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S.1. Methodology 

S.1.1. Correction of underway T and DO due to travel distance  

Despite the short travel distance of the sampled water from 1 m to the on-board bucket, two 

main effects could have been influenced this water due to its travel through the pipe: 1) 

warming, 2) consumption or production of DO. To quantify these potential effects, the in-situ 

water temperature and DO was measured with an independent handheld probe (YSI 

Professional Plus; previously calibrated on site) that was lowered to 1 m depth and also used 

at the bucket next to EXO2 probe, during five selected sites distributed during the campaign. 

The comparison of results between the YSI and EXO2 probe in these sites showed a 

consistent warming effect of the sampled water by 0.6 °C gained through the travel time in 

the pipe. Also, the DO was 1.2 mg L–1 consistently higher at the bucket compared to the in-

situ value at 1 m depth. This slight increase in DO in the bucket water does not seem to have a 

relation to changes in solubility of the gas in response to changes in temperature, salinity and 

pressure (i.e., an increase of 0.6 °C under the same salinity and pressure conditions results in 

a decrease of DO by 0.15 mg L–1), but rather it is due to the potential addition of DO in 

response to small turbulent flow generated at the outlet in the bucket. 

S.1.3. DNA Isolation, amplicon sequencing, and 16S quantification  

Triplicate samples for microbial community analysis were generated from 500 mL of water 

collected from the Niskin bottle. The water was homogenized and each of the three replicates 

was immediately passed through a sterile 0.2 µm Supor® filter using a hand-pump. The filter 

was suspended in a DNA/RNA shield (Zymo research) to preserve the genetic integrity of the 

samples and stored at room temperature for transport to the laboratory in Germany.  

The DNA/RNA shield was removed following a 10 min centrifugation at 12,000 G and DNA 

was extracted from the filter and any evident pellet using a phenol-chloroform protocol as has 

previously been described (Taubert et al., 2018). The V4/V5 region of the 16S rRNA gene 

was amplified using the modified Earth Microbiome Project primerset 515F (Parada) / 926R 

(Quince) (Parada et al., 2016; Quince et al., 2011) and sequenced on an inhouse Illumina 

MiSeq with a v3 kit (2x300 read length). Adapter and primer sequences were removed using 

cutadapt v2.1 (Martin, 2011). Amplicon sequence variants (ASVs) and likely chimeric reads 

were determined using DADA2 following the recommended settings (Callahan et al., 2016). 

Due to sequencing-run specific differences in ASVs from replicated samples, operational 

taxonomic units (OTUs) were subsequently defined using vsearch v2.9.1 at 97 % sequence 

identity that were then classified using the RDP classifier implemented in DADA2 with the 

Silva database v132 (Quast et al., 2012; Wang et al., 2007). OTUs classified as belonging to 



chloroplasts were removed. Analysis was carried out in Rstudio®, with R v3.5.2 (R Core 

Team, 2018), the Tidyverse package set (Wickham et al., 2019), and vegan v2.4-2 (Oksanen 

et al., 2007). Shifts in microbial community composition were visualized using Bray-Curtis 

dissimilarity values calculated from normalized OTU counts as determined with the 

metagenomeSeq package in R (Paulson et al., 2013). Relationships between Bray-Curtis 

dissimilatiry values and relevant environmental patterns were tested using the adonis2 

function within the vegan package, and due to collinearity between temperature and specific 

conductivity, marginal effects of each term were determined. Color schemes were based on 

previously published values form the ggsci package v2.9 (Xiao, 2018).  

Abundances of 16S genes were quantified using qPCR with Brilliant II SYBR Green qPCR 

Mastermix (Agilent Technologies). Bacterial 16S genes were quantified using the primer pair 

Bac308Fmod/Bac338R (Daims et al., 1999; Loy et al., 2002) and the archaeal 16S genes with 

the primer set Arch808F/Arch958R (DeLong, 1992; Takai and Horikoshi, 2000) with 

previously described cycling conditions (Herrmann et al., 2012). Standard curves exhibited 

efficiencies of 85-100% and r2 > 0.99 in all cases. Pseudo-absolute abundances were 

calcuated from the summed bacterial and archaeal 16S gene counts. 

The relative and pseudo-absolute abundances of putative methanogens and methanotrophs 

were based on the references provided by Kwon et al., 2017 and Dedysh and Knief, 2018; 

respectively.  
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Table S1 – Water properties measured at 20 stations sampled in Kolyma River during 15-16 June 2019 (upstream transect).  
Values in columns 4-9 are one minute averages from the continuous underway measurements. 

Station 
Longitude 

(East) 
Latitude 
(North) 

Tw 
(°C) 

pH 
DO 

(mg L–1) 
k 

(µS cm–1) 
fDOM 
(QSU) 

pCH4 

(µatm) 
FCH4 

(mmol m–2d–1) 
DOC 

(mg L–1) 
PP05 161° 18' 16.628" 68° 45' 5.062" 14.4 6.6 10.3 58.6 81.1 - 0.216 11.9 

PP06 161° 17' 22.459" 68° 42' 49.999" 13.8 6.9 11.2 82.4 60.6 25.3 0.204 8.2 

PP07 161° 19' 50.030" 68° 40' 15.999" 14.2 7.0 11.2 75.2 65.1 26.7 0.195 10.4 

PP08 161° 12' 32.288" 68° 37' 5.638" 13.4 7.2 11.4 111.6 60.0 17.3 0.192 8.6 

PP09 161° 10' 6.239" 68° 34' 11.729" 13.4 7.2 11.4 110.4 666.3 19.3 - 9.2 

PP10 161° 9' 46.630" 68° 32' 15.241" 15.0 6.7 11.0 48.0 98.8 24.5 0.020 10.1 

PP11 160° 57' 19.450" 68° 30' 24.052" 14.9 6.8 11.0 52.1 77.4 39.8 0.021 9.0 

PP12 160° 48' 28.771" 68° 31' 36.001" 13.6 7.2 11.6 97.4 190.0 22.3 0.013 8.6 

PP13 160° 39' 25.520" 68° 31' 25.819" 13.9 7.1 11.5 82.5 104.7 27.5 0.015 8.6 

PP14 160° 36' 0.359" 68° 29' 14.999" 13.9 7.1 12.0 86.2 64.7 24.6 0.019 8.5 

PP15 160° 31' 36.818" 68° 28' 21.421" 13.5 7.2 11.6 112.6 43.2 23.0 0.033 8.4 

PP16 160° 22' 46.441" 68° 30' 54.259" 14.0 7.1 11.5 75.7 26.7 27.9 0.017 9.4 

PP17 160° 12' 44.290" 68° 31' 40.551" 13.4 7.2 11.6 116.0 39.1 21.7 0.021 8.9 

PP18 160° 6' 5.068" 68° 34' 7.709" 14.8 7.1 11.4 112.4 52.0 - 0.019 10.2 

PP19 160° 5' 6.219" 68° 33' 4.189" 14.3 7.1 11.5 113.4 47.3 41.2 0.018 9.4 

PP20 159° 54' 7.538" 68° 33' 20.649" 13.8 7.2 11.6 109.9 58.5 20.2 0.022 8.8 

PP21 159° 46' 4.519" 68° 33' 18.389" 13.9 7.2 11.6 105.7 51.1 20.9 0.016 9.5 

PP22 159° 38' 0.629" 68° 34' 15.121" 13.8 7.2 11.6 116.1 56.8 21.0 - 7.9 

PP23 159° 23' 12.869" 68° 35' 55.258" 15.2 7.2 11.4 66.8 41.6 40.4 0.033 8.8 

PP24 159° 5' 25.404" 68° 38' 12.821" 14.2 7.2 11.6 106.2 57.5 23.6 0.015 8.1 

PP25 161° 18' 16.628" 68° 45' 5.062" 13.9 7.2 10.7 101.3 61.8 32.6 0.016 7.5 



S.3. Supplemental Figures 

 

Figure S1 - Water discharge curve in Kolyma River in 2019, data from Arctic Great 
Rivers Observatory (Shiklomanov et al., 2020). Discharge curve during freshet period from 
20 May (840 m3 s–1) to 10 July (3090 m3 s–1). Peak of the freshet: 31 May (27,700 m3 s–1). 
Vertical dashed lines indicate the sampling dates during the upstream transect (left line, 15-16 

June 2019) and the downstream transect (16-17 June 2019). 
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Figure S2 – Calculated distance from the transect to the bank 
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Figure S3 – Closer view to the measured surface pCH4 in key sites and at Leonid’s stream, 
where larger methane concentrations were observed compared to the surrounding areas.  
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Figure S4 – Linear correlation analysis between the conservative properties temperature and 
specific conductivity against the distance to bank z during the UP and DOWN transects for 
key sites.  
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Figure S5 – Linear correlation analysis between the conservative properties temperature and 
specific conductivity against the distance to bank z during the UP and DOWN transects for 
data in the rest of the transect.  
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Figure S6 – pCH4 obtained for the entire gridded polygon for the UP (top) and DOWN 

(bottom) transects after applying the random forest models as function of T and k. 
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Figure S7 – Comparison between modeled pCH4 from random forest regression and 
measured pCH4 along the UP (top) and DOWN (bottom) transects. 
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Figure S8 – qPCR graph showing the 16S abundance of bacteria (top) and archaea (middle) 
in samples from Kolyma River. Despite bacteria is three orders of magnitude more abundant 
than archaea, there is a positive linear correlation between them (bottom).  
 



 
 
 
 
 
 
 
 

 
 
 
Figure S9 - Relative (top) and total abundances (bottom) of archaeal microbial communities 
in water samples from Kolyma River distributed across 21 sampling stations. Methanotrophs 
(left) and methanogens (right).  
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Figure S10 – Dissolved Organic Carbon concentration in discrete samples collected in 21 
stations distributed along UP transect. 
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