1	Spatial-temporal distribution, photoreactivity and environmental
2	control of dissolved organic matter in the sea-surface microlayer of
3	the eastern marginal seas of China
4	Lin Yang ^a , Jing Zhang ^{a, c, *} , Anja Engel ^d , Gui-Peng Yang ^{a, b, c, *}
5	^a Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of
6	Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China,
7	Qingdao 266100, China
8	^b Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for
9	Marine Science and Technology, Qingdao 266237, China
10	^c Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
11	^d GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany

^{*} Corresponding authors. Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China *E-mail addresses*: zhangjouc@ouc.edu.cn (J. Zhang), gpyang@ouc.edu.cn (G.-P. Yang)

Graphical Abstract

14 Abstract

15 As the boundary interface between the atmosphere and ocean, the sea-surface microlayer (SML) 16 plays a significant role in the biogeochemical cycles of dissolved organic matter (DOM) and 17 macronutrients in marine environments. In our study, the optical properties of DOM were compared 18 between the SSW and the SML during spring, summer and winter in the East China Sea (ECS) and the 19 Yellow Sea (YS), photoexposure experiments were design to compare photochemical degradation 20 processes of DOM between the SML and the SSW. Chromophoric DOM (CDOM), fluorescent DOM, 21 dissolved organic carbon, chlorophyll a, picoplankton, nutrients, and bacteria were frequently enriched 22 in the SML. The enrichment factors (EFs) of tryptophan-like component 4 was significantly higher than other fluorescence components; the longer wavelength absorption values of CDOM showed 23 24 higher EFs in the SML, and the more significant relationship between CDOM and Chl-a in the SML, 25 indicating that autochthonous DOM was more strongly enriched in the SML than the terrestrial DOM. We find that higher EFs were generally observed in the SML in the off-shore regions than in the 26 27 coastal regions, and CDOM in the SML is photobleached less after relatively strong irradiation, as also 28 indicated by the lower percentages of humic-like DOM and lower specific UV absorbance values 29 (SUVA₂₅₄) in the SML than the subsurface water (SSW). Compared to the SSW, the elevated nutrients 30 may stimulate phytoplankton growth, biological activity and then production of abundant fresh 31 autochthonous DOM in the SML. Our results revealed a new enrichment model and the more 32 autochthonous properties of DOM in the SML than the SSW for exploring the oceanic air-sea layer 33 environment.

34

35 Keywords: Sea-surface microlayer; Dissolved organic matter; Photochemical degradation;

36 Enrichment processes; Eastern marginal seas of China

37 1 Introduction

38 The sea-surface microlayer (SML) is the boundary interface between the atmosphere and the 39 ocean, which covers about 70% of the Earth's surface. SML is physicochemically distinct from 40 subsurface water (SSW, depth $3 \sim 5$ m) and is characteristically enriched with phytoneuston, 41 chlorophyll, particulate carbon, dissolved organic matter (Hardy 1982; Hardy and Apts, 1989), and biogenic organic compounds, such as lipids, proteins, and polysaccharides ((Liss and Duce, 1997; Liss 42 43 and Duce, 2005). With a total thickness ranging between 1 µm and 1000 µm, the SML remains present 44 in wind speeds of up to 13 m s⁻¹ (Sabbaghzadeh et al., 2017). A variety of processes contribute to the formation of the SML in aquatic systems, these include but are not limited to, scavenging by rising 45 46 bubbles, atmospheric deposition, dissolved organic matter (DOM) photochemical degradation and 47 transformation, secretion, and biodegradation by organisms living within the microlayer (Neuston), and migration of motile organisms into the SML (Aller et al., 2005; Wotton and Preston, 2005). The 48 SML is a very dynamic interface (Cunliffe et al., 2013), the impact of changes in UV radiation on 49 50 air-sea fluxes in the SML of important trace gases will need to be assessed. In addition, another 51 uncertainty is whether photochemical reactions on the SML affect the flux of volatile species at the 52 air-sea interface (Blough, 1997). Therefore, the role of the microlayer in oceanic emissions is not well 53 understood and fundamental advance in understanding its properties are needed.

The processes leading to the enrichment of DOM in the SML are not solely controlled by changes in the DOM concentration at the sea surface microlayer, but are more complex (Mustaffa et al., 2018). Because of its unique position at the air-sea interface, the biological and photochemical reactions of DOM in the SML could strongly impact the biogeochemical cycling of biologically important

58 elements, for example, via the conversion of DOM into volatile species such as carbonyl sulfide 59 (OCS), which influence the atmospheric chemistry and climate (Mopper et al., 2002). Air-sea gas 60 exchanges of trace gases (e.g., CO, OCS, dimethylsulfide (DMS), and alkyl nitrates gases) can also be 61 greatly influenced by biological and photochemical reactions at the sea surface (Blough, 1997). 62 Optical measurements of absorbance and fluorescence have been applied to track DOM 63 variability in aquatic ecosystems (McKnight et al., 2001; Zepp et al., 2004; Coble, 2007). The fraction of DOM that absorbs light in the ultraviolet and visible ranges of the electromagnetic spectrum and the 64 65 fraction that exhibits a blue fluorescence are known as chromophoric DOM (CDOM) and fluorescence DOM (FDOM), respectively, and their relative compositions can provide information differentiating 66 67 between autochthonous and allochthonous sources (Coble, 1996; McKnight et al., 2001; Stedmon et 68 al., 2007). Photolysis of DOM promotes the formation of low-molecular-weight compounds, 69 increasing the bioavailability of biologically refractory materials and facilitating carbon uptake by 70 microbes (Kieber et al., 1989). Indices based on optical measurements of absorbance and fluorescence 71 are commonly used to track DOM composition and infer DOM processing due to their low analytical 72 cost and high throughput relative to molecular level analyses (Coble, 2007; Fellman et al., 2010; 73 Gabor et al., 2014). Recent studies have mainly focused on using the characteristics of CDOM as 74 indicators of the sources and degradation states of DOM (Massicotte et al., 2017) in the SSW, and its 75 vertical distribution in estuaries and open oceans (Yamashita et al., 2017; Margolin et al., 2018). In 76 addition, Mustaffa et al. (2018 and 2017) observed that FDOM enrichment in the SML in the coastal regions and open Atlantic Ocean, and FDOM is frequently enriched during upwelling events in the 77 78 Baltic Sea.

79

Even though there are many studies that have documented the enrichment in DOM (e.g. amino

80	acids; carbohydrates) and inorganic nutrients in the SML relative to the SSW (Orellana et al., 2011;
81	Chen et al., 2016), the differences in organic matter composition between the SML and SSW, the
82	different enrichment factors of DOM in the SML between the coastal regions and the off-shore regions,
83	and how do photochemical degradation activities regulate DOM concentration in the SML need more
84	thorough discussion. Here, we investigated the concentration and composition of DOM in the SML
85	relative to the SSW and the responses of DOM to photoexposure. We hypothesized that the
86	photochemical reactions and enrichment processes could influence the composition difference of
87	DOM between the SML and the SSW, and greater solar exposure in the SML than in the SSW would
88	enhance the mineralization of DOM. To test these hypotheses, our study was designed to answer the
89	questions: (1) What is the differences in optical characterization of DOM between the SML and the
90	SSW? (2) Are the enrichment factors (EFs) of DOM the same between the coastal regions and
91	off-shore regions? (3) How will photochemical degradation processes affect DOM composition in the
92	SML and the SSW? We, therefore, compared the optical properties of DOM between the SSW and the
93	SML, and EFs of CDOM, FDOM components, dissolved organic carbon (DOC), chlorophyll-a (Chl-a),
94	nutrients, and bacterial abundance from the coastal waters to open ocean in the eastern marginal seas
95	of China (including the East China Sea (ECS) and the Yellow Sea (YS)) during spring of 2017 and
96	2019, summer of 2018, and winter of 2019; discuss how the composition of accumulated DOM was
97	affected by environmental conditions (wind speed and salinity) within the SML; and conducted
98	photoexposure experiments to compare photochemical degradation processes of DOM between the
99	SML and the SSW.

2 Materials and methods

102 2.1 Study Area

103 Four cruises were conducted during the four seasons, specifically, from: 27 March to 15 April

- 104 2017 (R/V "Dong Fang Hong 2"), 26 June to 19 July 2018 (R/V "Dong Fang Hong 2"), March 2019
- 105 (R/V "Zheyu No. 2"), and 28 December 2019 to 16 January 2020 (R/V "Dong Fang Hong 3"). The
- 106 station locations are shown in Fig. 1. In spring, summer, and winter, SML samples were collected in
- 107 the YS and the ECS, which are shallow seas located almost entirely on the continental shelf in the
- 108 western Pacific Ocean where there is strong interaction between land and sea.

113 We collected 220 paired SML and SSW water samples. SSW samples were collected at 2-5 m 114 depth using 24 \times 10-L Niskin bottles mounted on a rosette equipped with a conductivity-temperature-depth (CTD) profiler. The SML samples were collected using the screen 115 116 sampling technique (Chen et al., 2016; Garrett, 1965) and were taken directly from the ship's bow 117 when conditions were calm. A screen sampler with a 1.6 mm mesh of stainless steel wire on a 40 cm \times 40 cm stainless steel frame was used. The SML samples were collected in 500 mL brown sample 118 119 bottles. The screen was held level and dipped into the sea surface, moved laterally in order to sample 120 from an undisturbed film, and then withdrawn slowly from the surface. Repeated dipping was conducted until the desired volume was collected (11 times, 600 ml; the thickness of the SML sample 121 122 is nearly $300 \sim 1000$ um). The screen method is often applied during field studies because of its 123 relatively short sampling time and large sample volume compared to other techniques (Momzikoff et al., 2004; Chen et al., 2016). Immediately after collection, samples were filtered using 0.7 µm glass 124 125 fiber filters (GF/F, Whatmann) and the filtrates were transferred to 60 mL and 40 mL brown glass 126 bottles (pre-cleaned and pre-combusted) for later CDOM and DOC analyses. All samples were frozen 127 (-20°C) and protected from light, and upon arriving at the land laboratory, were analyzed as soon as 128 possible. Sea surface temperature and salinity were obtained from a Seabird 911 CTD Rosette. Meteorological data (e.g., wind speed and air temperature) were recorded simultaneously by a 129 130 ship-borne weather instrument (Li et al., 2019).

131 2.3 Photoexposure experiment

SSW and SML water samples were collected in July 2018 at stations A3, BF, and H10 as well as
D2 and F6 located in the YS and the ECS, respectively. Samples (SSW: 2L; SML: 500 mL) were

134 immediately passed through 0.22 µm PES filters (Pall Corp. Port Washington, NY, USA) to remove 135 the majority of bacteria, placed in acid-washed and pre-combusted brown glass bottles and stored at 136 4°C. Similarly, filtered samples from each site were placed in five 80 mL optically transparent quartz 137 tubes (acid-washed and pre-combusted) and sealed without headspace or air bubbles to measure the 138 effect of light exposure. The quartz tubes were positioned on their sides under the irradiation source to 139 maximize the exposure of the sample; the water depth in each tube was 5 cm (i.e. the diameter of the 140 tube). Both sets (SML and SSW) were irradiated for 6, 12, 24, 50, and 88 h (25°C) in a GLZ-C 141 Quantum Sensor (Top Cloud-Agri Instrument, Zhejiang, China) solar simulator. All samples for DOC 142 concentration measurements were acidified to approximately pH 2.0 with high purity HCl and 143 analyzed within 7 d, and absorbance spectra and fluorescence excitation emission matrices (EEMs) 144 were run on non-acidified samples within 3 d of sampling (4°C and dark).

145 2.4 Analytical measurements

146 Determination of the CDOM absorption coefficient

Absorption spectra were determined using a UV-visible spectrophotometer (UV-2550 bi-channel; Shimadzu, Tokyo, Japan) equipped with two 10 cm path-length quartz cuvettes. Sample absorbance was automatically corrected for the absorbance of Milli-Q water. Absorbance scans ranged from 200 to 800 nm, with a spectral resolution of 1 nm. The absorption coefficient of CDOM was calculated according to equation (1):

152 $a(\gamma) = 2.303 A(\gamma)/l$ (1)

153 where, $A(\lambda)$ is the absorbance at wavelength λ ; and *r* is the path length of the quartz cuvette in meters.

The spectral slope of the CDOM absorption curve (S) was calculated according to a non-linear regression over the 275–295 nm and 350–400 nm wavelength range, according to:

156
$$a(\lambda) = a(\lambda_0) \exp[S(\lambda_0 - \lambda)] + K$$
(2)

157 where, $\alpha(\lambda)$ is the absorption coefficient at wavelength λ ; $\alpha(\lambda_0)$ is the absorption at the reference

158	wavelength λ_0 of 440 nm; S is the spectral slope; and K is a background parameter that accounts for
159	baseline shifts or attenuation due to factors other than CDOM. S was measured in the wavelength
160	ranges of 275–295 nm (S ₂₇₅₋₂₉₅ , nm ⁻¹) and 350–400 nm (S ₃₅₀₋₄₀₀ , nm ⁻¹). S ₂₇₅₋₂₉₅ is used to characterize
161	DOM, with high values generally indicative of low-molecular-weight DOM that are linked to
162	photochemical modification (Helms et al., 2008; Ortega-Retuerta et al., 2009). The spectral slope ratio
163	(S_R) was defined as the ratio of the two spectral slopes, $S_{275-295}$ to $S_{350-400}$. S_R is also a sensitive
164	indicator of photochemically induced changes in the molecular weight within the CDOM pool, with
165	increases in S _R suggesting stronger photochemical degradation (Helms et al., 2008; Ortega-Retuerta et
166	al., 2009). We used the absorption coefficient at 254 nm (a(254)) to determine the concentration and
167	distribution of CDOM in the SML from the eastern marginal seas of China. The specific UV
168	absorbance (SUVA ₂₅₄) can be used to measure aromaticity (Weishaar et al., 2003) and molecular
169	weight (Chowdhury, 2013) of DOM, with higher values generally indicative of higher aromaticity.

170 SUVA₂₅₄ is calculated as dividing the absorbance at 254 nm by DOC.

171 *EEMs and determination of the CDOM fluorescence index*

172 EEMs were obtained using a F-4500 fluorescence spectrophotometer with a 1 cm quartz cuvette 173 (Shimadzu) (Hoge et al., 1993). The emission spectra were scanned every 5 nm from 250 nm to 550 nm, and at the excitation wavelengths between 200-400 nm at 5 nm intervals, with 5 nm slit widths 174 175 for the excitation and emission modes. The FL Toolbox, which was developed by Wade Sheldon (University of Georgia) for MATLAB, was used to remove the Rayleigh and Raman scattering peaks 176 177 using the Delaunay triangulation method (Zepp et al., 2004). The fluorescence intensities of the 178 samples were corrected with Milli-Q water blank EEMs and then normalized to the water Raman integrated area maximum fluorescence intensities (Ex/Em = 350 nm/365-430 nm, 5 nm bandpass) 179 (Coble et al., 1998; Singh et al., 2010). Raman units (RU) (Stedmon et al., 2007; Singh et al., 2010) 180 181 were used as the units for the Raman peak areas of water when the excitation wavelength of 350 nm 182 was used for correction. EEMs were modeled using PARAFAC in MATLAB 7.5 with the DOMFluor

183 toolbox (Stedmon and Bro, 2008).

$$X_{ijk} = \sum_{n=1}^{F} a_{in} b_{jn} c_{kn} + \varepsilon_{ijk}$$
(3)

184

185 where X_{ijk} is the fluorescence intensity of the *i*th sample at the *k*th excitation and *j*th emission 186 wavelengths; a_{in} is directly proportional to the concentration (scores) of the nth fluorophore in the *i*th 187 sample; b_{jh} and c_{kn} are the estimates of the emission and excitation spectra (loadings) of the nth 188 fluorophore at wavelengths *j* and *k*, respectively; *F* is the number of components (fluorophores); and 189 ε_{ijk} represents the unexplained variability of the model (Singh et al., 2010). Split-half analysis 190 validation was used to determine the number of fluorescent components. The fluorescence intensity of 191 each fluorescent component was evaluated (Fig. S2, Supporting Information, Table 1).

192 Determination of DOC, chlorophyll-a, heterotrophic bacterial abundance, dissolved oxygen, and 193 other parameters

194 Concentrations of DOC were determined using the Shimadzu TOC- V_{CPH} total organic carbon analyzer 195 with an injection volume of 80 μ L. The accuracy of the test was ensured by measuring a deep seawater 196 reference (Hansell Laboratory, University of Miami) every 10 samples. Two forms of reference water 197 have been developed for DOC analysis. Deep-ocean water, collected at 2600 m in the Sargasso Sea 198 and containing biologically refractory DOC, as well as low carbon water for testing instrument blanks 199 are available to the U.S. and international communities of aquatic chemists (Hansell, 2013). The Chl-a 200 concentration was determined by a fluorescence spectrophotometer (7200-000, Turner Designs, CA) 201 after extraction in 90% acetone based on the procedure of Parsons et al. (1984). DO was determined 202 by iodination using the Winkler titration method (Carpenter, 1964), the endpoint was determined using 203 starch as a visual indicator. Salinity and temperature data were collected in situ by a 204 conductivity-temperature-depth sensor. All phytoplankton samples were enumerated in triplicate 205 according to Specification for Oceanographic Survey (State Bureau of Technical Supervision Bureau, 206 1992). Nutrient species concentrations were determined using an automatic analyzer (QuAAtro, Seal 207 Analytical, Germany) (Grasshoff et al., 2007). All phytoplankton samples were enumerated in 208 triplicate according to Specification for Oceanographic Survey (State Bureau of Technical Supervision Bureau, 1992). Heterotrophic bacterial abundance was measured by flow cytometry (Beckman Coulter 209 210 FC500-MPL) as described by Marie et al. (1997).

212 Enrichment factors

213 The enrichment factor (EF) in the SML is defined as follows

$$EF = C_M / C_S \tag{4}$$

215

where C_M is the concentration of any substance in the SML; and C_S is its concentration in the SSW. If the EF of a substance is greater than 1.0, that substance is considered enriched, if it is less than 1.0, it is considered depleted (Chen et al., 2016). 2.5 Statistical analyses

The correlation coefficient (*R*) and probability (*P*) values were used to evaluate the goodness-of-fit. The correlation matrix, analysis of variance, and principal components analysis were conducted with SPSS version 18.0 (SPSS Inc., Chicago, IL, USA) to determine the possible relationships between the DOM parameters and environmental factors. A *P*-value ≤ 0.05 was considered significant. Regression analyses between the optical parameters of DOM and several biogeochemical parameters in the SSW and the SML samples were performed in the Table S1 and the Table S2, respectively.

- 227 **3. Results and discussion**
- 3.1 Distribution and chemical characterization of DOM in the SSW of the eastern marginal seas of
 China

The surface distributions of salinity, temperature, CDOM, DOC, Chl-*a*, and several optical parameters in the study area during spring, summer and winter are shown in Fig. S3 (SSW)-S4 (SML) (Supporting Information). There was a strong south-to-north temperature gradient, with warmer waters in the ECS and cooler waters in the YS. Lower salinities were observed in the Changjiang Estuary and coastal waters. The lowest mean wind speed was observed in the summer of 2018 (Table 2). In spring and summer, the bacterial abundances were lower in the YS (spring mean concentration: 2.26×10^8 cells/L; summer mean concentration: 3.79×10^8 cells/L) than in the ECS (spring mean: 2.98×10^8 cells/L; summer mean: 7.64×10^8 cells/L), indicating that the warmer southern ECS had stronger biological activity in the SSW.

239 The a(254) value ranged from 1.08 to 19.28 m⁻¹ in the SML and from 0.82 to 14.23 m⁻¹ in the SSW during these three seasons. a(254) values in the Changjiang Estuary (spring: station D1 (4.13 240 m⁻¹); summer: station D2 (3.98 m⁻¹); winter: station D1 (3.14 m⁻¹)) and the northern YS (spring: station 241 242 A2 (4.26 m⁻¹); summer: station H11 (5.37 m⁻¹); winter: station H12 (5.95 m⁻¹)) were generally higher 243 than other stations. CDOM absorption values and DOC concentrations were decreased from the 244 inshore to the offshore stations (Fig. S3 c)-d)). There were significantly negative linear correlations between salinity and a(254) in all cruises in the SSW (p < 0.01, Fig. 3), especially in the ECS, 245 implying that freshwater run-off and seawater mixing played a more important role in determining 246 247 CDOM distributions in the SSW. The strongest negative linear relationship observed between salinity 248 and a(254) was observed in winter when the influence of terrestrial input in this study region was maximal. In addition, SUVA₂₅₄ ranged from 0.51 to 8.39 L mg C⁻¹ m⁻¹ in the SML. In comparison with 249 the SML, the SSW exhibited lower variability in SUVA₂₅₄ values from 0.63 to 5.39 L mg C^{-1} m⁻¹, with 250 higher values at the northern YS stations and Changjiang Estuary coastal stations (Fig. S3k)). 251 According to the SUVA₂₅₄ trends observed by Massicotte et al. (2017), the DOM composition we 252 observed in the SSW of the Changjiang Estuary ecosystem were more similar to the DOM measured in 253 freshwater ecosystems than in the ocean. SUVA254 underwent a sharp decrease from the Changjiang 254

Estuary ecosystem to the southeastern ECS, suggesting that aromatic and/or highly conjugated DOM 255 256 moieties were degraded along the aquatic continuum from the Changjiang Estuary to the open ocean. 257 Higher S₂₇₅₋₂₉₅ values were also observed in some off-shore stations (Fig. S4i)). These comparisons showed that the DOM pools of the Changjiang Estuary contained molecules that were more 258 259 HMW-DOM and contained more aromatic compounds, CDOM in the SSW of the southeastern ECS, 260 which was derived predominantly from an autochthonous origin (phytoplankton production and bacterial activity), clearly showed the presence of organic matter freshly released into sea (Yang et al., 261 262 2020). The detail of mixing behavior, biological and photolytic degradation of dissolved organic 263 matter in the East China Sea and the Yellow Sea were discussed in our previous paper (Yang et al., 2020). 264

265

3.2 Fluorescence signature and factors controlling the composition of FDOM components in the SSW
 and the SML

FDOM properties can be used as the sensitive indicator of DOM processing and water mass. Four 268 269 fluorescent components were identified by PARAFAC analysis with the DOM Fluor toolbox in MATLAB 7.5 (Stedmon and Bro, 2008), hereafter named C1, C2, C3, and C4 (Fig. S2). The 270 271 humic-like C1 and C3 were categorized as two traditional types of humic-like fluorescent components (Coble 1996). Component 1 had primary fluorescence excitation and emission peaks at 345 nm and 272 273 455 nm, respectively, which was similar to terrestrial humic-like fluorophores in the visible region 274 (peak C) (Osburn et al., 2012). Relative to C1, the fluorescence of C3 was blue-shifted and had 275 fluorescence peaks at 385 nm emission and 315 nm excitation. The microbial humic-like component 276 had a relatively shorter emission peak wavelength compared to the terrestrial humic-like PARAFAC

components previously identified in the open ocean (Catala et al., 2015). C2 exhibited Ex/Em maxima 277 278 at 255 nm/310 (375) nm, which could be considered tyrosine-like fluorescence (Stedmon et al., 2003) 279 and attributed to autochthonous and/or microbial FDOM. C4 had an excitation range of 280 nm with 280 an emission peak at 335 nm, which corresponded to peak T of the amino-acid-like fluorescence of 281 tryptophan, likely derived from in situ primary autochthonous substances and other fresh biological 282 sources (Coble, 1996). The tryptophan-like C4 and the humic-like C1 and C3 in the SSW were all negatively correlated with salinity (P < 0.01, Table S1), but increased with the increasing DO level. 283 284 These suggested that water mixing and microbial activity were important factors in determining 285 geographical distributions of FDOM in the SSW (Breitburg, et al., 2018; Yamashita et al., 2017; Galgani and Engel, 2016). Moreover, the geographical distribution of humic-like C1 and protein-like 286 287 components were more similar to that of the Chl-a concentration in the SML (Fig. 4 a, b, d). Such 288 relationships suggested that the production of protein-like and humic-like FDOM with phytoplankton 289 production and decay in the SML.

290 FDOM enrichment in the SML of all stations ranged between 0.5 and 11 (n = 225) and FDOM 291 was more frequently enriched (C1: 89.6%; C2: 73.2%; C3: 91.8%; C4: 93.4% of all samples) than 292 CDOM. The fluorescence intensity of the components in the SML samples decreased in the following 293 order: tryptophan-like > tyrosine-like > terrestrial humic-like > marine humic-like; whereas those in the SSW samples decreased in the order: tyrosine-like > tryptophan-like > marine humic-like > 294 295 terrestrial humic-like. The tryptophan-like component (C4) was mostly enriched in the SML samples 296 with a median EF = 2.2 and a range from 0.2 and 8.0. The EF of C4 was clearly higher than other 297 components in all seasons (Fig. 6b)), especially in summer, and the FDOM composition in the SML 298 revealed a relatively higher proportion of autochthonous tryptophan-like FDOM than the SSW. It has also been broadly recognized that tryptophan-like C4 in the particulate fraction is related to recent primary production (Brym et al., 2014; Yamashita, 2014) and that phytoplankton excrete tryptophan-like fluorophores (Romare-Castillo et al., 2010). Together, as already emphasized previously, the variation observed for FDOM can be more related to that of Chl-a in the SML, these observations suggested that the DOM enriched in the SML was made up of a relatively higher proportion of marine autochthonous DOM than the SSW.

305

306 *3.3 DOM and biogenic molecules accumulation in the SML*

307 Up to 88% of our CDOM samples were enriched in the SML, with the median EF for a(254) of 308 1.3, ranging between 0.4 and 6.7. Concentrations of CDOM, FDOM, nutrients, bacterial abundance, and Chl-a in the SML were correlated with their respective SSW concentrations (Fig. 5), 309 310 demonstrating that transport from the SSW to the SML is an important pathway. Furthermore, the 311 relatively higher CDOM absorption enrichment value in the SML were found at longer wavelengths 312 (Fig. 6a)) EF of a(355) > EF of a(254)). Marine DOM usually has higher absorption slope than 313 terrestrial DOM, and the higher slope (no matter it is S₃₂₀₋₄₁₂ or S₂₇₅₋₂₉₅), marine production of DOM 314 had the largest influence on the CDOM absorption properties in the longer wavelength range (Danhiez 315 et al., 2017) (S₃₂₀₋₄₁₂: DOM marine origin VS. S₂₇₅₋₂₉₅: terrestrial DOM).

Galgani and Engel (2016) also observed that amino acid-like fluorophores were highly enriched in the SML, not only due to their amphiphilic properties, but also due to their local production in the SML. Therefore, the marine local production might significantly affect the composition of DOM in the SML. Additionally, the nutrients showed significantly higher EFs (NO₃⁻: 3.41 ± 6.08 , n = 41; NO₂⁻: 3.57 ± 5.54 , n = 52; PO₄³⁻: 2.13 ± 2.74 , n = 68; and SiO₃²⁻: 6.53 ± 13.67 , n = 13) than biological and DOM parameters in the SML. The strong correlation between the SML and SSW concentrations of

Fig. 2. Distributions of enrichment factors of CDOM, DOC, Chl-*a*, and four fluorescence components
in the surface microlayer water during spring, summer, and winter. Increasing DOM yields were
significant in coastal regions in all seasons, but the higher enrichment factors (EFs) were more
pronounced in off-shore regions.

Fig. 3. Relationships between a(254) and salinity in the subsurface water (SSW) in the East China Sea
(ECS) and the Yellow Sea (YS) during spring, summer and winter.

Fig. 4. Relationships between a(254), four fluorescence components and Chl-*a* in the sea-surface microlayer (SML) (a-d) and in the SSW (f-i).

Fig. 5. Correlations between the microlayer CDOM, DOC, Chl-*a*, four fluorescence components concentrations, cyanobacteria, phytoplankton biomass, nutrients and bacterial abundance, and their subsurface water concentrations. The dashed lines correspond to the 1:1 lines, and the full lines are the regression models. (All DOM spectroscopic parameters sample were analyzed in spring, summer and winter; Chl-*a* was determined in spring, summer, and summer; cyanobacteria, phytoplankton biomass, nutrients and bacterial abundance were determined in spring and summer.).

Fig. 6. Mean enrichment factor of a_{CDOM} (254 nm and 355 nm), DOC, Chl-*a*, nutrients (PO₄³⁻; NO₃⁻; NO₂⁻, SiO₃²⁻), and four fluorescence components during spring, summer, and winter.

373

374 3.4 Wind speed influencing the enrichment of DOM optical properties

375	The wind speeds during our observations ranged from 0.2 to 14.9 m s ⁻¹ . We divided them into
376	three different wind regimes: low (0.0–2.0 m s ⁻¹), moderate (2.0–10.0 m s ⁻¹), and high (10.0–14.9 m
377	s ⁻¹). Although the EFs of DOC and Chl- <i>a</i> were negatively correlated with wind speed (DOC: $P = 0.002$;
378	Chl-a: $P = 0.042$), the EFs of CDOM and FDOM were not. During the low wind regime, no
379	significant relationships were apparent between wind speed and either EFs of CDOM or FDOM,
380	CDOM and FDOM were consistently enriched, with EFs ranging from 1.0 to 2.2, and a mean a(254)
381	EF value of 1.3 ($n = 20$). However, the EFs during moderate winds had larger variability and ranged
382	from 0.9 to 14.5, with a mean EF value of 1.6 ($n = 143$), and during high winds they ranged from 0.6
383	to 1.8, with a lower mean EF value of 1.1 (n = 18). In addition, depleted levels of CDOM (EF < 1)
384	occurred at frequencies of 5.6%, 9.1%, and 20.0% during low, moderate, and high wind regimes,
385	respectively. Therefore, although lower wind speeds and ascending bubbles might further promote the
386	transportation of organic materials from the underlying waters, DOM enrichments were still observed
387	at wind speeds up to > 10 m s ⁻¹ . Reinthaler et al. (2008) also reported that higher enrichment was
388	found at higher wind speeds. During moderate to high wind regimes, breaking waves not only can
389	disrupt the surface film and physically drive DOM back into the bulk water, but also facilitate the
390	formation of the SML as rising bubble plumes transported DOM to the surface, resulting in wider
391	ranges of EFs (Frew et al., 2004). Higher wind speed does enhance mixing (Reinthaler et al., 2008),
392	which can arguably favour transport of nutrients and DOM from the SSW equally (Wurl et al., 2011).
393	Although wind speed appear to play an important role in the enrichment of surface-active DOM, the
394	chemical composition of the SML influence its stability. For example, enrichments of sulphate
395	half-ester groups in the SML (Wurl and Holmes, 2008) could increase stability because these groups
396	can influence the intrinsic viscosity of marine polymers (Nichols et al., 2005) and sulphur-containing

397 algal carbohydrates are less soluble and hydrolysable (Kok et al., 2000). Sampling needs to be 398 performed on the leeward side of the boat with the boat moving into the wind to aboid contamination. 399 Although some disturbance of SML integrity was produced by the ship's movement and potential 400 contamination at high wind speeds and tidal mixing. It has long been known that the SML reforms 401 rapidly following physical disruption (Dragcevic and Pravdic, 1981). Rapid SML recovery occurs 402 because SML organics dispersed by breaking waves readily reabsorb to the surfaces of rising bubbles 403 generated by the same breaking waves (Woolf, 2005). Enrichment processes and biochemical 404 processes of organic substances in the marine environment are all likely to be the more important 405 contributors of DOM to the SML in our study regions.

406 *3.5 Photochemical degradation of DOM in the SSW and the SML*

407 Photobleaching is one of the major mechanisms determining the geographical distributions of 408 chromophoric and fluorescent DOM in the ocean (Helms et al., 2008; Brinkmann et al., 2003; Siegel et al., 2005). The average SUVA₂₅₄ values in SSW were generally higher than those in the SML in our 409 study regions (SSW: 2.45 \pm 0.91 L mg-C⁻¹ m⁻¹ vs. SML: 2.39 \pm 1.34 L mg-C⁻¹ m⁻¹), and the most 410 411 obvious distinction happened in summer (Table 2). These indicated that although CDOM 412 concentration in the SSW was lower than that in the SML, CDOM in the SSW has a higher degree of 413 aromaticity compared to the SML. Thus we performed photochemical incubation experiments to 414 confirm whether photochemical reactions influenced the differentiated aromaticity and photo-reactive 415 features of DOM between the SML and the SSW.

416 After 88 h of exposure, the a(254) values were only 49.6%, 45.5%, 42.1%, 41.8% and 37.0% of

- 417 the initial values at stations A3, BF, D2, F6, and H10 in the SSW, and 72.5%, 42.4%, 42.6%, 49.0%
- 418 and 44.0% of the initial values at stations A3, BF, D2, F6, and H10 in the SML, respectively. Overall,

419	a(254) and SUVA ₂₅₄ decreased by $49.9 \pm 12.8\%$ and $43.0 \pm 15.5\%$, respectively, in the SML, and by
420	56.8 \pm 4.7% and 56.0 \pm 10.2%, respectively in the SSW. Therefore, stimulated solar UV exposure
421	caused a larger decrease in DOM absorbance in the SSW than the SML (Fig. 7). The relatively rapid
422	decrease of SUVA254 in the SSW indicated a more rapid conversion of DOM to less humic-type
423	materials than in the SML. Although photodegradation causes CDOM absorption to decrease, DOC is
424	not sensitive to photodegradation in our photodegradation experiments, implying that the light
425	exposure preferentially removed the colored DOM rather than the non-colored DOM (Bittar et al.,
426	2015). All incubation samples were not contaminated, both measurement and analytical errors will let
427	DOC data exceed 100%. Approximately 65% of FDOM was lost during the irradiation experiment,
428	except in the case of the tyrosine-like component 2 from the SML at the station H10, which increased
429	slightly. Photoproduction of tyrosine-like components has been previously reported by Zhu et al.
430	(2017), who suggested that the photochemical degradation of CDOM contributed to the release small
431	amounts of tyrosine-like fluorophores. The tryptophan-like C4, humic-like C1 and C3 were more
432	photodegradated in the SSW than in the SML (Fig. 7c), e), f)). For example, C1, C3 and C4 show a
433	marked decrease in the SSW at the off-shore station F6. Because of the origin of CDOM at the station
434	F6 remote from the direct terrestrial influence, the majority of CDOM at the station F6 was thought to
435	be a by-product of net primary production. The present results showed that a large fraction of the total
436	CDOM in the SSW at the off-shore station F6 is still potentially sensitive to photooxidation. As
437	already referred previously, CDOM in the SSW showed higher SUVA254 values, and higher
438	percentages of humic-like DOM than in the SML. Therefore, the photochemically mediated shifts in
439	DOM in the SSW were more pronounced than those in the SML in our incubation experiments, in
440	terms of both absorption and fluorescence values.

441	This heterogeneity in the EFs and photochemical reactivities of FDOM components can be
442	related to the chemical and structural nature, such as molecular weight, aromaticity or humification of
443	FDOM enrichment processes. Hydrophilic, carboxylic acid-bearing DOM moieties are preferentially
444	degraded by simulated sunlight (Brinkmann et al., 2003). The largest fractions of photolabile DOM are
445	made up of aromatic carbon rings or high double bond equivalent molecules (Kujawinski et al., 2004;
446	Gonsior et al., 2009). The humic-like C1 and C3, all of which exhibited significantly positive
447	relationships with SUVA ₂₅₄ (< 0.001, Table 1) and shown higher aromaticity, were more prone to
448	photochemical degradation (Fig. 7c), e), and f)). The tyrosine-like C2, as compared to other
449	protein-like compounds, is generally considered more labile and susceptible to bacterial cycling and
450	rapid consumption by microbiota (Medeiros et al., 2015). The SML experiences the most intense solar
451	radiation, especially ultraviolet (UV) light (Obernosterer et al., 2005). Photochemical degradation may,
452	therefore, be a sink for aromaticity fluorescent components in the SML, and be a source for the
453	tyrosine-like C2. In addition, Blough (1997) discovered that photochemical production rates in the
454	SML should lead to the more rapid oxidative turnover of materials at the interface and potentially to
455	reactions and processes not observed in bulk waters. Therefore, differences in SUVA254 values and
456	photoreaction behavior between the SSW and the SML may also reflect that DOM in the SML was
457	already photobleached, which resulted in the decrease of DOM aromaticity, CDOM in the SSW
458	appeared to be more susceptible to photochemical degradation than CDOM in the SML. Together,
459	photo-irradiation have the significant influence on the accumulation of protein-like DOM and
460	depletion of aromatic organic compounds in the SML, and organic carbon might have undergone a
461	more rapid cycling in the SML than the SSW.

465 Fig. 7. Changes in ratios of a(254), DOC, SUVA₂₅₄ and four fluorescence components intensities
 466 to initial values for both SML and SSW sample.

468 3.6 Variations in the enrichment factors of CDOM, DOC, FDOM along the coastal regions to ocean

469 The concentrations of a(254) and DOC decreased from the coastal regions to the open ocean, and 470 decreased from the northern part of the sampling area (the YS) to the southern part of the sampling 471 area (the ECS) in both the SSW and the SML (Fig. S3 c)-d) and Fig. S4 a)-b)). However, CDOM and 472 FDOM were more frequently enriched in the ECS (CDOM: 93% of all samples; FDOM: 72-94% of 473 all samples) than that in the YS (CDOM: 86% of all samples; FDOM: 70-92% of all samples). The higher EF values for CDOM, FDOM, DOC, Chl-a, nutrients, and cell were generally observed in the 474 475 ECS (Fig. 2). Lower EFs and EFs < 1, which indicate a depletion of CDOM in the SML, were usually observed at short distances from the coast (Fig. 2) with lower salinity. The salinity during our 476

477	observations ranged from 23.6 to 35.1. Although CDOM and FDOM concentration negatively
478	correlated with salinity, the EFs of CDOM and FDOM were weakly positive related with salinity (Fig.
479	8). The EFs of Chl-a and nutrient were also higher in the southeastern ECS (Fig. 2 and Fig. S5), where
480	sufficient light and higher temperature combined to facilitate primary production and higher
481	contributions of autochthonous materials to DOM. DOM in the SSW of the southern ECS was more
482	dominated by marine autochthonous materials in our previous discussion (Yang et al., 2020). The
483	Changjiang River discharges enormous amounts of N and P into the ECS (Liu et al., 2018), but
484	phosphorus is generally the major limiting element for phytoplankton growth in the ECS (Liu et al.,
485	2016). Thus the difference in EFs of CDOM and Chl-a between YS and the ECS, and between the
486	coast and off-shore regions is likely due to the significantly nutrients enrichment in the SML in the
487	off-shore regions. In winter, we observed especially higher EF values for CDOM and FDOM in the
488	southern ECS (Fig. 2a)-f)). With wind from the northwest (Weng et al., 2011), biologically essential
489	trace elements and anthropogenic emissions are carried from the land and can enter the ocean via the
490	SML by wet or dry deposition. The EFs of humic-like C1 and C3 were relatively high in winter (Fig.
491	6b)), probably due to the input from atmospheric deposition during winter, and the relatively low
492	CDOM concentrations in bulk water. Atmospheric deposition of organic carbon and nutrients were
493	found a peak in winter over the coastal ECS (Wang et al., 2019). We suggested that the EFs of CDOM
494	and FDOM increased from the coastal regions to the open ocean, and increased from the YS to the
495	ECS were likely due to the enrichment of enough nutrients in the SML in the open ocean promote
496	phytoplankton biomass and DOM production.

500 Fig. 8. Relationships between salinity and EFs of a(254), Chl-a, DOC, and four fluorescence 501 components.

502	The SML is an aggregate-enriched biofilm environment with distinct microbial communities,
503	where the diversity of microorganisms can differ significantly from those of underlying waters (Liss
504	and Duce, 2005; Cunliffe et al., 2013), the heterotrophic bacterial abundance in the SML was ~ 7.5
505	fold greater than those in the SSW in the ECS during our spring cruise (Sun et al., 2020). Here, EFs
506	showed a greater presence of bacteria and marine protein-like DOM in the SML than that in the SSW,
507	while the protein-like DOM was linked to microbial utilization and degraded faster than the humic-like
508	substances (Yang et al., 2017; Jørgensen et al., 2011). Therefore, compared to coastal waters that have
509	larger terrestrial DOM and nutrients inputs, CDOM shown higher EFs in off-shore regions where
510	DOM in the SSW is mostly of marine autochthonous origin with higher temperatures and stronger
511	biological activity. The significantly higher abundance of cells, phytoplankton, nutrients, and
512	protein-like DOM in the SML supported microbial activities, and further contributing to the local
513	release of marine extracellular DOM directly from microbes in the SML in the off-shore regions.
514	When exposed to higher light intensities (summer), obviously enhance mineralization of DOM in the
515	SML, and relatively less photochemical degradation in SSW could result in lower percentage of
516	aromatic DOM in SML than the SSW. We concluded that SML CDOM dynamics can be expressed as
517	a complex balance among enrichment process, primary production and photochemical destruction.
518	Thus, higher EF of DOM in the SML in off-shore regions are likely supported by a favorable
519	combination of: 1) deposition and accumulation of amphiphilic compounds, 2) importance of bubble
520	for upward transport of DOM and enrichment in SML, and 3) new production of DOM within the
521	SML as a consequence of higher nutrients enrichment and the primary production.

523 4. Conclusions

524 This study has provided the first data set that considers the distributions of CDOM, FDOM, DOC, 525 Chl-a, nutrients, and bacterial abundances in the SML and SSW of the ECS and the YS during spring, 526 summer, and winter. We have observed that the CDOM distribution related variability in primary production in the SML. Furthermore, we have demonstrated that localized and stronger photochemical 527 528 oxidation may be responsible for the decrease in the aromaticity of the DOM in the SML, due to 529 enhanced transformation or removal of terrestrial DOM, compared with the SSW. We also demonstrated that in off-shore seawaters away from terrigenous influence, the EFs of CDOM, DOC, 530 531 FDOM and Chl-a in SML tend to be higher in off-shore regions than those in coastal regions, because 532 of the relatively higher enrichment of nutrients which could enhance phytoplankton growth and promoted plant production and DOM production in the SML. Multiple observations of spatial 533 534 distributions, seasonal variations, chemical compositions, and photochemical reactions of CDOM in 535 the SML have supported the hypothesis that stronger enrichment and photochemical processes occur in the SML in ocean, resulting in relatively accelerated enrichment of more marine local production 536 537 DOM in the SML than the SSW.

538

539 Acknowledgements

We thank the captain and crews of the R/V '*Dong Fang Hong 2*', the R/V '*Dong Fang Hong 3*', and the R/V '*Zhe Yu 2*' for their assistance and cooperation during the investigation. We gratefully acknowledge Ya-Hui Gao (Xiamen University), Yu Xin (Ocean University of China), and Xiao-Hua Zhang (Ocean University of China) for providing the Chl-*a*, nutrients, bacterial abundance and picoplankton data, respectively. This work was financially supported by the National Key Research and Development Program (Grant No. 2016YFA0601304), and the National Natural Science Foundation of China (Grant Nos. 41806093 and 491830534).

References

549 Aller, J.Y., Kuznetsova, M., Jahns, C.J., Kemp, P.F.: The sea surface microlayer as a source of viral 550 and bacterial enrichment in marine aerosols. J. Aerosol Sci. 36(5), 801-812. https://doi.org/10.1016/j.jaerosci.2004.10.012. 2005. 551 Bittar, T.B., Vieira, A.A.H., Stubbins, A., Mopper, K.: Competition between photochemical and 552 553 biological degradation of dissolved organic matter from the cyanobacteria Microcystis aeruginosa. 554 Limnol. Oceanogr. 60(4), 1172–1194. https://doi.org/10.1002/lno.10090. 2015. 555 Breitburg, D., Levin, L.A., Oschlies, A., Grégoire, M., Chavez, F.P., Conley, D.J., Garçon, V., Gilbert, 556 D., Gutiérrez, D., Isensee, K., Jacinto, G.S., Limburg, K.E., Montes, I., Naqvi, S.W.A., Pitcher, 557 G.C., Rabalais, N.N., Roman, M.R., Rose, K.A., Seibel, B.A., Telszewski, M., Yasuhara, M., Zhang, J.: Declining oxygen in the global ocean and coastal waters. Science 5, 359(6371), 558 559 eaam7240. https://doi.org/10.1126/science.aam7240. 2018. 560 Brinkmann, T., Sartorius, D., Frimmel, F.H.: Photobleaching of humic rich dissolved organic matter. 561 Aquat. Sci. 65(4), 415-424. https://doi.org/10.1007/s00027-003-0670-9. 2003. Brym, A., Paerl, H.W., Montgomery, M.T., Handsel, L.T., Ziervogel, K., Osburn, C.L.: Optical and 562 563 chemical characterization of base-extracted particulate organic matter in coastal marine 564 environments. Mar. Chem. 162(6), 96-113. https://doi.org/10.1007/s00027-003-0670-9. 2014. Carlson, C.A., Hansell, D.A.: The contribution of dissolved organic carbon and nitrogen to 565 biogeochemistry of the Ross Sea. In: DiTullio, G., Dunbar, R. (Eds.), Biogeochemical Cycles in 566 567 the Ross Sea. AGU Press, Washington DC, pp. 123-142. 2003. Carpenter, J.H.: The Chesapeake Bay Institute technique for the Winkler dissolved oxygen method. 568

569	Limnol. Oceanogr. 10(1964), 141–143. https://doi.org/10.4319/lo.1965.10.1.0141. 1964.
570	Catala, T.S., Reche, I., Fuenteslema, A., Romeracastillo, C., Nietocid, M., Ortegaretuerta, E.,
571	Alvarezsalgado, X.A.: Turnover time of fluorescent dissolved organic matter in the dark global
572	ocean. Nat. Com. 6(1), 5986-5993. https://doi.org/10.1038/ncomms6986. 2015.
573	Chen, Y., Yang, G., Xia, Q., Wu, G.: Enrichment and characterization of dissolved organic matter in
574	the surface microlayer and subsurface water of the South Yellow Sea. Mar. Chem. 182(Mar. 20),
575	1–13. https://doi.org/10.1016/j.marchem.2016.04.001. 2016.
576	Chowdhury, S.: Trihalomethanes in drinking water: Effect of natural organic matter distribution. Water
577	SA 39(1), 1–7. https://doi.org/10.4314/wsa.v39i1.1. 2013.
578	Coble, P.G.: Characterization of marine and terrestrial DOM in seawater using excitation-emission
579	matrix spectroscopy. Mar. Chem. 51(4), 325-346. https://doi.org/10.1016/0304-4203(95)00062-3.
580	1996.
580 581	1996. Coble, P.G.: Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107(2),
580 581 582	1996.Coble, P.G.: Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107(2), 402–418. https://doi.org/10.1002/chin.200720265. 2007.
580 581 582 583	 1996. Coble, P.G.: Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107(2), 402–418. https://doi.org/10.1002/chin.200720265. 2007. Cunliffe, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, J.C., Wurl, O.: Sea surface
580 581 582 583 584	 1996. Coble, P.G.: Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107(2), 402–418. https://doi.org/10.1002/chin.200720265. 2007. Cunliffe, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, J.C., Wurl, O.: Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface.
 580 581 582 583 584 585 	 1996. Coble, P.G.: Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107(2), 402–418. https://doi.org/10.1002/chin.200720265. 2007. Cunliffe, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, J.C., Wurl, O.: Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr. 109(Feb.), 104–116. https://doi.org/10.1016/j.pocean.2012.08.004. 2013.
 580 581 582 583 584 585 586 	 1996. Coble, P.G.: Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107(2), 402–418. https://doi.org/10.1002/chin.200720265. 2007. Cunliffe, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, J.C., Wurl, O.: Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr. 109(Feb.), 104–116. https://doi.org/10.1016/j.pocean.2012.08.004. 2013. Danhiez, F.P., Vantrepotte, V., Cauvin, A., Lebourg, E., Loisel, H.: Optical properties of chromophoric
580 581 582 583 584 585 586 587	 1996. Coble, P.G.: Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107(2), 402–418. https://doi.org/10.1002/chin.200720265. 2007. Cunliffe, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, J.C., Wurl, O.: Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr. 109(Feb.), 104–116. https://doi.org/10.1016/j.pocean.2012.08.004. 2013. Danhiez, F.P., Vantrepotte, V., Cauvin, A., Lebourg, E., Loisel, H.: Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from
580 581 582 583 584 585 586 587 588	 1996. Coble, P.G.: Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107(2), 402–418. https://doi.org/10.1002/chin.200720265.2007. Cunliffe, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, J.C., Wurl, O.: Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr. 109(Feb.), 104–116. https://doi.org/10.1016/j.pocean.2012.08.004. 2013. Danhiez, F.P., Vantrepotte, V., Cauvin, A., Lebourg, E., Loisel, H.: Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption. Limnol. Oceanogr. 62(4), 1409–1425. https://doi.org/10.1002/lno.10507.
580 581 582 583 584 585 586 587 588 588	 1996. Coble, P.G.: Marine optical biogeochemistry: the chemistry of ocean color. Chem. Rev. 107(2), 402–418. https://doi.org/10.1002/chin.200720265. 2007. Cunliffe, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, J.C., Wurl, O.: Sea surface microlayers: A unified physicochemical and biological perspective of the air–ocean interface. Prog. Oceanogr. 109(Feb.), 104–116. https://doi.org/10.1016/j.pocean.2012.08.004. 2013. Danhiez, F.P., Vantrepotte, V., Cauvin, A., Lebourg, E., Loisel, H.: Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption. Limnol. Oceanogr. 62(4), 1409–1425. https://doi.org/10.1002/lno.10507. 2017.

591 under steady state conditions. Limnol. Oceanogr. 26, 492–499.

https://doi.org/10.1016/0198-0254(81)91185-7.1981.

- 593 Duce, R.A., Hoffman, G.L., Ray, B.J., Fletcher, I.S., Wallace, G.T., Fasching, J.L., Piotrowicz, S.R.,
- 594 Walsh, P.R., Hoffman, E.J., Miller, J.M., Heffter, J.L.: Trace metals in the marine atmosphere:
- 595 Sources and fluxes, in: Marine Pollutant Transfer (H. L. Windom and R. A. Duce, eds.), pp.
- 596 77–119, Lexington Books, Lexington. 1976.
- 597 Engel, A., Galgani, L.: The organic sea-surface microlayer in the upwelling region off the coast of
- 598 Peru and potential implications for air-sea exchange processes. Biogeosciences 13(4), 989–1007.
- 599 https://doi.org/10.5194/bg-13-989-2016. 2016.
- 600 Frew, N.M., Bock, E.J., Schimpf, U., Hara, T., Hausecker, H., Edson, J.B., Jahne, B.: Air-sea gas
- transfer: Its dependence on wind stress, small-scale roughness, and surface films. J. Geophys.
 Res.-Oceans 109(C8), S17. https://doi.org/10.1029/2003JC002131. 2004.
- 603 Galgani, L., Engel, A.: Changes in optical characteristics of surface microlayers hint to
- 604 photochemically and microbially mediated DOM turnover in the upwelling region off the coast of
- 605 Peru. Biogeosciences 13(8), 2453–2473. https://doi.org/10.5194/bg-13-2453-2016. 2016.
- 606 Garrett, W.D.: Collection of slick-forming materials from the sea surface. Limnol. Oceanogr. 10(1965),
- 607 602–605. https://doi.org/10.2307/2833459. 1965.
- 608 Gonsior, M., Peake, B.M., Cooper, W.T., Podgorski, D., D'Andrilli, J., Cooper, W.J.: Photochemically
- 609 induced changes in dissolved organic matter identified by ultrahigh resolution fourier transform
- 610 ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 43(3), 698–703.
 611 https://doi.org/10.1021/es8022804. 2009.
- Grasshoff, K., Kremling, K., Ehrhardt, M.: Methods of Seawater Analysis, 3rd. Edition. pp. 407–420.
 2007.
- 614 Guo, W., Yang, L., Zhai, W., Chen, W., Osburn, C.L., Huang, X., Li, Y.: Runoff-mediated seasonal

- 615 oscillation in the dynamics of dissolved organic matter in different branches of a large bifurcated
- 616 estuary-The Changjiang Estuary. J. Geophys. Res.-Biogeosciences 119, 776–793.
 617 https://doi.org/10.1002/2013JG002540. 2014.
- 618 Hansell, D.A.: Dissolved organic carbon reference material program. Eos Transactions American
- 619 Geophysical Union, 86(35), 308. https://doi.org/10.1029/2005EO350003. 2013.
- Hardy, J.T.: The sea surface microlayer: Biology, chemistry and anthropogenic enrichment. Prog.
 Oceanogr. 11(4), 307–328. https://doi.org/10.1016/0079-6611(82)90001-5. 1982.
- 622 Hardy, J.T., Apts, C.W.: Photosynthetic carbon reduction: high rates in the sea-surface microlayer. Mar.
- 623 Biol. 101(3), 411–417. https://doi.org/10.1007/BF00428138. 1989.
- 624 Helms, J.R., Stubbins, A., Ritchie, J.D., Minor, E.C., Kieber, D.J., Mopper, K.: Absorption spectral
- 625 slopes and slope ratios as indicators of molecular weight, source, and photobleaching of
- 626 chromophoric dissolved organic matter. Limnol. Oceanogr. 53(3), 955–969.
- 627 https://doi.org/10.4319/lo.2008.53.3.0955. 2008.
- 628 Hoge, F.E., Vodacek, A., Blough, N.V.: Inherent optical properties of the ocean: retrieval of the
- absorption coefficient of chromophoric dissolved organic matter from fluorescence measurements.
- 630 Limnol. Oceanogr. 38(7), 1394–1402. https://doi.org/10.4319/lo.1993.38.7.1394. 1993.
- 631 Jarvis, N.L.: Adsorption of surf ace-active material at the sea-air interface, Limnol. Oceanogr. 12,
- 632 213–221. https://doi.org/10.4319/lo.1967.12.2.0213. 1967.
- 633 Jørgensen, L., Stedmon, C.A., Kragh, T., Markager, S., Middelboe, M., Søndergaard, M.: Global
- 634 trends in the fluorescence characteristics and distribution of marine dissolved organic matter. Mar.
- 635 Chem. 126(1–4), 139–148. https://doi.org/10.1016/j.marchem.2011.05.002. 2011.

- Kieber, D.J., Mcdaniel, J., Mopper, K.: Photochemical source of biological substrates in sea water:
 implications for carbon cycling. Nature 341(6243), 637–639. https://doi.org/10.1038/341637a0.
 1989.
- 639 Kok, M., Schouten, S., Sinninghe Damsté J.S.: Formation of insoluble, nonhydrolyzable, sulfur-rich
- 640 macromolecules via incorporation of inorganic sulfur species into algal carbohydrates. Geochim.

641 Cosmochim. Acta 64(15), 2689–2699. https://doi.org/10.1016/S0016-7037(00)00382-3. 2000.

- 642 Li, Y., He, Z., Yang, G., Wang, H., Zhuang, G.: Volatile halocarbons in the marine atmosphere and
- 643 surface seawater: Diurnal and spatial variations and influences of environmental factors. Atmos.

644 Environ. 214, 116820. https://doi.org/10.1016/j.atmosenv.2019.116820. 2019.

- Liss, P.S., Duce, R.A.: The Sea Surface and Global Change, Cambridge University Press, 519. 1997.
- Liss, P.S., Duce, R.A.: The Sea Surface and Global Change. Cambridge University Press: UK. 2005.
- 647 Liu, S.M., Qi, X.H., Li, X.N., Ye, H.R., Wu, Y., Ren, J.L., Zhang, J., Xu, W.Y.: Nutrient dynamics
- from the Changjiang (Yangtze River) estuary to the East China Sea. J. Mar. Syst. 154(Feb.),
- 649 15–27. https://doi.org/10.1016/j.jmarsys.2015.05.010. 2016.
- 650 Liu, X., Beusen, A.H.W., Van Beek, L.P.H., Mogollón, J.M., Ran, X., Bouwman, A.F.: Exploring
- 651 spatiotemporal changes of the Yangtze River (Changjiang) nitrogen and phosphorus sources,
- retention and export to the East China Sea and Yellow Sea. Water Res. 142(Oct. 1), 246–255.
- 653 https://doi.org/10.1016/j.watres.2018.06.006. 2018.
- 654 Margolin, A.R., Gonnelli, M., Hansell, D.A., Santinelli, C.: Black sea dissolved organic matter
- dynamics: insights from optical analyses. Limnol. Oceanogr. 63(3), 1425–1443.
- 656 https://doi.org/10.1002/lno.10791.2018.

- Marie, D., Partensky, F., Jacquet, S., Vaulot, D.: Enumeration and cell cycle analysis of natural
 populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I.
 Appl. Environ. Microbiol. 63(1), 186–193. https://doi.org/10.1109/50.337494. 1997.
- 660 Massicotte, P., Asmala, E., Stedmon, C., Markager, S.: Global distribution of dissolved organic matter
- along the aquatic continuum: Across rivers, lakes and oceans. Sci. Total Environ. 609(Dec. 31),
- 662 180–191. https://doi.org/10.1016/j.scitotenv.2017.07.076. 2017.
- Mcknight, D.M., Boyer, E.W., Westerhoff, P., Doran, P.T., Kulbe, T., Andersen, D.T.:
 Spectrofluorometric characterization of dissolved organic matter for indication of precursor
 organic material and aromaticity. Limnol. Oceanogr. 46(1), 38–48.
 https://doi.org/10.4319/lo.2001.46.1.0038. 2001.
- Medeiros, P.M., Seidel, M., Ward, N.D., Carpenter, E.J., Gomes, H.R., Niggemann, J., Dittmar, T.:
 Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean. Global
 Biogeochem. Cycl. 29(5), 677–690. https://doi.org/10.1002/2015GB005115. 2015.

670 Mopper, K., Kieber, D.J.: Photochemistry and the cycling of carbon, sulfur, nitrogen and phosphorus.

- 671 In: Hansell DA, Carlson CA (eds) Biogeochemistry of dissolved organic matter. Academic Press,
- 672 San Diego, pp. 455–507. 2002.
- 673 Momzikoff, A., Brinis, A., Dallot, S., Gondry, G., Saliot, A., Lebaron, P.: Field study of the chemical
- 674 characterization of the upper ocean surface using various samplers. Limnol. Oceanogr. Methods
- 675 2(11), 374–384. https://doi.org/10.4319/lom.2004.2.374. 2004.
- 676 Nichols, C.M., Lardière, S.G., Bowman, J.P., Nichols, P.D., Gibson, J.A.E., Guézennec, J.: Chemical
- 677 Characterization of Exopolysaccharides from Antarctic Marine Bacteria. Microb. Ecol. 49(4),
- 678 578–589. https://doi.org/10.1007/s00248-004-0093-8. 2005.

- 679 Obernosterer, I., Catala, P., Reinthaler, T., Herndl, G.J., Lebaron, P.: Enhanced heterotrophic activity in
- the surface microlayer of the Mediterranean Sea. Aquat. Microb. Ecol. 39(3), 293–302.
 https://doi.org/10.3354/ame039293. 2005.
- 682 Ogawa, H., Amagai, Y., Koike, I., Kaiser, K., Benner, R.: Production of refractory dissolved organic
- 683 matter by bacteria. Science 292(5518), 917–920. https://doi.org/10.1126/science.1057627.
 684 2001.
- Orellana, M.V., Matrai, P.A., Leck, C., Rauschenberg, C.D., Lee, A.M., Coz, E.: Marine microgels as a
 source of cloud condensation nuclei in the high Arctic. Proc. Natl. Acad. Sci. 108(33),
- 687 13612–13617. https://doi.org/10.1073/pnas.1102457108. 2011.
- 688Ortega-Retuerta, E., Passow, U., Duarte, C.M., Reche, I.: Effects of ultraviolet B radiation on (not so)689transparentexopolymerparticles.Biogeosciences6(12),3071–3080.
- 690 https://doi.org/10.5194/bg-6-3071-2009. 2009.
- 691 Osburn, C.L., Handsel, L.T., Mikan, M.P., Paerl, H.W., Montgomery, M.T.: Fluorescence tracking of
- dissolved and particulate organic matter quality in a river-dominated estuary. Environ. Sci.
- 693 Technol. 46(16), 8628–8636. https://doi.org/10.1021/es3007723. 2012.
- Parsons, T.R., Matia, Y., Lalli, C.M.: A Manual of Chemical and Biological Methods for Seawater
 Analysis. Pergamon Press, Oxford. 1984.
- Reinthaler, T., Sintes, E., Herndl., G.J.: Dissolved organic matter and bacterial production and
 respiration in the sea-surface microlayer of the open Atlantic and the western Mediterranean sea.
 Limnol. Oceanogr. 53(1), 122–136. https://doi.org/10.4319/lo.2008.53.1.0122. 2008.
- 699 Romera-castillo, C., Sarmento, H., Alvarezsalgado, X.A., Gasol, J.M., Marrase, C.: Production of
- 700 chromophoric dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 55(1),
- 701 446–454. https://doi.org/10.4319/lo.2010.55.1.0446. 2010.

702	Sabbaghzadeh, B., Upstill-Goddard, R.C., Beale, R., Pereira, R., Nightingale, P.D.: The Atlantic Ocean
703	surface microlayer from 50°N to 50°S is ubiquitously enriched in surfactants at wind speeds up to

704 13 m s⁻¹. Geophys. Res. Lett. 44(6), 2852–2858. https://doi.org/10.1002/2017GL072988. 2017.

- Siegel, D.A.: Colored dissolved organic matter and its influence on the satellite based
 characterization of the ocean biosphere. Geophys. Res. Lett. 32(20), 469–496.
 https://doi.org/10.1029/2005GL024310. 2005.
- 708 Singh, S., D'Sa, E., Swenson, E.: Seasonal variability in CDOM absorption and fluorescence
- properties in the Barataria Basin, Louisiana, USA. J. Environ. Sci. 22(10), 1481–1490.
- 710 https://doi.org/10.1016/S1001-0742(09)60279-5. 2010.
- State Bureau of Technical Supervision Bureau, Specifications for Oceanographic Survey-Survey of
 Biology in Sea Water. Standard Press of China, Beijing, pp. 17–20. 1992.
- 713 Stedmon, C.A., Bro, R.: Characterizing dissolved organic matter fluorescence with parallel factor
- 714 analysis: a tutorial. Limnol. Oceanogr.-methods 6(11), 572–579.

715 https://doi.org/10.4319/lom.2008.6.572b. 2008.

- 716 Stedmon, C.A., Markager, S.: Resolving the variability in dissolved organic matter fluorescence in a
- 717 temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr. 50(2),
- 718 686–697. https://doi.org/10.4319/lo.2005.50.2.0686. 2005.
- 719 Stedmon, C.A., Markager, S., Bro, R.: Tracing dissolved organic matter in aquatic environments using
- 720 a new approach to fluorescence spectroscopy. Mar. Chem. 82(3-4), 239-254.
 721 https://doi.org/10.1016/s0304-4203(03)00072-0. 2003.
- 722 Stedmon, C.A., Markager, S., Tranvik, L., Kronberg, L., Slätis, T., Martinsen, W.: Photochemical
- 723 production of ammonium and transformation of dissolved organic matter in the Baltic Sea. Mar.
- 724 Chem. 104(3–4), 227–240. https://doi.org/10.1016/j.marchem.2006.11.005. 2007.

- 725 Su, Y., Hu, E., Feng, M., Zhang, Y., Chen, F., Liu, Z.: Comparison of bacterial growth in response to
- 726 photodegraded terrestrial chromophoric dissolved organic matter in two lakes. Sci. Total Environ.
- 727 579(Feb. 1), 1203–1214. https://doi.org/10.1016/j.scitotenv.2016.11.104. 2017.
- Sun, H., Zhang, Y.H., Tan, S., Zheng, Y.F., Zhou, S., Ma, Q.Y., Yang, G.P., Todd, J., Zhang, X.H.:
- DMSP-Producing Bacteria Are More Abundant in the Surface Microlayer than Subsurface
 Seawater of the East China Sea. Microb. Ecol. 80(1), 350–365.
 https://doi.org/10.1007/s00248-020-01507-8. 2020.
- Wang, F., Feng, T., Guo, Z., Li, Y., Lin, T., Rose, N.L.: Sources and dry deposition of carbonaceous
 aerosols over the coastal East China Sea: Implications for anthropogenic pollutant pathways and
 deposition. Environ. Pollut. 245(Feb.), 771–779. https://doi.org/10.1016/j.envpol.2018.11.059.
- 735 2019.
- Weishaar, J.L., Aiken, G.R., Bergamaschi, B.A., Fram, M.S., Fujii, R., Mopper, K.: Evaluation of
 specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of
 dissolved organic carbon. Environ. Sci. Technol. 37(20), 4702–4708.
 https://doi.org/10.1021/es030360x. 2003.
- 740 Weng, H., Tian, R., Ji, Z., Yu, X.: Potential relationships between atmospheric particulate matter
- transported by winter monsoons and red tides in the East China Sea. Sci. Bull. 56(3), 297–305.
- 742 https://doi.org/10.1007/s11434-010-4209-x. 2011.
- 743 Woolf, D.K.: Bubbles and their role gas exchange, in The Sea Surface and Global Change, edited by P.
- S. Liss and R. A. Duce, pp. 173–205, Cambridge Univ. Press, U. K. 2005.
- 745 Wotton, R.S., Preston, T.M.: Surface Films: Areas of Water Bodies That Are Often Overlooked.
- 746 Bioscience 55(2), 137–145. https://doi.org/10.1641/0006-3568(2005)055[0137:SFAOWB]2.0.CO.

747 2005.

- Wurl, O., Wurl, E., Miller, L.A., Johnson, K., Vagle, S.: Formation and global distribution of
 sea-surface microlayers. Biogeosciences 8(1), 121–135. https://doi.org/10.5194/bg-8-121-2011.
 2011.
- Wurl, O., Holmes, M.: The gelatinous nature of the sea-surface microlayer. Mar. Chem. 110(1–2),
 89–97. https://doi.org/10.1016/j.marchem.2008.02.009. 2008.
- 753 Yamashita, Y., Hashihama, F., Saito, H., Fukuda, H., Ogawa, H.: Factors controlling the geographical
- distribution of fluorescent dissolved organic matter in the surface waters of the Pacific Ocean.
- 755 Limnol. Oceanogr. 62(6), 2360–2374. https://doi.org/10.1002/lno.10570. 2017.
- 756 Yamashita, Y.: In situ production of chromophoric dissolved organic matter in coastal environments.

757 Geophys. Res. Lett. 31(14), 189–207. https://doi.org/10.1029/2004GL019734. 2004.

- 758 Yang, L., Zhang, J., Yang, G.P.: Mixing behavior, biological and photolytic degradation of dissolved
- organic matter in the East China Sea and the Yellow Sea. Sci. Total Environ. 762(6), 143164.
- 760 https://doi.org/10.1016/j.scitotenv.2020.143164. 2020.
- Yang, L., Zhuang, W., Chen, C.A., Wang, B., Kuo, F.: Unveiling the transformation and bioavailability
 of dissolved organic matter in contrasting hydrothermal vents using fluorescence
 EEM-PARAFAC. Water Res. 111(Mar. 15), 195–203.
- 764 https://doi.org/10.1016/j.watres.2017.01.001. 2017.
- Zepp, R.G., Sheldon, W.M., Moran, M.A.: Dissolved organic fluorophores in southeastern US coastal
 waters: correction method for eliminating Rayleigh and Raman scattering peaks in
 excitation-emission matrices. Mar. Chem. 89(1), 15–36.
 https://doi.org/10.1016/j.marchem.2004.02.006. 2004.

- 769 Zhu, W.Z., Yang, G., Zhang, H.: Photochemical behavior of dissolved and colloidal organic matter in
- estuarine and oceanic waters. Sci. Total Environ. s607-608(Dec. 31), 214-224.
- 771 https://doi.org/10.1016/j.scitotenv.2017.06.163. 2017.

Table 1 Spectral characteristics of the four fluorescent components identified by the PARAFAC

Component	Ex _{max} (nm)	Em _{max} (nm)	Coble (1996)	Comparison with other studies using PARAFAC	Description and probable source
C1	345	455	peak C 320-360/42 0-480	Osburn et al. (2012)	Terrestrial-like humic substances
C2	255	310 (375)	peak A 230-260/380 -460	Stedmon et al. (2003)	Tyrosine-like or marine humic-like substances
C3	315	385	peak M 290-310/370 -420	Stedmon and Markager (2005)	Marine humic-like substances (biological degradation)
C4	280	335	peak T 270-280/340 -350	Coble (1996)	Tryptophan-like; Non-Humic-like; Biological production in the water column

modal in this study, compared with those preciously identified.

 Table 2 Average temperature, salinity, wind speed, CDOM a(254), DOC, Chlorophyll-a (Chl-a),

 dissolved oxygen (DO), S275-295, SR, and SUVA254 of the SSW and SML in the YS and ECS

		Spring		Summer		Winter	
	Water layer	mean	SD	mean	SD	mean	SD
Temperature (°C)	SSW	14.0	4.91	24.0	3.66	14.0	5.23
Salinity	SSW	32.5	1.92	31.7	2.17	32.7	1.41
Wind Speed (m s ⁻¹)	SSW	5.98	2.86	5.47	2.51	6.09	2.52
DO (mg L ⁻¹)	SSW	6.44	0.85	7.57	1.07	8.32	0.99
Chl $a(ua \mathbf{I}^{-1})$	SSW	1.26	2.38	1.13	1.48	0.42	0.25
Cm - <i>a</i> (µg L)	SML	1.63	3.66	1.28	1.13	no	data
$DOC (umal L^{-1})$	SSW	91.3	25.7	109.4	33.55	88.4	22.51
	SML	132.9	77.4	145.7	49.8	131.3	91.1
$a(254) (m^{-1})$	SSW	3.20	2.49	3.10	1.34	2.52	1.26
a(234) (III)	SML	3.70	1.98	4.05	1.66	4.74	2.50
Same and (nm^{-1})	SSW	0.0201	0.0049	0.0188	0.0035	0.0207	0.0068
3 275-295 (IIIII)	SML	0.0222	0.0073	0.0178	0.0021	0.021	0.0055
S	SSW	1.723	1.026	1.731	1.557	1.521	0.52
SR	SML	1.095	0.218	1.361	0.296	1.416	0.214
SUVA ₂₅₄	SSW	2.067	0.664	2.244	0.671	3.008	0.949
$(L mg-C^{-1} m^{-1})$	SML	1.911	0.768	1.951	0.359	2.992	1.034

during spring, summer, and winter.

Table 3 Correlation coefficients between EF of DOM optical properties, Chl-*a*, DOC, PO₄³⁻, NO₃⁻,

	EF of	EF of	EF of	EF of	EF of	EF of							
	a(254)	DOC	Chl-a	C1	C2	C3	C4	PO4 ³⁻	NO ₃ ⁻	NO ₂ -	SiO32-	Cyanobacteria	picophytoplankton
EF of DOC	0.185										-		
EF of Chl-a	0.092	0.021											
Ef of C1	.336**	0.047	-0.119										
EF of C2	0.163	0.073	-0.017	.635**									
EF of C3	.413**	0.179	-0.096	.907**	.557**								
EF of C4	.319**	0.021	0.011	.574**	.368**	.628**							
EF of PO ₄ ³⁻	0.129	0.267	.319*	0.131	-0.037	0.139	0.087						
EF of NO3 ⁻	-0.065	-0.054	0.235	-0.037	-0.044	-0.027	-0.053	0.26					
EF of NO ₂ ⁻	0.15	0.208	.307*	0.142	-0.017	0.192	0.035	.571**	0.271				
EF of SiO ₃ ²⁻	.634*	0.004	0.074	0.122	-0.101	0.305	0.151	0.205	-0.118	-0.141			
EF of													
Cyanobacteria	0.091	-0.017	0.028	-0.027	-0.105	-0.047	-0.052	0.218	0.027	.755**	-0.286		
EF of													
Picophytoplankton	.347**	0.0281	0.252	-0.067	-0.082	-0.077	0.025	0.218	-0.08	0.113	-0.327	0.081	
EF of													
Bacterial													
abundance	-0.036	-0.069	-0.063	-0.061	0.004	0.014	-0.093	-0.12	-0.026	-0.073	-0.099	.730**	-0.064

NO₂⁻, SiO₃²⁻, Cyanobacteria, Picophytoplankton, Bacterial abundance.

** Correlation is significant at the 0.01 level (two-tailed)

* Correlation is significant at the 0.05 level (two-tailed)