765 to 2005 in the Atlantic Ocean increases to 

22.7±2.2 Pg C. In comparison, observation-based estimates are 20.4±4.9 Pg C (Mikaloff Fletcher et al., 2006) and 20.4±6.5 

Pg C (Gerber et al., 2009).  The constrained and unconstrained estimates are both above the observation-based estimates but 395 

within the uncertainties. The constrained estimate is even higher than the unconstrained one, but only by 0.8 Pg C, and its 

uncertainty is reduced by 33%.  

4 Consequences for projected ocean anthropogenic carbon uptake and acidification over the 21st century 

As the present and future Cant uptake are strongly correlated across ESMs, the here identified relationship can also be used to 

constrain future projections of the global ocean Cant uptake. The global ocean Cant uptake from 2020 to 2100 increases from 400 
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156 ± 11 Pg C to 173 ± 8 Pg C (r2=0.56) under the high-mitigation low emissions Shared Socioeconomic Pathway 1-2.6 (SSP1-

2.6) that likely allows to keep global warming below 2°C (O’Neill et al., 2016; Riahi et al., 2017), from 251 ± 17 Pg C to 277 

± 9 Pg C (r2=0.74) under the middle-of-the-road SSP2-4.5, and from 407 ± 30 Pg C to 445 ± 12 Pg C (r2=0.87) under the high-

emissions no mitigation SSP5-8.5 (Figure 1b). Overall, the future ocean Cant uptake in CMIP6 models is thus 9-11% larger 

than simulated by ESMs and 32-62% less uncertain depending on the future scenario. The correlation coefficient and hence 405 

the uncertainty reduction reduces, but remains still large, when atmospheric CO2 stops to increase (SSP1-2.6, SSP2-4.5). 

Larger uncertainties for stabilization than for near-exponential growth scenarios are expected as the reversal of the atmospheric 

CO2 growth rate will exert a stronger external impact on the magnitude of the ocean carbon sink (McKinley et al., 2020). 

 

The increase in projected uptake of Cant also increases the estimate of future ocean acidification rate. For ocean ecosystems, 410 

the threshold for water masses become undersaturated towards specific calcium carbonate minerals (W=1) is of critical 

importance (Orr et al., 2005; Fabry et al., 2008; Doney et al., 2020), although negative effects for some calcifying organisms 

can already be observed at saturation states above one (Ries et al., 2009) and some calcifying organisms can even live in 

undersaturated waters (Lebrato et al., 2016). Over the 21st century, the volume of water masses in the global ocean that remain 

supersaturated towards the meta-stable calcium carbonate mineral aragonite is projected to decrease in CMIP6 from 283 415 

million km3 in 2002 (based on GLODAPv2 observations (Lauvset et al., 2016)) to 194±6 million km3 under SSP1-2.6, to 

143±4 million km3 under SSP2-4.5, and to 97±4 million km3 under SSP5-8.5. The constraint reduces these estimates to 186±5, 

138±2, and 93±2 million km3 respectively (r2=0.31-0.69), resulting in an additional decrease of the available habitat for 

calcifying organisms of 3.7-7.4 million km3 depending on the scenario. This additionally projected habitat loss is mainly 

located in the mesopelagic layer between 200 m and 1000 m and affects thus organisms that live their permanently or 420 

temporarily during diel vertical migration (Behrenfeld et al., 2019). The additionally undersaturated volume corresponds to an 

area of 1.6-3.1 times the area of the Mediterranean Sea whose mesopelagic layer would be additionally undersaturated towards 

aragonite. However, the global character of the constraint and the uncertainty of the interior distribution of Cant do not allow 

to localise these areas.  
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5 Robustness of the emergent constraint and possible impact of changing riverine carbon input over time 425 

Emergent constraints across large datasets such as an ensemble of ESMs with hundreds of variables can always be found and 

might not necessarily be reliable and robust (Caldwell et al., 2014; Brient, 2020; Sanderson et al., 2021; Williamson et al., 

2021). To test the robustness of emergent constraints, three criteria were proposed (Hall et al., 2019). The constraint must be 

relying on well understood mechanisms, that mechanism must be reliable, and the constraint must be validated in an 

independent model ensemble.  430 

 

Here, the well understood mechanisms are the fundamental ocean biogeochemical properties such as the Revelle factor 

(Revelle and Suess, 1957), as well as the Southern Ocean and North Atlantic large-scale ocean circulation features that are 

known to be the determining factors for the ocean ventilation (Marshall and Speer, 2012; Talley, 2013; Buckley and Marshall, 

2016). For the Southern Ocean, the verification of the link between sea surface salinity and Cant uptake was previously done 435 

by testinglinking the sea surface salinity, to the density, and to the volume of intermediate and mode waters in each model. 

Furthermore, the robustness of the constraint towas tested against changes in the definition of the inter-frontal zone (Terhaar 

et al., 2021b). Further evidenceIn addition, other potential predictors were tested, such as the magnitude and seasonal cycle of 

sea-ice extent, wind curl, and the mixed layer depth, and upwelling strength of circumpolar deep waters. All these variables 

are known to influence air-sea gas exchange, freshwater fluxes, and circulation and, in turn, salinity and Cant uptake. However, 440 

none of these factors alone explains biases in the surface salinity and Cant uptake in the Southern Ocean. Therefore, the sea 

surface salinity that emerges as a result of all these individual processes represents, so far, the best variable in terms of 

mechanistic explanation and observational uncertainty to bias-correct models for Southern Ocean Cant uptake. Further evidence 

for the underlying mechanism of the relationship between Southern Ocean sea surface salinity and Cant uptake was provided 

by a later study that analysed explicitly the stratification in the water column (Bourgeois et al., 2022). Here, we further showed 445 

that the Southern Ocean Cant uptake constrained by the Revelle factor and the inter-frontal sea surface salinity compares much 

better to observation-based estimates than the unconstrained estimate, further corroborating the identified regional constraint 

and mechanism (section 3.2.1).  
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Similarly, it was shown that the transport of Cant by the AMOC is crucial for the Cant uptake in the North Atlantic (Buckley 450 

and Marshall, 2016; Goris et al., 2018).(Winton et al., 2013; Goris et al., 2018; Brown et al., 2021). As the AMOC is 

predominantly observed at 26.5°N, a change to the definition is not possible. Instead, we replaced the AMOC as a predictor 

by another indicator for deep-water formation, namely the area of waters in the North Atlantic below which the water column 

is weakly stratified (see Appendix A.1 and Table A.1.4) (Hess, 2022). The results remain almost unchanged, indicating the 

robustness of the constraint and that the AMOC is indeed a good indicator for the stability of the water column in the North 455 

Atlantic and the associated deep-water formation. As for the Southern Ocean, we also made a regional two-dimensional 

constraint using the AMOC and the regional Revelle factor and compared it to observation-based Cant flux estimates. The good 

relationship between the AMOC and the North Atlanic Cant uptake improves the confidence in the AMOC as a valid predictor.   

 

Eventually, we have also tested the robustness of the biogeochemical predictor, by varying the definition of the Revelle factor. 460 

First, the Revelle factor was only calculated north of 45°N and south of 45°S, assuming that the high-latitude regions are 

responsible for the largest Cant uptake, and second, the global Revelle factor was calculated by weighting the Revelle factor in 

each cell by the multi-model mean cumulative Cant uptake from 1850 to 2100 in that cell so that the Revelle factor in cells with 

larger uptake is more strongly weighted. Under both definitions, the results remain almost unchanged (Table A.1.4). 

Furthermore, the Revelle factor has been shown here to improve the Cant uptake in the Atlantic and Southern Ocean and has 465 

been earlier shown to determine the Cant uptake in the tropical Pacific Ocean (Vaittinada Ayar et al., 2022), suggesting that the 

Revelle factor is a robust predictor of global and regional ocean Cant uptake. 

 

To provide further indication for the importance of the AMOC and the Southern Ocean surface salinity and the three-

dimensional constraint in general, we have compared simulated CFC-11, provided by 10 ESMs from CMIP6, with observed 470 

CFC-11 from GLODAPv2.2021 (Lauvset et al., 2021) (Appendix A.3). The comparison4) and also compared the interior 

ocean distribution of Cant with observation-based estimates (Sabine et al., 2004; Gruber et al., 2019a) (Appendix A.5). The 

comparison of CFCs demonstrates the importance of the AMOC for the ventilation of the North Atlantic, as ESMs with a low 

AMOC underestimate the observed subsurface CFC-11 concentrations in the North Atlantic. Similarly, ESMs with a small 
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inter-frontal Southern Ocean surface salinity underestimate observed subsurface (below 200 m) CFC-11 concentrations in the 475 

Southern hemisphere. In addition to the evaluation with observations of CFC, the comparison of the interior ocean Cant 

distribution demonstrates first that the ESMs on average represent the observation-based distributions within the margins of 

error (Tables A.5.1 and A.5.3). Only in the Southern hemisphere, the ESM average remains below, as expected due to the 

average ESM bias towards too low inter-frontal sea surface salinities, too little formation of mode and intermediate waters, 

and hence too little storage of Cant in the Southern hemisphere. When using the model that represents best the three predictors, 480 

GFDL-ESM4 (Dunne et al., 2020; Stock et al., 2020), the comparison to observation-based interior ocean Cant distribution 

becomes almost identical (Tables A.5.2 and A.5.4), suggesting that a better representation of these parameters indeed improves 

the simulation of Cant uptake and its distribution in the ocean interiorEventually, we have also tested the robustness of the 

biogeochemical predictor, by varying the definition of the Revelle factor. First, the Revelle factor was only calculated north 

of 45°N and south of 45°S, assuming that the high-latitude regions are responsible for the largest Cant uptake, and second, the 485 

global Revelle factor was calculating by weighting the Revelle factor in each cell by the multi-model mean cumulative Cant 

uptake from 1850 to 2100 in that cell so that the Revelle factor in cells with larger uptake is more strongly weighted. Under 

both definitions, the results remain almost unchanged (Table A.1.4), suggesting that the globally averaged Revelle factor is a 

robust predictor of ocean Cant uptake. 

 490 

To validate the here identified constraint in another model ensemble, we used all six ESMs of the CMIP5 ensemble that 

provided all necessary output variables (Table A.1.1). As these six ESMs are not sufficient to robustly fit a function with four 

unknown parameters, we applied the predicted relationship by the CMIP6 models to the CMIP5 models and evaluated how 

well this relationship allows to predict the simulated historical Cant uptake by these models. The CMIP6 derived relationship 

allows to predict the simulated Cant uptake with an accuracy of 3% (±5 Pg C) for the period from 1850 to 2014 and with an 495 

accuracy of 4% (±1.3 Pg C) for the period from 1994 to 2007 (Figure A.43.1). The largest uncertainty stems from the 

NorESM2-ME model, which simulates a historical AMOC strength of ~30 Sv, almost twice as large as the observed AMOC 

strength and ~9 Sv larger than all other CMIP6 ESMs over which the relationship was fitted. For such strong deviations from 

the observations and other ESMs, the linear relationship might not be applicable anymore. However, despite one out of six 



 

25 
 

ESMs from CMIP5 having a particularly high AMOC, the here identified relationship still allows to predict the simulated Cant 500 

uptake with small uncertainties and hence confirms its applicability. 

 

Despite this robustness, emergent constraints are, by definition, always relying on the existing ESMs and on the processes that 

are represented by these ESMs. If certain processes are not implemented or implemented in the same way across all ESMs, 

biases over the entire model ensemble can occur that cannot be corrected by an emergent constraint (Sanderson et al., 2021). 505 

Possible non-represented processes in our case are among others changing freshwater input from the Greenland and Antarctic 

ice sheet that may impact the freshwater cycle and circulation in the Southern Ocean or the AMOC, and changes in riverine 

input of carbon over time. However, the expected effect of ice melt on sea surface salinity in the Southern Ocean and on the 

AMOC is small compared to the model spread (Bakker et al., 2016; Terhaar et al., 2021b), at least on the timescales considered 

here. Changing riverine carbon fluxes could, however, have a larger effect. So far, only one CMIP6 ESM, the CNRM-ESM2-510 

1 (Séférian et al., 2019), has dynamic carbon riverine delivery that changes with global warming. In this model, carbon riverine 

delivery increases over the 20st century so that the interior ocean change in Cant in 2000 is around 19 Pg C smaller than the air-

sea Cant uptake (Figure A.1.34). The situation reverses at the beginning of the 21st century, so that riverine carbon delivery 

increases and the interior ocean change in Cant becomes up to 60 Pg C larger than the air-sea Cant uptake. As such, riverine 

carbon delivery has the potential to enhance or decrease the ocean Cant inventory in addition to air-sea Cant uptake. This would 515 

also question the comparability of Cant inventory and air-sea Cant uptake estimates. However, the present state of the ESMs does 

not allow a quantitative assessment of this process and future research is needed.  

 

In addition, parametrizations of non-represented processes such as mesoscale and sub-mesoscale circulation features like 

small-scale eddies may lead to biases in the model ensemble. For individual models, it has been shown that changes in 520 

horizontal resolution and hence a more explicitly simulated circulation change the model physics and biogeochemistry, and 

hence also the ocean carbon and heat uptake (Lachkar et al., 2007, 2009; Dufour et al., 2015; Griffies et al., 2015). However, 

an increase in resolution does not necessarily lead to improved simulations and the changes in oceanic Cant uptake maybe lower 

or higher, depending on the model applied. When increasing the NEMO ocean model from a non-eddying version (2° 
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horizontal resolution) to an eddying version (0.5°), Lachkar et al. (2009) find a decrease in the sea surface salinity by around 525 

0.1 at the Southern Ocean surface that brings the model further away from the observed salinity, a decrease of the volume of 

Antarctic intermediate water and a decrease in the Southern Ocean uptake of CFC and hence likely also of Cant. This example 

corroborates the underlying mechanism of the emergent constraint in the Southern Ocean that higher sea surface salinity 

directly affects the formation of Antarctic intermediate water and the uptake of Cant. Another example can be found within the 

ESM ensemble of CMIP6. The MPI-ESM-1-2-HR and MPI-ESM-1-2-LR have a horizontal resolution of 0.4° and 1.5° 530 

respectively but the same underlying ocean model. The high-resolution version has an inter-frontal salinity of 33.98, a Southern 

Ocean surface Revelle factor of 12.82, and a Southern Ocean Cant uptake from 1850 to 2005 of 56.4 Pg C. The coarser resolution 

version has an inter-frontal sea surface salinity of 33.92, a Southern Ocean surface Revelle factor of 12.89, and a Southern 

Ocean Cant uptake of 58.0 Pg C. These differences are much smaller than the inter-model differences (33.66-34.15 for salinity, 

12.14-13.11 for the Revelle factor, and 48.8-71.1 Pg C for the Southern Ocean Cant uptake) that result from different ocean 535 

circulation and biogeochemical models, sea ice models, and atmospheric and land biosphere models, as well as the coupling 

between these models. These examples show that higher resolution does not necessarily lead to better results, effects potentially 

the predictor and the predicted variable in the same way, and that differences in the underlying model components and spin-

up and initialization strategies lead so far to much larger differences between ESMs than resolution does(Séférian et al., 2020). 

As long as simulations with higher resolution, which are also spun-up over hundreds of years (Séférian et al., 2016), are not 540 

yet available, and potentially important processes such as changing riverine fluxes and freshwater from land ice are not 

included, it remains speculative if higher resolution would lead to a reduction of inter-model uncertainty, or even a better 

representation of the observations. Moreover, the here-identified relationships that are based on the current understanding of 

physical and biogeochemical oceanography and that were tested for robustness in several ways may likely also exist across 

ensembles of eddy-resolving models. 545 

6 Conclusion 

The here identified three-dimensional emergent constraint allows identifying a bias towards too low Cant uptake by ESMs from 

CMIP6, reduced uncertainties of the global ocean Cant sink, and led to an enhanced process understanding of the Cant uptake in 
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ESMs. The constraint was tested for robustness in multiple ways and across different model ensembles. It was evaluated 

regionally and globally against CFC measurements, estimates of the interior ocean Cant accumulation, and against observation-550 

based estimates of the air-sea CO2 flux globally and regionally. The constraint demonstrates that the global ocean Cant uptake 

can be estimated from three observable variables, the salinity in the subtropical-polar frontal zone in the Southern Ocean, the 

Atlantic Meridional Overturning Circulation, and the global surface ocean Revelle factor. The uncertainties of the regional 

ocean Cant uptake estimates in the Atlantic and Southern Ocean can also be reduced with the respective regional predictors. 

Improved or continuing observations of these quantities (Lauvset et al., 2016; Zweng et al., 2018; Locarnini et al., 2018; 555 

Claustre et al., 2020; McCarthy et al., 2020) and their representation and evaluation in ESMs and ocean models should therefore 

be of great priority in the next years and decades. Biases in these quantities and corrections for the late starting date may well 

be the reason for mismatches between models and observationspriority in the next years and decades. Although 

biogeochemical variables were tuned or calibrated in more ESMs in CMIP6 than in CMIP5 (Séférian et al., 2020), this tuning 

does not seem to result in better results than in untuned ESMs yet (Figure A.1.3).  560 

 

Moreover, biases in these quantities and corrections for the late starting date may well be the reason for offset between models 

and observations over the last 30 years (Hauck et al., 2020; Friedlingstein et al., 2022; Crisp et al., 2022) and should be 

evaluated when analysing and presenting simulated ocean Cant uptake(Hauck et al., 2020; Friedlingstein et al., 2022). Although 

the here identified constraints cannot correct for misrepresentation of the unforced decadal variability, such variability plays 565 

likely a minor role when averaging results over longer periods. Indeed, we find good agreement between our estimate and the 

observation-based estimate from the Global Carbon Budget 2021 for the period from 1990 to 2020. This agreement suggests 

that the hindcast models underestimate the ocean Cant uptake. This underestimation is thus likely the explanation for the 

difference between models and observation-based product in the Global Carbon Budget (Friedlingstein et al., 2022). However, 

the output of the Global Carbon Budget hindcast models is not publicly available for evaluating possible data-model differences 570 

for the inter-frontal sea surface salinity, the AMOC, and the Revelle factor.  
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Despite this step forward in the understanding of ESMs, a comprehensive research strategy that combines the measurements 

of important physical, biogeochemical, and biological parameters in the ocean with other data streams and modelling is needed. 

A comprehensive approach is necessary to improve our still incomplete understanding of the global carbon cycle and its 575 

functioning in the climate and Earth system over the past and under ongoing global warming. 

 

The larger than previously estimated future ocean Cant sink corresponds to around 2 to 4 years of present-day CO2 emissions 

(~10.5 Pg C yr-1) depending on the emissions pathway. The larger ocean Cant sink thus increases the estimated remaining 

emission budget, but only by a small amount. However, it also results in enhanced projected ocean acidification that may be 580 

harmful for large, unique ocean ecosystems (Fabry et al., 2008; Gruber et al., 2012; Kawaguchi et al., 2013; Kroeker et al., 

2013; Doney et al., 2020; Hauri et al., 2021; Terhaar et al., 2021a).  

 

This study follows recent approaches by the IPCC and climate science that suggest using the best available information about 

models instead of a multi-model mean to provide consistent and accurate information for climate science and policy (IPCC, 585 

2021; Hausfather et al., 2022). The here provided improved estimate of the size of the global ocean carbon sink may help to 

close the carbon budget imbalance since 1850 (Friedlingstein et al., 2022) and to improve the understanding of the overall 

carbon cycle and the global climate (IPCC, 2021). Eventually, a better understanding of the ocean carbon sink and the reduction 

of its uncertainties in the past and in the future allows better targeted climate and ocean policies (IPCC, 2022).  

  590 
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Appendix A 

A.1 Earth System Models 

Model output from 18 Earth System Models from CMIP6 and 6 Earth System Models from CMIP5 (Table A.1.1) were used 

for the analyses.  

 595 

Table A.1.1 CMIP5 and CMIP6 models used in this study and the corresponding model groups 

Model name* Modeling center References 

ACCESS-ESM1-5 
Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) 
(Ziehn et al., 2020) 

CanESM2 

CanESM5 

CanESM5-CanOE 

Canadian Centre for Climate Modelling and Analysis (Chylek et al., 2011; Christian et al., 2022) 

CESM1-BGC 

CESM2 

CESM2-WACCM 

Community Earth System Model Contributors 

 

(Gent et al., 2011; Lindsay et al., 2014; Danabasoglu 

et al., 2020) 

CMCC-ESM2 Centro Euro-Mediterraneo per I Cambiamenti Climatici (Lovato et al., 2022) 

CNRM-ESM2-1 
Centre National de Recherches Meteorologiques / Centre Europeen de 

Recherche et Formation Avancees en Calcul Scientifique 
(Séférian et al., 2019) 

EC-Earth3-CC 
EC-Earth consortium (http://www.ec-

earth.org/community/consortium/) 
(Döscher et al., 2022) 

GFDL-ESM2M 

GFDL-CM4 

GFDL-ESM4 

NOAA Geophysical Fluid Dynamics Laboratory (NOAA GFDL) 
(Dunne et al., 2012; Held et al., 2019; Dunne et al., 

2020; Stock et al., 2020) 

IPSL-CM6A-LR Institut Pierre-Simon Laplace (IPSL) (Boucher et al., 2020) 

MIROC-ES2L 

Japan Agency for Marine-Earth Science and Technology, Atmosphere 

and Ocean Research Institute (The University of Tokyo), and National 

Institute for Environmental Studies 

(Hajima et al., 2020) 

MPI-ESM-LR 

MPI-ESM-MR 

MPI-ESM-1-2-LR 

MPI-ESM-1-2-HR 

Max-Planck-Institut für Meteorologie (Max Planck Institute for 

Meteorology) 

(Giorgetta et al., 2013; Mauritsen et al., 2019; Gutjahr 

et al., 2019) 

MRI-ESM2-0 Meteorological Research Institute (Japan Meteorological Agency) (Yukimoto et al., 2019) 

NorESM1-ME 

NorESM2-LM 

NorESM2-MM 

Norwegian Climate Centre (Bentsen et al., 2013; Tjiputra et al., 2020) 

UKESM1-0-LL Met Office Hadley Centre  (Sellar et al., 2020) 

*CMIP5 models are written in italics 
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The analysed variables include the air-sea CO2 flux (fgco2, name of the variable in standardized CMIP output), total dissolved 

inorganic carbon (dissic), total alkalinity (talk), total dissolved inorganic silicon (si), total dissolved inorganic phosphorus 

(po4), potential temperature (thetao), salinity (so), and the Atlantic meriodional streamfunction (msftmz or msftyz). All ESMs 600 

were included for which the entire set of variables was available on the website of the Earth System Grid Federation at the 

start of the analysis. Based on these variables, all other presented variables were derived: 

 

• The air-sea Cant flux was calculated as the difference in air-sea CO2 flux between the historical plus future (SSP for 

CMIP6 and RCP for CMIP5) simulation and the correspondent pre-industrial control simulation on the native model 605 

grids (where possible). The air-sea Cant fluxes were corrected for their late starting date in 1850 (and 1861 for GFDL-

ESM2M) and the slightly higher atmospheric CO2 mixing ratio in that year compared to the beginning of the 

industrialization and the start of the CO2 increase in 1765 (Bronselaer et al., 2017). To that end, we scaled the 

simulated air-sea Cant flux with the anthropogenic change in the atmospheric partial pressure of CO2 (pCO2) with 

respect to pre-industrial conditions following previous studies (Mikaloff Fletcher et al., 2006; Gruber et al., 2009; 610 

Terhaar et al., 2021b): 

 

𝐶!"#-&**(𝑡) = 𝐶!"#(𝑡)
67,'(#):67,'(1;<=)
67,'(#):67,'(1>=?)

,                         

(13) 

 615 

with 𝐶!"#(𝑡) being the simulated air-sea Cant flux by the respective ESM in year t and 𝐶!"#-&**(𝑡) being the corrected 

air-sea Cant flux. For GFDL-ESM2M, which starts in 1861, the correction was made with respect to 𝑝𝐶𝑂5(1861). 

When 𝑝𝐶𝑂5(𝑡) is close to 𝑝𝐶𝑂5(1850), their difference becomes unrealistically large, causing overly strong flux 

corrections. Therefore, we limited the flux correction in magnitude using the correction term in year 1950 as an upper 

limit. By doing so, we do not only remove unrealistically high air-sea Cant fluxes before 1950 but also reach excellent 620 

agreement with the previously estimated air-sea Cant fluxes correction term by Bronselaer et al. (2017) (Figure A.1.1). 

When the cumulative Cant fluxes since 1765 are shown, an additional amount of 12 Pg C (16 Pg C for GFDL-ESM2M) 
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was added that was estimated to have entered the ocean before 1850 (Bronselaer et al., 2017). For comparison, we 

also calculated the constrained estimates for the ocean Cant sink when no air-sea Cant flux correction is applied (Table 

A.1.2). Bronselaer et al. (2017) estimate the uncertainty of the correction to be ±16% for cumulative Cant fluxes from 625 

1765 to 1995. Although uncertainties reduce over time, we apply the 16% from the past to all estimates and hence 

provide a conservative upper bound of this uncertainty. 

 

 

Figure A.1.1. Correction of simulated anthropogenic carbon air-sea flux for the late starting date in Earth System Models. Multi-630 
model a) annual mean anthropogenic carbon (Cant) air-sea flux for 17 ESMs from CMIP6 before (dashed lines) and after (solid lines) the 

correction for the late starting date over the historical period from 1850 to 2014 (black) and for the future from 2015 to 2100 under SSP1-

2.6 (blue), SSP2-4.5 (orange), and SSP5-8.5 (red). b) Cumulative ocean Cant uptake since 1765 (corrected simulated flux) and 1850 (raw 

simulated flux), c) difference between cumulative ocean Cant uptake between corrected and raw simulated flux, and d) the correction factor 

that was applied. The Cant correction that was estimated by Bronselaer et al. (2017) is shown for in c). The cumulative Cant uptake from 1765 635 
to 1850 was set to 12 Pg C as estimated by Bronselaer et al. (2017). 
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Table A.1.2. Global ocean air-sea CO2 flux estimates based on 17 ESMs from CMIP6 before and after constraint over different 640 

periods with corrected and uncorrected estimates and with and without CNRM-ESM2-1. Prior uncertainty is the multi-model 

standard deviation and constrained uncertainty is a combination of the multi-model standard deviation after correction and the 

uncertainty from the correction itself (see Appendix A.section 3.1). 

Period Cumulative air-sea Cant flux (Pg C) 

 Raw simulated Starting date corrected Corrected + CNRM-ESM2-1 

 Prior Constrained Prior Constrained Prior Constrained 

1994-2007 26.8 ± 2.1 29.3 ± 0.8 28.8 ± 2.2 31.5 ± 0.9 28.6 ± 2.3 31.3 ± 1.2 

1850-2014 138 ± 10 150 ± 5 157 ± 12 171 ± 5 156 ± 12 171 ± 6 

1850-2020 154 ± 11 167 ± 5 174 ± 13 189 ± 6 173 ± 13 189 ± 6 

2020-2100 

(SSP1-2.6) 
150 ± 11 167 ± 7 156 ± 11 173 ± 7 156 ± 11 173 ± 7 

2020-2100 

(SSP2-4.5) 
244 ± 16 269 ± 8 251 ± 17 277 ± 9 251 ± 16 276 ± 9 

2020-2100 

(SSP5-8.5) 
399 ± 29 436 ± 11 407 ± 30 445 ± 11 405 ± 29 444 ± 12 

 

• Accordingly, the change in ocean interior Cant was calculated as the difference in total dissolved inorganic carbon 645 

between the historical plus future (SSP/RCP) simulation and the correspondent pre-industrial control simulation on 

the native model grids (where possible).  

• The change in air-sea CO2 flux that is caused by a changing climate was calculated as the difference in fgco2 in the 

historical simulation and the ‘bgc’ simulation in which only atmospheric CO2 changes, but not the climate. These 

‘bgc’ simulations were available for 5 ESMs (Table A.1.3) 650 

 



 

33 
 

 

 

Table A.1.3. Climate-driven changes in the air-sea CO2 flux (Pg C yr-1) as simulated by 5 Earth System Models from CMIP6 

Year Climate-driven changes in the cumulative air-sea CO2 flux (Pg C) 

 
ACCESS-

ESM1-5 
CanESM5 MIROC-ES2L MRI-ESM2-0 NorESM2-LM 

Multi-model 

mean 

Multi-model 

standard 

deviation 

1994-

2007 
-1.7 -1.7 -1.4 -2.2 -0.7 -1.6 0.5 

. 655 

• The surface ocean Revelle factor was calculated from sea surface total dissolved inorganic carbon (dissic), total 

alkalinity (talk), total dissolved inorganic silicon (si), total dissolved inorganic phosphorus (po4), potential 

temperature (thetao), and salinity (so) averaged around the year 2002 (from 1997 to 2007 for CMIP6 and 1999 to 

2005 for CMIP5; 2005 is the last year of the historical simulation) using mocsy2.0 (Orr and Epitalon, 2015) with its 

default constants that are recommended for best practice (Dickson et al., 2007). The years were centred around 2002 660 

to make the Revelle factor comparable to the one estimated based on GLODAPv2, which is normalized to the year 

2002 (Lauvset et al., 2016). As the Revelle factor describes the relative change in CT per relative change in pCO2 

(Revelle and Suess, 1957), the absolute uptake of CT does not only depend on the Revelle factor but also on the natural 

CT in the surface ocean. To calculate the buffer capacity for each ESM, the Revelle factor was therefore adjusted in 

each grid cell by multiplying it by the ratio of observed CT and the simulated CT in each ESM separately. Data from 665 

each ESM was regridded on a regular 1°x1° grid to make it comparable to the gridded GLODAPv2 data. Furthermore, 

a mask was applied before the basin-wide averaged Revelle factor was calculated so that only values were used where 

all ESMs and the gridded GLODAPv2 product had data. In addition, marginal seas (Mediterranean Sea, Hudson Bay, 

Baltic Sea) were excluded because global ESMs are not designed to accurately represent these small-scale seas. In 

addition, the surface ocean carbonate ion (CO32-) concentration was calculated that the CT-adjusted Revelle factor is 670 

mainly determined by the CO32- concentrations, which itself can be approximated by the difference between surface 

ocean alkalinity and CT (Figure A.1.2). 
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Figure A.1.2. Surface ocean Revelle factor against the difference of surface alkalinity and dissolved inorganic carbon, and against 675 
surface carbonate ion concentrations. Basin-wide averaged surface ocean Revelle factor as simulated by 18 ESMs from CMIP6 (blue 

dots) against the basin-wide averaged surface ocean a) total dissolved inorganic carbon (CT), b)the difference between total alkalinity (AT), 

c) their difference (AT - CT),) and dCT, and b) carbonate ion (CO3
2-) concentrations. The observation-based estimates from GLODAPv2 are 

shown as black crosses. The Revelle factor in each ESM was adjusted for biases in the surface ocean CT (see Appendix A.1). 

 680 
Figure A.1.3. Surface ocean Revelle factor against the surface alkalinity and dissolved inorganic carbon. Basin-wide averaged surface 

ocean Revelle factor as simulated by 18 ESMs from CMIP6 (blue dots) against the basin-wide averaged surface ocean a) total alkalinity 

(AT) and b) CT. The observation-based estimates from GLODAPv2 are shown as black crosses. The Revelle factor in each ESM was adjusted 

for biases in the surface ocean CT (see Appendix A.1). 

 685 
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• The monthly AMOC strength was calculated as the maximum of the streamfunction below 500 m at the latitude in 

the respective model that is closest to 26.5°N for each month from 2004 to 2020. After 2014, simulated output from 

SSP5-8.5 and RCP4.5 were used as all ESMs provided output for these pathways. For SSP5-8.5, the mole fraction of 

atmospheric CO2 in SSP5-8.5 is 414.9 ppm in 2020 (Meinshausen et al., 2020), 2.5 ppm over the observed mole 690 

fraction of atmospheric CO2 in 2020 (Trends in Atmospheric Carbon Dioxide (NOAA/GML)). For RCP4.5, the mole 

fraction of atmospheric CO2 is 412.4 ppm in 2020. Such small differences in the mole fraction of atmospheric CO2 

do not cause detectable changes in global warming or the AMOC (IPCC, 2021). 

• Future saturation states of aragonite were calculated from simulated changes in total dissolved inorganic carbon 

(dissic), total alkalinity (talk), total dissolved inorganic silicon (si), total dissolved inorganic phosphorus (po4), 695 

potential temperature (thetao) and salinity (so) since 2002 that are added to the respective observed variables from 

the gridded GLODAPv2 product, which are normalized to 2002, using mocsy2.0 (Orr and Epitalon, 2015) with its 

default constants that are recommended for best practice (Dickson et al., 2007). By only adding simulated difference, 

model uncertainties in the initial state of the ocean biogeochemical system in the deeper ocean are removed (Orr et 

al., 2005; Terhaar et al., 2020a, 2021a, b). All variables were regridded before on a regular 1°x1° grid so that they 700 

could be added to the gridded GLODAPv2 data. The same mask that was also used to compare the Revelle factor was 

applied to make all projections comparable. 

• The annual average sea surface salinity between the polar and subtropical front in the Southern Ocean was derived 

from regridded (1°x1° regular grid) monthly sea surface salinity and temperatures (for defining the fronts) following 

(Terhaar et al., 2021b). 705 

• The area of weakly stratified waters was calculated based on climatologies of the potential temperature and salinity 

from 1995 to 2014 (Hess, 2022). All data was regridded on a regular 1°x1° grid with 33 depth levels before analysis. 

An area was defined as weakly stratified if the density gradient between the surface and the cell at 1000 m depth was 

smaller than 0.5 kg m-3 in a given month, assuming that such a small monthly mean gradient allows mixing of water 

into the lower limb of the AMOC at some time in that month. This predictor, as well as the different ways of 710 

calculating the Revelle factor predictor (see section “Robustness of the emergent constraint and possible impact of 
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changing riverine carbon input over time”), was used to test the robustness of the here identified emergent constraint 

(Table A.1.4). 

The model CNRM-ESM2-1 was not used for the constraints because it includes dynamical riverine forcing that no other 

model includes (Figure A.1.34) and is not directly comparable. Instead, output from this ESM was prominently used in 715 

the section “Robustness of the emergent constraint and possible impact of changing riverine carbon input over time”. 

However, even if CNRM-ESM2-1 had been included, the results change by less than 1% (Table A.1.2). 
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Table A.1.4. Constrained global ocean air-sea CO2 flux estimates based on 17 ESMs from CMIP6 with varying predictors. 720 

Period Cumulative air-sea Cant flux (Pg C) 

 
Standard 

Revelle factor 
Area of weakly 

stratified water column 

  >45°N & <45°S Flux-weighted  

1994-2007 31.5 ± 0.9 (r2=0.87) 31.6 ± 1.1 (r2=0.80) 31.7 ± 1.0 (r2=0.83) 31.3 ± 1.1 (r2=0.78) 

1850-2014 171 ± 6 (r2=0.80) 172 ± 8 (r2=0.65) 173 ± 7 (r2=0.73) 171 ± 7 (r2=0.74) 

1850-2020 189 ± 7 (r2=0.80) 190 ± 8 (r2=0.64) 191 ± 8 (r2=0.72) 189 ± 7 (r2=0.73) 

2020-2100 (SSP1-

2.6) 
173 ± 8 (r2=0.56) 173 ± 8 (r2=0.56) 172 ± 8 (r2=0.55) 171 ± 8 (r2=0.53) 

2020-2100 (SSP2-

4.5) 
277 ± 9 (r2=0.74) 278 ± 9 (r2=0.71) 277 ± 9 (r2=0.71) 274 ± 9 (r2=0.72) 

2020-2100 (SSP5-

8.5) 
445 ± 12 (r2=0.87) 450 ± 13 (r2=0.83) 449 ± 12 (r2=0.84) 442 ± 12 (r2=0.84) 
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Figure A.1.34. Anthropogenic carbon air-sea fluxes and inventory changes simulated by CNRM-ESM2-1. (a) Cumulative air-sea 725 
anthropogenic carbon (Cant) fluxes (solid lines) and Cant interior changes (dashed lines) as simulated by CNRM-ESM2-1 for the historic 

period until 2014 (black) and from 2015 to 2100 under SSP1-2.6 (blue), SSP2-4.5 (orange), and SSP5-8.5 (red), (b) as well as the difference 

of both quantities. The thin dashed black line in (b) indicates zero difference. 

A.2 Observations and observation-based products 

Throughout this manuscript, three observation-based products are used to constrain the ESM output: 730 

• Monthly climatologies of sea surface salinity and sea surface temperatures from the World Ocean Atlas 2018 (Zweng 

et al., 2018; Locarnini et al., 2018) were used to derive annual averages and uncertainties of the sea surface salinity 

between the polar and subtropical fronts in the Southern Ocean following Terhaar et al. (2021b). Climatologies of the 

World Ocean Atlas 2018 were also used to calculate the area of weakly stratified surface waters. 

• Time series of the AMOC strength from the RAPID array (McCarthy et al., 2020) were used to calculate monthly 735 

means and uncertainties of the AMOC from 2004 to 2020.  

• The gridded observation-based estimates of total dissolved inorganic carbon, total alkalinity, total dissolved inorganic 

silicon, total dissolved inorganic phosphorus, in-situ temperature, and salinity from GLODAPv2 (Lauvset et al., 2016) 

were used to calculate the Revelle factor and as a starting point for projected saturation states over the 21st century 

(see above). 740 

A.3 
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A.3 Applying the constraint and uncertainty estimation 

For the three-dimensional emergent constraint, multi-linear regression was used. First, it was assumed that the ocean Cant 

uptake for every model M (𝐶!"#$ ) can be approximated by a linear combination of the inter-frontal sea surface salinity in the 

Southern Ocean in model M (𝑆𝑆𝑆%&'#()*"	,-)!"	$ ), the AMOC strength in model M (𝐴𝑀𝑂𝐶$), and the globally-averaged surface 745 

ocean Revelle factor in model M (𝑅𝑒𝑣𝑒𝑙𝑙𝑒./&0!/$ ): 

 

𝐶!"#$ = 𝑎 ∗ 𝑆𝑆𝑆%&'#()*"	,-)!"	$ + 𝑏 ∗ 𝐴𝑀𝑂𝐶$ + 𝑐 ∗ 𝑅𝑒𝑣𝑒𝑙𝑙𝑒./&0!/$ + 𝑑 + 𝜀.                     (2) 

 

The parameters a, b, and c are scaling parameters of the three predictor variables, d is the y intercept, and 𝜀 describes the 750 

residual between the predicted Cant flux by this multi-linear regression model and the simulated Cant uptake by model M. The 

free parameters a, b, c, and d were fitted based on the simulated inter-frontal sea surface salinity in the Southern Ocean, AMOC, 

Revelle factor, and Cant uptake.  

 

Afterwards the constrained Cant flux is estimated by replacing the simulated inter-frontal sea surface salinity in the Southern 755 

Ocean, AMOC, and Revelle factor by the observed ones and by setting 𝜀 to zero. As the Revelle factor describes the inverse 

of the ocean capacity to take up Cant from the atmosphere, equation (2) should in principal be used with 1
2)3)//)!"#$%"

& . However, 

using 𝑅𝑒𝑣𝑒𝑙𝑙𝑒./&0!/$  facilitates understanding and the presentation of the results and only introduces maximum errors of around 

0.1% for the Revelle factor adjustment for the models that simulate the largest deviations from the observed Revelle factor. 

To estimate the uncertainty, all model results were first corrected for their biases in the three predictor variables, i.e., if a model 760 

has a salinity that is 0.2 smaller than the observed salinity, the simulated Cant uptake by this model is increased by 𝑎 ∗ 0.2. The 

same correction is made for the other two predictor variables (Figure 3). If the three predictor variables were predicting the 

Cant flux perfectly, the bias-corrected Cant uptake from all models would be the same. The remaining inter-model standard 

deviation therefore represents the uncertainty from the multi-linear regression model due to other factors that influence the 

ocean Cant uptake. The second part of the uncertainty originates from the uncertainty in the observations of the predictor 765 

variables that influences the magnitude of the correction. This uncertainty (∆𝐶!"#&04)	is calculated as follows: 
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∆𝐶!"#&04 = 8(𝑎 ∗ ∆𝑆𝑆𝑆%&'#()*"	,-)!"	&04 )5 + (𝑏 ∗ ∆𝐴𝑀𝑂𝐶&04)5 + :𝑐 ∗ ∆𝑅𝑒𝑣𝑒𝑙𝑙𝑒./&0!/&04 ;5,                      (3) 

 

with ∆𝑆𝑆𝑆%&'#()*"	,-)!"	&04 , ∆𝐴𝑀𝑂𝐶&04 , and ∆𝑅𝑒𝑣𝑒𝑙𝑙𝑒./&0!/&04  being the uncertainty of the three observed predictor variables. 770 

Eventually, the overall uncertainty of this constrained Cant flux is estimated as the square-root of the sum of the product of the 

square of both uncertainties. 

 

A.4 Validation of the identified constraint in CMIP5 

The here identified emergent constraint was derived from an ensemble of 17 ESMs from CMIP6. To test the robustness of 775 

emergent constraints, these constraints should be validated in an independent ensemble of ESMs (Hall et al., 2019). Here, we 

used all 6 ESMs from CMIP5 that provided all necessary output variables for this analysis (see Appendix A.1). For all these 

models, the Cant uptake for the period from 1994 to 2007 and from 1850 to 2014 was predicted based on the simulated inter-

frontal sea surface salinity in the Southern Ocean, the AMOC strength, and the global ocean basin-wide averaged Revelle 

factor using the multi-linear relationship derived from the CMIP6 models (Figure A.43.1). 780 

 

 



 

41 
 

Figure A.43.1. Global ocean anthropogenic carbon uptake simulated by Earth System Models from CMIP5 against the predicted 

uptake based on simulated predictors from CMIP6 models. Global ocean anthropogenic carbon uptake simulated by 6 ESMs from 

CMIP5 (Table A.1.1) a) from 1994 to 2007 and b) from 1850 to 2014 against the predicted anthropogenic carbon uptake based on the 785 
simulated CMIP6 predictors in each ESM: the inter-frontal annual mean sea surface salinity in the Southern Ocean, the Atlantic Meridional 

Overturning Circulation, and the Revelle factor adjusted for surface ocean CT. Please note that two ESMs are at almost the same place in a) 

with a predicted Cant uptake of around 31 Pg C. 

 

A.54 Comparison between simulated and observed CFC-11 concentrations 790 

Comparison between simulated and observed CFC-11 uptake allows to estimate the ventilation of waters from the surface 

waters to the deeper ocean (Hall et al., 2002). Although CFCs can roughly evaluate the ventilation rate of the ocean, no perfect 

agreement between CFCs and Cant can be expected as CFCs are not taken up at the same speed as Cant (i.e., fast air-sea 

equilibration time scale for CFC) and their solubility has a different temperature dependency than the solubility of Cant (warm 

waters can hold less CFCs but more Cant due to their low Revelle factor, whereas cold waters hold more CFCs but less Cant) 795 

(Revelle and Suess, 1957; Broecker and Peng, 1974; Weiss, 1974). These differences can lead to differences between uptake, 

storage, and distribution of CFCs and Cant that can become especially large in high-latitude oceans (Matear et al., 2003; Terhaar 

et al., 2020b). 

 

Here, we use simulated CFC-11 from ESMs and observed CFC-11 from GLODAPv2.2021 (Lauvset et al., 2021) to provide 800 

further evidence that the inter-frontal sea surface salinity in the Southern Ocean and the AMOC are good indicators for the 

ocean ventilation and that ESMs tend to underestimate the ventilation of surface waters to the deeper ocean. Out of the 18 

ESMs from CMIP6, 10 provided simulated 3D-fields of CFC-11 (CanESM5, CESM2, CESM2-WACCM, EC-Earth-CC, 

GFDL-CM4, GFDL-ESM4, MRI-ESM2-0, NorESM2-LM, NorESM2-MM, UKESM1-0-LL). To compare these ESMs to the 

observed concentrations, all ESMs were sampled at the same time (month and year), the same latitude and longitude, and the 805 

same depth as the observations. To assess the ventilation below the mixed layer, we only used observations below 200 m. 

Furthermore, we limited our assessment to observations until 2004 as CFC-11 in the atmosphere has peaked in 1994 (Bullister, 

n.d.) and subducted waters since then might already re-emerge to the surface. Thus, 506000 measurements remained. As these 

measurements are not equally distributed, and strongly clustered in the Northern hemisphere (Lauvset et al., 2021), we mapped 
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all measurements on a regular 5°x5° grid with 11 depth levels from 200 m to 6000 m that increase with depth. In each cell on 810 

the grid the average bias was calculated. Afterwards, the volume averaged bias was calculated for the Southern hemisphere 

and the North Atlantic (limited by the equator and 65°N) (Figure A.54.1). 

 

 

 815 

 
Figure A.54.1. Biases in subsurface CFC-11 concentrations between observations against the Atlantic Meridional Overturning 

circulation and the Inter-frontal Southern Ocean Salinity. Basin-wide averaged biases in CFC-11 concentrations (observations minus 

simulated) below 200 m for all 10 ESMs that provided simulated CFC-11 (blue dots) (a) in the North Atlantic Ocean (north of the equator 

and limited by the Fram Strait, the Barents Sea Opening, and the Baffin Bay) and against the AMOC and (b) in the Southern hemisphere 820 
(south of the equator) against the inter-frontal annual mean sea surface salinity in the Southern Ocean. The observation-based estimates for 

the AMOC and the inter-frontal annual mean sea surface salinity in the Southern Ocean are shown as black crosses and with zero bias in 

CFC-11. 

 

A.5 Comparison between simulated and observation-based estimates of the interior ocean Cant accumulation 825 

Another way to test the here identified emergent constraint is the comparison to observation-based estimates of the interior 

ocean Cant accumulation. Here, we compare model results against the estimate for interior ocean Cant accumulation from 1800 

to 1994 (Sabine et al., 2004) and from 1994 to 2007 (Gruber et al., 2019a), although different reconstruction methods yield 

different results (e.g., Khatiwala et al., 2013, their Fig. 4). While a good representation of the interior ocean Cant distribution 

is not necessarily related to a correct estimate of the air-sea Cant flux, it can provide an indication of the model performances 830 
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and the robustness of the applied corrections. For both comparisons, we compare the multi-model mean and standard deviation 

and results from the ESM that represents best the three observational predictors (i.e., GFDL-ESM4). GFDL-ESM4 has a global 

ocean Revelle factor of 10.37, an inter-frontal sea surface salinity of 34.00, and an AMOC of 18.25.  The biases that may exist 

in the multi-model mean, such as too little Cant in the Southern hemisphere due to a too low multi-model averaged sea surface 

salinity, should be smaller for GFDL-ESM4. 835 

 

The comparison to the observation-based estimate of Cant accumulation from 1800 to 1994 (Sabine et al., 2004) demonstrates 

that the ESMs represent the distribution of Cant in the ocean between the basins and different latitudinal regions well (Table 

A.5.1). Small underestimations exist in the Indian and Atlantic tropical ocean as well as in the southern subpolar Atlantic 

Ocean. The differences in the Indian Ocean may well be to observational uncertainties that are especially large in this relatively 840 

under-sampled ocean basin (Sabine et al., 2004; Gruber et al., 2019a). The underestimation in Southern Atlantic and the 

Atlantic sector of the Southern Ocean are consistent with an underestimation of the formation of mode and intermediate waters 

in the Southern Ocean due to a too low sea surface salinity. This underestimation is strongly reduced in the GFDL-ESM4 

model (Table A.5.2) indicating that the better representation of the inter-frontal sea surface salinity in the Southern Ocean also 

improves the simulated distribution of Cant in the ocean. Furthermore, GFDL-ESM4 also simulates slightly higher Cant in the 845 

North Atlantic, consistent with its slightly too high AMOC.  

 

The comparison for the period from 1994 to 2007 also indicates that the ESMs on average simulate the Cant interior storage 

pattern as estimated based on observations (Gruber et al., 2019a) (Table A.5.3). The ESMs agree with the observation-based 

estimates with respect to the basin and hemispheric distribution. However, they underestimate on average the storage in the 850 

Southern hemisphere in line with the underestimation of the formation of intermediate and mode waters in the Southern Ocean. 

When only considering GFDL-ESM4 (Table A.5.4), this underestimation is reduced and all other regions show very good 

agreement. 
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Remaining small difference in both comparisons may be also due to different alignments of the basin boundaries, an unknown 855 

distribution of the Cant that entered the ocean before 1850 and has been advected 50 years longer in the ocean interior in case 

of Sabine et al. (2004), a different decadal variability in GFDL-ESM4 than in the real world in the case of Gruber et al. (2019a), 

and uncertainties in the observation-based estimates. Despite all these potential pitfalls, the 3-D repartition of Cant between 

observation-based products and ESMs agree and the model that best simulates the three key predictors, GFDL-ESM4, is almost 

identical to the observation-based estimates. 860 
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Table A.5.1. Distribution of Cant inventories in Pg C by basin and latitude band for 1994. The first number in each cell is the multi-

model mean and standard deviation across all 18 ESMs from CMIP6 and the second number is from Table S1 in Sabine et al. (2004). 865 

 Atlantic Pacific Indian World 

50-65°N 4±1 / 4 1±0 / 1 / 5±1 / 5 

14-50°N 14±3 / 16 11±1 / 11 1±0 / 1 27±3 / 28 

14°S-14°N 4±1 / 7 9±2 / 8 4±1 / 6 17±3 / 21 

14-50°S 8±2 / 11 17±3 / 18 15±2 /13 39±6 / 42 

>50°S 3±1 / 2 6±1 / 6 3±1 / 2 11±3 / 10 

total 33±6 / 40 43±5 / 44 22±3 / 22 102±13 / 106 

 
 

Table A.5.2. Distribution of Cant inventories in Pg C by basin and latitude band for 1994. The first number in each cell are derived 

from GFDL-ESM4 and the second number is from Table S1 in Sabine et al. (2004). 

 Atlantic Pacific Indian World 

50-65°N 6 / 4 1 / 1 / 7 / 5 

14-50°N 18 / 16 12 / 11 1 / 1 31 / 28 

14°S-14°N 5 / 7 11 / 8 5 / 6 21 / 21 

14-50°S 9 / 11 20 / 18 15 /13 44 / 42 

>50°S 5 / 2 6 / 6 3 / 2 14 / 10 

total 45 / 40 49 / 44 23 / 22 117 / 106 

 870 

 
Table A.5.3. Distribution of Cant inventories in Pg C by basin and hemisphere from 1994 to 2007. T he first number in each cell is 

the multi-model mean and standard deviation across all 18 ESMs from CMIP6 and the second number is from Table 1 in Gruber 

et al. (2019). 

 Atlantic Pacific Indian Other basins Global 

Northern 

hemisphere 

6.7±1.0 / 6.0±0.4 5.0±1.0 / 5.2±0.6 0.7±0.4 / 0.8±0.4 1.1±0.3 / 1.5±0.6 

 

13.4±1.8 / 13.5±1.0 

Southern 

hemisphere 

3.5±1.0 / 5.9±1.2 7.4±1.0 / 8.0±1.2 5.6±1.3 / 6.3±3.4 / 16.5±2.1 / 20.1±3.8 

Entire basin 10.1±1.5 / 11.9±1.3 12±1 / 13.2±1.3 6.3±1.5 / 7.1±3.4 1.1±0.3 / 1.5±0.6 29.9±3.2 / 33.7±4.0 

 875 
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Table A.5.4. Distribution of Cant inventories in Pg C by basin and hemisphere from 1994 to 2007. The first number in each cell are 

derived from GFDL-ESM4 and the second number is from Table 1 in Gruber et al. (2019). 

 Atlantic Pacific Indian Other basins Global 

Northern 

hemisphere 

6.6 / 6.0±0.4 5.1 / 5.2±0.6 0.9 / 0.8±0.4 1.6 /1.5±0.6 

 

14.2 / 13.5±1.0 

Southern 

hemisphere 

4.6 / 5.9±1.2 7.9 / 8.0±1.2 7.7 / 6.3±3.4 / 20.2 / 20.1±3.8 

Entire basin 11.2 / 11.9±1.3 13±0 / 13.2±1.3 8.6 / 7.1±3.4 1.6 / 1.5±0.6 34.4 / 33.7±4.0 

 880 
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Code availability 

The mocsy2.0 code is publicly available via https://github.com/jamesorr/mocsy. 

 

Data availability 890 

All model output from CMIP is available via https://esgf-node.llnl.gov/search/cmip6/. 
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