

1 Nitrite Cycling in the Primary Nitrite Maxima of the Eastern 2 Tropical North Pacific

4 Nicole M. Travis¹, Colette L. Kelly¹, Margaret R. Mulholland², Karen L. Casciotti¹

6 ¹ Earth System Science, Stanford University, Stanford CA, 94305, USA

7 ² Department of Ocean, Earth and Atmospheric Science, Old Dominion University, Norfolk VA, 23529, USA

9 *Correspondence to:* Nicole M. Travis (ntravis@stanford.edu)

10 **Abstract.** The primary nitrite maximum (PNM) is a ubiquitous feature of the upper ocean, where nitrite accumulates
11 in a sharp peak at the base of the euphotic zone. This feature is situated where many chemical and hydrographic
12 properties have strong gradients and the activities of several microbial processes overlap. Near the PNM, four major
13 microbial processes are active in nitrite cycling: ammonia oxidation, nitrite oxidation, nitrate reduction and nitrite
14 uptake. The first two processes are mediated by the nitrifying archaeal/bacterial community, while the second two
15 processes are primarily conducted by phytoplankton. The overlapping spatial habitats and substrate requirements for
16 these microbes have made understanding the formation and maintenance of the PNM difficult. In this work, we
17 leverage high resolution nutrient and hydrographic data and direct rate measurements of the four microbial processes
18 to assess the controls on the PNM in the Eastern Tropical North Pacific. The depths of the nitrite maxima showed
19 strong correlations with several water column features (e.g., top of the nitracline, top of the oxycline, depth of the
20 chlorophyll maximum), whereas the maximum concentration of nitrite correlated weakly with only a few water
21 column features (e.g. nitrate concentration at the nitrite maximum). The balance between microbial production and
22 consumption of nitrite was a poor predictor of the concentration of the nitrite maximum, but rate measurements
23 showed that nitrification was a major source of nitrite in the ETNP, while phytoplankton release occasionally
24 accounted for large nitrite contributions near the coast. The temporal mismatch between rate measurements and
25 nitrite standing stocks suggests that studies of the PNM across multiple time scales are necessary.

26 **Short Summary (500 char.)** The primary nitrite maximum is a ubiquitous upper ocean feature where nitrite
27 accumulates, but we still do not understand its formation and the co-occurring microbial processes involved. Using
28 correlative methods and rates measurements, we found strong spatial patterns between environmental conditions and
29 depths of the nitrite maxima, but not the maximum concentrations. Nitrification was the dominant source of nitrite,
30 with occasional high nitrite production from phytoplankton near the coast.

31 1 Introduction

32 Nitrogen (N) availability often controls ocean primary productivity through its role as a limiting nutrient. In marine
33 systems, nitrate makes up over 88% of the bioavailable ('fixed') N pool, with dissolved organic N representing the
34 next largest pool of fixed N (Gruber, 2008). However, the vertical distributions of these species render them
35 unavailable to many of the microbes that require them. For example, nitrate is depleted in euphotic surface waters

36 where primary production is confined, but abundant in waters below the euphotic zone. Other inorganic fixed N species,
37 e.g., nitrite and ammonium, are present in smaller quantities, and their production and consumption are tightly coupled
38 in the marine environment. In the upper ocean, the nitracline demarcates a spatial transition where nitrate, nitrite and
39 ammonium may all be available to microbes simultaneously. In particular, the primary nitrite maximum (PNM) is a
40 ubiquitous feature of the upper ocean. In the Pacific Ocean, the median nitrite concentration across PNM features is
41 237 nM (GLODAP), although concentrations as high as 2.8 μ M have been reported (Brandhorst, 1958; Carlucci et al.,
42 1970; Dore and Karl, 1996; Wada and Hattori, 1972; GLODAP, V2). In addition, nitrite can be present throughout
43 the entire surface water column (Lomas and Lipschultz, 2006; Zakem et al., 2018). The accumulation of nitrite at the
44 PNM occurs at a depth horizon where dynamic N cycling occurs, and it can appear and disappear within the span of
45 only 25 meters. The PNM location generally coincides not only with the top of the nitracline, but also with the depth
46 of the oxycline, the depth of the chlorophyll maximum, and just below or coincident with an ammonium maximum
47 near the base of the euphotic zone (Dore and Karl, 1996; Herblan and Voituriez, 1979; Holligan et al., 1984; Kiefer
48 et al., 1976; Zafiriou et al., 1992; Zakem et al., 2018). The consistent strong spatial relationships between nitrite,
49 nitrate, and chlorophyll concentrations hint at a relationship between these environmental parameters and nitrite
50 production, but does not provide a clear mechanism.

51 Because the PNM sits at a depth where many environmental parameters and microbial N transformations are in
52 transition, determining the exact controls on nitrite accumulation in the PNM remains difficult (Lomas and Lipschultz,
53 2006; Wan et al., 2021, 2018; Zakem et al., 2018). Near the PNM, the three main microbial groups involved in nitrite
54 cycling are ammonia oxidizers, nitrite oxidizers and phytoplankton. Nitrification comprises the oxidation of ammonia
55 to nitrate with nitrite as an intermediate. Archaeal ammonia oxidizers dominate the oxidation of ammonia to nitrite
56 (Francis et al., 2007, 2005; Mincer et al., 2007; Santoro et al., 2010; Schleper et al., 2005), while bacterial nitrite
57 oxidizers convert nitrite to nitrate (Lücker et al., 2013, 2010; Ward and Carlucci, 1985; Watson and Waterbury, 1971).
58 Many phytoplankton can also both produce and consume nitrite. Traditionally, phytoplankton are thought to be
59 consumers of inorganic N, but it is now well documented that they also release inorganic N, including nitrite (AlQutob
60 et al., 2002; Collos, 1998, 1982; Lomas and Glibert, 2000). Nitrification and photosynthesis can co-occur near the
61 depth of the PNM, so the extent to which they contribute to PNM formation and what factors influence the magnitude
62 and depth of the PNM depends on how these microbes interact and transform nitrogen and how microbial physiologies
63 respond to gradients in environmental conditions (Ward et al., 1989).

64 The combination of each microbial group's physiological responses to environmental parameters controls the vertical
65 profiles of concentrations of different N species and leads to accumulation of nitrite at the PNM. Imbalance between
66 the two steps of nitrification has been used to explain nitrite accumulation; variations in light levels may cause
67 differential photoinhibition or differential recovery from photoinhibition of nitrite oxidizers leading to accumulation
68 of nitrite (Guerrero and Jones, 1996; Olson, 1981). Ammonia-oxidizing bacteria are less sensitive to light, have quicker
69 recovery times to light stress, and are active at higher rates under light stress compared to nitrite-oxidizing bacteria
70 (Guerrero and Jones, 1996; Olson, 1981). Recent studies focusing specifically on the numerically dominant ammonia
71 oxidizing archaea (AOA), have shown high variation in light tolerance across AOA phylotypes which may explain

72 the lack of strong light inhibition of ammonia oxidation in some studies (Horak et al., 2018; Merbt et al., 2012; Smith
73 et al., 2014). Additionally, nitrification rates are substrate-dependent and constrained to places and times when
74 ammonia and nitrite are both available (Martens-Habbena et al., 2009). Nitrite is also taken up by phytoplankton but
75 this process is thought to be light dependent (Lomas and Glibert, 2000; Mulholland and Lomas, 2008). Nitrite release
76 from phytoplankton is also well documented in culture studies (Al-Qutob et al., 2002; Collos, 1998), but it is still
77 unclear whether nitrite release occurs during incomplete nitrate reduction under low light conditions when energy for
78 its complete assimilation is limited, under fluctuating high light conditions as a photoprotective mechanism, or as a
79 stress response to high light levels (Collos, 1982; Kiefer et al., 1976; Lomas and Glibert, 1999, 2000; Wada and Hattori,
80 1971).

81 Accumulation of nitrite occurs when the rate of its production exceeds that of its loss via consumption or diffusion.
82 Thus, the presence of the PNM is an indicator of conditions where production and consumption of nitrite are, or have
83 recently been, imbalanced (Wada and Hattori, 1971). The accumulation of nitrite in the PNM may provide valuable
84 insight into the balance of relative rates of microbial nitrite cycling in the upper ocean, as it indicates a zone where
85 biologically mediated processes are not in balance and may be experiencing differential inhibition or limitation. Rarely
86 are the four major microbial processes related to PNM formation (ammonia oxidation, nitrite oxidation, nitrate
87 reduction and nitrite uptake) measured simultaneously in the field. The few paired rate measurements that exist tend
88 to show that ammonia oxidation rates exceed nitrite oxidation rates in the PNM, suggesting nitrite oxidation is the rate
89 limiting step in the reaction pair and a potential mechanism for nitrite accumulation (Beman et al., 2013; Schaefer and
90 Hollibaugh, 2017; Füssel et al., 2012; Peng et al., 2015; Santoro et al., 2013; Ward et al., 1982). However, the lack of
91 paired measurements focused on the sharp PNM boundaries limits our understanding of the coupling between the two
92 steps of nitrification or other processes affecting nitrite accumulation across these depths. Higher resolution paired
93 measurements will allow us to investigate how environmental gradients create vertical zonation in the relative rates of
94 nitrite-cycling processes that lead to nitrite accumulation within narrow depth horizons. Previous investigations of the
95 PNM have typically focused on nitrifier communities or phytoplankton communities separately, although it is
96 understood that the niches of these communities overlap, and that both may contribute to nitrite accumulation. The
97 studies that have measured both phytoplankton and nitrifier processes (Mackey et al., 2011; Santoro et al., 2013; Wan
98 et al., 2018; Ward, 2005) support the idea that physiological constraints and competitive interactions between these
99 groups drive resource use and nitrite accumulation (Smith et al., 2014; Wan et al., 2021; Zakem et al., 2018).

100 Understanding the controls on rates of co-occurring nitrite cycling processes will help clarify the distributions of
101 microbial activity and how relative rates of these processes may change due to future environmental perturbations.
102 For example, understanding the controls on and patterns of nitrification in the surface ocean is critical for
103 understanding new production, as estimates suggest more than 30% of oceanic primary production is supported by
104 nitrate supplied by nitrification in the euphotic zone (Santoro et al., 2010; Ward et al., 1989; Yool et al., 2007). In
105 addition, the relative contributions of nitrification and phytoplankton activity to the formation of the PNM may also
106 be important for understanding the potential for nitrous oxide formation in the surface ocean (Burlacot et al., 2020;
107 Kelly et al., 2021; Plouviez et al., 2019; Santoro et al., 2011).

108 To investigate the relative contributions of nitrification and phytoplankton processes to net accumulation of nitrite at
109 the PNM feature, we measured rates of four microbially-mediated nitrite cycling processes (ammonia oxidation, nitrite
110 oxidation, nitrate reduction and nitrite uptake) in vertical profiles through the PNM. We analyzed spatial and regional
111 variations in environmental conditions and water column features associated with the PNM, as well as the rates of
112 nitrite production and consumption.

113 **2 Methods**

114 **2.1 Hydrography and nutrient analyses**

115 This study is based on data collected from four cruises to the Eastern Tropical North Pacific Ocean (ETNP) between
116 April 2016 and June 2018 (RB1603 – *R/V Ronald Brown*, April 2016; SKQ201617s – *R/V Sikuliaq*, December 2016;
117 SR1805 – *R/V Sally Ride*, April 2018; and FK180624 – *R/V Falkor*, June 2018; Figure 1). The ETNP hosts one of the
118 largest oceanic oxygen deficient zones (ODZs) and is a region of active nitrogen cycling. Oxygen concentrations
119 decline precipitously from saturated surface water concentrations to nanomolar levels across the oxycline in much of
120 the study area (Cline and Richards, 1972), with oxygen deficient waters beginning as shallow as 15 m at some coastal
121 stations. This study focused on nitrite cycling in the upper water column near the PNM, and all rate data were collected
122 in oxygenated waters in or above the oxycline.

123 Fifty-three stations were occupied during these cruises, and hydrographic observations of temperature, salinity, and
124 oxygen were made using a CTD package (RB1603 – Sea-Bird SBE 11+ CTD, SKQ201617s/SR1805/FK180624 –
125 Sea-Bird SBE 911+ CTD). Fluorescence and photosynthetically active radiation (PAR) measurements were measured
126 at a subset of stations (RB1603 – LiCor Biospherical Photosynthetically Active Radiation Sensor/SeaPoint
127 Chlorophyll Fluorometer). Discrete water samples were collected from Niskin bottles mounted to the CTD rosette to
128 measure dissolved inorganic N concentrations. Nitrite and ammonium concentration measurements were typically
129 made immediately onboard the ship, while samples for nitrate concentration measurements were 0.22 μ m filtered and
130 frozen in 60-ml HDPE bottles for analysis at a shore-based laboratory. During the 2016 cruise, a pump profiling system
131 (PPS; as described in Codispoti et al., 1991) was also deployed with a separate CTD package (Seabird SBE19+,
132 WetStar Fluorometer) at all 16 stations.

133 For all cruises, nitrite concentrations were measured colorimetrically with a detection limit of ~200 nM (Strickland
134 and Parsons, 1972). Briefly, five ml of sample water from each Niskin bottle was reacted with 200 μ l each of
135 sulfanilamide and N-(1-NAPHTHYL)ethylenediamine reagents, and absorbance at 543 nm was measured after a 10
136 min reaction time and converted to concentration using a standard curve, with an overall precision of $\pm 0.006 \mu$ M.
137 Ammonium concentrations were measured shipboard using a fluorometric method after derivatization with ortho-
138 phthaldialdehyde (OPA) reagent (Holmes et al., 1999). Samples and standards were reacted with OPA for ~8 hours at
139 4°C in the dark before measurement. In 2016, samples for nitrate plus nitrite were collected from discrete depths using
140 Niskin bottles mounted to a CTD rosette and analyzed shipboard using an Astoria Pacific autoanalyzer according to
141 the manufacturer's specifications using standard colorimetric methods (Strickland and Parsons, 1972). In 2017, nitrate

142 plus nitrite samples were analyzed using standard colorimetric methods on a Technicon Autoanalyzer at the University
143 of Washington. In 2018, nitrate plus nitrite was measured after Cd reduction using a WestCo SmartChem 200 Discrete
144 Analyzer at Stanford University, with an overall precision of $\pm 0.6 \mu\text{M}$ and detection limit of 85 nM (Miller et al 1998,
145 Rajacovic 2008). Nitrate concentrations were calculated by subtracting nitrite from the concentration of nitrate plus
146 nitrite for all cruises. During the 2016 cruise (RB1603), cast water from the PPS was pumped directly through a Fast
147 Repetition Rate Fluorometer (FRRF) for chlorophyll *a* fluorescence measurements and then to an Alpkem Astoria-
148 Pacific rapid-flow analysis system for near-continuous profiles of nitrate, nitrite, and ammonium concentrations at one
149 measurement per second and binned to every meter (Holmes et al., 1999; Sakamoto et al., 1990; Strickland and Parsons,
150 1972).

151 Water column profiles were analyzed to determine station-specific water column features (Table 1). The depth of the
152 top of the nitracline (Z_{nit}) was identified as depth at which nitrate concentration increased by 1 μM compared to a
153 reference depth of 20 m (Cornec et al., 2021). In addition, the standard nitracline depth (Z_{mnit}) was identified as where
154 the nitrate gradient was steepest. Similarly, the top of the oxycline (Z_{oxy}) was identified as the depth at which oxygen
155 concentration decreased by 5 μM relative to the concentration at a depth of 20 m. The standard oxycline depth (Z_{moxy})
156 was where the oxygen gradient was steepest. Other station-specific water column features included the depth and
157 concentration of the nitrite maximum (m and μM , respectively), the depth and concentration of the chlorophyll
158 maximum (m and mg m^{-3} , respectively), the depth and concentration of the ammonium maximum (m and nM,
159 respectively), and the depth at which 1% of the surface photosynthetically active radiance (PAR) was present (m).
160 Concentrations/characteristics of these variables at the depth of the nitrite maximum were also calculated (e.g., nitrate
161 concentration ($\text{NO}_3^-_{\text{pnm}}$), chlorophyll concentration (Chl_{pnm}), ammonium concentration ($\text{NH}_4^+_{\text{pnm}}$), oxygen
162 concentration (O_2_{pnm}), temperature (T_{pnm}), density (D_{pnm}), percent of surface PAR (PAR_{pnm})). The Brunt-Väisälä
163 frequency (BV_{pnm}) was calculated at the PNM nitrite maximum ($\pm 8 \text{ m}$) using the equation $N = \sqrt{\frac{-g}{\rho} * \frac{d\rho}{dz}}$, where g is
164 the acceleration due to gravity (m s^{-2}), z is depth (m) and ρ is density (kg m^{-3}). Depth-integrated concentrations of
165 nitrate, nitrite, and ammonium ($\mu\text{mol N m}^{-2}$) were calculated for the euphotic zone (upper 120 m), capturing the
166 entirety of the PNM feature.

167

168 **Table 1. Water Column Feature Acronyms, Definitions and Units**

169 Symbol	170 Definition	Unit
PNM	Primary nitrite maximum, whole feature	—
Chl_{max}	Concentration of the deep chlorophyll maximum	mg m^{-3}
$\text{NH}_4^+_{\text{max}}$	Concentration of the ammonium maximum	nM
$\text{NO}_2^-_{\text{max}}$	Concentration of the PNM nitrite maximum	μM
Z_{chl}	Depth of the deep chlorophyll maximum	m
Z_{NH4}	Depth of the ammonium maximum	m
Z_{NO2}	Depth of the PNM nitrite maximum	m

Z _{nit}	Depth of top of the nitracline	m
Z _{mnit}	Depth of steepest gradient in nitracline	m
Z _{oxy}	Depth of the top of the oxycline	m
Z _{moxy}	Depth of steepest gradient in oxycline	m
Z _{PAR}	Depth of 1% surface PAR	m
Chl _{pnm}	Chlorophyll concentration at the PNM peak	mg m ⁻³
NH ₄ ⁺ _{pnm}	Ammonium concentration at the PNM peak	nM
NO ₃ ⁻ _{pnm}	Nitrate concentration at the PNM peak	μM
T _{pnm}	Temperature at the PNM peak	C
D _{pnm}	Density at the PNM peak	kg m ⁻³
PAR _{pnm}	Percent of surface PAR at the PNM peak	%
O ₂ _{pnm}	Oxygen concentration at the PNM peak	μM
BV _{pnm}	Brunt Väisälä Frequency at the PNM peak	s ⁻¹
NH ₄ ⁺ _{Int}	Depth integrated ammonium over upper 120 m	nmol N m ⁻²
NO ₂ ⁻ _{Int}	Depth integrated nitrite over upper 120 m	μmol N m ⁻²
NO ₃ ⁻ _{Int}	Depth integrated nitrate over upper 120 m	μmol N m ⁻²
Chl _{Int}	Depth integrated chlorophyll over upper 120 m	mg m ⁻²

171

172 **2.2 Nitrite cycling rates**

173 Rates of ammonia oxidation, nitrite oxidation, nitrate reduction and nitrite uptake were measured at 12 of the 53
 174 stations occupied over 4 cruises from 2016-2018 (Fig. 1a), including five stations from 2016, two stations in 2017,
 175 and five stations in 2018. At each of these stations during a pre-dawn cast, 3-4 depths near the PNM were sampled
 176 based on real-time CTD fluorescence data during the downcast, targeting depths both within the chlorophyll maximum
 177 and on the upslope and downslope of its peak (Table S1). When available, nitrite profiles from previous casts were
 178 consulted to guide sampling based on the location of the PNM within the chlorophyll maximum.

179 From each depth, six clear 500-ml polycarbonate (PC) Nalgene bottles were triple-rinsed and filled directly from the
 180 Niskin bottle for light incubations. Additionally, six 500-ml or 1-L amber high-density polyethylene (HDPE) Nalgene
 181 bottles were triple-rinsed and filled for paired dark incubations. One of three ¹⁵N-labeled nitrogen substrates (K¹⁵NO₃⁻
 182 enriched at 99.5 atm%, Na¹⁵NO₂⁻ enriched at 98.8 atm% or ¹⁵NH₄Cl enriched at 99.5 atm%) was added to duplicate
 183 bottles to achieve enrichments of 200 nM ¹⁵N. High tracer enrichment in samples with low ambient concentrations
 184 may lead to enhancement of rates, which are best characterized as potential rates; care must be taken when interpreting
 185 results. After gentle mixing, a 60 ml subsample was syringe-filtered (0.22 μm pore size Sterivex) to determine initial
 186 concentration and ¹⁵N enrichment of the substrate pool. Approximately 10 ml was used for shipboard measurement of
 187 the initial concentrations of total nitrite or ammonium (ambient concentration plus ¹⁵N-labeled DIN addition). The
 188 remaining 50 ml was frozen at -20 °C in a 60-ml HDPE bottle for measurement of total nitrate concentration and
 189 isotopic enrichment in a shore-based laboratory.

190 Each incubation bottle was placed in a deck-board incubator that approximated the ambient light level from the sample
191 collection depth, achieved using neutral density screening. The percent PAR in the incubators was recorded using a
192 submersible Licor PAR meter or an *in situ* HOBO light and temperature logger (~1%,~4%,~20% surface PAR).
193 Incubators were plumbed with flow-through surface seawater to maintain a consistent water temperature. However,
194 surface water temperatures were often significantly warmer than those at collection depth and could have biased some
195 of the incubation results. Subsamples were collected from each incubation bottle after approximately 8, 16 and 24 hrs.
196 Samples were syringe-filtered (0.22 μ m pore size Sterivex) and frozen in 60-ml HDPE bottles for nutrient and isotope
197 analysis in a shore-based laboratory. At the end of the incubation (24 hr), the remaining ~300 ml of water was filtered
198 onto a pre-combusted (450°C for > 4 h) GF/F (0.7 μ m) filter; the filter was folded and placed into a cryovial and stored
199 at -80 °C for later analysis of particulate $\delta^{15}\text{N}$ at the University of Hawaii Isotope Lab. All seawater samples were
200 stored frozen until the time of isotopic analysis. Incubation bottles were acid washed and re-used for experiments
201 using the same ^{15}N substrate.

202 **2.3 Isotope analysis and rate calculations**

203 For estimates of ammonia oxidation, nitrite oxidation and nitrate reduction rates, samples collected from each
204 timepoint were analyzed for ^{15}N enrichment of the respective product pool (Table 2). For each sample, the product
205 was converted to nitrous oxide either by bacterial (*P. aureofaciens*) conversion using the denitrifier method (McIlvin
206 and Casciotti, 2011; Sigman et al., 2001) or chemical conversion using the azide method (McIlvin and Altabet, 2005).
207 Isotopic analysis via the denitrifier method was used for measurement of $^{15}\text{NO}_x$ (ie. $^{15}\text{NO}_3^- + ^{15}\text{NO}_2^-$) in ammonia
208 oxidation and nitrite oxidation experiments. Measurements of nitrite oxidation required pre-treatment of samples to
209 remove any remaining $^{15}\text{N-NO}_2$ prior to analysis of $\delta^{15}\text{N-NO}_3$ (Granger and Sigman, 2009). Briefly, 10 ml of each
210 sample was treated with 100 μl of 4% sulfamic acid in 10% hydrochloric acid for 15 min, after which the pH was
211 neutralized using 85 μl of 2M sodium hydroxide before proceeding with denitrifier method. Samples were prepared
212 in volumes targeting 20 nmoles nitrate. The azide method was used to prepare nitrite produced from nitrate reduction
213 experiments for isotopic analysis (McIlvin and Altabet, 2005). Nitrite was converted to nitrous oxide by incubating
214 for ~30 min with a 2M sodium azide solution in 20% acetic acid. The reaction was neutralized with 6M sodium
215 hydroxide prior to isotope analysis. Since nitrite product concentrations were low (<2 μM), a significant portion of
216 the nitrite in the samples was newly created from ^{15}N -labeled nitrate, thus carrier nitrite (5-10 nmoles) of known
217 isotope value was added to dilute the ^{15}N enrichment and increase overall concentration of nitrite in the samples before
218 isotopic analysis. Samples were analyzed in volumes targeting 10 nmoles of nitrite.

219 The isotopic composition of the nitrous oxide produced from each sample was measured in the Casciotti Laboratory
220 at Stanford University using an isotope ratio mass spectrometer (Thermo-Finnigan Delta^{PLUS} XP) fitted with a custom
221 purge-and-trap gas purification and concentration system (McIlvin and Casciotti, 2011). Each set of 9 samples was
222 bracketed with international reference materials to correct for instrument drift and sample size, and to calibrate isotope
223 values. USGS32, USGS34, and USGS35 (Böhlke et al., 2003) were used to calibrate nitrate isotope analyses, and
224 RSIL-N23, N7373 and N10219 (Casciotti et al., 2007) were used to calibrate nitrite isotope analyses. For nitrate

225 reduction samples, additional mass balance corrections were made to correct for the addition of nitrite carrier to the
 226 product pool before calculation of rates. The denitrifier method for natural abundance nitrate isotope analyses typically
 227 has a precision of better than 0.5‰ for $\delta^{15}\text{N}$ (McIlvin and Casciotti, 2011; Sigman et al., 2001), although standard
 228 deviations are often higher for isotopically enriched samples. Here, the mean analytical precision of $\delta^{15}\text{N-NO}_x$, $\delta^{15}\text{N-NO}_3$,
 229 $\delta^{15}\text{N-NO}_2$ measurements of ^{15}N -labeled samples were $\pm 4.2\text{‰}$, $\pm 4.6\text{‰}$ and $\pm 0.7\text{‰}$, respectively, corresponding
 230 to mean coefficient of variance (CV%) of 5.3%, 0.56% and 9.7%, respectively (Table 2).

231 **Table 2. Nitrite cycling reactant and product pools as analyzed by isotope rate mass spectrometry.**

232

Microbial Process	Reactant	Product	Prep Method	Precision(‰)	CV %
Ammonia Oxidation	$^{15}\text{NH}_4\text{Cl}$	$^{15}\text{NO}_3^- + ^{15}\text{NO}_2^-$	Denitrifier	4.2	5.3
Nitrite Oxidation	$\text{Na}^{15}\text{NO}_2$	$^{15}\text{NO}_3^-$	Sulfamic-treated + Denitrifier	4.6	0.56
Nitrate Reduction	K^{15}NO_3	$^{15}\text{NO}_2^-$	Azide w/cARRIER	0.7	9.7

233

234 Rate calculations were made by tracking the increase in product ^{15}N over the incubation period (Ward, 1985). For
 235 ammonia oxidation the equation is as follows:

$$236 V_{\text{NH}_3} = \frac{\Delta[^{15}\text{NO}_X]_{t_8-t_0}}{af^{15}\text{NH}_3 t_0 \times \Delta t \times 24} \quad (1)$$

237 where $\Delta[^{15}\text{NO}_X]_{t_8-t_0}$ is the change in product $^{15}\text{NO}_X$ concentration between the start of the incubation and the 8 h
 238 timepoint (nM), $af^{15}\text{NH}_3 t_0$ is the atom fraction of $^{15}\text{NH}_3$ substrate available at the start of the incubation period,
 239 and Δt is the change in time (hours). While the initial ^{15}N in the substrate pool was directly measured at time zero
 240 for use in rate calculations, the addition of 200 nM ^{15}N tracer led to variable atom fraction of ^{15}N in the substrate
 241 pool across experiments, which was calculated from ambient and tracer substrate concentrations. Paired dark and
 242 light incubation samples were used to convert hourly rates to daily rates using a simple assumption of a 12 hr
 243 light:12 hr dark daily cycle. The ammonia oxidation rate, V_{NH_3} , is thus reported in units of nM N day $^{-1}$. A similar
 244 equation was used to calculate nitrite oxidation and nitrate reduction rates, substituting the appropriate substrate and
 245 product species for each process (Table 1). Some dark incubation data were not available for nitrate reduction
 246 measurements in 2016, so those daily rates were calculated using 24 hr light incubated rates and may be
 247 overestimates. The 16 h and 24 h time point samples were analyzed but not used to calculate rates as experiments
 248 showed non-linear trends after 8 hours of incubation due to substrate depletion. Based on a threshold increase in
 249 product $\delta^{15}\text{N}$ compared to the initial product, a theoretical detection limit was calculated to estimate the rate we can
 250 reasonably expect to discern from zero (Santoro et al., 2013). This calculation is sensitive to both the $\delta^{15}\text{N}$ of the
 251 substrate pool, the concentration of the product pool, and the CV% for $\delta^{15}\text{N}$ measurements. The threshold for
 252 detectable change in product $\delta^{15}\text{N}$ was approximated using the maximum CV% for each experiment. For example, if

253 the standard deviation in replicates for a sample with a $\delta^{15}\text{N}$ of 25‰ was ± 0.6 , a CV% of 2.4% was used as the
254 theoretical detectable difference between initial and final ^{15}N enrichment in the product pool. Where available, the
255 maximum CV% for each experimental unit was used to calculate the theoretical limit of detection for each depth
256 (Table S1b). The mean theoretical detection limits for ammonia oxidation, nitrite oxidation and nitrate reduction
257 were 0.5, 6.9, and 0.9 nM day⁻¹, respectively. Experimental bottle duplicates were conducted for most rate
258 measurements and those standard deviations are reported with the final rate data (Table S1b).

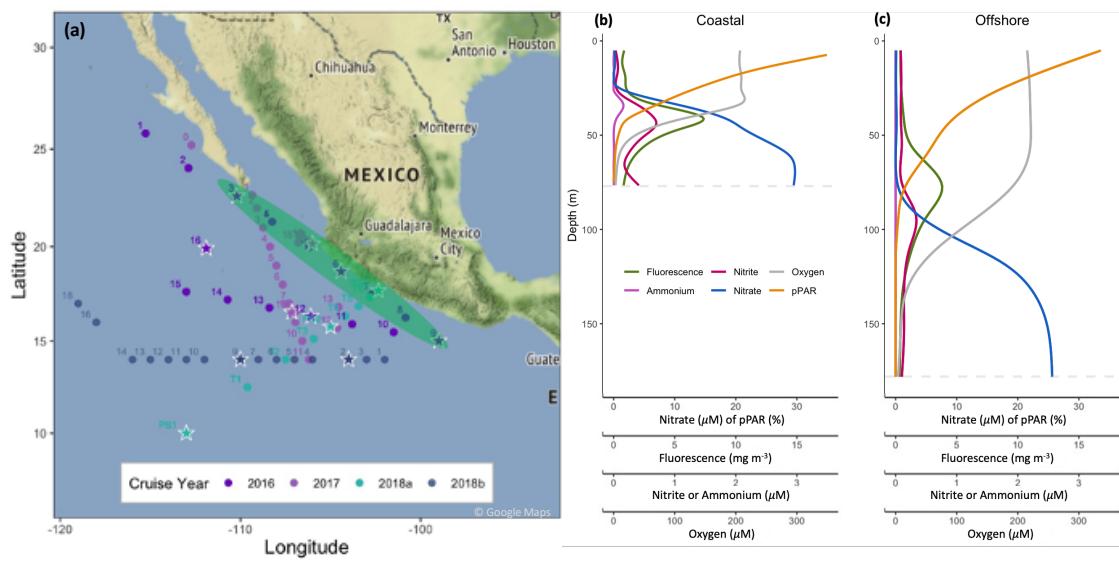
259 Filters from nitrite uptake rate experiments were dried overnight and packed in tin capsules before shipment to the
260 Biogeochemical Stable Isotope Facility at the University of Hawaii, where samples were analyzed on a Thermo
261 Scientific Delta V Advantage isotope ratio mass spectrometer coupled to a Costech Instruments elemental analyzer.
262 Rate calculations relied on ^{15}N enrichment of the particulate organic nitrogen over the 24 h incubation period as in
263 Dugdale and Goering (1967). Uptake rates were calculated according to Dugdale and Wilkerson (1986) where the
264 initial ^{15}N atom percent fraction of the reactant pool was calculated assuming 0.3663 for the ^{15}N atom percent of the
265 ambient substrate pool and 98.8 atm‰ $^{15}\text{N-NO}_2^-$ of the isotope tracer addition. Nitrite uptake rates may be
266 underestimated due to dilution of the substrate pool via regeneration over the 24 incubation period, and loss of tracer
267 to unmeasured DON pools (Bronk et al., 1994; Glibert et al., 2019). No correction was made for possible rate
268 enhancement due to tracer addition (Dugdale and Wilkerson, 1986).

269 **2.4 Multiple Linear Regression Analysis**

270 Multiple linear regression (MLR) models were built to assess the environmental variables that influence the depth and
271 magnitude of the PNM feature in the ETNP. The first set of MLR models ('full' models) used semi-continuous
272 measurements (temperature, density, oxygen, chlorophyll fluorescence, PAR, nitrate, nitrite and ammonium) from
273 CTD/PPS casts collected at 16 stations on the 2016 cruise to predict nitrite concentration. Nitrate, nitrite and
274 ammonium data were natural-log transformed to satisfy normal distribution assumptions of the multiple linear
275 regression analyses. Using the R package *leaps*, the model was optimized using a best-subsets selection of the full
276 variable set to maximize R^2 and minimize root mean squared error for each potential model size using 10-fold cross
277 validation to calculate test error for each sized model (optimization led to selection of 19 variables out of 27 possible
278 explanatory variables – 7 main and 20 single interactions terms) (Miller, 2020). The model size that minimized test
279 error was selected, and a best-subsets selection method was used to determine the optimal variable coefficients. MLR
280 coefficients from the optimized models were then used to predict nitrite concentration for station depth profiles in the
281 ETNP. Three variations on the 'full' model were made using data from: 1) all stations, 2) a subset of coastal stations
282 (6, 7, 8, and 9) and 3) a subset of offshore stations (13, 14, 15 and 16). Subsets of stations were selected as exemplary
283 of the coastal and offshore regimes based on proximity to the coast, concentration of the chlorophyll maxima, and
284 nitracline depths. The selection criteria for coastal stations used in MLR construction included being close to a
285 coastline, nitracline <40 m depth and chlorophyll maximum larger than 9.5 mg m⁻³. Offshore stations were selected
286 based on furthest distance from a coastline. Not all stations proximal to the coastline were characterized as coastal
287 (see map) nor included in the 'coastal' subset used to train the model (Table S2a, b).

288 Using the same subsets of ‘coastal’ and ‘offshore’ stations, a second set of MLR models (‘core’ models) was built
289 using a more limited set of core variables from the PPS data that focused on phytoplankton and nitrifier physiology
290 and metabolism (chlorophyll, nitrate, ammonium, oxygen and percent PAR). These five environmental variables, their
291 quadratic terms and single interaction terms were included for 20 parameters in total. This model experiment was
292 constructed to assess the relative importance of these core variables between ‘coastal’ and ‘offshore’ regimes;
293 therefore, no model size optimization was used to limit variables. Instead, optimized coefficients for all variables were
294 determined, and variables that contributed less than 2% of total R^2 in both regional models were discarded. In two
295 cases, a variable that was discarded from one regional model was added back to keep the variable list identical between
296 both models for ease of comparison. For example, in the coastal ‘core’ model, the quadratic term for chlorophyll
297 contributed less than 2% to total R^2 but contributed greater than 2% relative importance within the offshore ‘core’
298 model, and was therefore retained in both models. In the offshore ‘core’ model, PAR was initially removed during the
299 optimization processes because it contributed less than 2% to model R^2 , but was ultimately retained because it
300 contributed greater than 2% relative importance within the coastal ‘core’ model. The relative percent importance of
301 each variable was calculated by iterative random-ordered removal of each variable to estimate percent contribution to
302 total model R^2 using the *relaimpo* package in R (Grömping, 2006).

303 **3 Results**

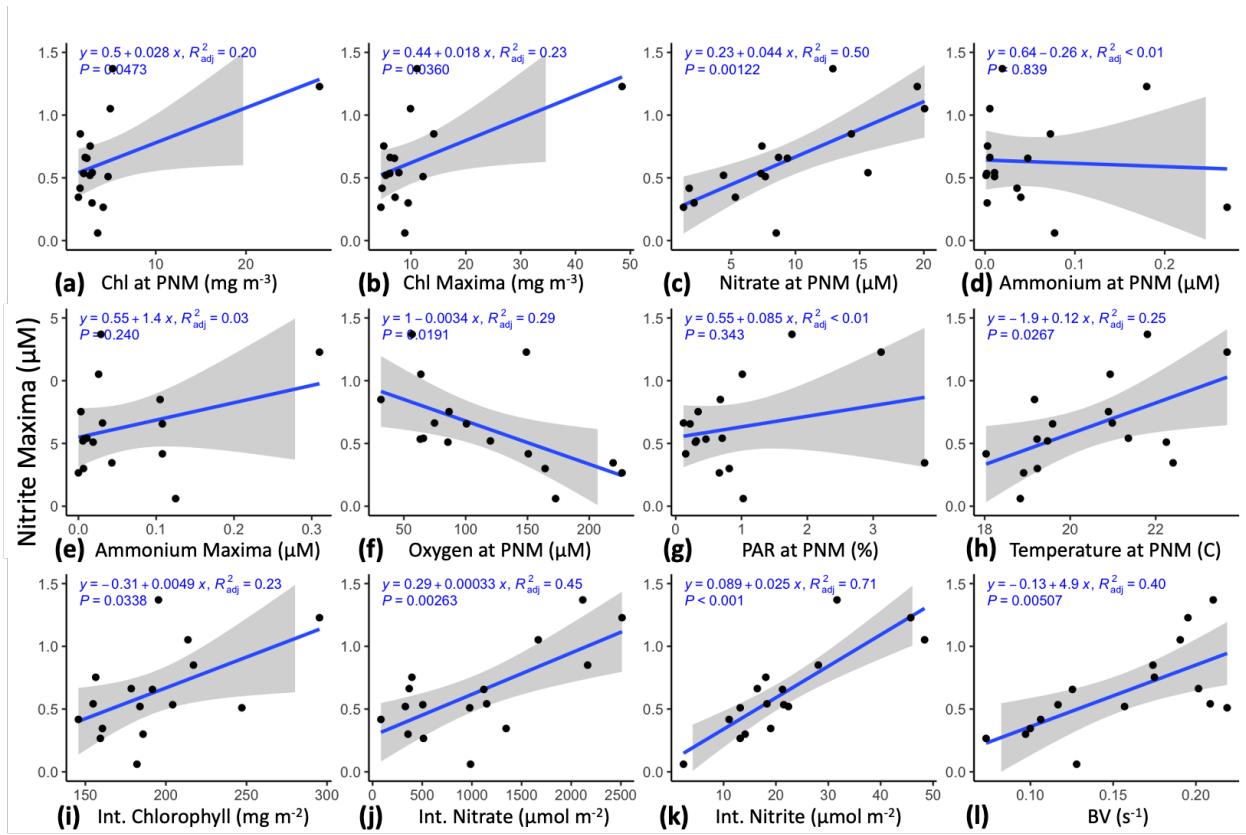

304 **3.1 PNM structure and environmental conditions**

305 The typical PNM feature in the ETNP was a unimodal nitrite accumulation situated just below the chlorophyll
306 maximum and at the top of the nitracline (e.g., Fig. 1b, c). The PNM feature can be described using characteristics of
307 the PNM peak (i.e., maximum nitrite concentration (μM) and depth of the nitrite maximum (m)) and an integrated
308 nitrite quantity for the whole PNM feature. Although nitrite can seasonally accumulate all the way to the surface in
309 some regions (Zakem et al., 2018), homogenous surface nitrite concentrations were not observed in this dataset. Across
310 the ETNP study region, stations showed similar relative water column structures in the upper 200 m, although the
311 exact depth and magnitude of features varied. Generally, the depth distribution of features from shallowest to deepest
312 was the top of nitracline, the chlorophyll maximum, the ammonium maximum then the nitrite maximum (Fig. 1b, c).
313 This set of sequential features occurred near the base of the euphotic zone at most stations. Surface irradiance
314 attenuated through the water column and the depth of 0.1-1 % surface PAR ranged between 25 m and 150 m depth,
315 with the deepest light penetration at offshore stations. The chlorophyll maximum was usually found around the 1%
316 surface PAR depth and within the nitracline. However, there was variation in how deep the chlorophyll maximum sat
317 within the nitracline, as reflected in the amount of nitrate measured at the depth of the chlorophyll maximum (Table
318 S2a). The depth of the nitrite maxima tended to occur within the downslope of the chlorophyll maxima. The depth
319 horizon of the PNM was often narrow, with detectable nitrite concentrations spanning only 30 m in some cases.

320 The depth of maximum nitrite in the PNM shoaled from an average depth of 103 m at offshore stations to 21 m near
321 the coast, closely following the shoaling nitracline. In density space, the depth of the nitrite maxima fell within a

322 narrower range, from 22.1 to 26.3 kg m^{-3} , with a mean density across the study region of 24.1 kg m^{-3} . The nitrite
 323 maxima had an average concentration of ~600 nM, but a range spanning 60-1520 nM. Two types of stations ('coastal'
 324 and 'offshore') were identified based on water column features. Coastal stations (e.g., 2016 PPS 6, 7, 8, 9) had higher
 325 concentrations of nitrite at the nitrite maxima, shallower depths of the nitrite maxima, more nitrate and slightly more
 326 chlorophyll and light at the depth of the nitrite maxima (Table. S2a). Coastal stations also had shallower oxyclines,
 327 1% PAR depths, ammonium maxima and chlorophyll maxima compared to offshore stations. Depth-integrated
 328 chlorophyll, nitrate and ammonium in the upper 120 m were higher at coastal stations. Offshore stations (e.g., 2016
 329 PPS 13,14, 15,16) had deeper nitraclines, smaller chlorophyll maxima and less light at the depth of the nitrite maxima

330 **Figure 1. Map of the ETNP region showing cruise tracks included in this study from four cruises from 2016-2018 (a).**
 331 Stations where rate measurements were made are marked with white stars. Pump profile data was collected at each station
 332 occupied during the 2016 cruise and coastal stations are encircled in green. Mean water column profiles from example
 333 'coastal' stations (8 and 9) and example 'offshore' stations (14 and 16) during the 2016 cruise (b, c). Dashed grey line depicts
 334 the depth at which dissolved oxygen concentrations declined below 3 μM .

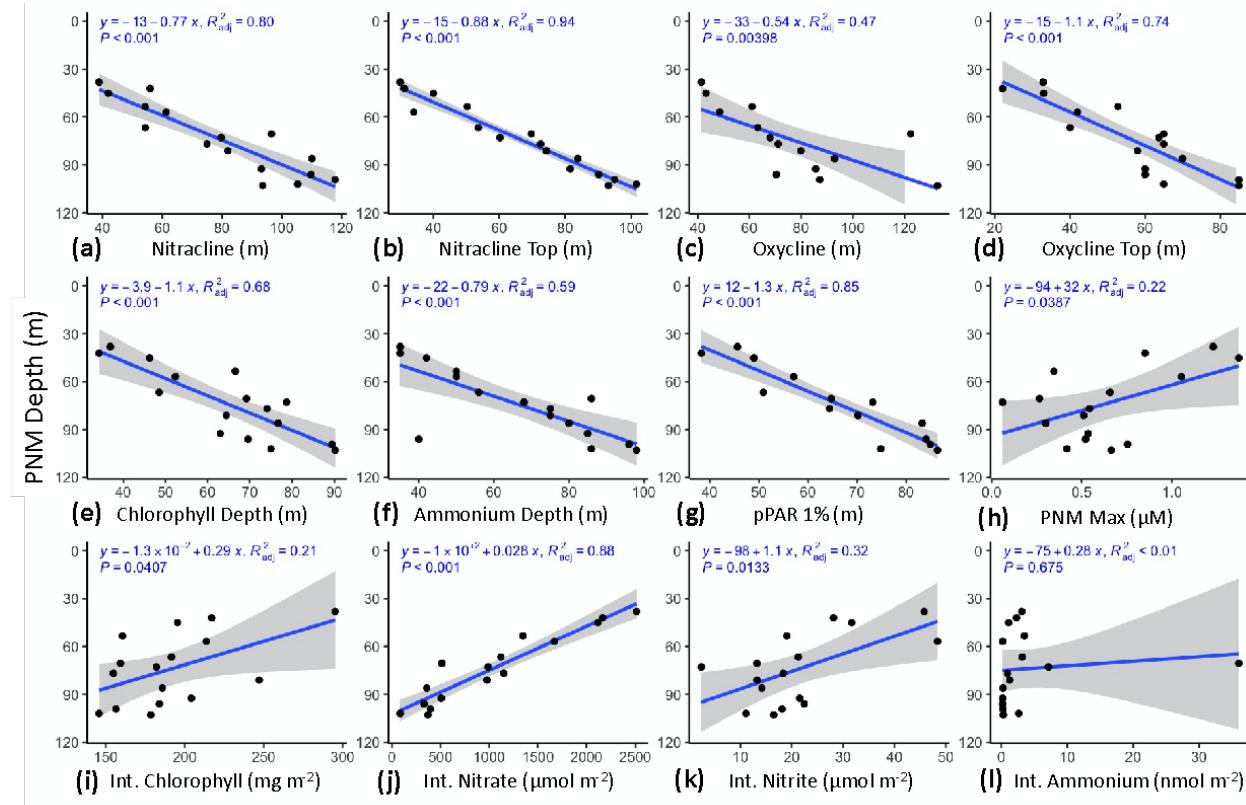


335
 336 **3.2 Regressions with the nitrite maxima**
 337 There were no strong linear correlations between the concentrations of nitrite and other observed environmental
 338 variables in vertical profiles (chlorophyll, depth, density, oxygen, temperature, nitrate, ammonium). This is
 339 unsurprising since the features with unimodal profiles (chlorophyll, ammonium) have concentration maxima that are
 340 offset vertically from the nitrite maxima, and features with other distributions (e.g. exponential) are not expected to
 341 have linear relationships with a unimodal nitrite profile. However, spatial relationships between environmental
 342 gradients are still observed in the quantity regressions; for example, the density regression clearly shows that the peak
 343 of the PNM feature consistently fell near 24 kg m^{-3} isopycnal across the region in 2016.

344 To better match unimodal nitrite profiles with spatially offset and vertically non-unimodal environmental gradients,
 345 station-specific features were identified in the high-resolution 2016 PPS profiles and, where possible, in the CTD
 346 datasets (Table 1; e.g., concentration of the nitrite maxima and depth of nitrite maxima). The strongest correlation (R^2

347 = 0.50, p<0.01) appeared between the concentration of the nitrite maxima (μM) and the nitrate concentration at the
348 nitrite maxima (Fig. 2c). The Brunt-Väisälä frequency (BV), related to water column stability, also had a strong
349 positive correlation ($R^2 = 0.40$, p<0.01) with the concentration of the nitrite maxima (Fig. 2l). There were weaker
350 correlations with other parameters such as the concentration of chlorophyll at the depth of the nitrite maxima (mg m^{-3}),
351 the concentration of the chlorophyll maxima (mg m^{-3}), temperature ($^{\circ}\text{C}$) at the depth of the nitrite maxima and
352 oxygen concentration (μM) at the depth of the nitrite maxima ($R^2 = 0.20, 0.23, 0.25, 0.29$, respectively, all p< 0.05)
353 (Fig. 2a, h, f). Removing the outliers from the two chlorophyll regressions (Fig. 2a, 2b) did not improve the correlations
354 ($R^2 = 0.06$ and 0.09, respectively). The nitrite maxima were not linearly correlated with percent surface PAR (%) at
355 the depth of the nitrite maxima or the concentration of ammonium (nM) at the depth of the nitrite maxima (Fig. 2g,
356 d). Depth-integrated chlorophyll, nitrate, and nitrite concentrations in the upper 120 m (excluding ODZ waters with
357 $\text{O}_2 < 3 \mu\text{M}$) were higher when the nitrite maximum was larger (Fig. 2i, j, k). The nitrite maxima did not correlate with
358 depth-integrated ammonium concentrations (not shown, see Table S2c for Pearson correlations and p-values).
359 Inclusion of lower resolution CTD casts from cruises in 2017/2018 decreased the strength of the linear correlations,
360 likely because of larger error in determining the depths of water column features (e.g., depth of the nitrite maxima,
361 top of nitracline) with larger (~10 m) spacing between discrete measurements (Fig. S1a).

362 **Figure 2. Linear regressions of maximum nitrite concentrations against those of other parameters, integrated amounts of**
363 **chlorophyll and DIN, and Brunt-Väisälä frequencies using PPS station data from 2016 (n=16). Chlorophyll concentration**
364 **at the depth of the nitrite maxima (a), concentration of the chlorophyll maxima (b), nitrate concentration at the depth of**
365 **the nitrite maxima (c), ammonium concentration at the depth of the nitrite maxima (d), concentration of the ammonium**
366 **maxima (e), oxygen concentration at the depth of the nitrite maxima (f), percent surface irradiance at the depth of the nitrite**
367 **maxima (g), temperature at the depth of the nitrite maxima (h), integrated chlorophyll through the top 120 m (i), integrated**
368 **nitrate through the top 120 m (j), integrated nitrite through the top 120 m (k), and the Brunt-Väisälä frequency across the**
369 **density gradient $\pm 8 \text{ m}$ around the depth of the nitrite maxima (l).**

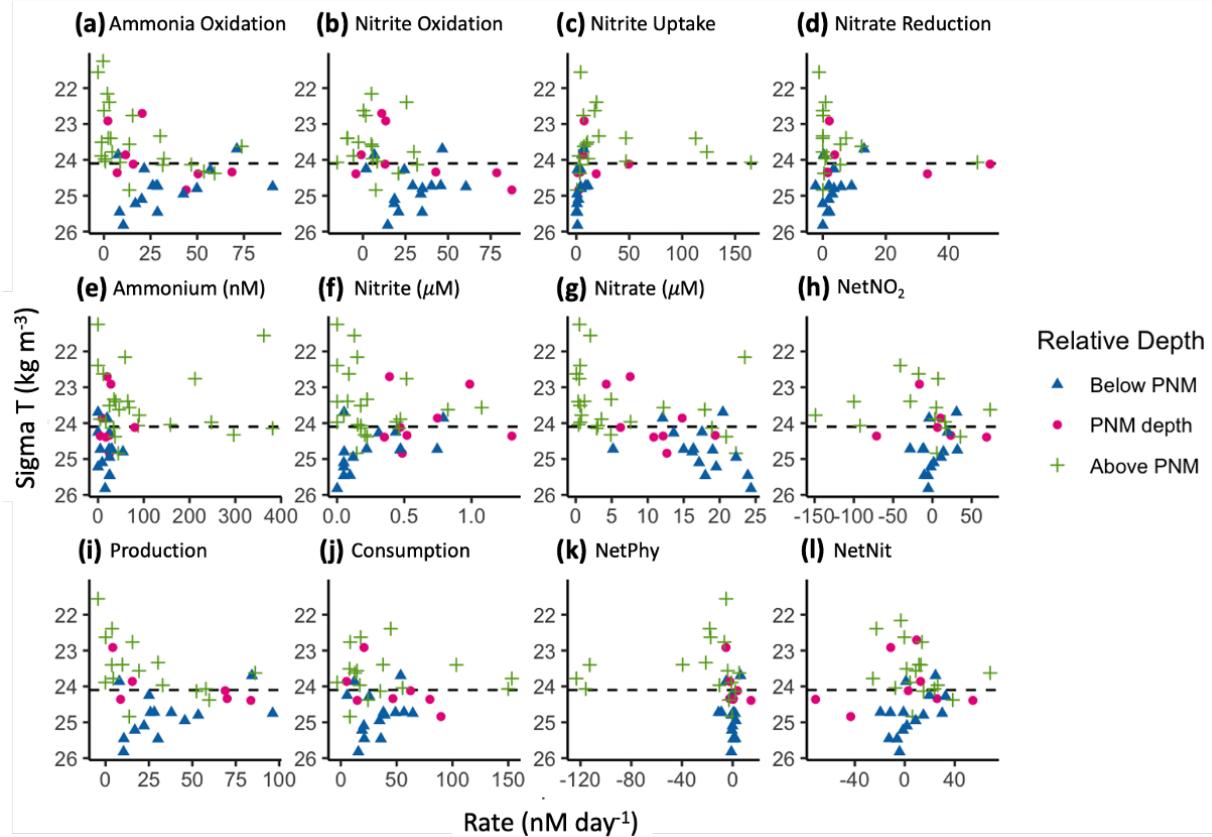

370

371 **3.3 Regressions with depth of the nitrite maxima**

372 The depth of the nitrite maximum at each station was also regressed against the depth of station-specific features (Fig. 3). All water column features showed strong linear correlations with the depth of the nitrite maxima (Fig. 3 a-h). The 373 top of the nitrcline and the depth of 1% PAR had the strongest correlations with the depths of the nitrite maxima ($R^2 = 0.94, 0.85$) (Fig. 3b, g). Correlations of depths of the nitrite maxima with midpoint-calculated oxyclines and 374 nitrclines were weaker, possibly because those features are less easily defined, or the steepness of these “clines” were 375 still actively being shaped by the biological responses to changing physical and environmental forcing. The depths of 376 the nitrite maxima tended to be related to the depths of other features and were not as strongly correlated with the 377 magnitudes (concentrations) of any other feature (Fig. S2). However, the depth of the nitrite maxima and the 378 concentration of the nitrite maxima were mildly correlated ($R^2 = 0.22, p = 0.039$), with larger nitrite maxima tending 379 to occur at shallower depths. This correlation became insignificant when the CTD data were included (Fig. S1b). 380 Integrated nitrate had a strong correlation with the depth of the nitrite maxima ($R^2 = 0.88, p < 0.01$), which is reflective 381 of the depth of the nitrite maximum tracking with the top of the nitrcline. Depth-integrated chlorophyll and nitrite 382 concentrations had more moderate correlations with the depths of the nitrite maxima ($R^2 = 0.21, p = 0.041$ and $R^2 = 383 0.32, p = 0.013$, respectively). Depth-integrated ammonium concentrations did not correlate with the depth of the 384 nitrcline (see Table S2c for Pearson correlations and p-values). 385

386 **Figure 3. Linear regression of depths of the nitrite maxima against water column features from data collected during the 387 2016 cruise using the PPS. Depth of the nitrite maxima was regressed against:** a) nitrcline depth (m), b) top of the nitrcline 388

389 (m), c) oxycline depth (m), d) top of the oxycline (m), e) depth of the chlorophyll maxima (m), f) depth of the ammonium
 390 maxima, g) depth of 1% surface irradiance, h) concentration of the nitrite maxima (μM), i) integrated chlorophyll through
 391 the top 120 m j), integrated nitrate through the top 120 m k), integrated nitrite through the top 120 m and l) integrated
 392 ammonium through the top 120 m. PPS station data from 2016 (n=16).



393

394 3.4 Nitrite Cycling Rates

395 Rates of nitrite cycling determined for the four major nitrite cycling processes near the PNM were within the same
 396 range as previous measurements made in the ETNP region and along the adjacent California coast (Beman et al., 2008;
 397 Santoro et al., 2013, 2010; Ward et al., 1982). Within our dataset, the mean rates of ammonia oxidation and nitrite
 398 oxidation were similar to each other (24.3 ± 3.6 and 19.5 ± 3.4 nM day $^{-1}$, respectively), although there was a large range
 399 in individual rate measurements across stations and depths, with maximum rates reaching 90.4 and 87.4 nM day $^{-1}$
 400 respectively. Rates of the two phytoplankton-dominated processes were generally lower and not as similar to each
 401 other, with a mean nitrate reduction rate of 6.1 ± 1.9 nM day $^{-1}$ and mean nitrite uptake rate of 19.0 ± 5.3 nM day $^{-1}$.
 402 However, nitrite uptake reached one of the highest rates measured, at 165 nM day $^{-1}$, and the nitrate reduction rate
 403 reached 53.2 nM day $^{-1}$ at a coastal station during the 2017 winter cruise. Comparison of mean nitrification rates
 404 between coastal and offshore stations did not show a significant difference (Table S1c). The pooled mean standard
 405 deviation across experimental bottle replicates for ammonia oxidation, nitrite oxidation and nitrate reduction were 3,
 406 4.6 and 1 nM day $^{-1}$, respectively (Table S1).

407 **Figure 4. Aggregated rate measurements from 2016-2018 with respect to density (sigma T); ammonia oxidation, nitrite
408 oxidation, nitrite uptake and nitrate reduction (panels a-d, respectively) (nM day⁻¹), ammonium (nM), nitrite and nitrate
409 (μM), and net nitrite production (nM day⁻¹) (panels e-h, respectively), and net consumption, net production, net nitrite
410 production from phytoplankton and net nitrite production from nitrification (nM day⁻¹) (panels i-l, respectively).
411 Measurements are colored by relative depth to the station-specific nitrite maximum; above the depth of the nitrite
412 maximum (green crosses), at the nitrite maximum (magenta circles) or below the station-specific depth of the nitrite
413 maximum (blue triangles). The mean ETNP nitrite maxima isopycnal (24.1 kg m⁻³) is marked as a horizontal dashed line.**

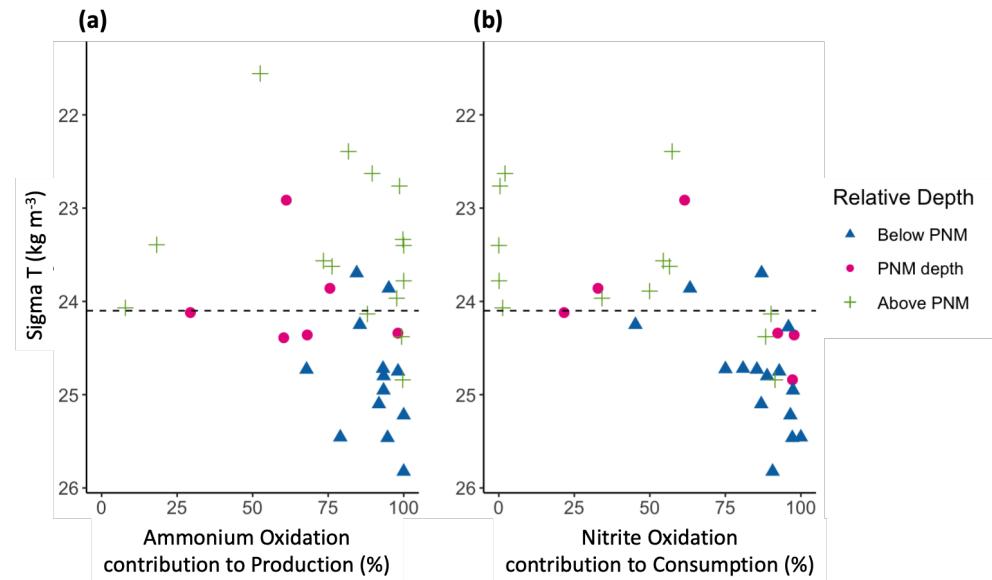
414
415 When plotted in density space to aggregate data across years and stations, all processes showed rate maxima at a
416 subsurface density layer (Fig. 4). Nitrifier processes (ammonia oxidation (Fig. 4a) and nitrite oxidation (Fig. 4b)), had
417 maximal rates near, or just below, the average density layer for the nitrite maxima across this region (24.1 kg m⁻³).
418 Nitrite uptake (Fig. 4c) and nitrate reduction (Fig. 4d) rates reached their maxima just above the mean nitrite maxima
419 isopycnal. Nitrification rates were highest in the lower half of the nitrcline, while phytoplankton-dominated processes
420 (nitrite uptake and nitrate reduction) were highest on the upper slope of the nitrcline where light was available and
421 nitrite and ammonium concentrations were higher. While the highest activities of the two microbial groups were
422 spatially segregated, within-group production and consumption processes had maxima at similar depths. All four rates
423 formed vertically unimodal distributions, but there was still a large range in measured rates near the peaks with many
424 rates close to zero.

425 Net nitrite production from nitrification (NetNit = ammonia oxidation – nitrite oxidation) ranged from -71.5 to 68.4
426 nM day⁻¹ with a mean of 5.6±3.6 nM day⁻¹ (Fig. 4I). The majority of NetNit values were positive, and maximal rates

427 were observed just below the mean nitrite maxima isopycnal. Negative NetNit values were driven by high nitrite
428 oxidation values. Net nitrite production from phytoplankton-dominated processes (NetPhy = nitrate reduction - nitrite
429 uptake) were typically low (mean $-13.3 \pm 4.9 \text{ nM day}^{-1}$), with many negative values resulting from rates of nitrite uptake
430 exceeding those of nitrate reduction (Fig. 4k). The largest negative values occurred above the mean nitrite maxima
431 isopycnal, driven by high nitrite uptake rates where light concentrations were high and nitrate was low in the surface
432 waters. Below the mean nitrite maxima isopycnal, NetPhy remained near zero because both nitrite uptake and nitrate
433 reduction rates were low. The largest positive NetPhy value was at a coastal station (14.4 nM day^{-1}), where nitrate
434 reduction reached 33.1 nM day^{-1} , but NetPhy was typically an order of magnitude smaller than NetNit.

435 The vertical distributions of total nitrite production (production = ammonia oxidation + nitrate reduction, Fig. 4j) and
436 total nitrite consumption (consumption = nitrite oxidation and nitrite uptake, Fig. 4k) showed maximal rates near the
437 mean nitrite maxima isopycnal (24.1 kg m^{-3}). Total nitrite production peaked just below this, with a maximum value
438 of 87 nM day^{-1} . Total nitrite consumption peaked just above it, with a maximum value of 167 nM day^{-1} . The higher
439 consumption rates just above the mean nitrite maxima isopycnal were due to higher nitrite uptake rates, especially at
440 coastal stations (Fig. 4c). There was a large range in rates of nitrite production and consumption processes, but mean
441 values were of similar magnitude (26.4 nM day^{-1} and 39 nM day^{-1} , respectively). Total net nitrite production (NetNO₂,
442 the difference between total production and total consumption) was highest near the PNM. Negative net nitrite
443 production rates could be found both above and below the PNM, reflecting high nitrite uptake above the mean nitrite
444 maxima isopycnal and high nitrite oxidation values below it (Fig. 4h). The mean of positive NetNO₂ values was 16.7 nM day^{-1}
445 (rates > -2 only, $n=17$), although mean NetNO₂ was -6.3 nM day^{-1} when all data points were included. The
446 maximum rate of NetNO₂ was slightly higher than NetNit (73.5 vs 68.4 nM day^{-1} , respectively), but the peaks of the
447 vertically unimodal distributions occurred at the same depths.

448 While the aggregated rates of NetNO₂ peaked near the mean nitrite maxima isopycnal for the region, neither NetNO₂
449 (nor any individual rates) were able to predict the observed nitrite concentrations. Simple linear regressions of each
450 rate, or calculated net rates, against the quantity of nitrite did not show significance (Fig. S4). Limiting the regression
451 to a single nitrite maximum and a single highest rate per station also did not show any linear correlation (Fig. S5).
452 However, some qualitative patterns were noticeable, where the highest rates of phytoplankton-dominated processes
453 occurred in samples with lower nitrite concentrations (shallower in the water column). The highest nitrite uptake rates
454 ($>25 \text{ nM day}^{-1}$) appeared to co-occur with maximum nitrite concentrations below 500 nM . Conversely, when high
455 nitrite concentrations were measured ($>600 \text{ nM}$), nitrite uptake rates were low (never higher than 10 nM day^{-1}). Nitrate
456 reduction rates were also higher at lower nitrite concentrations. In addition, the highest ammonia oxidation rates ($>40 \text{ nM day}^{-1}$)
457 were found where nitrite concentrations were $<500 \text{ nM}$ (Fig. S4). Interestingly, nitrite concentrations were
458 highest ($>600 \text{ nM}$) where ammonia oxidation rates were lower ($<40 \text{ nM day}^{-1}$). The highest nitrite concentrations were
459 associated with waters having lower nitrite oxidation rates ($<20 \text{ nM day}^{-1}$), indicating a low rate of nitrite consumption.
460 Thus, although nitrification was an important contributor to total nitrite production, the balance of processes was more
461 important than the rate of any single process.


462 If we assume approximate steady state for PNM nitrite concentrations, rate measurements can be used to calculate a
463 potential residence time for nitrite across the PNM feature. Using total nitrite production and nitrite concentrations,
464 the mean residence time was 30.4 days, while the median residence time was 7.8 days. However, there was a wide
465 range in residence times across all samples, particularly those from above the average nitrite maxima isopycnal for
466 the region (Fig. S6a). Using total consumption rates in the calculation gave a slightly lower mean residence time for
467 the region (20.3 days), but again had a large range in residence times above the mean nitrite maximum isopycnal
468 (0.01-103.2 days) (Fig. S6c). Our estimates of average residence time using potential rates may be underestimated
469 because of rate enhancement from tracer additions, and we are also likely missing an input/output term from physical
470 mixing, which could have a larger influence in dynamic coastal waters compared to offshore. Comparing coastal and
471 offshore stations, the estimated residence times are quite different between regimes (mean residence times of 17 and
472 53 days, respectively, and median residence times of 5.8 and 18.2 days, respectively) suggesting that coastal nitrite
473 accumulations are turning over more quickly even with the limitations and assumptions of these calculations. The
474 discrepancy in residence times calculated using the influx and outflux terms for the nitrite pool suggests that the PNM
475 feature was most likely not in steady state (as also suggested by the high variation in measured rates across the PNM
476 and inability of rates to correlate with observed nitrite accumulation), with differences in the dynamics above and
477 below the nitrite maxima. Additional methods of estimating nitrite age, such as using variation in natural abundance
478 nitrite isotopes, may provide more insight (Buchwald and Casciotti, 2013).

479 **3.5 Contribution from Nitrification**

480 In considering the metabolisms responsible for accumulation of nitrite at the PNM, it is important to consider the
481 distribution and magnitude of nitrite production processes vertically through the water column as well as their relative
482 contributions to total nitrite production. At our sites in the ETNP, ammonia oxidation contributed over 70% of the
483 total nitrite production through most of the water column (Fig. 5a). The stations where ammonia oxidation contributed
484 less to total nitrite production were typically coastal stations with low ammonia oxidation rates (e.g., $<2 \text{ nM day}^{-1}$) or
485 with high nitrate reduction rates ($>20 \text{ nM day}^{-1}$). These results support the idea that both ammonia oxidation and nitrate
486 reduction can contribute to nitrite production, but that the dominant source was from ammonia oxidation at most
487 stations, particularly at the depth of the nitrite maximum and below. For nitrite consumption, nitrite oxidation
488 contributed greater than 70% of total nitrite consumption below the mean density layer of the nitrite maxima. Above
489 this density layer, the contribution to total nitrite consumption from nitrite oxidation became more variable, but with
490 most values below 70% due to more nitrite uptake. Particularly low contributions to total nitrite consumption from
491 nitrite oxidation were seen above the depth of the nitrite maxima at coastal stations where nitrite uptake rates were
492 highest. Potential decoupling of ammonia and nitrite oxidation could be seen in the upper water column, with NetNit
493 peaking at the depth of the nitrite maxima (Fig. 4l), which is more difficult to discern in the individual ammonia
494 oxidation and nitrite oxidation rates (Fig. 4a, b).

495 **Figure 5. Contributions of nitrification to total nitrite production (a) and total nitrite consumption (b) across density space.**
496 **Measurements are colored by depth relative to the station-specific nitrite maximum; above the depth of the nitrite**

497 maximum (green crosses), at the nitrite maximum (magenta circles) or below the station-specific depth of the nitrite
 498 maximum (blue triangles). The mean ETNP nitrite maxima isopycnal (24.1 kg m^{-3}) is marked as a horizontal dashed line

499

500 3.6 Multiple Linear Regression Analyses

501 3.6.1 'Full' model PNM predictions

502 Multiple linear regression analyses using all available variables (i.e. the "full" model) was able to predict the presence
 503 of a primary nitrite maximum at most stations when trained using all stations, the coastal station subset, or the offshore
 504 station subset (Fig S3). However, variables selected during optimization and the coefficients determined were not
 505 consistent across the three full models, and depth and size accuracy of nitrite predictions was highly variable (Table
 506 S3, S4).

507 The all-station 'full' model predicted the depth of the nitrite maxima well (mean depth error = 3.7 m) but
 508 underpredicted the maximum nitrite concentration by an average of 230 nM across all stations (after the extreme over-
 509 prediction of 15 μM at Station 8 was omitted) (Fig. S3, Table S4). Retraining the model using a subset of coastal
 510 stations improved fit for the training subset of stations (mean depth error 2.9 m), but was no longer applicable across
 511 other stations in the region (Fig S3). When applied to non-coastal stations, the coastal 'full' model overpredicted ($>2x$)
 512 the nitrite maxima (except Stations 10,11,12), with an average overprediction for the whole region of $\sim 1.13 \mu\text{M}$ (Table
 513 S4). Similar results were found when the model retrained using the offshore subset of station. The offshore 'full'
 514 model predicted the depth of the nitrite maxima well for offshore stations, with a mean underprediction in depth of
 515 only 0.3 m (Fig. S3, Table S4), and underpredicted the maximum nitrite concentration at offshore stations by only 53
 516 nM on average. The mean overprediction of nitrite concentration by the offshore 'full' model applied across all
 517 stations was 855 μM , driven by an extreme overprediction at Station 8, which when excluded, makes the mean size
 518 error only 1.23 μM .

519 This set of 'full' variable models showed that there is enough information in the environmental data to make
 520 correlative predictions of nitrite profiles, but also showed regional variability precludes a single model for the region.
 521 Additionally, investigating model variables and coefficients to gain insight on environmental controls of the PNM is
 522 difficult when different variables are used in each version of the model.

523 **3.6.2 'Core' model PNM predictions**

524 A subset of 'core' variables was selected and applied in a second set of MLR analyses in order to directly compare the
 525 influence of each variable on nitrite concentration between two regions (coastal vs. offshore) (See Methods). The 'core'
 526 models limited variables to those that had strong single linear regressions with depth and concentration of the nitrite
 527 maxima, and both the coastal and offshore models explained similar amounts of the total variance in nitrite
 528 concentration in their respective regions. Even though both models explained relatively similar amounts of variation
 529 in nitrite concentration and used the same limited suite of variables, different coefficients led to differing predicted
 530 nitrite profiles across stations (Fig. 6, Table 2). In the coastal region, the primary model components included nitrate
 531 and light, two environmental variables that are related to initiation of bloom conditions. The offshore model shifted
 532 importance slightly towards a stronger chlorophyll component and reduced the importance of light. In both regional
 533 models, nitrate was involved in explaining the most variance (40.8% in the coastal model, 38.8% in the offshore
 534 model).

535 **Table 2. Coefficients and relative importance from core models; coastal (a) and offshore (b)**

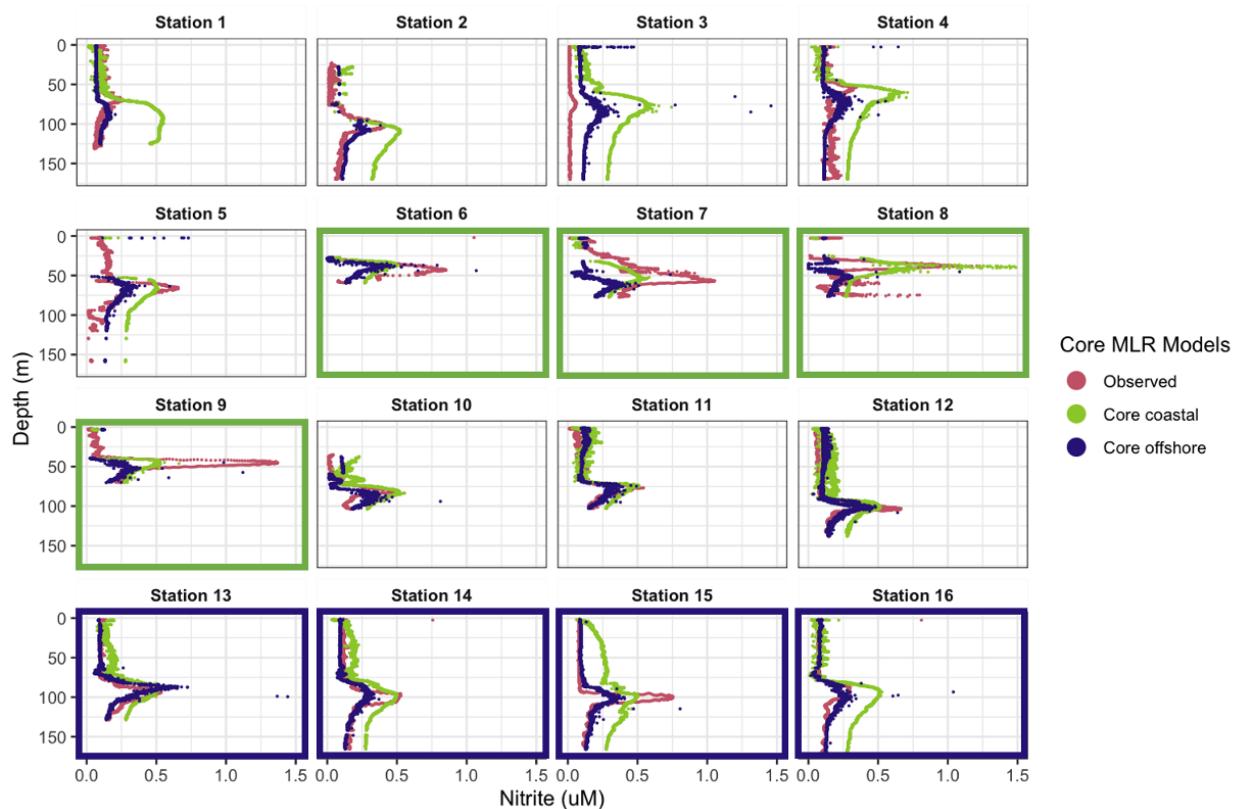
(a)

Coastal 'Core' MLR Coefficients

Variable	Coefficient	Percent Importance
Oxygen-Nitrate	0.0028	18.9
Nitrate	-0.4137	12.2
pPAR	-0.0183	12.1
Chl-Nitrate	0.0538	9.7
Chlorophyll	-0.0837	4.6
Oxygen	-0.0047	4.6
Chlorophyll2	-0.0014	2.3

(b)

Offshore 'Core' MLR Coefficients


Variable	Coefficient	Percent Importance
Chl-Nitrate	0.0752	16.7
Oxygen-Nitrate	0.0029	11.9
Chlorophyll	0.46	11.1
Oxygen	-0.0124	11
Nitrate	-0.7093	10.2
Chlorophyll2	-0.0994	6.8
pPAR	-0.0012	4.4

536 537 In general, the coastal 'core' model predicted the depth of the PNM well, but was less accurate in predicting maximum
 538 nitrite concentration, and peak shape (Fig. 6). The coastal 'core' model underpredicted the depth of the nitrite maxima
 539 at coastal stations (-1.7 m), and underpredicted coastal nitrite maxima by an average of 208 nM, with a large range in
 540 error (-830 to +811 nM) (Table S5). Applying the coastal model to the full set of 16 stations showed that the coastal
 541 'core' model could either overpredict or underpredict the nitrite maximum at non-coastal stations, in addition to
 542 predicting a wide PNM shape that extends deeper in the water column than observed (Fig. 6). The predicted depths of
 543 the nitrite maxima from the coastal model fit well with the depths of the observed nitrite maxima, with a mean depth
 544 overprediction of only 2.3 m; a single large outlier at Station 1 was observed, where PNM depth was overpredicted
 545 by 23.4 m (Fig. 6, Table S5).

546 The offshore 'core' model also predicted the depth of the nitrite maxima well, but less accurately predicted the
 547 concentration of the nitrite maxima (Fig. 6). The depths of the nitrite maxima at offshore stations were predicted to
 548 within 2.8 m, but the maximum nitrite concentrations were underpredicted by 82 nM at offshore stations. Applying
 549 the offshore core model across all 16 stations showed that it worse on average, giving predicted depths of the nitrite
 550 maximum that were on average 5.5 m deeper than the observed depth, with a range in over- and underpredictions
 551 from 18.6 m to 5.5 m respectively. The predicted concentrations of nitrite maxima were lower than observations by
 552 an average of 218 nM across the region (Table. S5).

553 **Figure 6. Predicted nitrite profiles from 'core' coastal MLR (green) and offshore MLR (blue). Observed nitrite profiles**
 554 **from PPS 2016 dataset (magenta).**

555

565 the connection of the depth of the nitrite maximum with the nitracline (Dore and Karl, 1996; Herblant and Voituriez,
566 1979; Lomas and Lipschultz, 2006; Meeder et al., 2012; Shiozaki et al., 2016; Vaccaro and Ryther, 1960) and with
567 the chlorophyll maximum (Collos, 1998; French et al., 1983; Kiefer et al., 1976; Meeder et al., 2012), showing that
568 these relationships are shared across multiple oceanic regimes. The environmental feature that correlated most strongly
569 with the depth of the nitrite maximum in our dataset was the top of the nitracline, while the depth of the chlorophyll
570 maximum, the depth of the ammonium maximum, the depth of 1% PAR and the top of the oxycline also showed
571 strong correlations, as illustrated by regression analysis (Fig. 3).

572 The strong covariance between multiple features provides some insight into the mechanisms that link the depth of the
573 nitrite maximum to the environment. Nitrite-cycling microbes respond to the differences in environmental conditions
574 above and below the PNM. In oligotrophic waters, such as those in the offshore ETNP, uptake of nutrients by
575 phytoplankton maintains low levels of DIN in the upper euphotic zone as physical resupply is low. As light decreases
576 with depth in the water column, active phytoplankton growth is diminished and ammonium and labile dissolved
577 organic nitrogen are released due to grazing and decomposition, providing the low-light conditions, ammonium and
578 reduced organic N substrates suitable for ammonia oxidation. Nitrite oxidizers utilize nitrite produced predominantly
579 from ammonia oxidation to return nitrate to the system. Above the PNM, where light is available, there is enhanced
580 potential for nitrite uptake by phytoplankton and nitrite does not accumulate. Below the PNM, there is diminished
581 supply of ammonium and nitrite oxidizers continue to consume low levels of nitrite produced through ammonia
582 oxidation. At the depth of the nitrite maximum, production terms outweigh both spatially segregated loss terms—
583 nitrite uptake and nitrite oxidation.

584 The production of nitrite at the PNM is linked to the vertical structuring of the upper water column qualities and is
585 both directly and indirectly dependent on phytoplankton activity. It is directly related via the potential for
586 phytoplankton to release nitrite under varying nitrate supply and light conditions, and indirectly through ammonium
587 supply provided to the ammonia-oxidizing community. Interestingly, the sequence of events that structures the
588 nitracline at the base of the euphotic zone (nitrate and light availability \rightarrow uptake of nitrate and phytoplankton growth
589 \rightarrow formation of the nitracline and oxycline = release of ammonium (and nitrite) \rightarrow oxidation of ammonium by
590 nitrifiers) is ordered similarly to the strength of the linear relationships with depth of the nitrite maximum (top of
591 nitracline $>$ %PAR $>$ chlorophyll/ oxycline $>$ ammonium peak depth). The physical processes that change light and
592 mixing environments initiate the conditions under which phytoplankton and nitrifiers establish their contributions to
593 the PNM over time. The importance of the time component may help explain why there is variation in the strength of
594 correlation between instantaneous environmental measurements and a PNM structure that may require weeks to form.
595 Under more dynamic conditions (e.g., coastal upwelling), our observations are more likely to capture a larger range
596 in scenarios, from initial upwelling to cessation of upwelling, making correlations between depth of the nitrite
597 maximum and water column features weaker.

598 **4.2 Concentration of the nitrite maximum**

599 While the depth of the nitrite maximum is predictable based on features of the water column, the concentration of the
600 nitrite maximum was more challenging to predict. In regressions of water column features against the concentration
601 of the nitrite maximum, only the amount of nitrate at the nitrite maximum, the Brunt-Väisälä frequency and the amount
602 of oxygen at the nitrite maximum had moderate linear relationships ($R^2=0.5$, $p < 0.01$, $R^2 = 0.4$, $p = 0.016$, $R^2 = 0.29$,
603 $p = 0.019$), while the R^2 values for the other regressions were smaller ($R^2 < 0.25$) (Fig. 2). The connection between the
604 nitrite maximum and nitrate concentration may reflect the sequence of events that structures the water column and
605 forms the nitracline (described above). The presence of increased amounts of nitrate at the depth of larger nitrite
606 maxima suggests that the phytoplankton have yet to deplete nitrate completely, and a large nitrite maximum is
607 developing during active nitrate uptake at early bloom formation (Collos, 1982; Meeder et al., 2012). At stations with
608 a large nitrite maximum, there are also higher concentrations of nitrate at the chlorophyll maximum, although the
609 chlorophyll maximum may still be small (i.e., early bloom). During this time, ammonium production from degrading
610 and grazed phytoplankton as well as ammonia oxidation to nitrite may co-occur. Under these early bloom conditions
611 there is potential to accumulate more nitrite due to increased rates of phytoplankton nitrate reduction, high rates of
612 ammonia oxidation, and/or decrease in loss terms. Controls on the nitrate reduction rate, and the potential for
613 ammonium competition interactions between phytoplankton and ammonia oxidizers at nitrate replete depths will be
614 discussed in relation to nitrite cycling rates.

615 The linear correlation between the larger nitrite maxima and stronger density gradients (higher Brunt-Väisälä values)
616 suggests that decreased loss of nitrite via mixing could contribute to larger accumulation of nitrite at the maximum.
617 However, degradation of the nitrite maximum by mixing would only move existing nitrite away from the peak depth,
618 not remove it entirely from the water column.

619 We took two further approaches to understand the correlative disconnect between environmental conditions and nitrite
620 maxima, 1) polynomial multiple regression analyses which allow multiple variables to co-explain the depth and
621 concentration of the nitrite maxima, and 2) making direct measurements of the microbial processes that
622 mechanistically link environmental conditions to the nitrogen transformation rates leading to nitrite accumulation.

623 **4.3 Predicting nitrite profiles from environmental dataset**

624 The lack of strong linear correlations between maximum nitrite concentrations and any single feature may indicate
625 that multiple conditions need to be met to produce large accumulations of nitrite. For example, earlier work has shown
626 the largest seasonal nitrite maxima occur at the onset of the deep chlorophyll maximum, where multiple conditions
627 are met— light is available and nitrate concentrations are still high (Mackey et al., 2011; Meeder et al., 2012).

628 Allowing for multiple environmental conditions to contribute, the ‘full’ multilinear regression models are qualitatively
629 able to capture the peak shape of the PNM feature using the variables provided, yet are unable to fully explain nitrite
630 concentration (Fig. S3). For example, the all-station ‘full’ model explained 66% of the overall variance in nitrite
631 concentration, but the mean error in nitrite maximum predictions was 740 nM with a large range in errors across

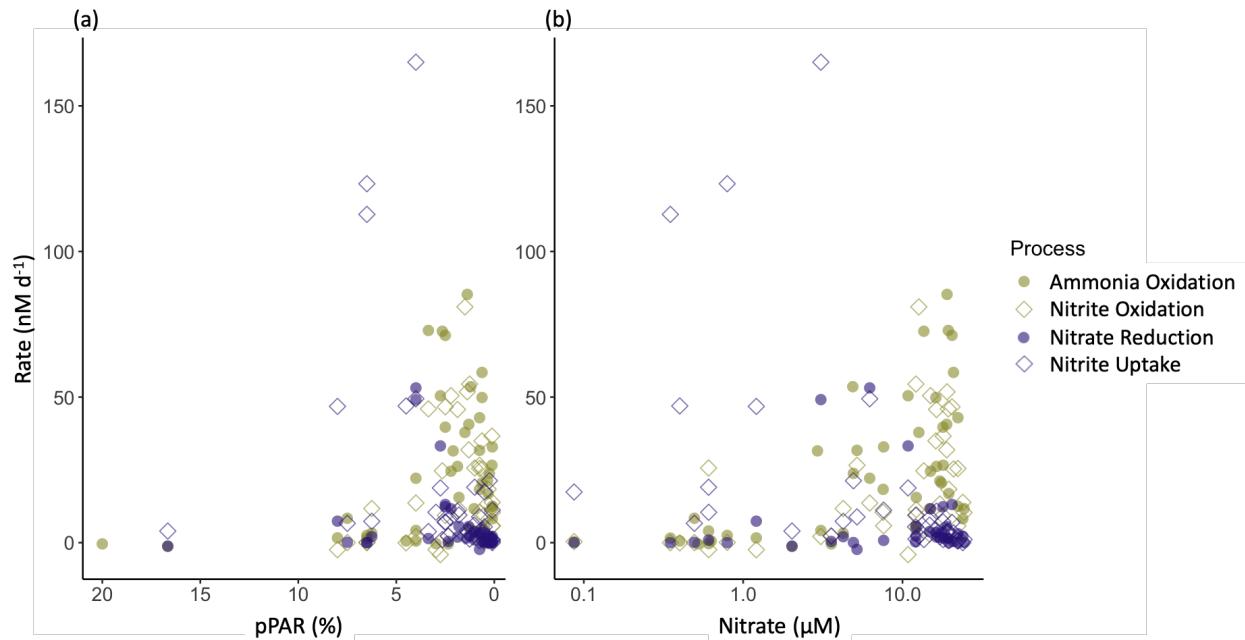
632 stations (-0.84 to 15.28 μM) (Table S4). This large uncertainty is not surprising, since environmental conditions vary
633 across the ETNP, especially between coastal and offshore stations. The coastal and offshore nitrite maxima were
634 typically found at similar densities ($\sim 24.1 \text{ kg m}^{-3}$ coastal, $\sim 24.3 \text{ kg m}^{-3}$ offshore), but at coastal stations the average
635 depth of the nitrite maxima was 43 m shallower, the average nitrate concentration was 3x higher, the average
636 chlorophyll concentration was 3x higher, average light was 3x higher, oxygen was 25% higher and ammonium
637 concentrations were also higher (Table S2). This suggests that the nitrite maxima at coastal and offshore type stations
638 may be innately different, and possibly controlled by different mechanisms. The two 'full' models built using coastal
639 and offshore subsets were able to explain more of the total variance at those stations ($R^2 = 0.77$ and 0.79, respectively).

640 The 'core' models, where the variables included in the models were consistent between the coastal and offshore
641 regimes, were also able to explain a significant portion of the variability in nitrite (R^2 was 0.83 and 0.98, respectively).
642 Nitrate was a key parameter in both models (Table 2). The smaller chlorophyll coefficients used to model nitrite
643 maxima at coastal stations make the model less sensitive to large changes in chlorophyll, while the larger offshore
644 coefficient suggests that small changes in chlorophyll offshore have more influence over the resulting nitrite
645 predictions. While there was still significant error in the predicted depth and concentration of the nitrite maxima, the
646 'core' model coefficients show patterns suggesting that nitrite accumulation occurs at depths where chlorophyll, nitrate
647 and oxygen co-exist, corroborating the findings from that linear regression analyses, that the depth of the chlorophyll
648 maxima, nitracline top and oxycline top are individually important in determining the depth of the nitrite maximum
649 (see Supplement for further comparison of coefficients).

650 Overall, while the nitrite accumulation in the PNM was predicted moderately well using the environmental conditions,
651 especially when differentiating between coastal and offshore regimes, the environmental parameters alone were not
652 able to fully predict nitrite concentrations. Variable physiological responses of the microbial populations involved
653 with nitrite production and consumption provide a mechanism that integrates multiple environmental parameters into
654 an observable nitrite accumulation.

655 **4.4 Rates of Nitrite Cycling**

656 Strong single variable correlations with depth of the nitrite maxima and mild correlations with concentration of nitrite
657 at the nitrite maxima (with supportive findings from the MLR analyses), suggest that while the PNM feature is
658 consistently linked to specific depths, the maximum concentration of nitrite in a given PNM may be modulated by
659 more nuanced environmental timings and microbial physiologies. The two main biological mechanistic explanations
660 for nitrite production at the PNM involve the microbial physiology of phytoplankton and nitrifying bacteria and
661 archaea. The overlapping habitats and competition for DIN resources requires that we consider both microbial groups
662 in our understanding of PNM formation (Lomas and Lipschultz, 2006; Mackey et al., 2011; Smith et al., 2014; Wan
663 et al., 2021, 2018; Zakem et al., 2018). This dataset provides insights into the relative roles of these processes via
664 direct rate measurements of the four major nitrite cycling processes from the same source water. This allows both
665 comparison of relative rates of each process within a community and the calculation of net rates of nitrite production
666 around the PNM feature. Our expectation at the beginning of this study was that higher rates of nitrite production, or


667 net nitrite production, would correspond to larger accumulations of nitrite. Our findings, however, revealed a more
668 complex pattern where the instantaneous rates of gross or net nitrite production did not reflect the amount of
669 accumulated nitrite. In other words, the imbalance in nitrite production and consumption can indicate whether nitrite
670 concentrations are currently increasing or decreasing, but it provides less predictive power for the instantaneous
671 concentration of accumulated nitrite.

672 The spatial distribution of measured rates through the water column showed peaks in each process near the PNM, but
673 with slight variation in where the rate maxima fell relative to the nitrite maxima. The highest phytoplankton activity
674 was located just above the PNM peak, while nitrification rates were highest near the PNM peak, a distribution seen in
675 other nearby systems (Beman et al., 2012; Santoro et al., 2013). Although the aggregated data from the region showed
676 these spatial segregations by microbial group, this was not always observed at an individual station. The highest rates
677 of nitrification appear to be slightly skewed towards the lower slope of the PNM, but the depth of the nitrite maximum
678 at many stations was determined from discrete measurements taken at ~10 m resolution, so it is possible that the real
679 maxima occurred between sampled depths. The PPS data allowed much more precise determination of the depth and
680 peak size, although rate measurements were still limited to lower resolution sampling.

681 The vertical distribution of nitrification has been theorized to be controlled by light inhibition, restricting nitrification
682 to depths at the base of the euphotic zone (Olson, 1981). However, active nitrification has been observed in the sunlit
683 surface ocean (Shiozaki et al., 2016; Ward, 2005; Ward et al., 1989), leading to new theories suggesting that ammonia
684 oxidation is controlled by ammonium or nitrate availability shifting the competitive balance for ammonium acquisition
685 away from phytoplankton and towards ammonia oxidizers (Smith et al., 2014; Wan et al., 2018; Xu et al., 2019). In
686 this dataset, we did measure nitrification rates $>2 \text{ nM day}^{-1}$ at light levels of 25-30% surface PAR at coastal stations,
687 although there was a clear enhancement of nitrification rates at light levels below 5% surface PAR. Although linear
688 regressions of ammonia oxidation rate didn't show a strong correlation with the nitrite maximum or depth of the nitrite
689 maximum, there was a relationship between ammonia oxidation and both nitrate and light (Fig. 7). Similar to the data
690 compiled in Wan et al. (2018), the highest ammonia oxidation rates were restricted to depths with higher nitrate
691 concentrations and lower light levels. However, even when constraining the ammonia oxidation rate data to where
692 there is both low light and higher nitrate concentrations, measurements spanned the entire range of rates from 0-85
693 nM day^{-1} , indicating that the conditions controlling the depth of the rate maxima do not guarantee high rates, but
694 simply facilitate the possibility of high rates. It should be noted that some of the highest rates were measured in source
695 water with low ambient DIN concentrations, and it is possible that tracer addition relieved DIN-limitation in some of
696 these samples and enhanced the measured rates (Fig S7). However, as these are bulk rates (per volume), we cannot
697 differentiate between potential enhancement of rates due to our tracer addition versus differential microbial
698 abundances.

699

700 **Figure 7 Relationship between nitrite cycling rates and percent surface PAR (a) and nitrate concentration (b).**
701 Phytoplankton-dominated processes are shown in blue and nitrifier processes are shown in green. Nitrite production
702 processes are shown as filled circles and consumption processes are open diamonds.

703

704 The individual rate measurements were not correlated with the amount of nitrite accumulated in the water column at
 705 a given depth (Fig. S4). Neither were the net rates (NetNit, NetPhy, NetNO₂) able to explain observed nitrite
 706 concentrations. Although the vertical pattern in net nitrite production rates (NetNO₂) showed a peak shape that was
 707 qualitatively similar to nitrite concentration, there was no linear relationship between NetNO₂ and nitrite
 708 concentration (Fig. 4h, Fig. S4), suggesting that instantaneous rate measurements do not always represent time
 709 integrated nitrite accumulation in the PNM. Because our measurements were of whole community rates, a variety of
 710 microbial processes may have remained active in the incubations alongside the process intended to be traced with
 711 ¹⁵N. For example, the ¹⁵N-NO₂⁻ produced via nitrate reduction is potentially acted upon by nitrite uptake and nitrite
 712 oxidation. This has the potential of leading to underestimation of nitrate reduction rates, especially where nitrite
 713 concentrations are low, and nitrite uptake and nitrite oxidation rates are large.

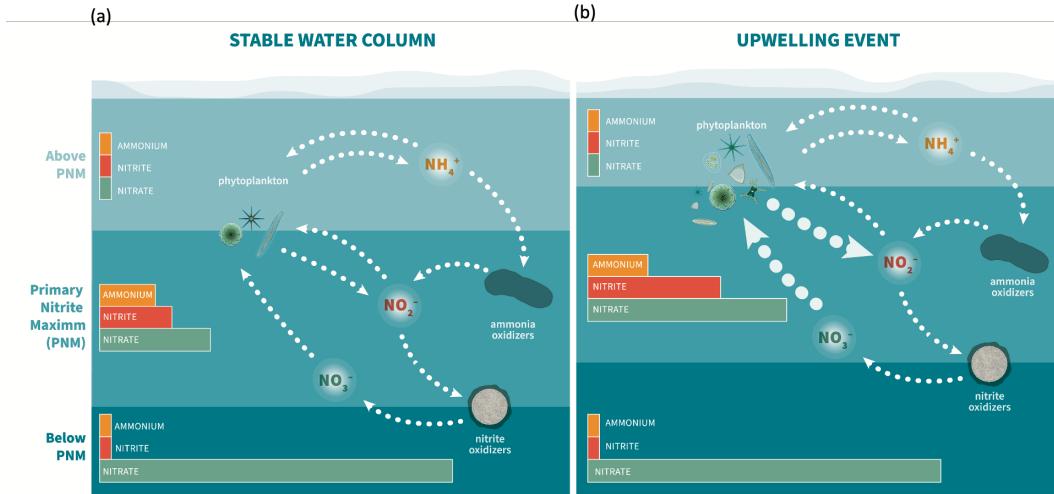
714 Nitrification rates were similar in magnitude between coastal and offshore stations (Table S2), with the major
 715 differences in rate measurements between coastal and offshore stations found in the phytoplankton-dominated
 716 processes (nitrate reduction and nitrite uptake). The highest rates of phytoplankton activity were found at coastal
 717 stations and occurred primarily above the depth of the PNM. The distribution of measured activity lends support to
 718 the hypothesis that phytoplankton may outcompete nitrifiers for DIN sources above the nitrite maximum (Wan et al.,
 719 2018; Zakem et al., 2018). This proposed mechanism accounts for the correlations seen between lower light levels and
 720 higher ammonia oxidation because the top of the nitracline itself is a physical demarcation of the depth where
 721 phytoplankton co-requirements for light and nitrate are met. Previous work has also shown that the presence of nitrate
 722 can inhibit nitrite uptake by phytoplankton through competitive interactions (Eppley and Coatsworth, 1968; Raimbault,
 723 1986) (Fig. 7b). This mechanism may provide a way to connect the presence of nitrate with a larger PNM that relies
 724 on prevention of nitrite loss, rather than an increase in nitrite production.

725 An additional loss term that could influence the size of the observed nitrite peak is diffusion, moving nitrite away from
726 the depth of maximal net nitrite production. In addition to having shallow nitraclines and shallow chlorophyll
727 maximum depths, as well as larger chlorophyll maxima and nitrite maxima, coastal stations also had the steepest
728 density gradients near the observed larger PNM, making Brunt-Väisälä (BV) frequency correlate with the nitrite
729 maxima in this dataset ($p=0.005$) (Fig S9, Fig. 2l). The strong density gradients at the coastal stations (stations 6, 7, 8,
730 9) would inhibit mixing, potentially allowing for larger concentrations of nitrite to accumulate for a given rate of net
731 nitrite production. This lack of diffusive loss at coastal stations could partially explain why ammonia oxidation rates
732 can remain similar between coastal and offshore stations (25.8 ± 3.6 vs. 21.3 ± 3.3 nM day $^{-1}$), yet result in higher
733 accumulated nitrite at a coastal PNM. Modeling efforts that are able to integrate both physical diffusion of nitrite and
734 mixing around the PNM, as well as the influence of environmental fluctuations on microbial rates over longer time
735 scales may be more able to explain observed nitrite concentrations. Additional data from time-integrated approaches
736 such as natural abundance nitrite isotopes would also contribute to estimating nitrite age in the PNM.

737 **4.5 Different time scales inherent to observational patterns**

738 Environmental features may not accurately predict the concentration of the nitrite maximum because of a time lag
739 between environmental conditions measured at a station, the response of the microbial community, and the length of
740 time needed to produce a PNM. Previous work has shown that a seasonal PNM can develop over 6 days in the Gulf
741 of Aqaba (Mackey et al., 2011). In our study, a large range in net production rates was observed (~ 0 -86.9 nM day $^{-1}$),
742 leading to the potential for a PNM to develop in less than a day at some locations, or as long as months at other stations.
743 The four southern coastal stations (used to inform the coastal MLR) had the largest nitrite maxima measured in this
744 study (with nitrite concentrations reaching 800-1400 nM). However, it is reasonable to expect that in dynamic coastal
745 waters, upwelling and offshore transport of water would lead to shorter water residence times and less time for nitrite
746 to accumulate in the PNM. Indeed, local surface current data from early April 2016 show the fastest currents occurring
747 along the southern coastline (Fig S8). However, even given these current velocities, nitrite accumulation over the span
748 of days to weeks seems possible. Thus, our nitrite residence time calculations, on the order of days to months, are
749 consistent with the residence time of water in the coastal environment, and other estimates of PNM residence times
750 (Fig. S6). For example, ammonia oxidation measurements from the California Current System suggested an 18-470
751 day residence time for offshore stations, and 40 day residence time for a coastal station (see full table in Santoro et al.
752 2013).

753 **4.6 Spatiotemporal controls on the nitrite maximum**


754 Previous work investigating the onset of the PNM has shown that nitrite concentrations are highest at the beginning
755 of seasonal stratification when phytoplankton begin to bloom, suggesting that phytoplankton help provide the
756 necessary conditions for nitrite accumulation (Al-Qutob et al., 2002; Mackey et al., 2011; Meeder et al., 2012; Vaccaro
757 and Ryther, 1960). In Mackey et al. (2011), the onset of stratification initiates a phytoplankton bloom that begins to
758 deplete surface nitrate and releases ammonia via phytoplankton degradation and zooplankton grazing. An
759 accumulation of ammonium forms just below the chlorophyll maximum, which is subsequently followed by an

760 accumulation of nitrite just below the ammonium peak. This continued stratification pattern supports the persistence
761 of the emergent PNM feature, though the size of the nitrite maximum declines over the duration of the stratification
762 period. The correlation between coastal upwelling and higher nitrite accumulation in the ETNP PNM may be
763 controlled by similar mechanisms as the high nitrite accumulation at the onset of seasonal stratification in other regions.
764 Instead of a strongly seasonal onset of stratification, the ETNP stratification persists year-round but is modulated by
765 upwelling along the coast.

766 At coastal stations in 2016, we saw high average concentrations of nitrate (16 μM) at the depth of the PNM due to
767 upwelling conditions, while average nitrate concentrations at offshore PNMs were lower (5.9 μM). The positive
768 correlation of nitrate concentration at the PNM peak with the concentration of the nitrite maximum ($R^2=0.5$, $p=0.01$)
769 suggests that upwelling nitrate is critical for larger nitrite maxima. The correlation found in the MLR analysis between
770 the chlorophyll-nitrate interaction term and the nitrite maxima supports the idea that higher nitrite accumulation
771 requires the presence of higher levels of nitrate within the chlorophyll bloom. High variation in the correlation of
772 nitrite maxima with chlorophyll, ammonium and nitrate may be due to how recently the chlorophyll bloom was
773 initiated, and whether it has had time to draw down available nitrate. However, these patterns do not identify whether
774 the presence of nitrate drives nitrite production from phytoplankton directly, or indirectly, by stimulating ammonia
775 oxidation.

776 Sequential decomposition of particulate organic nitrogen (PON) produces ammonium, then nitrite, and nitrate over
777 time, and matches the spatial ordering of these species with depth in the water column (Meeder et al. 2012). In a
778 stratified water column, the vertical transport of material may be slow enough to allow for a similar temporal
779 degradation pattern to emerge across the pycnocline. The sequence is initiated by the blooming of phytoplankton,
780 which is restricted to surface depths with adequate light and nitrate. In a coastal upwelling regime, the stratified water
781 column is pushed up towards the surface, and this degradation sequence is modified by enhanced source PON from
782 larger chlorophyll blooms. Larger pools of chlorophyll lead to larger accumulations of ammonium and nitrite. Based
783 on the magnitude of net nitrite production, nitrifiers appear to have a larger potential for net nitrite production at ETNP
784 PNMs. The association of nitrification rates with increasing nitrate concentration, which is not a required substrate for
785 nitrification, indicates an indirect connection with phytoplankton activity which is typically dependent on nitrate
786 availability. We suggest that changes in light and nitrate availability initiate a cascade of microbial processes that lead
787 from production to degradation of phytoplankton-based PON, providing a substrate for ammonia oxidation. Enhanced
788 phytoplankton productivity in this scenario should lead to higher rates of nitrite production via ammonia oxidation.

789 **Figure 8. Schematic of nitrite cycling processes and relative DIN pools near the PNM. Panel (a) depicts the**
790 **offshore conditions and panel (b) depicts early upwelling conditions that lead to bloom initiation.**

791

792

793 Figure 8 places the findings in the current study in the context of the sequential physical and biological processes
 794 controlling the PNM feature in the ETNP. The schematic depicts a typical offshore PNM from our study region
 795 observed during stratified, stable water column conditions (Fig. 8a), in contrast to that observed during the onset of
 796 upwelling (Fig. 8b). In each case, the surface ocean is split into 3 layers: above, within, and below the PNM, with the
 797 PNM sitting near the top of the nitracline. Phytoplankton control the availability and supply of DIN above the PNM,
 798 where high light allows for complete drawdown of DIN. In the stable water column (Fig. 8a), phytoplankton are
 799 present in a chlorophyll maximum that is small and stable just above the nitracline consisting of smaller eukaryotes
 800 and cyanobacteria (Legendre-Fixx, 2017). The chlorophyll maximum is small because there is no active upwelling,
 801 and the ambient nitrate at the chlorophyll maximum has been depleted to low concentrations. Phytoplankton fail to
 802 access deeper nitrogen supplies because light levels become inadequate at depth, so the chlorophyll maximum is
 803 balanced at the intersection of the dual requirements for light and upwardly diffused nitrate. A small ammonium peak
 804 develops just below the chlorophyll maximum, and just above the nitrite maximum, deriving from phytoplankton
 805 decomposition processes including grazer activity. The supply of ammonium is adequate to fuel an active nitrifier
 806 community in the PNM layer and below, with average rates of ammonia oxidation and nitrite oxidation near 20 nM
 807 day⁻¹. The net imbalance in the two steps of nitrification is small (few nM day⁻¹), contributing to the small yet stable
 808 accumulation of nitrite at the PNM. Contributions of nitrite from phytoplankton are minimal because they have drawn
 809 down surface nitrate and are subsisting at the edge of a well-established deep nitracline. Although the water column
 810 is stably stratified, the Brunt-Väisälä values are moderate.

811 During an upwelling event (Fig. 8b), an influx of nitrate-rich water into the euphotic zone initiates a phytoplankton
 812 bloom. We see evidence of early upwelling at coastal stations where nitrate concentrations at the chlorophyll
 813 maximum are not completely depleted (average $5.2 \pm 3.6 \mu\text{M}$), while nitrate at offshore station chlorophyll maxima are
 814 lower (average $0.6 \pm 0.4 \mu\text{M}$). With phytoplankton growth fueled by new nitrate, the ammonium concentration begins
 815 to increase via degradation and grazing, providing substrate for ammonia oxidizers. Rate measurements show a small

816 increase in average ammonia oxidation rate at coastal stations compared to offshore stations (25.8 ± 3.6 vs. 21.3 ± 3.3
817 nM day $^{-1}$, respectively). At some coastal stations, a more significant change in the concentration of the nitrite
818 maximum may come from increased phytoplankton nitrite release. Previous work has documented up to ~10% of
819 nitrate uptake can be released as nitrite in laboratory culture experiments, suggesting that locations with high nitrate
820 uptake and active nitrate reduction have the potential for substantial nitrite release from phytoplankton (Collos, 1998).
821 Additionally, the physical upwelling of deep water compresses density layers in the euphotic zone leading to higher
822 Brunt-Väisälä frequencies and lower potential for nitrite diffusion away from the site of production, helping to explain
823 larger nitrite maxima occurring at upwelling sites.

824 With nitrite production in the PNM predominantly linked to ammonia oxidation, this has potential implications for
825 production of nitrous oxide in the upper water column of the ETNP. The ETNP is known to be an important source
826 for atmospheric nitrous oxide (Babbin et al., 2020; Tian et al., 2020), with high accumulations of nitrous oxide in the
827 near surface (Kelly et al., 2021; Monreal et al., 2022). Nitrous oxide production in the near-surface maximum has been
828 linked to a combination of hybrid production from AOA, and bacterial denitrification (Kelly et al., 2021; Monreal et
829 al., 2022; Trimmer et al., 2016). Thus, conditions that favor enhanced ammonia oxidation could also promote enhanced
830 nitrous oxide production and emissions, thereby forming a link between stimulation of high primary productivity and
831 high rates of nitrous oxide production and emission.

832 **5 Conclusions**

833 This study used both high resolution environmental data and direct rate measurements of nitrite cycling processes to
834 explore the factors contributing to PNM formation in ETNP. At our sites, there was a distinct and predictable depth
835 where nitrite accumulated in a peak-shaped PNM feature. Linear regression and multivariate regression analysis with
836 environmental data showed that the top of the nitractine and the top of the oxycline are two major indicators of the
837 depth of the nitrite maximum. Rate measurements also showed distinct peaks in activity that corresponded well with
838 the mean PNM isopycnal for the region. Ammonia oxidation was the dominant nitrite production process at most
839 depths and stations, and nitrifier processes dominated nitrite cycling at and below the PNM. Phytoplankton processes
840 were typically restricted to depths above the PNM, and we report only a handful of high nitrate reduction rates (>20
841 nM day $^{-1}$) from coastal stations with higher chlorophyll and nitrate concentrations at the PNM. However, even where
842 nitrite production from phytoplankton remains low, we suggest a sequential and competitive dependence of ammonia
843 oxidation rates on phytoplankton processes. The importance of co-occurring environmental conditions and timing of
844 microbial interactions should be considered in further work on what factors determine the formation of large nitrite
845 maxima. For example, both nitrate and light availability may work together to control net nitrite production through
846 sequential processes beginning with upwelling events. Microbial physiological responses remain important in
847 connecting rates of activity to dynamic environmental conditions.

848 **References**

849 Al-Qutob, M., Häse, C., Tilzer, M. M., and Lazar, B.: Phytoplankton drives nitrite dynamics in the Gulf of Aqaba,
850 Red Sea, 239, 233–239, <https://doi.org/10.3354/meps239233>, 2002.

851 Babbin, A. R., Boles, E. L., Mühle, J., and Weiss, R. F.: On the natural spatio-temporal heterogeneity of South Pacific
852 nitrous oxide, 11, 1–9, <https://doi.org/10.1038/s41467-020-17509-6>, 2020.

853 Beman, J. M., Popp, B. N., and Francis, C. A.: Molecular and biogeochemical evidence for ammonia oxidation by
854 marine Crenarchaeota in the Gulf of California, 2, 429–441, <https://doi.org/10.1038/ismej.2007.118>, 2008.

855 Beman, J. M., Popp, B. N., and Alford, S. E.: Quantification of ammonia oxidation rates and ammonia-oxidizing
856 archaea and bacteria at high resolution in the Gulf of California and eastern tropical North Pacific Ocean, 57, 711–
857 726, <https://doi.org/10.4319/lo.2012.57.3.0711>, 2012.

858 Beman, J. M., Shih, J. L., and Popp, B. N.: Nitrite oxidation in the upper water column and oxygen minimum zone of
859 the eastern tropical North Pacific Ocean, 7, 2192–2205, <https://doi.org/10.1038/ismej.2013.96>, 2013.

860 Böhlke, J. K., Mroczkowski, S. J., and Coplen, T. B.: Oxygen isotopes in nitrate: new reference materials for ^{18}O : ^{17}O : ^{16}O measurements and observations on nitrate-water equilibration: Reference materials for O-isotopes in nitrate,
861 Rapid Commun. Mass Spectrom., 17, 1835–1846, <https://doi.org/10.1002/rcm.1123>, 2003.

862

863 Brandhorst, W.: Nitrite Accumulation in the North-East Tropical Pacific, Nature, 182, 679–679,
864 <https://doi.org/10.1038/182679a0>, 1958.

865 Bronk, D. A., Glibert, P. M., and Ward, B. B.: Nitrogen Uptake, Dissolved Organic Nitrogen Release, and New
866 Production, Science, 265, 1843–1846, <https://doi.org/10.1126/science.265.5180.1843>, 1994.

867 Buchwald, C. and Casciotti, K. L.: Isotopic ratios of nitrite as tracers of the sources and age of oceanic nitrite, 6, 308–
868 313, <https://doi.org/10.1038/NGEO1745>, 2013.

869 Burlacot, A., Richaud, P., Gosset, A., Li-Beisson, Y., and Peltier, G.: Algal photosynthesis converts nitric oxide into
870 nitrous oxide, Proc Natl Acad Sci USA, 117, 2704–2709, <https://doi.org/10.1073/pnas.1915276117>, 2020.

871 Carlucci, A. F., Hartwig, E. O., and Bowes, P. M.: Biological production of nitrite in seawater, 7, 161–166,
872 <https://doi.org/10.1007/BF00354921>, 1970.

873 Casciotti, K. L., Böhlke, J. K., McIlvin, M. R., Mroczkowski, S. J., and Hannon, J. E.: Oxygen isotopes in nitrite:
874 analysis, calibration, and equilibration, 79, 2427–2436, <https://doi.org/10.1021/ac061598h>, 2007.

875 Cline, J. D. and Richards, F. A.: Oxygen deficient conditions and nitrate reduction in the eastern tropical North Pacific
876 Ocean, 17, 885–900, <https://doi.org/10.4319/lo.1972.17.6.0885>, 1972.

877 Codispoti, L. A., Friederich, G. E., Murray, J. W., and Sakamoto, C. M.: Chemical variability in the Black Sea:
878 implications of continuous vertical profiles that penetrated the oxic/anoxic interface, Deep Sea Research Part A.
879 Oceanographic Research Papers, 38, S691–S710, [https://doi.org/10.1016/S0198-0149\(10\)80004-4](https://doi.org/10.1016/S0198-0149(10)80004-4), 1991.

880 Collos, Y.: Transient situations in nitrate assimilation by marine diatoms. 2. Changes in nitrate and nitrite following a
881 nitrate perturbation, 27, 528–535, <https://doi.org/10.1.1.597.3625>, 1982.

882 Collos, Y.: Nitrate uptake, nitrite release and uptake, and new production estimates, 171, 293–301, 1998.

883 Corne, M., Claustre, H., Mignot, A., Guidi, L., Lacour, L., Poteau, A., D'Ortenzio, F., Gentili, B., and Schmechtig,
884 C.: Deep Chlorophyll Maxima in the Global Ocean: Occurrences, Drivers and Characteristics, Global Biogeochem
885 Cycles, 35, <https://doi.org/10.1029/2020GB006759>, 2021.

886 Dore, J. E. and Karl, D. M.: Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at Station
887 ALOHA, 41, 1619–1628, <https://doi.org/10.4319/lo.1996.41.8.1619>, 1996.

888 Dugdale, R. and Goering, J.: Uptake of new and regenerated forms of nitrogen in primary productivity, 12, 196–206,
889 1967.

890 Dugdale, R. and Wilkerson, F.: The use of ^{15}N to measure nitrogen uptake in eutrophic oceans; experimental
891 considerations, 1, 2, 31, 673–689, 1986.

892 Eppley, R. W. and Coatsworth, J. L.: Uptake of nitrate and nitrite by *Ditylum Brightwelli* - Kinetics and mechanisms,
893 4, 151–156, <https://doi.org/10.1111/j.1529-8817.1968.tb04689.x>, 1968.

894 Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E., and Oakley, B. B.: Ubiquity and diversity of
895 ammonia-oxidizing archaea in water columns and sediments of the ocean, 102, 14683–14688,
896 <https://doi.org/10.1073/pnas.0506625102>, 2005.

897 Francis, C. A., Beman, J. M., and Kuypers, M. M. M.: New processes and players in the nitrogen cycle: the
898 microbial ecology of anaerobic and archaeal ammonia oxidation, 1, 19–27, <https://doi.org/10.1038/ismej.2007.8>,
899 2007.

900 French, D. P., Furnas, M. J., and Smayda, T. J.: Diel changes in nitrite concentration in the chlorophyll maximum in
901 the Gulf of Mexico, 30, 707–722, <https://doi.org/10.1073/pnas.0506625102>, 1983.

902 Füssel, J., Lam, P., Lavik, G., Jensen, M. M., Holtappels, M., Günter, M., and Kuypers, M. M.: Nitrite oxidation in
903 the Namibian oxygen minimum zone, 6, 1200–1209, <https://doi.org/10.1038/ismej.2011.178>, 2012.

904 Glibert, P. M., Middelburg, J. J., McClelland, J. W., and Jake Vander Zanden, M.: Stable isotope tracers: Enriching
905 our perspectives and questions on sources, fates, rates, and pathways of major elements in aquatic systems, Limnol
906 Oceanogr, 64, 950–981, <https://doi.org/10.1002/lno.11087>, 2019.

907 GLODAP, V.: GLODAP V2, V2.

908 Granger, J. and Sigman, D. M.: Removal of nitrite with sulfamic acid for nitrate N and O isotope analysis with the
909 denitrifier method, 23, 3753–3762, <https://doi.org/10.1002/rcm.4307>, 2009.

910 Grömping, U.: Relative Importance for Linear Regression in R: The Package relaimpo, 17, 1–27, 2006.

911 Gruber, N.: The marine nitrogen cycle: overview and challenges, 2, 1–50, <https://doi.org/10.1038/nature06592>, 2008.

912 Guerrero, M. A. and Jones, R. D.: Photoinhibition of marine nitrifying bacteria. I. Wavelength-dependent response,
913 141, 183–192, <https://doi.org/10.3354/meps141183>, 1996.

914 Herbrland, A. and Voituriez, B.: Hydrological structure analysis for estimating the primary production in the tropical
915 Atlantic Ocean, 37, 16, 1979.

916 Holligan, P. M., Balch, W. M., and Yentsch, C. M.: The significance of subsurface chlorophyll, nitrite and
917 ammonium maxima in relation to nitrogen for phytoplankton growth in stratified waters of the Gulf of Maine, 42,
918 1051–1073, <https://doi.org/10.1357/002224084788520747>, 1984.

919 Holmes, R. M., Aminot, A., Kérouel, R., Hooker, B. A., and Peterson, B. J.: A simple and precise method for
920 measuring ammonium in marine and freshwater ecosystems, 56, 1801–1808, <https://doi.org/10.1139/f99-128>, 1999.

921 Horak, R. E. A., Qin, W., Bertagnolli, A. D., Nelson, A., Heal, K. R., Han, H., Heller, M., Schauer, A. J., Jeffrey, W.
922 H., Armbrust, E. V., Moffett, J. W., Ingalls, A. E., Stahl, D. A., and Devol, A. H.: Relative impacts of light,

923 temperature, and reactive oxygen on thaumarchaeal ammonia oxidation in the North Pacific Ocean, 63, 741–757,
924 <https://doi.org/10.1002/lno.10665>, 2018.

925 Kelly, C. L., Travis, N. M., Baya, P. A., and Casciotti, K. L.: Quantifying Nitrous Oxide Cycling Regimes in the
926 Eastern Tropical North Pacific Ocean With Isotopomer Analysis, *Global Biogeochem Cycles*, 35,
927 <https://doi.org/10.1029/2020GB006637>, 2021.

928 Kiefer, D., Olson, R., and Holm-Hansen, O.: Another look at the nitrite and chlorophyll maxima in the central North
929 Pacific, in: *Deep Sea Research and Oceanographic Abstracts*, 1199–1208,
930 [https://doi.org/10.1016/00117471\(76\)90895-0](https://doi.org/10.1016/00117471(76)90895-0), 1976.

931 Legendre-Fixx, M.: Drivers of phytoplankton community heterogeneity in the Eastern Tropical North Pacific,
932 Undergraduate Thesis, University of Washington, 2017.

933 Lomas, M. and Glibert, P.: Interactions between NH₄⁺ 4 and NO₃⁻ 3 uptake and assimilation: comparison of diatoms
934 and dinoflagellates at several growth temperatures, 133, 541–551, <https://doi.org/10.1007/s002270050494>, 1999.

935 Lomas, M. W. and Glibert, P. M.: Comparisons of nitrate uptake, storage, and reduction in marine diatoms and
936 flagellates, 36, 903–913, <https://doi.org/10.1046/j.1529-8817.2000.99029.x>, 2000.

937 Lomas, M. W. and Lipschultz, F.: Forming the primary nitrite maximum: Nitrifiers or phytoplankton?, 51, 2453–2467,
938 <https://doi.org/10.4319/lo.2006.51.5.2453>, 2006.

939 Lücker, S., Wagner, M., Maixner, F., Pelletier, E., Koch, H., Vacherie, B., Rattei, T., Damsté, J. S. S., Speck, E., Le
940 Paslier, D., and Daims, H.: A *Nitrospira* metagenome illuminates the physiology and evolution of globally important
941 nitrite-oxidizing bacteria, *Proc. Natl. Acad. Sci. U.S.A.*, 107, 13479–13484,
942 <https://doi.org/10.1073/pnas.1003860107>, 2010.

943 Lücker, S., Nowka, B., Rattei, T., Speck, E., and Daims, H.: The Genome of *Nitrospina gracilis* Illuminates the
944 Metabolism and Evolution of the Major Marine Nitrite Oxidizer, *Front. Microbiol.*, 4,
945 <https://doi.org/10.3389/fmicb.2013.00027>, 2013.

946 Mackey, K. R., Bristow, L., Parks, D. R., Altabet, M. A., Post, A. F., and Paytan, A.: The influence of light on
947 nitrogen cycling and the primary nitrite maximum in a seasonally stratified sea, 91, 545–560,
948 <https://doi.org/10.1016/j.pocean.2011.09.001>, 2011.

949 Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R., and Stahl, D. A.: Ammonia oxidation kinetics
950 determine niche separation of nitrifying Archaea and Bacteria, *Nature*, 461, 976–979,
951 <https://doi.org/10.1038/nature08465>, 2009.

952 McIlvin, M. R. and Altabet, M. A.: Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen
953 isotopic analysis in freshwater and seawater, 77, 5589–5595, <https://doi.org/10.1021/ac050528s>, 2005.

954 McIlvin, M. R. and Casciotti, K. L.: Technical updates to the bacterial method for nitrate isotopic analyses, 83, 1850–
955 1856, <https://doi.org/10.1021/ac1028984>, 2011.

956 Meeder, E., Mackey, K. R., Paytan, A., Shaked, Y., Iluz, D., Stambler, N., Rivlin, T., Post, A. F., and Lazar, B.:
957 Nitrite dynamics in the open ocean—clues from seasonal and diurnal variations, 453,
958 <https://doi.org/10.3354/meps09525>, 2012.

959 Merbt, S. N., Stahl, D. A., Casamayor, E. O., Martí, E., Nicol, G. W., and Prosser, J. I.: Differential photoinhibition
960 of bacterial and archaeal ammonia oxidation, 327, 41–46, <https://doi.org/10.1111/j.1574-6968.2011.02457.x>, 2012.

961 Miller, T. L. based on F. code by A.: leaps: Regression Subset Selection, 2020.

962 Miller, J. and Miller, J.: Statistics for Analytical Chemistry, 2nd, Ed., John Wiley & Sons, NY, 1988.

963 Mincer, T. J., Church, M. J., Taylor, L. T., Preston, C., Karl, D. M., and DeLong, E. F.: Quantitative distribution of
964 presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre, 9, 1162–1175,
965 <https://doi.org/10.1111/j.1462-2920.2007.01239.x>, 2007.

966 Montreal, P. J., Kelly, C. L., Travis, N. M., and Casciotti, K. L.: Identifying the Sources and Drivers of Nitrous
967 Oxide Accumulation in the Eddy-Influenced Eastern Tropical North Pacific Oxygen-Deficient Zone, *Global
968 Biogeochemical Cycles*, 36, <https://doi.org/10.1029/2022GB007310>, 2022.

969 Mulholland, M. R. and Lomas, M. W.: Nitrogen uptake and assimilation, 303–384, 2008.

970 Olson, R. J.: Differential photoinhibition of marine nitrifying bacteria: a possible mechanism for the formation of the
971 primary nitrite maximum, 39, 227–238, 1981.

972 Peng, X., Fuchsman, C. A., Jayakumar, A., Oleynik, S., Martens-Habbena, W., Devol, A. H., and Ward, B. B.:
973 Ammonia and nitrite oxidation in the Eastern Tropical North Pacific: AMMONIA AND NITRITE OXIDATION IN
974 ETNP, 29, 2034–2049, <https://doi.org/10.1002/2015GB005278>, 2015.

975 Plouviez, M., Shilton, A., Packer, M. A., and Guieysse, B.: Nitrous oxide emissions from microalgae: potential
976 pathways and significance, *J Appl Phycol*, 31, 1–8, <https://doi.org/10.1007/s10811-018-1531-1>, 2019.

977 Raimbault, P.: Effect of temperature on nitrite excretion by three marine diatoms during nitrate uptake, 92, 149–155,
978 1986.

979 Rajaković, L. V., Marković, D. D., Rajaković-Ognjanović, V. N., and Antanasijević, D. Z.: The approaches for
980 estimation of limit of detection for ICP-MS trace analysis of arsenic, *Talanta*, 102, 79–87, 2012.

981 Sakamoto, C. M., Friederich, G. E., and Codispoti, L. A.: MBARI procedures for automated nutrient analyses using a
982 modified Alpkem Series 300 Rapid Flow Analyzer, 1990.

983 Santoro, A., Sakamoto, C., Smith, J., Plant, J., Gehman, A., Worden, A., Johnson, K., Francis, C., and Casciotti, K.:
984 Measurements of nitrite production in and around the primary nitrite maximum in the central California Current, 10,
985 7395–7410, 2013.

986 Santoro, A. E., Casciotti, K. L., and Francis, C. A.: Activity, abundance and diversity of nitrifying archaea and bacteria
987 in the central California Current, 12, 1989–2006, 2010.

988 Santoro, A. E., Buchwald, C., McIlvin, M. R., and Casciotti, K. L.: Isotopic signature of N₂O produced by marine
989 ammonia-oxidizing archaea, 333, 1282–1285, 2011.

990 Schaefer, S. C. and Hollibaugh, J. T.: Temperature Decouples Ammonium and Nitrite Oxidation in Coastal Waters,
991 51, 3157–3164, <https://doi.org/10.1021/acs.est.6b03483>, 2017.

992 Schleper, C., Jurgens, G., and Jonuscheit, M.: Genomic studies of uncultivated archaea, *Nat Rev Microbiol*, 3, 479–
993 488, <https://doi.org/10.1038/nrmicro1159>, 2005.

994 Shiozaki, T., Ijichi, M., Isobe, K., Hashihama, F., Nakamura, K., Ehama, M., Hayashizaki, K., Takahashi, K.,
995 Hamasaki, K., and Furuya, K.: Nitrification and its influence on biogeochemical cycles from the equatorial Pacific
996 to the Arctic Ocean, 10, 2184, 2016.

997 Sigman, D. M., Casciotti, K. L., Andreani, M., Barford, C., Galanter, M., and Böhlke, J. K.: A Bacterial Method for
998 the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater, *Anal. Chem.*, 73, 4145–4153,
999 <https://doi.org/10.1021/ac010088e>, 2001.

1000 Smith, J. M., Chavez, F. P., and Francis, C. A.: Ammonium uptake by phytoplankton regulates nitrification in the
1001 sunlit ocean, 9, e108173, 2014.

1002 Strickland, J. D. and Parsons, T. R.: A practical handbook of seawater analysis, 1972.

1003 Tian, H., Xu, R., Canadell, J. G., Thompson, R. L., Winiwarter, W., Suntharalingam, P., Davidson, E. A., Ciais, P.,
1004 Jackson, R. B., Janssens-Maenhout, G., Prather, M. J., Regnier, P., Pan, N., Pan, S., Peters, G. P., Shi, H., Tubiello,
1005 F. N., Zaehle, S., Zhou, F., Arneth, A., Battaglia, G., Berthet, S., Bopp, L., Bouwman, A. F., Buitenhuis, E. T.,
1006 Chang, J., Chipperfield, M. P., Dangal, S. R. S., Dlugokencky, E., Elkins, J. W., Eyre, B. D., Fu, B., Hall, B., Ito, A.,
1007 Joos, F., Krummel, P. B., Landolfi, A., Laruelle, G. G., Lauerwald, R., Li, W., Lienert, S., Maavara, T., MacLeod,
1008 M., Millet, D. B., Olin, S., Patra, P. K., Prinn, R. G., Raymond, P. A., Ruiz, D. J., van der Werf, G. R., Vuichard, N.,
1009 Wang, J., Weiss, R. F., Wells, K. C., Wilson, C., Yang, J., and Yao, Y.: A comprehensive quantification of global
1010 nitrous oxide sources and sinks, *Nature*, 586, 248–256, <https://doi.org/10.1038/s41586-020-2780-0>, 2020.

1011 Trimmer, M., Chronopoulou, P.-M., Maanoja, S. T., Upstill-Goddard, R. C., Kitidis, V., and Purdy, K. J.: Nitrous
1012 oxide as a function of oxygen and archaeal gene abundance in the North Pacific, *Nat Commun*, 7, 13451,
1013 <https://doi.org/10.1038/ncomms13451>, 2016.

1014 Vaccaro, R. F. and Ryther, J. H.: Marine Phytoplankton and the Distribution of Nitrite in the Sea*, 25, 260–271,
1015 <https://doi.org/10.1093/icesjms/25.3.260>, 1960.

1016 Wada, E. and Hattori, A.: Nitrite metabolism in the euphotic layer of the central North Pacific Ocean, 16, 766–772,
1017 1971.

1018 Wada, E. and Hattori, A.: Nitrite distribution and nitrate reduction in deep sea waters, 19, 123–132,
1019 [https://doi.org/10.1016/0011-7471\(72\)90044-7](https://doi.org/10.1016/0011-7471(72)90044-7), 1972.

1020 Wan, X. S., Sheng, H.-X., Dai, M., Zhang, Y., Shi, D., Trull, T. W., Zhu, Y., Lomas, M. W., and Kao, S.-J.:
1021 Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean, *Nat Commun*, 9, 915,
1022 <https://doi.org/10.1038/s41467-018-03363-0>, 2018.

1023 Wan, X. S., Sheng, H., Dai, M., Church, M. J., Zou, W., Li, X., Hutchins, D. A., Ward, B. B., and Kao, S.:
1024 Phytoplankton-nitrifier interactions control the geographic distribution of nitrite in the upper ocean, *Global
1025 Biogeochem Cycles*, <https://doi.org/10.1029/2021GB007072>, 2021.

1026 Ward, B. and Carlucci, A.: Marine ammonia-and nitrite-oxidizing bacteria: serological diversity determined by
1027 immunofluorescence in culture and in the environment, 50, 194–201, <https://doi.org/10.1128/aem.50.2.194201.1985>,
1028 1985.

1029 Ward, B. B.: Light and substrate concentration relationships with marine ammonium assimilation and oxidation rates,
1030 16, 301–316, [https://doi.org/10.1016/0304-4203\(85\)90052-0](https://doi.org/10.1016/0304-4203(85)90052-0), 1985.

1031 Ward, B. B.: Temporal variability in nitrification rates and related biogeochemical factors in Monterey Bay, California,
1032 USA, *Mar Ecol Prog Ser*, 292, 97–109, <https://doi.org/10.3354/meps292097>, 2005.

1033 Ward, B. B., Olson, R. J., and Perry, M. J.: Microbial nitrification rates in the primary nitrite maximum off southern
1034 California, 29, 247–255, [https://doi.org/10.1016/0198-0149\(82\)90112-1](https://doi.org/10.1016/0198-0149(82)90112-1), 1982.

1035 Ward, B. B., Kilpatrick, K. A., Renger, E. H., and Eppley, R. W.: Biological nitrogen cycling in the nitracline, 34,
1036 493–513, <https://doi.org/10.4319/lo.1989.34.3.0493>, 1989.

1037 Watson, S. W. and Waterbury, J. B.: Characteristics of two marine nitrite oxidizing bacteria, *Nitrospina gracilis* nov.
1038 gen. nov. sp. and *Nitrococcus mobilis* nov. gen. nov. sp., 77, 203–230, 1971.

1039 Xu, M. N., Li, X., Shi, D., Zhang, Y., Dai, M., Huang, T., Glibert, P. M., and Kao, S.: Coupled effect of substrate
1040 and light on assimilation and oxidation of regenerated nitrogen in the euphotic ocean, *Limnol Oceanogr*, 64, 1270–
1041 1283, <https://doi.org/10.1002/lno.11114>, 2019.

1042 Yool, A., Martin, A. P., Fernández, C., and Clark, D. R.: The significance of nitrification for oceanic new production,
1043 447, 999–1002, <https://doi.org/10.1038/nature05885>, 2007.

1044 Zafiriou, O. C., Ball, L. A., and Hanley, Q.: Trace nitrate in oxic waters, 39, 1329–1347, [https://doi.org/10.1016/0198-0149\(92\)90072-2](https://doi.org/10.1016/0198-0149(92)90072-2), 1992.

1045 Zakem, E. J., Al-Haj, A., Church, M. J., van Dijken, G. L., Dutkiewicz, S., Foster, S. Q., Fulweiler, R. W., Mills, M.
1046 M., and Follows, M. J.: Ecological control of nitrite in the upper ocean, 9, <https://doi.org/10.1038/s41467-01803553-w>, 2018.

1047 Zehr, J. P. and Kudela, R. M.: Nitrogen Cycle of the Open Ocean: From Genes to Ecosystems, *Annu. Rev. Mar. Sci.*,
1048 3, 197–225, <https://doi.org/10.1146/annurev-marine-120709-142819>, 2011.

1049 Zehr, J. P. and Ward, B. B.: Nitrogen Cycling in the Ocean: New Perspectives on Processes and Paradigms, *AEM*, 68,
1050 1015–1024, <https://doi.org/10.1128/AEM.68.3.1015-1024.2002>, 2002.

1053
1054 **Acknowledgements**

1055 The authors acknowledge the captain and crew of the research vessels required to collect this data set:
1056 R/V Ronald Brown, R/V Sikuliaq, R/V Sally Ride and the R/V Falkor. We also acknowledge shipboard
1057 support from Marguerite Blum and Matt Forbes. This research was supported by U.S.-NSF grant
1058 OCE1657868 to K. L. Casciotti.

1059
1060 **Author Contributions**

1061 Major data collection efforts, data processing/analysis and writing were conducted by N. Travis.
1062 Significant support during data collection was provided by C. Kelly and M. Mulholland, with additional
1063 contributions during manuscript editing. K. Casciotti was instrumental in initial project design, laboratory
1064 analysis, data investigations and manuscript writing.