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Abstract. The ocean slows global warming by currently taking up around one quarter of all human-made CO2 emissions. 

However, estimates of the ocean anthropogenic carbon uptake vary across various observation-based and model-based 

approaches. Here, we show that the global ocean anthropogenic carbon sink simulated by Earth System Models can be 

constrained by two physical parameters, the present-day sea surface salinity in the subtropical-polar frontal zone in the 10 

Southern Ocean and the strength of the Atlantic Meridional Overturning Circulation, and one biogeochemical parameter, the 

Revelle factor of the global surface ocean. By exploiting this three-dimensional emergent constraint with observations, we 

provide a new model- and observation-based estimate of the past, present and future global ocean anthropogenic carbon sink 

and show that the ocean carbon sink is 9-11% larger than previously estimated. Furthermore, the constraint reduces 

uncertainties of the past and present global ocean anthropogenic carbon sink by 42-59% and the future sink by 32-62% 15 

depending on the scenario, allowing for a better understanding of the global carbon cycle and better targeted climate and ocean 

policies. The here identified key parameters for the ocean carbon sink should be quantified when presenting simulated ocean 

anthropogenic carbon uptake as in the Global Carbon Budget and be used to adjust these simulated estimates if necessary. The 

larger ocean sink results in enhanced ocean acidification over the 21st century, which further threatens marine ecosystems by 

reducing the water volume that is projected to be undersaturated towards aragonite by around 3.7-7.4 million km3 more than 20 

originally projected.  

1 Introduction 

The emissions of anthropogenic CO2 (Cant) since the beginning of industrialization through fossil-fuel burning, cement 

production and land-use change have altered the global carbon cycle and climate (Friedlingstein et al., 2022). Around 40% of 

the additional carbon since 1850 has accumulated in the atmosphere, where it represents the main anthropogenic greenhouse 25 

gas (IPCC, 2021). More than half of the emitted Cant has been taken up by the land biosphere (~30%) and the ocean (~25%) 

(Friedlingstein et al., 2022). The remaining ~5% are the budget imbalance, a mismatch between carbon emissions and sink 
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estimates which cannot be explained yet (Friedlingstein et al., 2022). By taking up each around a quarter of the Cant emissions, 

the land biosphere and ocean sinks slow down global warming and climate change.  

 30 

The ocean Cant sink is defined here as a combination of the uptake of newly emitted carbon and the change in the natural carbon 

inventory in the ocean due to changes in temperatures, winds, and the freshwater cycle caused by climate change (Joos et al., 

1999; Frölicher and Joos, 2010; McNeil and Matear, 2013). The uptake rate of Cant on sub-millennial timescales is determined 

by the ocean circulation, carbonate chemistry, and biology (Sarmiento et al., 1998; Joos et al., 1999; Caldeira and Duffy, 2000; 

Sabine et al., 2004; Hauck and Völker, 2015). The rate limiting process is circulation that transports surface waters with high 35 

Cant concentrations into the deeper ocean and allows waters with low or no Cant concentrations to upwell back to the ocean 

surface. The largest part of this ocean upwelling occurs in the Southern Ocean where strong westerlies drive northward Ekman 

transport of surface waters, which are then replaced by older, deeper water masses (Marshall and Speer, 2012; Talley, 2013; 

Morrison et al., 2015). These predominantly northward flowing waters take up Cant from the atmosphere and are eventually 

transferred to mode and intermediate waters that sink back into the ocean interior (Marshall and Speer, 2012; Talley, 2013). 40 

This overturning makes the Southern Ocean the largest marine Cant sink (~40% of global ocean Cant uptake) (Caldeira and 

Duffy, 2000; Mikaloff Fletcher et al., 2006; Gerber et al., 2009; Gruber et al., 2009; Frölicher et al., 2015; Terhaar et al., 

2021b). Another region of large uptake rates is the North Atlantic (Caldeira and Duffy, 2000; Mikaloff Fletcher et al., 2006; 

Gruber et al., 2009; Goris et al., 2018), where the Atlantic Meridional Overturning Circulation (AMOC) transports surface 

waters with high Cant (Pérez et al., 2013) and subsurface waters with low Cant concentrations northward (Ridge and McKinley, 45 

2020). The subsurface waters outcrop in the subpolar North Atlantic where they take up Cant from the atmosphere (Ridge and 

McKinley, 2020). These high  Cant waters are then subducted by the AMOC into the deep ocean where the Cant is efficiently 

stored (Joos et al., 1999; Winton et al., 2013). While the circulation determines the volume that is transported into the deeper 

ocean, the Revelle factor (Revelle and Suess, 1957; Sabine et al., 2004) determines the concentration of Cant in these water 

masses. The Revelle factor describes the biogeochemical capacity of the ocean to take up Cant. In addition to the circulation 50 

and marine chemistry, biology also modulates the global ocean Cant uptake through changes in the net primary production and 

export fluxes of organic matter and biogenic particles from the surface ocean to the interior ocean (Riebesell et al., 2007; 
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Hauck and Völker, 2015) and in the remineralization or dissolution of organic matter and biogenic material at depth (Bendtsen 

et al., 2002; Gangstø et al., 2008; Kwon et al., 2009; Roth et al., 2014). However, the contribution of biology to Cant uptake is 

estimated to be relatively small compared to the impact of circulation and the Revelle factor(Sarmiento and Sundquist, 1992; 55 

Sarmiento et al., 1992; Joos et al., 1999; Plattner et al., 2001; Frölicher and Joos, 2010; Terhaar et al., 2019; Canadell et al., 

2021), despite its overall importance for natural carbon fluxes (Falkowski et al., 1998; Steinacher et al., 2010). 

 

In addition to slowing global warming, the Cant uptake by the ocean also causes ocean acidification (Orr et al., 2005; Gattuso 

and Hansson, 2011; Kwiatkowski et al., 2020), i.e., a decline in ocean pH and carbonate ion concentrations. The decline in 60 

carbonate ion concentrations has negative effects on the growth and survival of many marine species, especially on calcifying 

organisms whose shells and skeletons are made up of calcium carbonate minerals (Orr et al., 2005; Fabry et al., 2008; Kroeker 

et al., 2010, 2013; Doney et al., 2020). Calcium carbonate minerals in the ocean exists mainly in its metastable forms of 

aragonite and high-magnesium calcite and its more stable form calcite. The stability of calcium carbonate minerals is described 

by their saturation states (W), which describe the product of the concentrations of calcium ([Ca2+]) and carbonate ions ([CO32-65 

]) divided by their product in equilibrium. Reductions of saturation states of aragonite (Warag) and calcite (Wcalc) have shown to 

negatively impact organisms and ecosystems (Langdon and Atkinson, 2005; Kroeker et al., 2010; Bednaršek et al., 2014; 

Albright et al., 2016). Once, saturation states drop below one, the water is undersaturated and actively corrosive towards the 

respective mineral form. 

 70 

Accurately quantifying the ocean anthropogenic carbon sink is thus of crucial importance for understanding and quantifying 

the carbon cycle, global warming and climate change, as well as ocean acidification. A better knowledge of the size of the 

historical and future ocean carbon sink and reduced uncertainties will hence not only lead to an improved understanding of the 

overall carbon cycle and global climate change (IPCC, 2021), but also allow targeted climate and ocean policies (IPCC, 2022). 

One of the key tools to assess the past, present, and future ocean carbon sink are Earth System Models (ESMs). However, the 75 

simulated ocean Cant sink varies across the different ESMs (Frölicher et al., 2015; Wang et al., 2016; Bronselaer et al., 2017; 

Terhaar et al., 2021b) and the model differences grow over time, i.e., ESMs that simulate a small ocean Cant uptake over the 
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last decades also simulate a small uptake over the 21st century (Figure 1b) (Wang et al., 2016). Therefore, a better knowledge 

of the ocean Cant sink in the last decades would be one possibility to reduce uncertainties in the simulated ocean carbon from 

1850 to 2100. 80 

 

Figure 1. Simulated ocean anthropogenic carbon uptake from Earth System Models. (a) Simulated annual mean air-sea Cant fluxes 

from 17 CMIP6 Earth System Models from 1995 to 2020 before (orange line) and after the constraint is applied (blue line). After 2014, 

results from SSP5-8.5 were chosen as this is the only SSP for which each model provided results and differences in atmospheric CO2 mixing 

ratios in SSP5-8.5 (Meinshausen et al., 2020) are small compared to observations (Trends in Atmospheric Carbon Dioxide (NOAA/GML)) 85 
until 2020 (maximum difference of 2.5 ppm in 2020). In addition, mean air-sea Cant fluxes based on multiple observation-based estimates 

(black solid line) and hindcast simulations (black dashed line) from the Global Carbon Budget 2021 (Friedlingstein et al., 2022) are shown. 

For readability, the uncertainties of these estimates (on average 0.24 Pg C yr-1 for observation-based estimates and 0.28 Pg C yr-1 for hindcast 

simulations) are not shown in the figure. (b) Simulated cumulative ocean Cant uptake since 1765 for the historic period until 2014 (17 ESMs) 

and for the future from 2015 to 2100 under SSP1-2.6 (blue, 14 ESMs), SSP2-4.5 (orange, 16 ESMs), and SSP5-8.5 (red, 17 ESMs). Thin 90 
lines show the results from each individual ESM, the dashed lines the multi-model mean, the solid lines the constrained estimate, and the 

shading the uncertainty around the constrained estimate. As ESM simulations in CMIP6 start in 1850, the air-sea Cant fluxes were corrected 

upwards for the late starting date following Bronselaer et al. (2017) (see Appendix A.1). Furthermore, the observation-based ocean Cant 

inventory estimate in 2010 from Khatiwala et al. (2013) is shown. 

2 Quantifying the past ocean anthropogenic carbon sink with observations and hindcast simulations and existing 95 
uncertainties 

The large background concentration of dissolved inorganic carbon (CT) in the ocean and the vast ocean volume make it difficult 

to directly observe the relatively small anthropogenic perturbations in the ocean interior. Therefore, different methods have 

been developed to estimate the accumulation of anthropogenic carbon (Cant) in the ocean (Khatiwala et al., 2013), such as the 
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DC* method (Gruber et al., 1996; Sabine et al., 2004) or the Transient Time Distribution method (Hall et al., 2002) based on 100 

observations of inert tracers, like CFCs. These estimates result in an estimated ocean Cant inventory in 2010 of 155±31 Pg C 

(Khatiwala et al., 2013) (Figure 1b, Table 1), but do not or only partly include climate-driven changes in CT. 

 

Further development of the DC* method into the eMLR(C*) method (Clement and Gruber, 2018) and more observations 

through new techniques, such as (Bio-)ARGO-floats (Claustre et al., 2020), and more research cruises (Lauvset et al., 2021) 105 

allowed to quantify the increase in marine Cant on shorter timescales and with reduced uncertainty. The so-estimated increase 

in Cant from 1994 to 2007 is 34±4 Pg C (12% uncertainty, Table 1) (Gruber et al., 2019a), again not accounting for potential 

climate-driven changes in CT. In addition to interior Cant estimates, surface ocean observations of the partial pressure of CO2 

(pCO2) and new statistical methods, such as neural networks (Landschützer et al., 2016), have allowed to establish observation-

based estimates of the air-sea CO2 flux (Rödenbeck et al., 2014; Zeng et al., 2014; Landschützer et al., 2016; Gregor et al., 110 

2019; Watson et al., 2020; Iida et al., 2021; Gregor and Gruber, 2021; Chau et al., 2022). When subtracting the pre-industrial 

outflux of CO2 due to riverine carbon fluxes (Sarmiento and Sundquist, 1992; Aumont et al., 2001; Jacobson et al., 2007; 

Resplandy et al., 2018; Lacroix et al., 2020; Regnier et al., 2022) from these air-sea CO2 flux estimates, the global ocean Cant 

uptake can be derived (Friedlingstein et al., 2022), resulting in an estimated ocean Cant uptake from 1994 to 2007 of 29±4 Pg 

C (14% uncertainty, Table 1). The difference of 5 Pg C between the interior and surface ocean mean estimates was attributed 115 

to outgassing of ocean CO2 caused by a changing climate (Gruber et al., 2019a). However, simulations from ESMs of the sixth 

phase of the Coupled Model Intercomparison Project (CMIP6) estimate this climate-driven air-sea CO2 flux from 1994 to 2007 

to be -1.6±0.5 Pg C (Table A.1.3), significantly smaller than the previously assumed flux of -5 Pg C (Gruber et al., 2019a), 

leaving an unexplained difference between both observation-based products although their uncertainty ranges overlap. 

 120 
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Table 1. Global ocean air-sea Cant flux estimates based on 17 ESMs from CMIP6 before and after constraint as well as previous 125 

estimates over different time periods. Prior uncertainty is the multi-model standard deviation. The uncertainty of the starting date 

corrected values also includes the uncertainty from that correction. The constrained uncertainty is a combination of the starting 

date correction, the multi-model standard deviation after the constraint is applied, and the uncertainty from the correction itself 

(see Appendices A.1 and A3). Uncertainties from the decadal variability on shorter timescales, e.g., for 1994-2007, are not included. 

The star indicates estimates that do not account for climate-driven changes in the ocean carbon sink. 130 

Period Cumulative air-sea Cant flux (Pg C) 

 
CMIP6 Global Carbon Budget 2021    

(Friedlingstein et al., 2022) 
Others 

 Prior 
Starting date 

corrected 
Constrained 

observation-based / hindcast 

simulations 
Estimate Source 

1994-2007 26.8 ± 2.1 28.8 ± 2.2 31.5 ± 0.9 29 ± 4 / 26 ±3 34 ± 4* 
(Gruber et al., 

2019a) 

1765-2010  164 ± 12 177 ± 7  155 ± 31* 
(Khatiwala et 

al., 2013) 

1850-2014 138 ± 10 157 ± 12 171 ± 6 150 ± 30   

1960-2020 106 ± 8 117 ± 9 128 ± 4 115 ± 25   

1850-2020 154 ± 11 174 ± 13 189 ± 7 170 ± 35   

2020-2100 

(SSP1-2.6) 
150 ± 11 156 ± 11 173 ± 8     

2020-2100 

(SSP2-4.5) 
244 ± 16 251 ± 17 277 ± 9     

2020-2100 

(SSP5-8.5) 
399 ± 29 407 ± 30 445 ± 12     
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An alternative way of estimating the strength of the ocean carbon sink is the use of global ocean biogeochemical models forced 

with atmospheric reanalysis data (Sarmiento et al., 1992; Friedlingstein et al., 2022). From 1994 to 2007, the ocean 135 

biogeochemical hindcast models that participated in the Global Carbon Budget 2021 (Friedlingstein et al., 2022) simulate a 

Cant uptake of 26±3 Pg C (Table 1). This estimate is 3 Pg C below the surface observation-based estimate and the difference 

increases further after 2010 (Figure 1a). Compared to the interior ocean Cant estimate, the simulated uptake by these hindcast 

models is 3-6 Pg C (10-19%) smaller depending on the correction term that is used for climate change induced outgassing of 

natural CO2. Such differences between observation-based and simulated ocean Cant uptake could be explained regionally by 140 

systematic biases in models (Goris et al., 2018; Terhaar et al., 2020a, 2021a, b), as well as data sparsity (Bushinsky et al., 

2019; Gloege et al., 2021). 

 

Overall, the difference between ocean hindcast models, observation-based CO2 flux estimates, and interior ocean Cant estimates 

as well as the uncertainties in the climate-driven change in CT and pre-industrial outgassing indicate that uncertainties of the 145 

past ocean Cant sink remain larger than the uncertainties of these individual products (Crisp et al., 2022) and do not allow to 

constrain the ocean Cant sink. 

3 Constraining the ocean anthropogenic carbon sink in Earth System Models 

Another way to constrain the present and future global ocean anthropogenic carbon sink is the use of process-based emergent 

constraints (Orr, 2002) that identify a relationship across an ensemble of ESMs between a relatively uncertain variable, such 150 

as the Cant uptake in the Southern Ocean, and a variable that can be observed with a relatively small uncertainty, such as the 

sea surface salinity in the subtropical-polar frontal zone in the Southern Ocean. The identified relationship is then combined 

with observations, in this example the sea surface salinity, to better estimate the uncertain variable, here the Cant uptake in the 

Southern Ocean (Terhaar et al., 2021b). Such relationships must be explainable by an underlying mechanism (Hall et al., 2019), 

i.e., higher sea surface salinity in the frontal zone leads to denser sea surface waters and stronger mode and intermediate water 155 

formation, which enhances the transport of Cant from the ocean surface to the ocean interior and allows hence for more Cant 

uptake. In recent years, process-based emergent constraints (Orr, 2002; Matsumoto et al., 2004; Wenzel et al., 2014; 
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Kwiatkowski et al., 2017; Goris et al., 2018; Eyring et al., 2019; Hall et al., 2019; Terhaar et al., 2020a, 2021a, b) have 

successfully reduced uncertainties in simulated processes across ensembles of ESMs. In the ocean, for example, a bias towards 

too little Cant uptake was identified in the Southern Ocean (Terhaar et al., 2021b). Similarly, ESMs from CMIP5 were shown 160 

to underestimate the future uptake of Cant in the North Atlantic due to too little sequestration of Cant into the deeper ocean 

(Goris et al., 2018). However, the relatively uncertain observation-based estimates of Cant sequestration (see section above) did 

not allow to reduce uncertainties. Despite a better understanding of the regional Cant uptake, uncertainties of the global ocean 

Cant sink could not yet been reduced. 

 165 

Here, we identify a mechanistic constraint for the global ocean Cant sink across 17 ESMs from CMIP6 (Table A.1.1). We 

demonstrate that a linear combination of three observable quantities, (1) the sea surface salinity in the subtropical-polar frontal 

zone in the Southern Ocean, (2) the strength of the AMOC at 26.5°N, and (3) the globally averaged surface ocean Revelle 

factor, can successfully predict the strength of the global ocean Cant sink across the CMIP6 ESMs (r2 of 0.87 for the global 

ocean Cant uptake from 1994 to 2007). The sea surface salinity in the subtropical-polar frontal zone in the Southern Ocean and 170 

the AMOC determine the strength of the two most important regions of mode, intermediate, and deep-water formation 

(Marshall and Speer, 2012; Talley, 2013; Buckley and Marshall, 2016; McCarthy et al., 2020). In addition, the Revelle factor 

accounts for biases in the biogeochemical buffer capacity of the ocean, i.e., the relative increase in ocean CT for a given relative 

increase in ocean pCO2 (Revelle and Suess, 1957). As the Revelle factor quantifies relative increases in ocean CT, the increase 

in surface ocean Cant depends on the Revelle factor and the natural surface ocean CT. Therefore, the Revelle factor in the ESMs 175 

was adjusted for model biases in natural surface ocean CT (see Appendix A.1). Compared to observations, CMIP6 models 

represent the observation-based average strength of the AMOC from 2004 to 2020 (16.91 ± 0.49 Sv) (McCarthy et al., 2020) 

right but have a large inter-model spread (16.91 ± 3.00 Sv), underestimate the observed inter-frontal sea surface salinity (34.07 

± 0.02) and have a large inter-model spread (33.89 ± 0.13), and overestimate the surface-averaged Revelle factor that was 

derived by GLODAPv2 (10.45 ± 0.01) by 0.24 (10.73 ± 0.24) with largest Revelle factor biases in the main Cant uptake regions 180 

(Figure 2). The underestimation of the CT-adjusted Revelle factor by the ESM ensemble is mainly due to a bias towards too 
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small concentrations of surface ocean carbonate ion concentrations (Sarmiento et al., 1995), caused by a too small difference 

of surface ocean alkalinity and CT (Figure A.1.2).  

 

 185 

Figure 2. Sea surface salinity in the Southern Ocean, the Atlantic Meridional Overturning Circulation, and the Revelle factor at the 

ocean surface from observations and Earth System Models. Annual mean sea surface salinity from the (a) World Ocean Atlas 2018 

(Zweng et al., 2018; Locarnini et al., 2018), (b) 17 Earth System Models from CMIP6 from 1995 to 2014, and (c) the difference between 

both. The black lines in (a,b) indicate the annual mean positions of the Polar and Subtropical Fronts. The monthly-averaged Atlantic 

Meridional Overturning Circulation, here defined as the maximum of the streamfunction at 26.5°N, from 2004 to 2020 as (d) observed by 190 
the RAPID array (McCarthy et al., 2020), (e) as simulated by 17 Earth System Models from CMIP6, and (f) the difference between both. 
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Each model simulation is shown in (e) and (f) as a thin red line, the multi-model average is shown as a thick red line, and the multi-model 

standard deviation is shown as red shading. The annual mean sea surface Revelle factor calculated with mocsy2.0 (Orr and Epitalon, 2015) 

from (g) gridded GLODAPv2 observations that are normalized to the year 2002 (Lauvset et al., 2016), from (h) output of 17 Earth System 

Model simulations from CMIP6 in 2002 and adjusted for biases in the surface ocean CT (see Appendix A.1), and (i) their difference. 195 
 

By exploiting this multi-variable emergent constraint with observations, the simulated Cant uptake by ESMs from 1994 to 2007 

increases from 28.8 ± 2.2 Pg C to 31.5 ± 0.9 Pg C (Figures 1 & 3, Tables 1 & A.1.2). Biases in the Southern Ocean salinity 

are responsible for around 60% of the bias in the global ocean Cant uptake in the CMIP6 models while the bias in the Revelle 

factor explains the remaining 40% (Figure 3). The AMOC, whose multi-model mean in ESMs is similar to observations, does 200 

not change the central Cant uptake estimate but allows to reduce uncertainties (Figure 3). The constrained Cant uptake is 0.5 Pg 

C smaller than the interior ocean Cant estimate based on observations (Gruber et al., 2019a) when subtracting the multi-model 

mean climate-driven CO2 flux estimate from the CMIP6 models (Table A.1.3) and 2.5 Pg C larger than the observation-based 

air-sea Cant flux estimates from 1994 to 2007. However, after 2013 the observation-based air-sea Cant flux estimates become 

slightly larger than the constrained CMIP6 ESM estimates (Figure 1). Thus, the mismatch between observation-based air-sea 205 

Cant flux estimates from 1994 to 2007 and the here provided results may not exist over a longer period of time and be caused 

by a different timing and magnitude of decadal variabilities in ESMs and the real world (Landschützer et al., 2016; Gruber et 

al., 2019b; Bennington et al., 2022), as well as uncertainties in the observation-based products (Bushinsky et al., 2019; Gloege 

et al., 2021, 2022). 

 210 
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Figure 3. Global ocean anthropogenic carbon simulated by Earth System Models from CMIP6 corrected for biases in sea surface 

salinity in the Southern Ocean, the Atlantic Meridional Overturning Circulation, and the Revelle factor. (a) Global ocean 

(a)

(b)

(d)

(f)

(c)

(e)

(g)
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anthropogenic carbon (Cant) uptake from 1994 to 2007 as simulated by 17 ESMs from CMIP6 and corrected for the late starting date 

(Bronselaer et al., 2017). In the years 1994 and 2007, only half of the annual Cant uptake was accounted for to make it comparable to interior 215 
ocean estimates that compare changes in Cant from mid 1994 to mid 2007 and not from the start of 1994 to the end of 2007 (Gruber et al., 

2019a). (b) Cant uptake after correcting the simulated Cant uptake from (a) for biases in the Southern Ocean Sea surface salinity (Terhaar et 

al., 2021b) from (c). The dots in (c) represent individual models before (red) and after (orange) the sea surface salinity correction. (d) Cant 

uptake after correcting sea surface salinity corrected Cant uptake from (b) for biases in the Atlantic Meridional Overturning Circulation from 

(e). The dots in (e) represent individual models before (orange) and after (blue) the Atlantic Meridional Overturning Circulation correction. 220 
(f) Cant uptake after correcting the sea surface salinity and Atlantic Meridional Overturning Circulation corrected Cant uptake from (d) for 

biases in the global ocean surface Revelle factor from (g). The dots in (g) represent individual models before (blue) and after (green) the 

Revelle factor correction. The simulated Revelle factor by the ESMs was adjusted for biases in the surface ocean CT (see Appendix A.1). 

The dashed coloured lines in (a), (b), (d), (f) show the multi-model mean and the shading shows the uncertainty, which is a combination of 

the multi-model standard deviation after correction and the uncertainty of the correction factor due to the uncertainty of the observational 225 
constraint (see Appendix A.1). The dashed black lines in (c), (e), (g) show the observations from the World Ocean Atlas 2018 (Zweng et al., 

2018; Locarnini et al., 2018), the RAPID array (McCarthy et al., 2020), and GLODAPv2 (Lauvset et al., 2016) with their uncertainties as 

grey shading, the coloured lines show linear fits, and the arrows illustrate the correction for individual models. 

 

Both, the unconstrained and constrained ESM estimates, are larger than the hindcast simulation estimates and uptake in ESMs 230 

does not stop to grow after 2015 as it does in the hindcast simulations. The combination of interior ocean Cant estimates, air-

sea CO2 flux-based Cant uptake estimates, and simulated Cant uptake by ESMs estimates suggests that the hindcast simulations 

underestimate the ocean Cant uptake and that the Global Carbon Budget 2021 estimate of the ocean Cant uptake over the last 

decades should hence be corrected upwards. Reasons for this underestimation may be an underestimation of the AMOC or the 

Southern Ocean inter-frontal sea surface salinity, an overestimation of the Revelle factor, a too small ensemble of models (8 235 

models) that is biased towards low uptake models, too short spin-up times (Séférian et al., 2016), or different pre-industrial 

atmospheric CO2 mixing ratios (Bronselaer et al., 2017; Friedlingstein et al., 2022). However, even after correcting these 

hindcast simulations upwards by employing the here identified emergent constraint, their corrected estimate may remain below 

the CMIP-derived estimate here due to the historical decadal variations in the Cant uptake that is not represented in fully coupled 

ESMs (Landschützer et al., 2016; Gruber et al., 2019b; Bennington et al., 2022). A detailed analysis by the individual modelling 240 

teams would be necessary to identify the reason for underestimation in the individual hindcast models.  
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Over the historical period from 1850 to 2020, the here identified constraint increases the simulated ocean Cant uptake by 15 Pg 

C (r2 = 0.80) from 174 ± 13 Pg C to 189 ± 7 Pg C (Table 1). The constrained estimate of the Cant agrees within the uncertainties 

with the estimate from the Global Carbon Budget for the same period (170±35 Pg C) (Friedlingstein et al., 2022), which is a 245 

combination of prognostic approaches until 1959 (Khatiwala et al., 2013; DeVries, 2014), and ocean hindcast simulations and 

observation-based CO2 flux products from 1960 to 2020 (Friedlingstein et al., 2022). However, our new estimate is 19 Pg C 

larger and could explain around three quarters of the budget imbalance (BIM) between global CO2 emissions and sinks over 

this period (25 Pg C) (Friedlingstein et al., 2022) and contribute to answering an important outstanding question in the carbon 

cycle community.  250 

 

Overall, this new estimate of the ocean Cant uptake, based on ESMs and constrained by observations, presents hence an 

independent and new estimate of the past and present ocean Cant uptake that is 42-59% less uncertain and around 10% larger 

than the multi-model average and standard deviation. The lower bound of the uncertainty correction is for the past ocean Cant 

uptake since 1765 where the late-starting date correction introduces an uncertainty that cannot be reduced without running the 255 

simulations from 1765 onwards. Towards the end of the 20th century, the uncertainty from this correction becomes smaller so 

that the emergent constraint can reduce uncertainties by almost 60%. 

4 Consequences for projected ocean anthropogenic carbon uptake and acidification over the 21st century 

As the present and future Cant uptake are strongly correlated across ESMs, the here identified relationship can also be used to 

constrain future projections of the global ocean Cant uptake. The global ocean Cant uptake from 2020 to 2100 increases from 260 

156 ± 11 Pg C to 173 ± 8 Pg C (r2=0.56) under the high-mitigation low emissions Shared Socioeconomic Pathway 1-2.6 (SSP1-

2.6) that likely allows to keep global warming below 2°C (O’Neill et al., 2016; Riahi et al., 2017), from 251 ± 17 Pg C to 277 

± 9 Pg C (r2=0.74) under the middle-of-the-road SSP2-4.5, and from 407 ± 30 Pg C to 445 ± 12 Pg C (r2=0.87) under the high-

emissions no mitigation SSP5-8.5 (Figure 1b). Overall, the future ocean Cant uptake in CMIP6 models is thus 9-11% larger 

than simulated by ESMs and 32-62% less uncertain depending on the future scenario. The correlation coefficient and hence 265 

the uncertainty reduction reduces, but remains still large, when atmospheric CO2 stops to increase (SSP1-2.6, SSP2-4.5). 
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Larger uncertainties for stabilization than for near-exponential growth scenarios are expected as the reversal of the atmospheric 

CO2 growth rate will exert a stronger external impact on the magnitude of the ocean carbon sink (McKinley et al., 2020). 

 

The increase in projected uptake of Cant also increases the estimate of future ocean acidification rate. For ocean ecosystems, 270 

the threshold for water masses become undersaturated towards specific calcium carbonate minerals (W=1) is of critical 

importance (Orr et al., 2005; Fabry et al., 2008; Doney et al., 2020), although negative effects for some calcifying organisms 

can already be observed at saturation states above one (Ries et al., 2009) and some calcifying organisms can even live in 

undersaturated waters (Lebrato et al., 2016). Over the 21st century, the volume of water masses in the global ocean that remain 

supersaturated towards the meta-stable calcium carbonate mineral aragonite is projected to decrease in CMIP6 from 283 275 

million km3 in 2002 (based on GLODAPv2 observations (Lauvset et al., 2016)) to 194±6 million km3 under SSP1-2.6, to 

143±4 million km3 under SSP2-4.5, and to 97±4 million km3 under SSP5-8.5. The constraint reduces these estimates to 186±5, 

138±2, and 93±2 million km3 respectively (r2=0.31-0.69), resulting in an additional decrease of the available habitat for 

calcifying organisms of 3.7-7.4 million km3 depending on the scenario. This additionally projected habitat loss is mainly 

located in the mesopelagic layer between 200 and 1000 m and affects thus organisms that live their permanently or temporarily 280 

during diel vertical migration (Behrenfeld et al., 2019). The additionally undersaturated volume corresponds to an area of 1.6-

3.1 times the area of the Mediterranean Sea whose mesopelagic layer would be additionally undersaturated towards aragonite. 

However, the global character of the constraint and the uncertainty of the interior distribution of Cant do not allow to localise 

these areas.  

5 Robustness of the emergent constraint and possible impact of changing riverine carbon input over time 285 

Emergent constraints across large datasets such as an ensemble of ESMs with hundreds of variables can always be found and 

might not necessarily be reliable and robust (Caldwell et al., 2014; Brient, 2020; Sanderson et al., 2021; Williamson et al., 

2021). To test the robustness of emergent constraints, three criteria were proposed (Hall et al., 2019). The constraint must be 

relying on well understood mechanisms, that mechanism must be reliable, and the constraint must be validated in an 

independent model ensemble. Here, the well understood mechanisms are the fundamental ocean biogeochemical properties 290 
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such as the Revelle factor (Revelle and Suess, 1957), as well as the Southern Ocean and North Atlantic large-scale ocean 

circulation features that are known to be the determining factors for the ocean ventilation (Marshall and Speer, 2012; Talley, 

2013; Buckley and Marshall, 2016). For the Southern Ocean, the verification was previously done by testing the robustness of 

the constraint to changes in the definition of the inter-frontal zone (Terhaar et al., 2021b). Further evidence for the underlying 

mechanism was provided by a later study that analysed explicitly the stratification in the water column (Bourgeois et al., 2022). 295 

Similarly, it was shown that the transport of Cant by the AMOC is crucial for the Cant uptake in the North Atlantic (Buckley 

and Marshall, 2016; Goris et al., 2018). As the AMOC is predominantly observed at 26.5°N, a change to the definition is not 

possible. Instead, we replaced the AMOC as a predictor by another indicator for deep-water formation, namely the area of 

waters in the North Atlantic below which the water column is weakly stratified (see Appendix A.1 and Table A.1.4) (Hess, 

2022). The results remain almost unchanged, indicating the robustness of the constraint and that the AMOC is indeed a good 300 

indicator for the stability of the water column in the North Atlantic and the associated deep-water formation. To provide further 

indication for the importance of the AMOC and the Southern Ocean surface salinity, we have compared simulated CFC-11, 

provided by 10 ESMs from CMIP6, with observed CFC-11 from GLODAPv2.2021 (Lauvset et al., 2021) (Appendix A.3). 

The comparison demonstrates the importance of the AMOC for the ventilation of the North Atlantic, as ESMs with a low 

AMOC underestimate the observed subsurface CFC-11 concentrations in the North Atlantic. Similarly, ESMs with a small 305 

inter-frontal Southern Ocean surface salinity underestimate observed subsurface (below 200 m) CFC-11 concentrations in the 

Southern hemisphere. Eventually, we have also tested the robustness of the biogeochemical predictor, by varying the definition 

of the Revelle factor. First, the Revelle factor was only calculated north of 45°N and south of 45°S, assuming that the high-

latitude regions are responsible for the largest Cant uptake, and second, the global Revelle factor was calculating by weighting 

the Revelle factor in each cell by the multi-model mean cumulative Cant uptake from 1850 to 2100 in that cell so that the 310 

Revelle factor in cells with larger uptake is more strongly weighted. Under both definitions, the results remain almost 

unchanged (Table A.1.4), suggesting that the globally averaged Revelle factor is a robust predictor of ocean Cant uptake. 

 

To validate the here identified constraint in another model ensemble, we used all six ESMs of the CMIP5 ensemble that 

provided all necessary output variables (Table A.1.1). As these six ESMs are not sufficient to robustly fit a function with four 315 
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unknown parameters, we applied the predicted relationship by the CMIP6 models to the CMIP5 models and evaluated how 

well this relationship allows to predict the simulated historical Cant uptake by these models. The CMIP6 derived relationship 

allows to predict the simulated Cant uptake with an accuracy of 3% (±5 Pg C) for the period from 1850 to 2014 and with an 

accuracy of 4% (±1.3 Pg C) for the period from 1994 to 2007 (Figure A.4.1). The largest uncertainty stems from the NorESM2-

ME model, which simulates a historical AMOC strength of ~30 Sv, almost twice as large as the observed AMOC strength and 320 

~9 Sv larger than all other CMIP6 ESMs over which the relationship was fitted. For such strong deviations from the 

observations and other ESMs, the linear relationship might not be applicable anymore. However, despite one out of six ESMs 

from CMIP5 having a particularly high AMOC, the here identified relationship still allows to predict the simulated Cant uptake 

with small uncertainties and hence confirms its applicability. 

 325 

Despite this robustness, emergent constraints are, by definition, always relying on the existing ESMs and on the processes that 

are represented by these ESMs. If certain processes are not implemented or implemented in the same way across all ESMs, 

biases over the entire model ensemble can occur that cannot be corrected by an emergent constraint (Sanderson et al., 2021). 

Possible non-represented processes in our case are among others changing freshwater input from the Greenland and Antarctic 

ice sheet that may impact the freshwater cycle and circulation in the Southern Ocean or the AMOC, and changes in riverine 330 

input of carbon over time. However, the expected effect of ice melt on sea surface salinity in the Southern Ocean and on the 

AMOC is small compared to the model spread (Bakker et al., 2016; Terhaar et al., 2021b), at least on the timescales considered 

here. Changing riverine carbon fluxes could, however, have a larger effect. So far, only one CMIP6 ESM, the CNRM-ESM2-

1 (Séférian et al., 2019), has dynamic carbon riverine delivery that changes with global warming. In this model, carbon riverine 

delivery increases over the 20st century so that the interior ocean change in Cant in 2000 is around 19 Pg C smaller than the air-335 

sea Cant uptake (Figure A.1.3). The situation reverses at the beginning of the 21st century, so that riverine carbon delivery 

increases and the interior ocean change in Cant becomes up to 60 Pg C larger than the air-sea Cant uptake. As such, riverine 

carbon delivery has the potential to enhance or decrease the ocean Cant inventory in addition to air-sea Cant uptake. This would 

also question the comparability of Cant inventory and air-sea Cant uptake estimates. However, the present state of the ESMs does 

not allow a quantitative assessment of this process and future research is needed.  340 
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6 Conclusion 

The here identified three-dimensional emergent constraint allows identifying a bias towards too low Cant uptake by ESMs from 

CMIP6, reduced uncertainties of the global ocean Cant sink, and led to an enhanced process understanding of the Cant uptake in 

ESMs. The constraint was tested for robustness in multiple ways and across different model ensembles. The constraint 

demonstrates that the global ocean Cant uptake can be estimated from three observable variables, the salinity in the subtropical-345 

polar frontal zone in the Southern Ocean, the Atlantic Meridional Overturning Circulation, and the global surface ocean Revelle 

factor. Improved or continuing observations of these quantities (Lauvset et al., 2016; Zweng et al., 2018; Locarnini et al., 2018; 

Claustre et al., 2020; McCarthy et al., 2020) and their representation and evaluation in ESMs and ocean models should therefore 

be of great priority in the next years and decades. Biases in these quantities and corrections for the late starting date may well 

be the reason for mismatches between models and observations (Hauck et al., 2020; Friedlingstein et al., 2022; Crisp et al., 350 

2022) and should be evaluated when analysing and presenting simulated ocean Cant uptake.  

 

The larger than previously estimated future ocean Cant sink corresponds to around 2 to 4 years of present-day CO2 emissions 

(~10.5 Pg C yr-1) depending on the emissions pathway. The larger ocean Cant sink thus increases the estimated remaining 

emission budget, but only by a small amount. However, it also results in enhanced projected ocean acidification that may be 355 

harmful for large, unique ocean ecosystems (Fabry et al., 2008; Gruber et al., 2012; Kawaguchi et al., 2013; Kroeker et al., 

2013; Doney et al., 2020; Hauri et al., 2021; Terhaar et al., 2021a).  

 

This study follows recent approaches by the IPCC and climate science that suggest using the best available information about 

models instead of a multi-model mean to provide consistent and accurate information for climate science and policy (IPCC, 360 

2021; Hausfather et al., 2022). The here provided improved estimate of the size of the global ocean carbon sink may help to 

close the carbon budget imbalance (Friedlingstein et al., 2022) and to improve the understanding of the overall carbon cycle 

and the global climate (IPCC, 2021). Eventually, a better understanding of the ocean carbon sink and the reduction of its 

uncertainties in the past and in the future allows better targeted climate and ocean policies (IPCC, 2022).  

  365 
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Appendix A 

A.1 Earth System Models 

Model output from 18 Earth System Models from CMIP6 and 6 Earth System Models from CMIP5 (Table A.1.1) were used 

for the analyses.  

 370 

Table A.1.1 CMIP5 and CMIP6 models used in this study and the corresponding model groups 

Model name* Modeling center References 

ACCESS-ESM1-5 
Commonwealth Scientific and Industrial Research Organisation 

(CSIRO) 
(Ziehn et al., 2020) 

CanESM2 

CanESM5 

CanESM5-CanOE 

Canadian Centre for Climate Modelling and Analysis (Chylek et al., 2011; Christian et al., 2022) 

CESM1-BGC 

CESM2 

CESM2-WACCM 

Community Earth System Model Contributors 

 

(Gent et al., 2011; Lindsay et al., 2014; Danabasoglu 

et al., 2020) 

CMCC-ESM2 Centro Euro-Mediterraneo per I Cambiamenti Climatici (Lovato et al., 2022) 

CNRM-ESM2-1 
Centre National de Recherches Meteorologiques / Centre Europeen de 

Recherche et Formation Avancees en Calcul Scientifique 
(Séférian et al., 2019) 

EC-Earth3-CC 
EC-Earth consortium (http://www.ec-

earth.org/community/consortium/) 
(Döscher et al., 2022) 

GFDL-ESM2M 

GFDL-CM4 

GFDL-ESM4 

NOAA Geophysical Fluid Dynamics Laboratory (NOAA GFDL) 
(Dunne et al., 2012; Held et al., 2019; Dunne et al., 

2020; Stock et al., 2020) 

IPSL-CM6A-LR Institut Pierre-Simon Laplace (IPSL) (Boucher et al., 2020) 

MIROC-ES2L 

Japan Agency for Marine-Earth Science and Technology, Atmosphere 

and Ocean Research Institute (The University of Tokyo), and National 

Institute for Environmental Studies 

(Hajima et al., 2020) 

MPI-ESM-LR 

MPI-ESM-MR 

MPI-ESM-1-2-LR 

MPI-ESM-1-2-HR 

Max-Planck-Institut für Meteorologie (Max Planck Institute for 

Meteorology) 

(Giorgetta et al., 2013; Mauritsen et al., 2019; Gutjahr 

et al., 2019) 

MRI-ESM2-0 Meteorological Research Institute (Japan Meteorological Agency) (Yukimoto et al., 2019) 

NorESM1-ME 

NorESM2-LM 

NorESM2-MM 

Norwegian Climate Centre (Bentsen et al., 2013; Tjiputra et al., 2020) 

UKESM1-0-LL Met Office Hadley Centre  (Sellar et al., 2020) 

*CMIP5 models are written in italics 
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The analysed variables include the air-sea CO2 flux (fgco2, name of the variable in standardized CMIP output), total dissolved 

inorganic carbon (dissic), total alkalinity (talk), total dissolved inorganic silicon (si), total dissolved inorganic phosphorus 

(po4), potential temperature (thetao), salinity (so), and the Atlantic meriodional streamfunction (msftmz or msftyz). All ESMs 375 

were included for which the entire set of variables was available on the website of the Earth System Grid Federation at the 

start of the analysis. Based on these variables, all other presented variables were derived: 

 

• The air-sea Cant flux was calculated as the difference in air-sea CO2 flux between the historical plus future (SSP for 

CMIP6 and RCP for CMIP5) simulation and the correspondent pre-industrial control simulation on the native model 380 

grids (where possible). The air-sea Cant fluxes were corrected for their late starting date in 1850 (and 1861 for GFDL-

ESM2M) and the slightly higher atmospheric CO2 mixing ratio in that year compared to the beginning of the 

industrialization and the start of the CO2 increase in 1765 (Bronselaer et al., 2017). To that end, we scaled the 

simulated air-sea Cant flux with the anthropogenic change in the atmospheric partial pressure of CO2 (pCO2) with 

respect to pre-industrial conditions following previous studies (Mikaloff Fletcher et al., 2006; Gruber et al., 2009; 385 

Terhaar et al., 2021b): 

 

𝐶!"#$%&&(𝑡) = 𝐶!"#(𝑡)
'()!(#),'()!(-./0)
'()!(#),'()!(-102)

,                         (1) 

 

with 𝐶!"#(𝑡) being the simulated air-sea Cant flux by the respective ESM in year t and 𝐶!"#$%&&(𝑡) being the corrected 390 

air-sea Cant flux. For GFDL-ESM2M, which starts in 1861, the correction was made with respect to 𝑝𝐶𝑂3(1861). 

When 𝑝𝐶𝑂3(𝑡) is close to 𝑝𝐶𝑂3(1850), their difference becomes unrealistically large, causing overly strong flux 

corrections. Therefore, we limited the flux correction in magnitude using the correction term in year 1950 as an upper 

limit. By doing so, we do not only remove unrealistically high air-sea Cant fluxes before 1950 but also reach excellent 

agreement with the previously estimated air-sea Cant fluxes correction term by Bronselaer et al. (2017) (Figure A.1.1). 395 

When the cumulative Cant fluxes since 1765 are shown, an additional amount of 12 Pg C (16 Pg C for GFDL-ESM2M) 

was added that was estimated to have entered the ocean before 1850 (Bronselaer et al., 2017). For comparison, we 
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also calculated the constrained estimates for the ocean Cant sink when no air-sea Cant flux correction is applied (Table 

A.1.2). Bronselaer et al. (2017) estimate the uncertainty of the correction to be ±16% for cumulative Cant fluxes from 

1765 to 1995. Although uncertainties reduce over time, we apply the 16% from the past to all estimates and hence 400 

provide a conservative upper bound of this uncertainty. 

 

 

Figure A.1.1. Correction of simulated anthropogenic carbon air-sea flux for the late starting date in Earth System Models. Multi-

model a) annual mean anthropogenic carbon (Cant) air-sea flux for 17 ESMs from CMIP6 before (dashed lines) and after (solid lines) the 405 
correction for the late starting date over the historical period from 1850 to 2014 (black) and for the future from 2015 to 2100 under SSP1-

2.6 (blue), SSP2-4.5 (orange), and SSP5-8.5 (red). b) Cumulative ocean Cant uptake since 1765 (corrected simulated flux) and 1850 (raw 

simulated flux), c) difference between cumulative ocean Cant uptake between corrected and raw simulated flux, and d) the correction factor 

that was applied. The Cant correction that was estimated by Bronselaer et al. (2017) is shown for in c). The cumulative Cant uptake from 1765 

to 1850 was set to 12 Pg C as estimated by Bronselaer et al. (2017). 410 
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Table A.1.2. Global ocean air-sea CO2 flux estimates based on 17 ESMs from CMIP6 before and after constraint over different 

periods with corrected and uncorrected estimates and with and without CNRM-ESM2-1. Prior uncertainty is the multi-model 415 

standard deviation and constrained uncertainty is a combination of the multi-model standard deviation after correction and the 

uncertainty from the correction itself (see Appendix A.3). 

Period Cumulative air-sea Cant flux (Pg C) 

 Raw simulated Starting date corrected Corrected + CNRM-ESM2-1 

 Prior Constrained Prior Constrained Prior Constrained 

1994-2007 26.8 ± 2.1 29.3 ± 0.8 28.8 ± 2.2 31.5 ± 0.9 28.6 ± 2.3 31.3 ± 1.2 

1850-2014 138 ± 10 150 ± 5 157 ± 12 171 ± 5 156 ± 12 171 ± 6 

1850-2020 154 ± 11 167 ± 5 174 ± 13 189 ± 6 173 ± 13 189 ± 6 

2020-2100 

(SSP1-2.6) 
150 ± 11 167 ± 7 156 ± 11 173 ± 7 156 ± 11 173 ± 7 

2020-2100 

(SSP2-4.5) 
244 ± 16 269 ± 8 251 ± 17 277 ± 9 251 ± 16 276 ± 9 

2020-2100 

(SSP5-8.5) 
399 ± 29 436 ± 11 407 ± 30 445 ± 11 405 ± 29 444 ± 12 

 

• Accordingly, the change in ocean interior Cant was calculated as the difference in total dissolved inorganic carbon 

between the historical plus future (SSP/RCP) simulation and the correspondent pre-industrial control simulation on 420 

the native model grids (where possible).  

• The change in air-sea CO2 flux that is caused by a changing climate was calculated as the difference in fgco2 in the 

historical simulation and the ‘bgc’ simulation in which only atmospheric CO2 changes, but not the climate. These 

‘bgc’ simulations were available for 5 ESMs (Table A.1.3) 

 425 
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Table A.1.3. Climate-driven changes in the air-sea CO2 flux (Pg C yr-1) as simulated by 5 Earth System Models from CMIP6 

Year Climate-driven changes in the cumulative air-sea CO2 flux (Pg C) 

 
ACCESS-

ESM1-5 
CanESM5 MIROC-ES2L MRI-ESM2-0 NorESM2-LM 

Multi-model 

mean 

Multi-model 

standard 

deviation 

1994-

2007 
-1.7 -1.7 -1.4 -2.2 -0.7 -1.6 0.5 

. 

• The surface ocean Revelle factor was calculated from sea surface total dissolved inorganic carbon (dissic), total 430 

alkalinity (talk), total dissolved inorganic silicon (si), total dissolved inorganic phosphorus (po4), potential 

temperature (thetao), and salinity (so) averaged around the year 2002 (from 1997 to 2007 for CMIP6 and 1999 to 

2005 for CMIP5; 2005 is the last year of the historical simulation) using mocsy2.0 (Orr and Epitalon, 2015) with its 

default constants that are recommended for best practice (Dickson et al., 2007). The years were centred around 2002 

to make the Revelle factor comparable to the one estimated based on GLODAPv2, which is normalized to the year 435 

2002 (Lauvset et al., 2016). As the Revelle factor describes the relative change in CT per relative change in pCO2 

(Revelle and Suess, 1957), the absolute uptake of CT does not only depend on the Revelle factor but also on the natural 

CT in the surface ocean. To calculate the buffer capacity for each ESM, the Revelle factor was therefore adjusted in 

each grid cell by multiplying it by the ratio of observed CT and the simulated CT in each ESM separately. Data from 

each ESM was regridded on a regular 1°x1° grid to make it comparable to the gridded GLODAPv2 data. Furthermore, 440 

a mask was applied before the basin-wide averaged Revelle factor was calculated so that only values were used where 

all ESMs and the gridded GLODAPv2 product had data. In addition, marginal seas (Mediterranean Sea, Hudson Bay, 

Baltic Sea) were excluded because global ESMs are not designed to accurately represent these small-scale seas. In 

addition, the surface ocean carbonate ion (CO32-) concentration was calculated that the CT-adjusted Revelle factor is 

mainly determined by the CO32- concentrations, which itself can be approximated by the difference between surface 445 

ocean alkalinity and CT (Figure A.1.2). 
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Figure A.1.2. Surface ocean Revelle factor against the difference of surface alkalinity and dissolved inorganic carbon, and against 

surface carbonate ion concentrations. Basin-wide averaged surface ocean Revelle factor as simulated by 18 ESMs from CMIP6 (blue 450 
dots) against the basin-wide averaged surface ocean a) total dissolved inorganic carbon (CT), b) total alkalinity (AT), c) their difference (AT 

- CT), and d) carbonate ion (CO3
2-) concentrations. The observation-based estimates from GLODAPv2 are shown as black crosses. The 

Revelle factor in each ESM was adjusted for biases in the surface ocean CT (see Appendix A.1). 

 

• The monthly AMOC strength was calculated as the maximum of the streamfunction below 500 m at the latitude in 455 

the respective model that is closest to 26.5°N for each month from 2004 to 2020. After 2014, simulated output from 

SSP5-8.5 and RCP4.5 were used as all ESMs provided output for these pathways. For SSP5-8.5, the mole fraction of 

atmospheric CO2 in SSP5-8.5 is 414.9 ppm in 2020 (Meinshausen et al., 2020), 2.5 ppm over the observed mole 

fraction of atmospheric CO2 in 2020 (Trends in Atmospheric Carbon Dioxide (NOAA/GML)). For RCP4.5, the mole 

fraction of atmospheric CO2 is 412.4 ppm in 2020. Such small differences in the mole fraction of atmospheric CO2 460 

do not cause detectable changes in global warming or the AMOC (IPCC, 2021). 

• Future saturation states of aragonite were calculated from simulated changes in total dissolved inorganic carbon 

(dissic), total alkalinity (talk), total dissolved inorganic silicon (si), total dissolved inorganic phosphorus (po4), 

potential temperature (thetao) and salinity (so) since 2002 that are added to the respective observed variables from 

the gridded GLODAPv2 product, which are normalized to 2002, using mocsy2.0 (Orr and Epitalon, 2015) with its 465 

default constants that are recommended for best practice (Dickson et al., 2007). By only adding simulated difference, 
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model uncertainties in the initial state of the ocean biogeochemical system in the deeper ocean are removed (Orr et 

al., 2005; Terhaar et al., 2020a, 2021a, b). All variables were regridded before on a regular 1°x1° grid so that they 

could be added to the gridded GLODAPv2 data. The same mask that was also used to compare the Revelle factor was 

applied to make all projections comparable. 470 

• The annual average sea surface salinity between the polar and subtropical front in the Southern Ocean was derived 

from regridded (1°x1° regular grid) monthly sea surface salinity and temperatures (for defining the fronts) following 

(Terhaar et al., 2021b). 

• The area of weakly stratified waters was calculated based on climatologies of the potential temperature and salinity 

from 1995 to 2014 (Hess, 2022). All data was regridded on a regular 1°x1° grid with 33 depth levels before analysis. 475 

An area was defined as weakly stratified if the density gradient between the surface and the cell at 1000 m depth was 

smaller than 0.5 kg m-3 in a given month, assuming that such a small monthly mean gradient allows mixing of water 

into the lower limb of the AMOC at some time in that month. This predictor, as well as the different ways of 

calculating the Revelle factor predictor (see section “Robustness of the emergent constraint and possible impact of 

changing riverine carbon input over time”), was used to test the robustness of the here identified emergent constraint 480 

(Table A.1.4). 

The model CNRM-ESM2-1 was not used for the constraints because it includes dynamical riverine forcing that no other 

model includes (Figure A.1.3) and is not directly comparable. Instead, output from this ESM was prominently used in the 

section “Robustness of the emergent constraint and possible impact of changing riverine carbon input over time”. 

However, even if CNRM-ESM2-1 had been included, the results change by less than 1% (Table A.1.2). 485 
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Table A.1.4. Constrained global ocean air-sea CO2 flux estimates based on 17 ESMs from CMIP6 with varying predictors. 

Period Cumulative air-sea Cant flux (Pg C) 

 
Standard 

Revelle factor 
Area of weakly 

stratified water column 

  >45°N & <45°S Flux-weighted  

1994-2007 31.5 ± 0.9 (r2=0.87) 31.6 ± 1.1 (r2=0.80) 31.7 ± 1.0 (r2=0.83) 31.3 ± 1.1 (r2=0.78) 

1850-2014 171 ± 6 (r2=0.80) 172 ± 8 (r2=0.65) 173 ± 7 (r2=0.73) 171 ± 7 (r2=0.74) 

1850-2020 189 ± 7 (r2=0.80) 190 ± 8 (r2=0.64) 191 ± 8 (r2=0.72) 189 ± 7 (r2=0.73) 

2020-2100 (SSP1-

2.6) 
173 ± 8 (r2=0.56) 173 ± 8 (r2=0.56) 172 ± 8 (r2=0.55) 171 ± 8 (r2=0.53) 

2020-2100 (SSP2-

4.5) 
277 ± 9 (r2=0.74) 278 ± 9 (r2=0.71) 277 ± 9 (r2=0.71) 274 ± 9 (r2=0.72) 

2020-2100 (SSP5-

8.5) 
445 ± 12 (r2=0.87) 450 ± 13 (r2=0.83) 449 ± 12 (r2=0.84) 442 ± 12 (r2=0.84) 

 

 490 

 
Figure A.1.3. Anthropogenic carbon air-sea fluxes and inventory changes simulated by CNRM-ESM2-1. (a) Cumulative air-sea 

anthropogenic carbon (Cant) fluxes (solid lines) and Cant interior changes (dashed lines) as simulated by CNRM-ESM2-1 for the historic 

period until 2014 (black) and from 2015 to 2100 under SSP1-2.6 (blue), SSP2-4.5 (orange), and SSP5-8.5 (red), (b) as well as the difference 

of both quantities. The thin dashed black line in (b) indicates zero difference. 495 
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A.2 Observations and observation-based products 

Throughout this manuscript, three observation-based products are used to constrain the ESM output: 

• Monthly climatologies of sea surface salinity and sea surface temperatures from the World Ocean Atlas 2018 (Zweng 

et al., 2018; Locarnini et al., 2018) were used to derive annual averages and uncertainties of the sea surface salinity 

between the polar and subtropical fronts in the Southern Ocean following Terhaar et al. (2021b). Climatologies of the 500 

World Ocean Atlas 2018 were also used to calculate the area of weakly stratified surface waters. 

• Time series of the AMOC strength from the RAPID array (McCarthy et al., 2020) were used to calculate monthly 

means and uncertainties of the AMOC from 2004 to 2020.  

• The gridded observation-based estimates of total dissolved inorganic carbon, total alkalinity, total dissolved inorganic 

silicon, total dissolved inorganic phosphorus, in-situ temperature, and salinity from GLODAPv2 (Lauvset et al., 2016) 505 

were used to calculate the Revelle factor and as a starting point for projected saturation states over the 21st century 

(see above). 

A.3 Applying the constraint and uncertainty estimation 

For the three-dimensional emergent constraint, multi-linear regression was used. First, it was assumed that the ocean Cant 

uptake for every model M (𝐶!"#4 ) can be approximated by a linear combination of the inter-frontal sea surface salinity in the 510 

Southern Ocean in model M (𝑆𝑆𝑆5%6#78&"	)$8!"	4 ), the AMOC strength in model M (𝐴𝑀𝑂𝐶4), and the globally-averaged 

surface ocean Revelle factor in model M (𝑅𝑒𝑣𝑒𝑙𝑙𝑒:;%<!;4 ): 

 

𝐶!"#4 = 𝑎 ∗ 𝑆𝑆𝑆5%6#78&"	)$8!"	4 + 𝑏 ∗ 𝐴𝑀𝑂𝐶4 + 𝑐 ∗ 𝑅𝑒𝑣𝑒𝑙𝑙𝑒:;%<!;4 + 𝑑 + 𝜀.                     (2) 

 515 

The parameters a, b, and c are scaling parameters of the three predictor variables, d is the y intercept, and 𝜀 describes the 

residual between the predicted Cant flux by this multi-linear regression model and the simulated Cant uptake by model M. The 

free parameters a, b, c, and d were fitted based on the simulated inter-frontal sea surface salinity in the Southern Ocean, AMOC, 

Revelle factor, and Cant uptake.  
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 520 

Afterwards the constrained Cant flux is estimated by replacing the simulated inter-frontal sea surface salinity in the Southern 

Ocean, AMOC, and Revelle factor by the observed ones and by setting 𝜀 to zero. As the Revelle factor describes the inverse 

of the ocean capacity to take up Cant from the atmosphere, equation (2) should in principal be used with -
=8>8;;8"#$%&#

' . However, 

using 𝑅𝑒𝑣𝑒𝑙𝑙𝑒:;%<!;4  facilitates understanding and the presentation of the results and only introduces maximum errors of around 

0.1% for the Revelle factor adjustment for the models that simulate the largest deviations from the observed Revelle factor. 525 

To estimate the uncertainty, all model results were first corrected for their biases in the three predictor variables, i.e., if a model 

has a salinity that is 0.2 smaller than the observed salinity, the simulated Cant uptake by this model is increased by 𝑎 ∗ 0.2. The 

same correction is made for the other two predictor variables (Figure 3). If the three predictor variables were predicting the 

Cant flux perfectly, the bias-corrected Cant uptake from all models would be the same. The remaining inter-model standard 

deviation therefore represents the uncertainty from the multi-linear regression model due to other factors that influence the 530 

ocean Cant uptake. The second part of the uncertainty originates from the uncertainty in the observations of the predictor 

variables that influences the magnitude of the correction. This uncertainty (∆𝐶!"#%<?)	is calculated as follows: 

 

∆𝐶!"#%<? = ?(𝑎 ∗ ∆𝑆𝑆𝑆5%6#78&"	)$8!"	%<? )3 + (𝑏 ∗ ∆𝐴𝑀𝑂𝐶%<?)3 + @𝑐 ∗ ∆𝑅𝑒𝑣𝑒𝑙𝑙𝑒:;%<!;%<? A3,                      (3) 

 535 

with ∆𝑆𝑆𝑆5%6#78&"	)$8!"	%<? , ∆𝐴𝑀𝑂𝐶%<? , and ∆𝑅𝑒𝑣𝑒𝑙𝑙𝑒:;%<!;%<?  being the uncertainty of the three observed predictor variables. 

Eventually, the overall uncertainty of this constrained Cant flux is estimated as the square-root of the sum of the product of the 

square of both uncertainties. 

 

A.4 Validation of the identified constraint in CMIP5 540 

The here identified emergent constraint was derived from an ensemble of 17 ESMs from CMIP6. To test the robustness of 

emergent constraints, these constraints should be validated in an independent ensemble of ESMs (Hall et al., 2019). Here, we 

used all 6 ESMs from CMIP5 that provided all necessary output variables for this analysis (see Appendix A.1). For all these 
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models, the Cant uptake for the period from 1994 to 2007 and from 1850 to 2014 was predicted based on the simulated inter-

frontal sea surface salinity in the Southern Ocean, the AMOC strength, and the global ocean basin-wide averaged Revelle 545 

factor using the multi-linear relationship derived from the CMIP6 models (Figure A.4.1). 

 

 
Figure A.4.1. Global ocean anthropogenic carbon uptake simulated by Earth System Models from CMIP5 against the predicted 

uptake based on simulated predictors from CMIP6 models. Global ocean anthropogenic carbon uptake simulated by 6 ESMs from 550 
CMIP5 (Table A.1.1) a) from 1994 to 2007 and b) from 1850 to 2014 against the predicted anthropogenic carbon uptake based on the 

simulated CMIP6 predictors in each ESM: the inter-frontal annual mean sea surface salinity in the Southern Ocean, the Atlantic Meridional 

Overturning Circulation, and the Revelle factor adjusted for surface ocean CT. Please note that two ESMs are at almost the same place in a) 

with a predicted Cant uptake of around 31 Pg C. 

 555 

A.5 Comparison between simulated and observed CFC-11 concentrations 

Comparison between simulated and observed CFC-11 uptake allows to estimate the ventilation of waters from the surface 

waters to the deeper ocean (Hall et al., 2002). Although CFCs can roughly evaluate the ventilation rate of the ocean, no perfect 

agreement between CFCs and Cant can be expected as CFCs are not taken up at the same speed as Cant (i.e., fast air-sea 

equilibration time scale for CFC) and their solubility has a different temperature dependency than the solubility of Cant (warm 560 

waters can hold less CFCs but more Cant due to their low Revelle factor, whereas cold waters hold more CFCs but less Cant) 

(Revelle and Suess, 1957; Broecker and Peng, 1974; Weiss, 1974). These differences can lead to differences between uptake, 
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storage, and distribution of CFCs and Cant that can become especially large in high-latitude oceans (Matear et al., 2003; Terhaar 

et al., 2020b). 

 565 

Here, we use simulated CFC-11 from ESMs and observed CFC-11 from GLODAPv2.2021 (Lauvset et al., 2021) to provide 

further evidence that the inter-frontal sea surface salinity in the Southern Ocean and the AMOC are good indicators for the 

ocean ventilation and that ESMs tend to underestimate the ventilation of surface waters to the deeper ocean. Out of the 18 

ESMs from CMIP6, 10 provided simulated 3D-fields of CFC-11 (CanESM5, CESM2, CESM2-WACCM, EC-Earth-CC, 

GFDL-CM4, GFDL-ESM4, MRI-ESM2-0, NorESM2-LM, NorESM2-MM, UKESM1-0-LL). To compare these ESMs to the 570 

observed concentrations, all ESMs were sampled at the same time (month and year), the same latitude and longitude, and the 

same depth as the observations. To assess the ventilation below the mixed layer, we only used observations below 200 m. 

Furthermore, we limited our assessment to observations until 2004 as CFC-11 in the atmosphere has peaked in 1994 (Bullister, 

n.d.) and subducted waters since then might already re-emerge to the surface. Thus, 506000 measurements remained. As these 

measurements are not equally distributed, and strongly clustered in the Northern hemisphere (Lauvset et al., 2021), we mapped 575 

all measurements on a regular 5°x5° grid with 11 depth levels from 200 m to 6000 m that increase with depth. In each cell on 

the grid the average bias was calculated. Afterwards, the volume averaged bias was calculated for the Southern hemisphere 

and the North Atlantic (limited by the equator and 65°N) (Figure A.5.1). 

 

 580 
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Figure A.5.1. Biases in subsurface CFC-11 concentrations between observations against the Atlantic Meridional Overturning 

circulation and the Inter-frontal Southern Ocean Salinity. Basin-wide averaged biases in CFC-11 concentrations (observations minus 

simulated) below 200 m for all 10 ESMs that provided simulated CFC-11 (blue dots) (a) in the North Atlantic Ocean (north of the equator 585 
and limited by the Fram Strait, the Barents Sea Opening, and the Baffin Bay) and against the AMOC and (b) in the Southern hemisphere 

(south of the equator) against the inter-frontal annual mean sea surface salinity in the Southern Ocean. The observation-based estimates for 

the AMOC and the inter-frontal annual mean sea surface salinity in the Southern Ocean are shown as black crosses and with zero bias in 

CFC-11. 

 590 
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Code availability 

The mocsy2.0 code is publicly available via https://github.com/jamesorr/mocsy. 

 

Data availability 595 

All model output from CMIP is available via https://esgf-node.llnl.gov/search/cmip6/. 
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