

1 The influence of elevated CO₂ and soil depth on rhizosphere
2 activity and nutrient availability in a mature *Eucalyptus* woodland

3 Johanna Pihlblad^{1,2}, Louise C. Andresen³, Catriona A. Macdonald¹, David S. Ellsworth¹,
4 Yolima Carrillo¹

5 ¹ Hawkesbury Institute of environment, Western Sydney University, Penrith Australia

6 ² Birmingham Institute for Forest Research, University of Birmingham, Birmingham United Kingdom

7 ³ Department of Earth Sciences, University of Gothenburg, Gothenburg Sweden

8 Correspondence to: Johanna Pihlblad (m.pihlblad@bham.ac.uk), Louise C. Andresen (louise.andresen@gu.se)

9 **Abstract.** Elevated carbon dioxide (eCO₂) in the atmosphere increases forest biomass productivity, but only where
10 soil nutrients, particularly nitrogen (N) and phosphorus (P) are not limiting growth. eCO₂, in turn, can impact
11 rhizosphere nutrient availability. Our current understanding of nutrient cycling under eCO₂ is mainly derived from
12 surface soil, leaving mechanisms of the impact of eCO₂ on rhizosphere nutrient availability at deeper depths
13 unexplored. To investigate the influence of eCO₂ on nutrient availability in soil at depth, we studied various C, N
14 and P pools (extractable, microbial biomass, total soil C and N, and mineral associated P) and nutrient cycling
15 processes (enzyme activity and gross N mineralization) associated with C, N, and P cycling in both bulk and
16 rhizosphere soil at different depths at the Free Air CO₂ enrichment facility in a native Australian mature
17 *Eucalyptus* woodland (EucFACE) on a nutrient-poor soil. We found decreasing nutrient availability and gross N
18 mineralization with depth, however this depth associated decrease was reduced under elevated CO₂ which we
19 suggest is due to enhanced root influence. Increases in available PO₄³⁻, adsorbed P and the C:N and C:P ratio of
20 enzyme activity with depth were observed. We conclude that the influences of roots and of eCO₂ can affect
21 available-nutrient pools and processes well beyond the surface soil of a mature forest ecosystem. Our findings
22 indicate a faster recycling of nutrients in the rhizosphere, rather than additional nutrients becoming available
23 through SOM decomposition. If the plant growth response to eCO₂ is reduced by the constraints of nutrient
24 limitations, then the current results would call to question the potential for mature tree ecosystems to fix more C
25 as biomass in response to eCO₂. Future studies should address how accessible the available nutrients at depth are
26 to deeply rooted plants, and if fast recycling of nutrients is a meaningful contribution to biomass production and
27 the accumulation of soil C in response to eCO₂.

28 **1 Introduction**

29 With elevated carbon dioxide (eCO₂) in the atmosphere, higher photosynthesis rates can drive increases in forest
30 biomass productivity (Ainsworth and Long, 2005; Norby and Zak, 2011). However, enhanced forest productivity
31 in the long-term is not possible in areas where soil nutrients, particularly nitrogen (N) and phosphorus (P) (Fisher
32 et al., 2012) limit growth (Ellsworth et al., 2017; Terrer et al., 2019, 2018). In contrast, plant-microbe interaction
33 under eCO₂ might stimulate soil organic matter (SOM) decomposition and alleviate nutrient limitation (Luo et al.,
34 2004; Drake et al., 2011; Wang and Wang, 2021). Higher root exudation rates, stimulation of root growth and fine
35 root production and turnover are all mechanisms that can potentially elicit SOM decomposition and subsequent
36 nutrient release in the rhizosphere (Bernard et al., 2022). Root-mediated changes to SOM decomposition and

37 nutrient cycling resulting from a changing climate may be especially important in forest systems where tree roots
38 extend far below the soil surface, and where eCO₂ may also alter root distribution with depth (Iversen et al., 2008;
39 Iversen, 2010). However, current understanding of nutrient cycling under eCO₂ is mainly derived from surface
40 soils, leaving mechanisms of the impact of eCO₂ on nutrient availability at deeper depths unexplored (Jackson et
41 al., 1996).

42 In the organic rich surface layers of soil, where most fine roots are located, microbial activity is high
43 (Graaff et al., 2014). As SOM content, root density, and microbial biomass decline with depth, so does microbial
44 activity and rate of processes in soil (Hobley and Wilson, 2016). Despite this, deeper SOM has been found to be
45 more responsive to fresh C inputs (Fontaine et al., 2007) with the implication that the decomposition effect of
46 fresh C from the rhizosphere is likely to increase with depth. With an extending root system, such as may occur
47 under eCO₂ (Iversen, 2010), plants can introduce C where labile C may not have previously been abundant
48 (Iversen et al., 2008; Kuzyakov and Blagodatskaya, 2015) thus promoting microbial activity and accelerated C
49 decomposition at depth, potentially releasing nutrients. Moreover, increased C to the rhizosphere can shift the
50 stoichiometric balance of C relative to soil nutrients (Graaff et al., 2006; Kuzyakov, 2010; Carrillo et al., 2014).
51 With increased abundance of C, the microbial demand for N and P increases (Sistla and Schimel, 2012), in turn
52 leading to an increase in microbial SOM decomposition (Bengtson et al., 2012; Carrillo et al., 2017). Further,
53 microbes have been found to improve their nutrient use efficiency to compensate for the stoichiometric imbalance
54 of decomposer and substrate (Mooshammer et al., 2014). This is manifested through accumulation of N and P in
55 microbial biomass, faster gross mineralization rates, and smaller pools of available inorganic nutrients in the soil
56 solution available for plant uptake. The phenomenon has been found for both N (Rütting et al., 2010) and P
57 (Spohn, 2016; Spohn and Widdig, 2017). How these shifts in stoichiometry manifest in deeper soils is unclear but
58 may have wide ranging implications for forest productivity in response to eCO₂.

59 Belowground allocation of plant-derived C has differential impacts on N and P owing to inherent
60 differences in their cycling. Plant available N in inorganic form (ammonium and nitrate) is derived primarily
61 through SOM decomposition involving the microbial processes of depolymerization and mineralization of organic
62 compounds and through nitrification (Schimel et al., 2015). In contrast, plant available inorganic P (phosphate)
63 can be sourced from both organic sources via microbial SOM decomposition, and inorganic sources via
64 dissolution from primary minerals and desorption from secondary minerals (Adeleke et al., 2017) (Figure 1). Plant
65 and microbial P limitation is often driven by the mechanism of transitioning P between inaccessible organically
66 bound P to an available inorganic form via a dissolved phase, which renders it susceptible to sorption to secondary
67 mineral surfaces like clays and metal hydroxides (Gérard, 2016). In older, highly weathered soils of higher clay
68 content inorganic P availability can be more constraining for plant and microbial activity than N. In these soils,
69 where the primary mineral P source has been depleted, most of the P left in the system is in organic form, either
70 in biomass of plants and microbial cells, or in SOM (Lambers et al., 2008; Walker and Syers, 1976). Increased
71 root exudation and microbial activity in the rhizosphere can increase decomposition of organic P in SOM through
72 phosphatase enzyme production (Bünemann, 2015) and facilitate the release of mineral adsorbed P by releasing
73 organic acids, competing for sorption sites and lowering soil pH. Therefore, the equilibrium of inorganic P
74 between adsorbed and available forms is determined by root exudation, microbial enzyme production and soil
75 mineralogy (Figure 1) all factors that are considered depth-dependent properties.

76 Given that N and P cycling in soil differs, and that the factors controlling those processes can vary with
77 depth, soil nutrient stoichiometry also tends to vary with depth (Li et al., 2016). Soil C:N ratio tends to decrease
78 with depth under increased microbial processing of C. Declining SOM content with depth will also lower the N
79 content. In contrast, soil C:P can decrease, but more often remains unchanged as mineral adsorbed P remains in
80 soil despite SOM content declining; the potential implication of which, is a reduction in soil N:P at depth (Li et
81 al., 2016; Zhao et al., 2017). Therefore, many heavily weathered surface soils may be constrained in available
82 PO_4^{4-} , but at depth, some soils may be N limited. This is important in the context of eCO₂, because the response
83 of SOM decomposition to increased labile C availability could be dependent on which nutrient is most limiting to
84 microbes (Dijkstra et al., 2013), which in turn would be expected to depend on depth. Accordingly, extrapolations
85 of nutrient limitation from surface soil processes to deeper soil layers become unreliable without accounting for
86 mechanisms controlling nutrient processing as the stoichiometry changes with depth. The lack of experimental
87 evidence concerning soil nutrient cycling processes in deeper soil render the assumption that native biomes will
88 increase their productivity under eCO₂ contentious (Iversen et al., 2011; Rumpel and Kögel-Knabner, 2011).

89 The *Eucalyptus* Free Air CO₂ Enrichment (EucFACE) facility in eastern Australia has experimentally
90 exposed a *Eucalyptus* woodland, on a low N and P soil, to eCO₂ concentration (+150 ppm) continuously since
91 2013 (Drake et al., 2016). To date the site has not seen any evidence of increase in aboveground biomass in the
92 *Eucalyptus* trees under eCO₂ (Ellsworth et al., 2017) despite an increase in the photosynthetic rate of both the
93 dominant tree species and the understory grasses in this ecosystem (Ellsworth et al., 2017; Pathare et al., 2017).
94 The lack of plant biomass response to the CO₂ treatment is hypothesised to be caused by a severe P limitation of
95 the soil, additions of which was shown to increase plant biomass in a tree stand close by not exposed to eCO₂
96 (Crous et al., 2015). In this system, mineralization and decomposition of SOM have only been investigated in the
97 upper soil layers (Hasegawa et al., 2016; Castañeda-Gómez et al., 2020, 2021). The potential for the plants in this
98 system to utilise nutrients in the deeper soil layers of the top meter of soil is relevant because this highly weathered
99 nutrient poor soil system may already have reached a maximum efficiency for nutrient cycling in the upper soil
100 layer where SOM and microbial activity is greater. Additionally, *Eucalyptus* trees are known to have very deep
101 roots to access water from groundwater aquifers (Laclau et al., 2013), though fine roots capable of nutrient
102 acquisition are thought to be most abundant in the surface soil layers (Piñeiro et al., 2020). Despite the
103 considerable number of P limited forests globally there are still large uncertainties surrounding rhizosphere
104 activity and nutrient cycling in older, P-limited soils compared to younger soils in the northern hemisphere that
105 are often N limited (Fisher et al., 2012; Terrer et al., 2019).

106 To investigate the influence of eCO₂ on nutrient availability in soil at depth, we studied various C, N and
107 P pools (extractable, microbial biomass, total soil C and N, and mineral associated P) and nutrient cycling
108 processes (enzyme activity and gross N mineralization) associated with C, N, and P cycling in both bulk and
109 rhizosphere soil at different depths at the EucFACE facility. We asked: Q1. what is the difference between
110 rhizosphere and bulk soil in terms of soil properties, and is this changed with soil depth? Q2. what is the effect of
111 eCO₂ on nutrient availability and C:N:P stoichiometry in the rhizosphere, and does it change with soil depth?
112 Given that increased root exudation will prime microbial nutrient mining, we hypothesize (1) nutrient availability
113 (inorganic N and P) will be higher in the rhizosphere compared to bulk soil. We also hypothesize that (2) eCO₂
114 will increase availability of P to a greater extent than N in surface soil, but not at deeper layers; and that (3) eCO₂

115 will have less impact on N than P availability and increase the processes contributing to P release (P-targeting
116 enzymes) more so than N release (N-targeting enzymes and gross N mineralization). This effect will be less
117 important with depth because the overall N:P ratio declines with depth, alleviating the P limitation and thus
118 shifting the demand from P to N.

119 **2 Materials and methods**

120 **2.1 Experimental design**

121 The study was performed at the *Eucalyptus* Free-Air CO₂ Enrichment (EucFACE) experiment located in a
122 Cumberland Plain woodland with mature *Eucalyptus* trees in Sydney, Australia (33°37'S and 150°44'E, 23 m
123 a.s.l.). The site has six experimental rings (n=3), each with a diameter of 25 m. The CO₂ treatment was
124 implemented to three of the rings (eCO₂) since September 2012 and reached +150 ppm above ambient CO₂ (aCO₂)
125 in February 2013 (Ellsworth et al., 2017). The remaining three rings are controls (aCO₂). The soil at the site is a
126 developing red and/or yellow aeric podsol in weakly organised alluvial deposits (Ross et al., 2020) including iron-
127 manganese nodules (Clarendon formation) with a metal oxide rich (field observation) transition to a hardpan clay
128 layer called (Londonderry clay; Atkinson, 1988) found at a variable depth throughout the site (between 35-85
129 cm). The dominant tree species is *Eucalyptus tereticornis* and the dominant understory grass is *Microlaena*
130 *stipoides*. The site has an average precipitation of 800 mm per year, with a total precipitation of 16.8 mm in the
131 month leading up to the sampling campaign. The yearly mean temperature was 17 °C. For further detailed site
132 description see Ellsworth et al., (2017).

133 **2.2 Field sampling, soil preparation and root biomass determination**

134 Soil cores (5 cm diameter) were collected from all rings in September 2017. Twelve cores were taken in each ring,
135 spread as three in each of the four pre-established two by two-meter subplots designated for soil sampling (4
136 subplots per ring, total of 72 soil cores). Each core was sampled down to the clay layer which varied with depth
137 across the site (35-85 cm). Each core was divided into the three depths for investigation: 0-10 cm, 10-30 cm, and
138 transition (a 10 cm interval where sandy loam transitioned into clay). Samples were kept cool until further
139 processing in the laboratory within one week of collection. Although the depth of the transition layer differed
140 throughout the site, the chemical properties are assumed to be similar within this zone across the plots, as the
141 water periodically builds up above the clay before it drains, creating conditions for podzolification. Soils were
142 processed to separate bulk from rhizosphere soil. The rhizosphere soil was defined as any soil that was still
143 attached to the fine roots when these were separated from soil and soil was collected by gently shaking roots. All
144 other soil in the core was considered bulk soil. For both rhizosphere soil and bulk soil, subplots 1 and 2, and 3 and
145 4, were combined to two samples per ring and depth (n = 6 samples per ring). This was necessary to have sufficient
146 rhizosphere soil sample for subsequent analysis. Samples were sieved to < 2 mm. Sub-samples for potential
147 enzyme activity were frozen (-20 °C) immediately after sieving. Soil samples to be analysed for nutrient
148 availability and microbial biomass were stored field moist at 5 °C until processed. The roots already handpicked
149 for rhizosphere soil were washed and dried within a week of sampling and later separated into larger and smaller
150 than 3mm diameter fractions. Additionally, any remaining roots were hand-picked from a subsample (~50 g) of
151 sieved soil and scaled to the total sample weight.

152 **2.3 Extractable carbon, nitrogen, and phosphorus and microbial biomass**

153 Microbial biomass C, N, and P were determined on fresh soil following the fumigation extraction method of
154 Vance et al. (1987). Briefly, fumigated samples were treated with ethanol free CHCl_3 under vacuum (fumigated
155 for four days for C and N, and one day for P) and then extracted for C, N, and P using K_2SO_4 and Bray-P I. All
156 extracts were filtered through Whatman 42 grade filter papers and frozen until analysis. Fumigated and
157 unfumigated extracts of K_2SO_4 (0.5 M) were analysed for C and N on TOC-L (total organic carbon analyser,
158 Shimadzu corporation, Japan). Fumigated and unfumigated extracts of Bray-P I were analysed for PO_4^{3-} ,
159 additionally unfumigated K_2SO_4 extracts were analysed for inorganic N (ammonium and nitrate), according to
160 Rayment and Lyons (2011), by colorimetry (AQ2 Discrete Analyser, SEAL Analytical, Mequon, WI, USA). Soil
161 was dried (70 °C) for determination of gravimetric soil moisture and air-dried soil was used for pH (1:5 s:w), (S20
162 SevenEasyTM pH, Mettler-Toledo International Inc., Columbus, OH, USA). Subsamples of the air-dried soil
163 were cleared of visible root fragments and analysed for total soil C and N (LECO TruMac CN-analyser, Leco
164 corporation, USA) and for mineral associated inorganic P.

165 **2.4 Mineral adsorbed inorganic phosphorus**

166 To quantify mineral associated inorganic P a one g air-dried subsample was extracted with NaOH-Na₂EDTA
167 (0.25M NaOH and 0.05M Na₂EDTA) and horizontally shaken for 16 h at 80 rpm after which it was filtered
168 (Rayment and Lyons, 2011). Extracts were diluted 1:10 with sterile water and analysed using the malachite green
169 reagent (Ohno and Zibilske, 1991) in a clear 96 well plate. The plates were analysed by colorimetry on a
170 CLARIOstar plate reader (BMG LABTECH GmbH, Germany) at 610 nm after one hour incubation at 25°C.

171 **2.5 Pool dilution for gross N mineralization rates**

172 To assess the gross N mineralization rate an isotope pool dilution assay using ¹⁵N enriched ammonium was made
173 with a series of laboratory incubations following the method of Rütting et al. (2011). Ammonium concentration
174 and ammonium-¹⁵N excess from two time points was done on KCl extracts (Stange et al., 2007; Putz et al., 2018)
175 with SpinMass (Sample Preparation of Inorganic Nitrogen MASSpectrometer) at ISOGOT (Dept of Earth
176 Sciences, University of Gothenburg, Sweden). The ¹⁵N-label was added in duplicate to fresh and sieved soil
177 samples (5 g) with a label consisting of 10 µg (¹⁵NH₄)₂SO₄ (¹⁵N fraction of 99 %, Cambridge Isotope laboratory
178 Inc.) in 0.25 mL milliQ water. After label addition, samples were incubated for 15 minutes and 24 hours under
179 steady temperature (20 °C) and in darkness. The incubations were extracted with 1 M KCl (15 mL), shaken for
180 one hour at 120 rpm and filtered through 42 grade ash-less Whatman filters and frozen until analysis. All gross
181 mineralization rates were calculated using the equation in Kirkham and Bartholomew (1955).

182 **2.6 Potential enzyme activity method**

183 Potential activity of seven enzymes associated with C, N and P mineralisation were determined for bulk and
184 rhizosphere soil respectively. For this we used fluorometrically labelled substrates following the method of Bell
185 et al., 2013. Two g frozen soil was mixed to a slurry (1:33 w:v) with MilliQ water in a laboratory blender for one
186 minute. The slurry was pipetted into 96 well plates with three technical replicates and given fluorescent substrates
187 (4-methylumbelliflerone; MUB and 7-amino-4-methylcoumarin: MUC) in accordance with the Bell et al. protocol
188 (2013). The samples were then incubated at 25 °C for three hours and analysed for fluorescence with a
189 CLARIOstar plate reader (BMG LABTECH GmbH, Germany). Four enzymes (α -D-glucopyranoside (AG), β -D-

190 glucopyranoside (BG), β -D-cellobioside (CB), and β -D-xylopyranoside (XYL)) targeted C-rich compounds
191 (sugar, cellulose, hemicellulose), two enzymes (L-Leucine-7-aminopeptidase (LAP) and N-acetyl- β -D-
192 glucosamine (NAG) targeted N-rich compounds (proteins and chitin), and acid phosphatase (PHOS) targeted
193 organic compounds with P. These enzymes are considered representative of the total enzyme pool active in the
194 soil, however storage in -20 °C may have altered the potential enzymatic activity and comparisons with activities
195 in fresh soil from other land-uses should be made with caution (Lane et al., 2022).

196 **2.67 Statistical analyses**

197 The impact of CO₂ treatment, depth and their interaction were assessed separately for bulk and rhizosphere soil
198 at three depth levels (0-10, 10-30, and transition). Two soil depths (0-10, 10-30) were used in the analysis of
199 rhizosphere where insufficient amounts of rhizosphere soil were recovered during sampling. The subsequent
200 pseudo-replication created with two samples per experimental unit (ring) were dealt with using a linear mixed
201 effects model where CO₂ and depth and their interactions were fixed factors and ring a random factor with
202 individual intersects (*lme4* package, Bates et al., 2015), corresponding to the EucFACE experimental design
203 (Hasegawa et al., 2016). To assess the role of ~~roots on~~ CO₂ and depth effects on rhizosphere soil, we used a linear
204 mixed effects model with CO₂, depth (two depths: 0-10, 10-30) and soil type (bulk, rhizosphere) as fixed factors
205 with all interactions and ring as a random factor with individual intersects (Bates et al., 2015). ~~For gross N~~
206 ~~mineralization rate, the data was slightly skewed due to the ambient bulk 10-30 cm samples being below the~~
207 ~~SPINMAS detection limit so they could not be quantified. For gross N mineralization rate in the deepest layer~~
208 ~~(10 to 30 cm depth) ammonium concentrations in most samples were below detection limit.~~

209 Significance was determined with the *ANOVA* function (*car* package, Fox and Weisberg, 2019) with
210 Kenward-Roger degrees of freedom estimation. Post-hoc analysis was performed with the *glht* function for multi-
211 comparison (*multcomp* package, Hothorn et al., 2008). The post-hoc Tukey analysis of all CO₂, depth, and soil
212 factors were combined into their unique interactions and then processed in the linear mixed effects model as
213 previously described. Normal distribution of residuals was assessed, and log transformations were performed
214 where required to meet model assumptions.

215 **3 Results**

216 **3.1 Fine root biomass**

217 Fine root biomass density significantly decreased with depth and ranged from 0.12 mg·g⁻¹ in the 0-10 cm depth to
218 2.75 mg·g⁻¹ ~~with highest densities in the surface depth (0 to 10 cm) and the lowest density~~ in the transition depth
219 (Figure 2). There was a significant interaction between depth and CO₂ where, in the topsoil (0 to 10 cm) elevated
220 CO₂ (eCO₂) samples had a 28 % lower fine root density than ambient.

221 **3.2 Carbon in total soil, dissolved and microbial biomass pools**

222 Dissolved organic carbon (DOC) declined significantly with depth for both bulk and rhizosphere soil, and the
223 decrease by depth was stronger for rhizosphere soil (25 %) than for bulk soil (11 %) (Figure 3A and C). The DOC
224 was significantly higher (by 24 %) in rhizosphere soil than bulk soil (Figure 2 and Table 1) ~~when averaged across~~
225 ~~depth (for 0-10 and 10-30 cm depths)~~. Microbial C declined significantly with depth for both bulk soil and
226 rhizosphere soil (Figure 3B and D) and was significantly higher in rhizosphere soil (Table 1, Figure 3) by 36 %

227 (transition was excluded). Total soil C content had a significant effect of depth, and an interaction between CO₂
228 treatment and depth (Table 1); % soil C content was higher in the 0-10 cm depth under eCO₂ but was not different
229 from ambient in the deeper depths (10-30 and transition) (Table 2).

230 **3.3 Rate of gross N mineralization and N pools**

231 Measured soil N content (including NH₄⁺, NO₃⁻, microbial N) declined significantly with depth for both bulk and
232 rhizosphere soils (Figure 4). Ammonium, nitrate, microbial N, and gross N mineralization (Table 1) were
233 significantly higher in rhizosphere soil than in the bulk soil at both 0 to 10 cm and 10 to 30 cm depths (Table 1).
234 Total soil N content showed a significant interaction between CO₂ treatment and depth (Table 1) where % soil N
235 content was higher in the 0-10 cm depth under eCO₂ but was the same as ambient in the deeper depths (10-30 and
236 transition).

237 Gross N mineralization rate declined significantly with depth and was significantly higher in rhizosphere
238 soil compared to bulk soil; furthermore, eCO₂ did not have a significant effect (Figure 5, Table 1). The multiple
239 comparison showed the 0-10 cm bulk soil samples as being similar magnitude as the rhizosphere 10-30 cm
240 samples. The 0-10 cm rhizosphere treatment were significantly higher than the ambient 10-30 cm rhizosphere
241 ([Figure 5](#)), though it cannot be statistically separated from any other treatment group due to the high variability.

242 **3.4 Soil Phosphorus**

243 The three assessed P contents (extractable PO₄³⁻, microbial P, and mineral associated inorganic P) significantly
244 declined with increasing depth and were higher in the rhizosphere compared to bulk soil (Table 1 and Figure 6).
245 For PO₄³⁻ there was a significant interaction between CO₂ and depth as the concentration of PO₄³⁻ did not decline
246 with depth under eCO₂. Phosphate concentration in the 10-30 cm depth tended to be higher in eCO₂ soils compared
247 to aCO₂ soils (Figure 6D). Microbial P in the bulk soil interacted with CO₂ treatment and depth, where microbial
248 P was lower under eCO₂ compared to aCO₂ in the 0-10 cm depth only (Figure 6).

249 **3.5. Enzymatic activity results**

250 Enzyme activities decreased significantly with depth but did not differ significantly between soil or CO₂ treatment
251 (Table 5 and Table 6). One exception to the general trend was CB (b-D-cellobioside) that did not decrease with
252 depth and was significantly higher in rhizosphere soil compared to bulk soil. Notable is the difference in
253 magnitude for N targeting and P targeting enzymes where P enzymes were twice as abundant than N. The two
254 to one pattern was maintained as the enzyme activity declined with soil depth.

255 **3.65 Stoichiometry of soil nutrient pools (C, N, P) and soil enzymes**

256 The C:N and C:P of extractable nutrients in the bulk soil increased significantly with depth by 24.9 and 20.9 units
257 of C per nutrient, respectively. However, under eCO₂ the C:N and C:P stoichiometry did not increase in bulk soil
258 (Table 3 and 4). The rhizosphere soil N:P ratio significantly declined with depth. When soil was included as an
259 interactive factor in the model (Table 4), C:N was significant by depth:soil. For extractable C:P ratio both the
260 interaction between CO₂:depth and CO₂:soil was significant where C:P ratio declined with eCO₂ and depth but
261 increased with depth when ambient. In the microbial biomass only C:P significantly increased with depth in bulk
262 soil. The N:P of extractable N and P and microbial biomass stoichiometry significantly increased with depth.
263 When both bulk and rhizosphere soil was considered (only 0-10 and 10-30 cm depth) soil and depth significantly

264 affected extractable C:N and N:P, and the interaction of soil and depth was significant for soil C:N (Table 4). The
265 bulk soil total C:N ratio decreased significantly with depth by 9 units. The rhizosphere soil C:N ratio increased
266 slightly by only 1 unit, yet still significantly, with depth. There was also a significant interaction between CO₂
267 and depth in the C:N and C:P ratio of the enzymes (Table S15 and Table S26). The C:N and C:P ratios decreased
268 0.7 and 0.4 units with depth in ambient conditions but increased 0.4 and 0.3 with depth in eCO₂. The ratio between
269 N and P targeting enzymes did not change with depth but was maintained in the range of 0.5-0.7 N enzymes per
270 P enzyme. The pH showed a marginally significant effect from an interaction of depth and CO₂, where the pH
271 increased slightly in the transition under eCO₂ (Table S15).

272 **4 Discussion**

273 We sampled rhizosphere soil and bulk soil in a depth profile in a *Eucalyptus* woodland experimentally exposed
274 to eCO₂ for 5 years, with the goal to investigate how root activity influences nutrient availability and stoichiometry
275 across depth and under eCO₂. Supporting our hypothesis (1), the nutrient availability increased in rhizosphere soil
276 compared to bulk soil. However, we found no clear evidence to support the hypothesis that eCO₂ affected the
277 rhizosphere soil to a greater extent than the bulk soil (Table 1). There was some evidence to support hypothesis
278 (2), that eCO₂ affected the availability of P more than of N as available PO₄³⁻ was more increased with depth in
279 elevated compared to ambient CO₂ (Figure 6). Additionally, the low N:P ratio of enzymes supports hypothesis (3)
280 that P was more limiting than N (Table S15).

281 **4.1 Depth effects on soil nutrients and microbial biomass**

282 The effect of depth was overall significant and the microbial biomass C, N and P, DOC, inorganic N (NH₄⁺ and
283 NO₃⁻), inorganic P (PO₄³⁻), and mineral-adsorbed inorganic P all decreased in availability with depth (Table 1).
284 However, under eCO₂, when bulk and rhizosphere soil were analysed separately the availability of extractable P
285 in the soil solution in the rhizosphere did not decline with depth (Figure 6D). Increased P availability below
286 surface soil in the rhizosphere has been found in previous studies at the site (Ochoa-Hueso et al., 2017), which
287 measured nutrient availability down to 30 cm depth, and also in other forest sites investigating nutrient
288 availability in deeper soil (Blume et al., 2002; Rumpel and Kögel-Knabner, 2011; de Graaff et al., 2014; Li et al.,
289 Notebly, all enzyme activity, including phosphatase activity, declined with depth independatly from CO₂
290 condition (Table 5) indicating that the rhizosphere increase in P availabilty in the deeper soil was not due to higher
291 SOM decomposition. Contrary to the non-response of the microbial C and N concentration, The microbial P
292 concentration decreased under eCO₂ in the 0-10 cm depth in the bulk soil (Figure 6C), this is similar to in line
293 with the negative effect of CO₂ on fine root density (Figure 2), suggesting that root density and microbial P
294 respond similarly to eCO₂ since both decreased.

295 Stoichiometry changed with depth differently for bulk and rhizosphere soil. The ratio of extractable C to
296 N and to P in bulk soil increased with depth, as DOC decreased less with depth than inorganic N and P. However,
297 contrary to our hypothesis the ratio between N and P was constant across depth in bulk soil. Hence, without the
298 influence of roots, N and P both declined at a similar rate, while the total magnitude of N larger than P as both
299 decreased with depth. In the rhizosphere soil the ratio between DOC, and inorganic N and P remained constant
300 with depth while the N:P ratio significantly decreased; hence, the rhizosphere inorganic P became relatively more
301 available than N at deeper soil. We suggest there was more P available because there were fewer fine roots and

302 lower microbial biomass to immobilise it. Furthermore, ~~as inorganic-P decreased with depth~~ more resources were
303 invested to access it, supported by the consistently higher P targeting enzyme activity than N enzyme activity.

304 **4.2 Rhizosphere effects on nutrient availability and mineralization across depths**

305 It is a paradigm in rhizosphere research that microbial activity is high near the root because of the input of energy
306 in the form of newly photosynthesised C (Kuzyakov et al., 2000; Kuzyakov and Cheng, 2001). Supporting this,
307 we found that microbial biomass and nutrient availability was higher in the rhizosphere soil compared to bulk
308 soil. Furthermore, the gross N mineralization rate increased in the rhizosphere compared to bulk soil. Given the
309 positive links found between gross N mineralization and SOM decomposition (Bengtson et al., 2012; Zhu et al.,
310 2014) these findings suggest that root-microbe interactions are facilitating decomposition and increasing nutrient
311 availability (Andresen et al., 2020).

312 In contrast, the potential activities of enzymes responsible for depolymerizing and hydrolyzing N and P
313 from SOM did not increase closer to the root (Table ~~S15~~) supporting previous findings from the site that reported
314 enzyme activities were not higher in the presence of roots (Ochoa-Hueso et al., 2017; Castañeda-Gómez et al.,
315 2021). The lack of enzymatic activity response to roots in both surface and deeper soil depths could be due to the
316 microbial community lacking access to energy and N to be able to synthesise enzymes (Olander and Vitousek,
317 2000), although there is no indication N or C are limiting for enzyme production in this system. Alternatively,
318 because of greater nutrient availability there is reduced need for enzyme production (Sinsabaugh et al., 2009).
319 Finally, a shift in the microbial community composition favouring fungi over bacteria in the rhizosphere as has
320 been observed at the site could lead to lower enzyme production per unit biomass (Castañeda-Gómez et al., 2021).

321 The stoichiometry of enzymes targeting N and P is an indicator of microbial nutrient demand (Sinsabaugh
322 et al., 2009). In this system, N does not appear to be the most limiting nutrient given the low ratio of N:P targeting
323 enzymes. The low enzyme N:P ratio suggest that P is more highly sought by the microbes in this system (Allison
324 and Vitousek, 2005; Sinsabaugh et al., 2008). We found this independent of soil depth, indicating that P is in
325 higher demand than N in the entire soil profile. Interestingly, no difference in either enzyme amount or
326 stoichiometry was found between bulk soil and rhizosphere soil which indicate that given a higher C availability
327 in the rhizosphere, microbes did not increase their enzyme production to mine for organic P. However, P can also
328 be sourced from non-organic sources (Gérard, 2016). This is supported by the high levels of mineral associated
329 inorganic P in the rhizosphere at depth (Figure 5). We suggest that non-organic sources of P may be important to
330 microbes in the rhizosphere as an alternative to high energy cost enzyme production. Although soil P accumulates
331 in the soil organic fraction with increasing soil age (Crews et al., 1995) this soil is also rich in metal oxides with
332 large surfaces capable of adsorbing phosphate cations (Achat et al., 2016) which root activity in the rhizosphere
333 can release with the help of organic acids without decomposing SOM (Adeleke et al., 2017).

334

335 The pattern of decline in nutrient concentrations in deeper soil profiles is well documented (Jobbágy and
336 Jackson, 2001). Though a decline in these concentrations still occurs in the rhizosphere soil with depth, here we
337 can show that root activity counteracts the decline associated with depth, maintaining a higher microbial biomass
338 and nutrient availability in the rhizosphere soil compared to bulk soil (Finzi et al., 2015). Together with the
339 evidence of higher gross N mineralization rate in the rhizosphere soil, we suggest that in this P limited mature

340 forest, roots can drive the availability of both N and P even in deeper soil. Because we did not find a significant
341 increase in potential enzyme activity in the rhizosphere (Table 6) this effect can instead be driven by through
342 microbial biomass turnover, - community shift (Castañeda-Gómez et al., 2021) and a strong recycling of nutrients
343 without large decomposition of SOM requiring enzyme activity. Although we can show that deep rhizosphere has
344 an impact on available nutrients our study cannot assess if plants are utilising the increased availability. since we
345 did not measure plant uptake though increased root turnover has been reported (Piñeiro et al., 2020) suggesting
346 that is the case. However, assuming at least part of plant nutrient immobilisation is via diffusion of concentration
347 gradients (Gilroy and Jones, 2000), a higher nutrient concentration in the deeper rhizosphere soil is likely
348 benefiting plants as well as microbes.

349 4.3 Elevated CO₂ and depth dependency of rhizosphere effects

350 Elevated CO₂ increases C availability and nutrients in the rhizosphere through increased rhizodeposition and
351 nutrient mobilisation (Phillips et al., 2011; Kuzyakov et al., 2019). Because root density declines with increasing
352 depth, we hypothesised that the effects of eCO₂ on C and nutrient availability will be less important with depth.
353 Contrary to that hypothesis we found that eCO₂ interacted with depth by increasing the inorganic P availability at
354 depth under eCO₂. Further, mineral associated inorganic P was constantly higher at depth in the bulk soil under
355 eCO₂, though the trend is not significant. Metal hydroxide mineral rich clay is capable of strong adsorption of
356 negative ions and organic complexes (Jilling et al., 2018; Rasmussen et al., 2018) which is present at EucFACE.
357 Changes in pH can affect the equilibrium between mineral adsorption and solution concentration though the small
358 increase in pH that was detected in the rhizosphere soil (less than 0.5 units compared to bulk soil, Table ~~S45~~) is
359 not necessarily enough to change the sorption capacity. Rather the higher PO₄³⁻ adsorption and concentration in
360 solution indicates that higher rates of phosphate processes exist in that space. The different forms of soil P thus
361 appears to respond to different drivers, while the microbial biomass did not immobilise the additionally available
362 PO₄³⁻ or access the mineral associated P. This supports that the microbes are not limited by P at depth. The
363 question remains if plants can access the increased P availability at deeper soils.

364 The relative content and activity of C-degrading compared to N and P degrading enzymes was higher in
365 the deeper soil under eCO₂ for both rhizosphere soil and bulk soil. These trends with depth suggest that the surface
366 soil is more limited by nutrients (i.e. N and P poor) compared to deeper layers where C is a limiting factor for
367 activity. Thus, eCO₂ may cause increased microbial activity and enzyme synthesis at depth rather than in the
368 surface soil. The relative content of enzymes for N to P release ranged 0.5 to 0.8, and this indicated biological P
369 limitation rather than N limitation and that ratio was consistent through the depth profile, though the total enzyme
370 activity declined with depth. Only cellulase activity (CB, Table ~~5S4~~) was constant in all layers possibly indicating
371 that plant matter have the is being potential of being decomposed throughout the soil profile. It was demonstrated by
372 Castaneda-Gomez et al (2020) that root litter decomposition is increased under eCO₂ at the site and contributes to
373 C loss from the system. Root litter decomposition can thus be an important source of nutrient release at depth.
374 Further, eCO₂ has been found to increase the rate of root turnover in this system (Piñeiro et al., 2020), which is
375 one of the main sources of C supply to the deeper soil, other than increased root exudation.

376 In this study the observed lack of influence of eCO₂ on nutrient availability and N mineralization at the
377 surface is likely due to the topsoil being less limited by C than deeper soils (depth and CO₂ interaction). Though
378 enzyme activities decrease with depth, they are more abundant per unit soil C deeper in the profile. Given the

379 rather low eCO₂ fertilisation effect found on photosynthetic rate (Ellsworth et al., 2017; Jiang et al., 2020) and
380 root production in this system (Piñeiro et al., 2020) the presumed limited increase in C release -belowground is
381 likely turned over without affecting the SOM decomposition. Mineral adsorbed P forms are however, ~~are~~ sensitive
382 to root derived changes in pH (Jones and Darrah, 1994), representing a different mechanism for affecting the P
383 cycle separate from SOM decomposition (McGill and Cole, 1981). In the scenario where nutrients mostly become
384 available through recycling, rather than SOM decomposition, it is unlikely that plant nutritional requirements
385 under eCO₂ will be satisfied and support continued biomass growth even where roots are known to grow deeper
386 (Iversen et al., 2011). This ‘fast-in, fast-out’ C cycle in this mature nutrient limited ecosystem under eCO₂ will
387 not necessarily release long stored soil C to the atmosphere, but it is not likely to increase C sequestration by
388 gaining additional plant biomass or soil C either. Tough a recent meta-analysis assigning short- and long-term
389 effect of newly fixated C on soil C stocks indicated that any short-term gains of C into SOM could be gone after
390 one to four years (van Groenigen et al., 2017).

391 There are several consistent trends of an increase in nutrient availability with eCO₂ in this study, but they
392 were not statistically significant. These variables include available inorganic N, gross N mineralization rate,
393 inorganic P, and mineral associated P. These trends in pools and processes may indicate an increase in both
394 nutrient availability and up-regulation, if mild, of processes responsible for increased nutrient availability. Though
395 the mature *Eucalyptus* trees have not responded to eCO₂ with aboveground biomass growth (Ellsworth et al.,
396 2017) the understory species composition has shifted to include more nutrient-demanding grasses with eCO₂
397 (Hasegawa et al., 2018; Ochoa-Hueso et al., 2021). Higher quality understory litter may in turn drive increased
398 nutrient availability in the soil (Berg and McClaugherty, 1989). Given the necessarily low replication, common
399 to many FACE experiments (Filion et al., 2000), and the lower-than-expected enhancement of photosynthesis in
400 this FACE system (Ellsworth et al., 2017; Pathare et al., 2017; Jiang et al., 2020), an eCO₂ effect was expected to
401 be statistically elusive, but here we do show that it can be discerned.

402 4.4 Conclusion

403 We found that nutrient availability and gross N mineralization were always higher in rhizosphere soil compared
404 to bulk soils, but enzymatic activity was not. The effect of depth, generally, caused a decrease of available
405 nutrients and process rates feeding into the available pools. However, the impact of roots and eCO₂ counteracted
406 the decrease found with depth when interactions between soil depth and CO₂ or soil depth and soil type (bulk or
407 rhizosphere) occurred. This response of lower concentrations found with increasing depth particularly affected
408 available PO₄³⁻, adsorbed P and the C:N and C:P enzyme activity. We can conclude that roots and eCO₂ can affect
409 available nutrient pools and processes well below the surface soil of a forest ecosystem, though it is not clear if
410 the plants can benefit and take up nutrients from deeper parts of the soil profile. Our findings indicate a faster
411 recycling of nutrients in the rhizosphere, rather than additional nutrients becoming available through SOM
412 decomposition. If the tree response to eCO₂ is hindered or prevented by nutrient limitations, then the current
413 results would question the potential for mature tree ecosystems to fix more C as biomass in response to eCO₂.
414 Future studies are suggested to focus on how accessible the available nutrients at depth are to deeper rooted plants,
415 and if this fast recycling of nutrients is meaningful in production of plant biomass and accumulation of soil C
416 response to eCO₂.

417 Author contribution

418 The initial idea and experimental design were done by Johanna Pihlblad (JP) and Yolima Carrillo (YC) with
419 support by Catriona A. Macdonald (CAM). The data was gathered by JP and with support by YC, CM, and Louise
420 C. Andresen (LCA). JP did the data management, statistical analysis and wrote the first draft. All other authors
421 contributed to writing of the final paper.

422 Code and data availability: code and data presented in this manuscript can be shared upon request.

423 Competing interests: The authors declare that they have no conflict of interest.

424 Acknowledgements

425 The authors acknowledge the Dharug nation as the traditional owners of the land on which EucFACE and Western
426 Sydney University is located. We are thankful for support in the field and lab from Vinod Kumar, Craig
427 McNamara, Norbert Klause, Elise Pendall, Jeff Powell, and Laura Castañeda-Gómez. This work was supported
428 by the Australian Research Council Discovery Grant (DP160102452) and the Swedish research council Formas
429 2017-00423. The EucFACE facility was built as an initiative of the Australian Government as part of the Nation-
430 building Economic Stimulus Package and is supported by the Australian Commonwealth in collaboration with
431 Western Sydney University.

432 **References**

433 Achat, D. L., Augusto, L., Gallet-Budynek, A., and Loustau, D.: Future challenges in coupled C–N–P cycle
434 models for terrestrial ecosystems under global change: a review, *Biogeochemistry*, 131, 173–202,
435 <https://doi.org/10.1007/s10533-016-0274-9>, 2016.

436 Adeleke, R., Nwangburuka, C., and Oboirien, B.: Origins, roles and fate of organic acids in soils: A review, *South*
437 *African Journal of Botany*, 108, 393–406, <https://doi.org/10.1016/j.sajb.2016.09.002>, 2017.

438 Ainsworth, E. A. and Long, S. P.: What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A
439 meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂,
440 *New Phytologist*, 165, 351–372, <https://doi.org/10.1111/j.1469-8137.2004.01224.x>, 2005.

441 Allison, S. D. and Vitousek, P. M.: Responses of extracellular enzymes to simple and complex nutrient inputs,
442 *Soil Biology and Biochemistry*, 37, 937–944, <https://doi.org/10.1016/j.soilbio.2004.09.014>, 2005.

443 Andresen, L. C., Carrillo, Y., Macdonald, C. A., Castañeda-Gómez, L., Bodé, S., and Rütting, T.: Nitrogen
444 dynamics after two years of elevated CO₂ in phosphorus limited Eucalyptus woodland, *Biogeochemistry*,
445 <https://doi.org/10.1007/s10533-020-00699-y>, 2020.

446 Atkinson, G.: A multivariate analysis of alluvial terrace soils of the clarendon and cranebrook formations, Nepean
447 River, NSW, *Soil Res.*, 26, 243–259, 1988.

448 Bates, D., Mächler, M., Bolker, B., and Walker, S.: Fitting Linear Mixed-Effects Models Using lme4, *J. Stat.*
449 *Soft.*, 67, 1–48, <https://doi.org/10.18637/jss.v067.i01>, 2015.

450 Bell, C. W., Fricks, B. E., Rocca, J. D., Steinweg, J. M., McMahon, S. K., and Wallenstein, M. D.: High-
451 throughput Fluorometric Measurement of Potential Soil Extracellular Enzyme Activities, *Journal of Visualized*
452 *Experiments* : JoVE, 50961, <https://doi.org/10.3791/50961>, 2013.

453 Bengtson, P., Barker, J., and Grayston, S. J.: Evidence of a strong coupling between root exudation, C and N
454 availability, and stimulated SOM decomposition caused by rhizosphere priming effects, *Ecology and Evolution*,
455 2, 1843–1852, <https://doi.org/10.1002/ece3.311>, 2012.

456 Berg, B. and McClaugherty, C.: Nitrogen and phosphorus release from decomposing litter in relation to the
457 disappearance of lignin, *Canadian Journal of Botany*, 67, 1148–1156, <https://doi.org/10.1139/b89-150>, 1989.

458 Bernard, L., Basile-Doelsch, I., Derrien, D., Fanin, N., Fontaine, S., Guenet, B., Karimi, B., Marsden, C., and
459 Maron, P.-A.: Advancing the mechanistic understanding of the priming effect on soil organic matter
460 mineralization, *Functional Ecology*, 36, 1355–1377, <https://doi.org/10.1111/1365-2435.14038>, 2022.

461 Büinemann, E. K.: Assessment of gross and net mineralization rates of soil organic phosphorus – A review, *Soil*
462 *Biology and Biochemistry*, 89, 82–98, <https://doi.org/10.1016/j.soilbio.2015.06.026>, 2015.

463 Carrillo, Y., Dijkstra, F. A., LeCain, D., Morgan, J. A., Blumenthal, D., Waldron, S., and Pendall, E.:
464 Disentangling root responses to climate change in a semiarid grassland, *Oecologia*, 175, 699–711,
465 <https://doi.org/10.1007/s00442-014-2912-z>, 2014.

466 Carrillo, Y., Bell, C., Koyama, A., Canarini, A., Boot, C. M., Wallenstein, M., Pendall, E., and Vries, F.: Plant
467 traits, stoichiometry and microbes as drivers of decomposition in the rhizosphere in a temperate grassland,
468 *Journal of Ecology*, <https://doi.org/10.1111/1365-2745.12772>, 2017.

469 Castañeda-Gómez, L., Walker, J. K. M., Powell, J. R., Ellsworth, D. S., Pendall, E., and Carrillo, Y.: Impacts of
470 elevated carbon dioxide on carbon gains and losses from soil and associated microbes in a Eucalyptus woodland,
471 *Soil Biology and Biochemistry*, 143, 107734, <https://doi.org/10.1016/j.soilbio.2020.107734>, 2020.

472 Castañeda-Gómez, L., Powell, J. R., Ellsworth, D. S., Pendall, E., and Carrillo, Y.: The influence of roots on
473 mycorrhizal fungi, saprotrophic microbes and carbon dynamics in a low-phosphorus Eucalyptus forest under
474 elevated CO₂, *Functional Ecology*, 00, 1–16, 2021.

475 Crews, T. E., Kitayama, K., Fownes, J. H., Riley, R. H., Herbert, D. A., Mueller-Dombois, D., and Vitousek, P.
476 M.: Changes in Soil Phosphorus Fractions and Ecosystem Dynamics across a Long Chronosequence in Hawaii,
477 *Ecology*, 76, 1407–1424, <https://doi.org/10.2307/1938144>, 1995.

478 Crous, K. Y., Ósvaldsson, A., and Ellsworth, D. S.: Is phosphorus limiting in a mature Eucalyptus woodland?
479 Phosphorus fertilisation stimulates stem growth, *Plant and Soil*, 391, 293–305, <https://doi.org/10.1007/s11104-015-2426-4>, 2015.

480 Dijkstra, F., Carrillo, Y., Pendall, E., and Morgan, J.: Rhizosphere priming: a nutrient perspective, *Frontiers in
481 Microbiology*, 4, <https://doi.org/10.3389/fmicb.2013.00216>, 2013.

482 Drake, J. E., Gallet-Budynek, A., Hofmockel, K. S., Bernhardt, E. S., Billings, S. A., Jackson, R. B., Johnsen, K.
483 S., Lichter, J., McCarthy, H. R., McCormack, M. L., Moore, D. J. P., Oren, R., Palmroth, S., Phillips, R. P.,
484 Pippen, J. S., Pritchard, S. G., Treseder, K. K., Schlesinger, W. H., DeLucia, E. H., and Finzi, A. C.: Increases
485 in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest
486 productivity under elevated CO₂, *Ecology Letters*, 14, 349–357, <https://doi.org/10.1111/j.1461-0248.2011.01593.x>, 2011.

487 Drake, J. E., Macdonald, C. A., Tjoelker, M. G., Crous, K. Y., Gimeno, T. E., Singh, B. K., Reich, P. B., Anderson,
488 I. C., and Ellsworth, D. S.: Short-term carbon cycling responses of a mature eucalypt woodland to gradual
489 stepwise enrichment of atmospheric CO₂ concentration, *Global Change Biology*, 22, 380–390,
490 <https://doi.org/10.1111/gcb.13109>, 2016.

491 Ellsworth, D. S., Anderson, I. C., Crous, K. Y., Cooke, J., Drake, J. E., Gherlenda, A. N., Gimeno, T. E.,
492 Macdonald, C. A., Medlyn, B. E., Powell, J. R., Tjoelker, M. G., and Reich, P. B.: Elevated CO₂ does not
493 increase eucalypt forest productivity on a low-phosphorus soil, *Nature Clim. Change* advance online
494 publication, <https://doi.org/10.1038/nclimate3235>, 2017.

495 Filion, M., Dutilleul, P., and Potvin, C.: Optimum experimental design for Free-Air Carbon dioxide Enrichment
496 (FACE) studies, *Global Change Biology*, 6, 843–854, <https://doi.org/10.1046/j.1365-2486.2000.00353.x>, 2000.

497 Finzi, A. C., Abramoff, R. Z., Spiller, K. S., Brzostek, E. R., Darby, B. A., Kramer, M. A., and Phillips, R. P.:
498 Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles, *Global
499 Change Biology*, 21, 2082–2094, <https://doi.org/10.1111/gcb.12816>, 2015.

500 Fisher, J. B., Badgley, G., and Blyth, E.: Global nutrient limitation in terrestrial vegetation, *Global
501 Biogeochemical Cycles*, 26, <https://doi.org/10.1029/2011GB004252>, 2012.

502 Fontaine, S., Barot, S., Barre, P., Bdioui, N., Mary, B., and Rumpel, C.: Stability of organic carbon in deep soil
503 layers controlled by fresh carbon supply, *Nature*, 450, 277–280, <https://doi.org/10.1038/nature06275>, 2007.

504 Fox, J. and Weisberg, S.: An R Companion to Applied Regression, Third., Sage, Thousand Oaks CA, 2019.

505 Gérard, F.: Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils — A myth
506 revisited, *Geoderma*, 262, 213–226, <https://doi.org/10.1016/j.geoderma.2015.08.036>, 2016.

507 Gilroy, S. and Jones, D. L.: Through form to function: root hair development and nutrient uptake, *Trends in Plant
508 Science*, 5, 56–60, [https://doi.org/10.1016/S1360-1385\(99\)01551-4](https://doi.org/10.1016/S1360-1385(99)01551-4), 2000.

509 Graaff, M.-A., Groenigen, K.-J., Six, J., Hungate, B., and Kessel, C.: Interactions between plant growth and soil
510 nutrient cycling under elevated CO₂: a meta-analysis, *Global Change Biology*, 12, 2077–2091,
511 <https://doi.org/10.1111/j.1365-2486.2006.01240.x>, 2006.

512 Graaff, M.-A., Jastrow, J. D., Gillette, S., Johns, A., and Wullschleger, S. D.: Differential priming of soil carbon
513 driven by soil depth and root impacts on carbon availability, *Soil Biology and Biochemistry*, 69, 147–156,
514 <https://doi.org/10.1016/j.soilbio.2013.10.047>, 2014.

515 van Groenigen, K. J., Osenberg, C. W., Terrer, C., Carrillo, Y., Dijkstra, F. A., Heath, J., Nie, M., Pendall, E.,
516 Phillips, R. P., and Hungate, B. A.: Faster turnover of new soil carbon inputs under increased atmospheric CO₂,
517 *Glob Chang Biol*, 23, 4420–4429, <https://doi.org/10.1111/gcb.13752>, 2017.

518 Hasegawa, S., Macdonald, C. A., and Power, S. A.: Elevated carbon dioxide increases soil nitrogen and
519 phosphorus availability in a phosphorus-limited Eucalyptus woodland, *Global Change Biology*, 22, 1628–1643,
520 <https://doi.org/10.1111/gcb.13147>, 2016.

521 Hasegawa, S., Piñeiro, J., Ochoa-Hueso, R., Haigh, A. M., Rymer, P. D., Barnett, K. L., and Power, S. A.: Elevated
522 CO₂ concentrations reduce C4 cover and decrease diversity of understorey plant community in a Eucalyptus
523 woodland, *Journal of Ecology*, 106, 1483–1494, <https://doi.org/10.1111/1365-2745.12943>, 2018.

526 Hobley, E. U. and Wilson, B.: The depth distribution of organic carbon in the soils of eastern Australia, *Ecosphere*,
527 7, 01214-, <https://doi.org/10.1002/ecs2.1214>, 2016.

528 Hothorn, T., Bretz, F., and Westfall, P.: Simultaneous Inference in General Parametric Models., *Biometrical
529 Journal*, 50, 346–363, 2008.

530 Iversen, C. M.: Digging deeper: fine-root responses to rising atmospheric CO₂ concentration in forested
531 ecosystems, *New Phytologist*, 186, 346–357, <https://doi.org/10.1111/j.1469-8137.2009.03122.x>, 2010.

532 Iversen, C. M., Ledford, J., and Norby, R. J.: CO₂ enrichment increases carbon and nitrogen input from fine roots
533 in a deciduous forest, *New Phytologist*, 179, 837–847, <https://doi.org/10.1111/j.1469-8137.2008.02516.x>,
534 2008.

535 Iversen, C. M., Hooker, T. D., Classen, A. T., and Norby, R. J.: Net mineralization of N at deeper soil depths as a
536 potential mechanism for sustained forest production under elevated [CO₂], *Global Change Biology*, 17, 1130–
537 1139, <https://doi.org/10.1111/j.1365-2486.2010.02240.x>, 2011.

538 Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E., and Schulze, E. D.: A global analysis
539 of root distributions for terrestrial biomes, *Oecologia*, 108, 389–411, <https://doi.org/10.1007/BF00333714>,
540 1996.

541 Jiang, M., Medlyn, B. E., Drake, J. E., Duursma, R. A., Anderson, I. C., Barton, C. V. M., Boer, M. M., Carrillo,
542 Y., Castañeda-Gómez, L., Collins, L., Crous, K. Y., Kauwe, M. G., Santos, B. M., Emmerson, K. M., Facey, S.
543 L., Gherlenda, A. N., Gimeno, T. E., Hasegawa, S., Johnson, S. N., Kännaste, A., Macdonald, C. A., Mahmud,
544 K., Moore, B. D., Nazaries, L., Neilson, E. H. J., Nielsen, U. N., Niinemets, Ü., Noh, N. J., Ochoa-Hueso, R.,
545 Pathare, V. S., Pendall, E., Pihlblad, J., Piñeiro, J., Powell, J. R., Power, S. A., Reich, P. B., Renchon, A. A.,
546 Riegler, M., Rinnan, R., and Rymer: The fate of carbon in a mature forest under carbon dioxide enrichment,
547 *Nature*, 580, 227–231, <https://doi.org/10.1038/s41586-020-2128-9>, 2020.

548 Jilling, A., Keiluweit, M., Contosta, A. R., Frey, S., Schimel, J., Schnecker, J., Smith, R. G., Tiemann, L., and
549 Grandy, A. S.: Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and
550 microbes, *Biogeochemistry*, 139, 103–122, <https://doi.org/10.1007/s10533-018-0459-5>, 2018.

551 Jobbágy, E. G. and Jackson, R. B.: The distribution of soil nutrients with depth: Global patterns and the imprint
552 of plants, *Biogeochemistry*, 53, 51–77, <https://doi.org/10.1023/a:1010760720215>, 2001.

553 Jones, D. L. and Darrah, P. R.: Role of root derived organic acids in the mobilization of nutrients from the
554 rhizosphere, *Plant and Soil*, 166, 247–257, <https://doi.org/10.1007/bf00008338>, 1994.

555 Kirkham, D. and Bartholomew, W. V.: Equations for Following Nutrient Transformations in Soil, Utilizing Tracer
556 Data: II.1, *Soil Science Society of America Journal*, 19, 189–192,
557 <https://doi.org/10.2136/sssaj1955.03615995001900020020x>, 1955.

558 Kuzyakov, Y.: Priming effects: Interactions between living and dead organic matter, *Soil Biology and
559 Biochemistry*, 42, 1363–1371, <https://doi.org/10.1016/j.soilbio.2010.04.003>, 2010.

560 Kuzyakov, Y. and Blagodatskaya, E.: Microbial hotspots and hot moments in soil: Concept & review, *Soil
561 Biology and Biochemistry*, 83, 184–199, <https://doi.org/10.1016/j.soilbio.2015.01.025>, 2015.

562 Kuzyakov, Y. and Cheng, W.: Photosynthesis controls of rhizosphere respiration and organic matter
563 decomposition, *Soil Biology and Biochemistry*, 33, 1915–1925, [https://doi.org/10.1016/S0038-0717\(01\)00117-1](https://doi.org/10.1016/S0038-0717(01)00117-
564 1), 2001.

565 Kuzyakov, Y., Friedel, J. K., and Stahr, K.: Review of mechanisms and quantification of priming effects, *Soil
566 Biology and Biochemistry*, 32, 1485–1498, [https://doi.org/10.1016/S0038-0717\(00\)00084-5](https://doi.org/10.1016/S0038-0717(00)00084-5), 2000.

567 Kuzyakov, Y., Horwath, W. R., Dorodnikov, M., and Blagodatskaya, E.: Review and synthesis of the effects of
568 elevated atmospheric CO₂ on soil processes: No changes in pools, but increased fluxes and accelerated cycles,
569 *Soil Biology and Biochemistry*, 128, 66–78, <https://doi.org/10.1016/j.soilbio.2018.10.005>, 2019.

570 Laclau, J.-P., Silva, E., Rodrigues Lambais, G., Bernoux, M., le Maire, G., Stape, J. L., Bouillet, J.-P., Gonçalves,
571 J. leonardo, Jourdan, C., and Nouvellon, Y.: Dynamics of soil exploration by fine roots down to a depth of 10
572 m throughout the entire rotation in *Eucalyptus grandis* plantations, *Frontiers in Plant Science*, 4, 2013.

573 Lambers, H., Raven, J. A., Shaver, G. R., and Smith, S. E.: Plant nutrient-acquisition strategies change with soil
574 age, *Trends in Ecology & Evolution*, 23, 95–103, <https://doi.org/10.1016/j.tree.2007.10.008>, 2008.

575 Lane, J. M., Delavaux, C. S., Van Koppen, L., Lu, P., Cade-Menun, B. J., Tremblay, J., and Bainard, L. D.: Soil
576 sample storage conditions impact extracellular enzyme activity and bacterial amplicon diversity metrics in a
577 semi-arid ecosystem, *Soil Biology and Biochemistry*, 175, 108858,
578 <https://doi.org/10.1016/j.soilbio.2022.108858>, 2022.

579 Li, C., Zhao, L., Sun, P., Zhao, F., Kang, D., Yang, G., Han, X., Feng, Y., and Ren, G.: Deep Soil C, N, and P
580 Stocks and Stoichiometry in Response to Land Use Patterns in the Loess Hilly Region of China, *PLoS ONE*,
581 11, e0159075, <https://doi.org/10.1371/journal.pone.0159075>, 2016.

582 Luo, Y., Su, B., Currie, W. S., Dukes, J. S., Finzi, A. C., Hartwig, U., Hungate, B., McMurtie, R. E., Oren, R.,
583 Parton, W. J., Pataki, D. E., Shaw, M. R., Zak, D. R., and Field, C. B.: Progressive nitrogen limitation of
584 ecosystem responses to rising atmospheric carbon dioxide, *Bioscience*, 54, 731–739,
585 [https://doi.org/10.1641/0006-3568\(2004\)054](https://doi.org/10.1641/0006-3568(2004)054), 2004.

586 McGill, W. B. and Cole, C. V.: Comparative aspects of cycling of organic C, N, S and P through soil organic
587 matter, *Geoderma*, 26, 267–286, [https://doi.org/10.1016/0016-7061\(81\)90024-0](https://doi.org/10.1016/0016-7061(81)90024-0), 1981.

588 Mooshammer, M., Wanek, W., Zechmeister-Boltenstern, S., and Richter, A.: Stoichiometric imbalances between
589 terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations
590 to their resources, *Frontiers in Microbiology*, 5, 22, <https://doi.org/10.3389/fmicb.2014.00022>, 2014.

591 Norby, R. J. and Zak, D. R.: Ecological Lessons from Free-Air CO₂ Enrichment (FACE) Experiments, *Annual
592 Review of Ecology, Evolution, and Systematics*, 42, 181–203, <https://doi.org/10.1146/annurev-ecolsys-102209-144647>, 2011.

593 Ochoa-Hueso, R., Hughes, J., Delgado-Baquerizo, M., Drake, J. E., Tjoelker, M. G., Piñeiro, J., and Power, S. A.:
594 Rhizosphere-driven increase in nitrogen and phosphorus availability under elevated atmospheric CO₂ in a
595 mature Eucalyptus woodland, *Plant and Soil*, 1–13, <https://doi.org/10.1007/s11104-017-3212-2>, 2017.

596 Ochoa-Hueso, R., Piñeiro, J., Hasegawa, S., Illanas, S., Miranda, H., Reverter, M., and Power, S. A.: Spatial
597 homogenization of understorey plant communities under eCO₂ in a mature Eucalyptus woodland, *Journal of
598 Ecology*, 109, 1386–1395, <https://doi.org/10.1111/1365-2745.13564>, 2021.

599 Ohno, T. and Zibilske, L. M.: Determination of Low Concentrations of Phosphorus in Soil Extracts Using
600 Malachite Green, *Soil Science Society of America Journal*, 55, 892–895,
601 <https://doi.org/10.2136/sssaj1991.03615995005500030046x>, 1991.

602 Olander, L. P. and Vitousek, P. M.: Regulation of soil phosphatase and chitinase activity by N and P availability,
603 *Biogeochemistry*, 49, 175–191, <https://doi.org/10.1023/A:1006316117817>, 2000.

604 Pathare, V. S., Crous, K. Y., Cooke, J., Creek, D., Ghannoum, O., and Ellsworth, D. S.: Water availability affects
605 seasonal CO₂-induced photosynthetic enhancement in herbaceous species in a periodically dry woodland,
606 *Global Change Biology*, <https://doi.org/10.1111/gcb.13778>, 2017.

607 Phillips, R. P., Finzi, A. C., and Bernhardt, E. S.: Enhanced root exudation induces microbial feedbacks to N
608 cycling in a pine forest under long-term CO₂ fumigation, *Ecology Letters*, 14, 187–194,
609 <https://doi.org/10.1111/j.1461-0248.2010.01570.x>, 2011.

610 Piñeiro, J., Ochoa-Hueso, R., Drake, J. E., Tjoelker, M. G., and Power, S. A.: Water availability drives fine root
611 dynamics in a Eucalyptus woodland under elevated atmospheric CO₂ concentration, *Functional Ecology* n/a,
612 <https://doi.org/10.1111/1365-2435.13660>, 2020.

613 Putz, M., Schleusner, P., Rütting, T., and Hallin, S.: Relative abundance of denitrifying and DNRA bacteria and
614 their activity determine nitrogen retention or loss in agricultural soil, *Soil Biology and Biochemistry*, 123, 97–
615 104, <https://doi.org/10.1016/j.soilbio.2018.05.006>, 2018.

616 Rasmussen, C., Heckman, K., Wieder, W. R., Keiluweit, M., Lawrence, C. R., Berhe, A. A., Blankinship, J. C.,
617 Crow, S. E., Druhan, J. L., Hicks Pries, C. E., Marin-Spiotta, E., Plante, A. F., Schädel, C., Schimel, J. P., Sierra,
618 C. A., Thompson, A., and Wagai, R.: Beyond clay: towards an improved set of variables for predicting soil
619 organic matter content, *Biogeochemistry*, 137, 297–306, <https://doi.org/10.1007/s10533-018-0424-3>, 2018.

620 Rayment, G. E. and Lyons, D. J.: *Soil Chemical Methods: Australasia*, CSIRO Publishing, 2011.

621 Ross, G. M., Horn, S., Macdonald, C. A., Powell, J. R., Reynolds, J. K., Ryan, M. M., Cook, J. M., and Nielsen,
622 U. N.: Metabarcoding mites: Three years of elevated CO₂ has no effect on oribatid assemblages in a Eucalyptus
623 woodland, *Pedobiologia*, 81–82, 150667, <https://doi.org/10.1016/j.pedobi.2020.150667>, 2020.

624 Rumpel, C. and Kögel-Knabner, I.: Deep soil organic matter—a key but poorly understood component of
625 terrestrial C cycle, *Plant and Soil*, 338, 143–158, <https://doi.org/10.1007/s11104-010-0391-5>, 2011.

626 Rütting, T., Clough, T. J., MÜLLer, C., Lieffering, M., and Newton, P. C. D.: Ten years of elevated atmospheric
627 carbon dioxide alters soil nitrogen transformations in a sheep-grazed pasture, *Global Change Biology*, 16, 2530–
628 2542, <https://doi.org/10.1111/j.1365-2486.2009.02089.x>, 2010.

629 Rütting, T., Huygens, D., Staelens, J., Müller, C., and Boeckx, P.: Advances in ¹⁵N-tracing experiments: new
630 labelling and data analysis approaches, *Biochemical Society Transactions*, 39, 279–283,
631 <https://doi.org/10.1042/bst0390279>, 2011.

632 Schimel, D., Stephens, B. B., and Fisher, J. B.: Effect of increasing CO₂ on the terrestrial carbon cycle,
633 *Proceedings of the National Academy of Sciences*, 112, 436–441, <https://doi.org/10.1073/pnas.1407302112>,
634 2015.

635 Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., Contosta, A. R.,
636 Cusack, D., Frey, S., Gallo, M. E., Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S.,
637 Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., Zak, D. R., and Zeglin, L. H.:
638 Stoichiometry of soil enzyme activity at global scale, *Ecology Letters*, 11, 1252–1264,
639 <https://doi.org/10.1111/j.1461-0248.2008.01245.x>, 2008.

640 Sinsabaugh, R. L., Hill, B. H., and Follstad Shah, J. J.: Ecoenzymatic stoichiometry of microbial organic nutrient
641 acquisition in soil and sediment, *Nature*, 462, 795–798, <https://doi.org/10.1038/nature08632>, 2009.

642 Sistla, S. A. and Schimel, J. P.: Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial
643 ecosystems under change, *New Phytologist*, 196, 68–78, <https://doi.org/10.1111/j.1469-8137.2012.04234.x>,
644 2012.

645

646 Spohn, M.: Element cycling as driven by stoichiometric homeostasis of soil microorganisms, *Basic and Applied*
647 *Ecology*, 17, 471–478, <https://doi.org/10.1016/j.baae.2016.05.003>, 2016.

648 Spohn, M. and Widdig, M.: Turnover of carbon and phosphorus in the microbial biomass depending on
649 phosphorus availability, *Soil Biology and Biochemistry*, 113, 53–59,
650 <https://doi.org/10.1016/j.soilbio.2017.05.017>, 2017.

651 Stange, F. C., Spott, O., Apelt, B., and Russow, R. W. B.: Automated and rapid online determination of 15N
652 abundance and concentration of ammonium, nitrite, or nitrate in aqueous samples by the SPINMAS technique,
653 *Isotopes in Environmental and Health Studies*, 43, 227–236, <https://doi.org/10.1080/10256010701550658>,
654 2007.

655 Terrer, C., Vicca, S., Stocker, B. D., Hungate, B. A., Phillips, R. P., Reich, P. B., Finzi, A. C., and Prentice, I. C.:
656 Ecosystem responses to elevated CO₂ governed by plant–soil interactions and the cost of nitrogen acquisition,
657 *New Phytologist*, 217, 507–522, <https://doi.org/10.1111/nph.14872>, 2018.

658 Terrer, C., Jackson, R. B., Prentice, I. C., Keenan, T. F., Kaiser, C., Vicca, S., Fisher, J. B., Reich, P. B., Stocker,
659 B. D., Hungate, B. A., Peñuelas, J., McCallum, I., Soudzilovskaia, N. A., Cernusak, L. A., Talhelm, A. F.,
660 Sundert, K., Piao, S., Newton, P. C. D., Hovenden, M. J., Blumenthal, D. M., Liu, Y. Y., Müller, C., Winter,
661 K., Field, C. B., Viechtbauer, W., Lissa, C. J., Hoosbeek, M. R., Watanabe, M., Koike, T., Leshyk, V. O.,
662 Polley, H. W., and Franklin, O.: Nitrogen and phosphorus constrain the CO₂ fertilization of global plant
663 biomass, *Nature Climate Change*, <https://doi.org/10.1038/s41558-019-0545-2>, 2019.

664 Vance, E. D., Brookes, P. C., and Jenkinson, D. S.: An extraction method for measuring soil microbial biomass
665 C, *Soil Biology and Biochemistry*, 19, 703–707, [https://doi.org/10.1016/0038-0717\(87\)90052-6](https://doi.org/10.1016/0038-0717(87)90052-6), 1987.

666 Walker, T. W. and Syers, J. K.: The fate of phosphorus during pedogenesis, *Geoderma*, 15, 1–19,
667 [https://doi.org/10.1016/0016-7061\(76\)90066-5](https://doi.org/10.1016/0016-7061(76)90066-5), 1976.

668 Wang, Z. and Wang, C.: Magnitude and mechanisms of nitrogen-mediated responses of tree biomass production
669 to elevated CO₂: A global synthesis, *Journal of Ecology*, 109, 4038–4055, <https://doi.org/10.1111/1365-2745.13774>, 2021.

670 Zhao, F., Zhang, L., Sun, J., Ren, C., HAN, X., Yang, G., Pang, G., Bai, H., and Wang, J.: Effect of Soil C, N and
671 P Stoichiometry on Soil Organic C Fractions After Afforestation, *Pedosphere*, 27, 705–713,
672 [https://doi.org/10.1016/S1002-0160\(17\)60479-X](https://doi.org/10.1016/S1002-0160(17)60479-X), 2017.

673 Zhu, B., Gutknecht, J. L. M., Herman, D. J., Keck, D. C., Firestone, M. K., and Cheng, W.: Rhizosphere priming
674 effects on soil carbon and nitrogen mineralization, *Soil Biology and Biochemistry*, 76, 183–192,
675 <https://doi.org/10.1016/j.soilbio.2014.04.033>, 2014.

676

677

678 **Tables**

679 **Table 1.** The effect of the factors CO_2 (e CO_2 and a CO_2), soil depth (*0 to 10 cm, 10 to 30 cm, transition*) and soil
 680 type (bulk and rhizosphere soil) and their interactions, shown as model F statistic output. Asterisks and bold
 681 indicate the level of significance of P values: *** for $P < 0.001$; ** for $P < 0.01$ and * for $P < 0.05$. The extractable
 682 nutrients NH_4^+ , NO_3^- and PO_4^{3-} , DOC, and microbial biomass C, N and P are modelled on a $\text{mg}\cdot\text{kg}^{-1}$ basis, gross
 683 N mineralisation rate on a $\text{mg}\cdot\text{kg}^{-1}\cdot\text{day}^{-1}$ basis, and soil C and N in %.

684

	CO ₂	depth	soil	CO ₂ :depth	CO ₂ :soil	depth:soil	CO ₂ :depth:soil
Df	1	1	1	1	1	1	1
Carbon							
DOC	0.29	30.35 ***	27.8 ***	0.01	0.05	1.46	0.94
Microbial C	0.08	141.1 ***	15.9 ***	1.92	0.6	2.34	0.01
Soil C	0.2	236.89 ***	1.21	0.1	7.94 **	0.69	1.69
Nitrogen							
NH_4^+	0.09	24.08 ***	25.96 ***	0.27	0.2	0.03	0.16
NO_3^-	0.46	8.96 **	16.36 ***	0.3	0.0	0.11	1.3
Microbial N	0.16	122.42 ***	18.32 ***	0.02	0.52	0.0	0.22
gross N min	2.04	13.08 **	8.81 **	0.37	0.05	0.92	NA
Soil N	0.0	194.1 ***	0.19	0.01	11.04 **	2.68	2.42
Phosphorus							
PO_4^{3-}	0.37	32.63 ***	33.18 ***	8.6 **	2.21	0.17	0.06
Microbial P	0.48	126.46 ***	6.38 *	2.53	0.0	0.18	0.11
Mineral Pi a	0.03	68.31 ***	5.77 **	0.19	0.58	2.34	0.73

685

686

687 **Table 2.** Total soil C and N (%) and the C to N ratio for ambient a CO_2 and elevated e CO_2 in bulk soil at the three
 688 depths. Standard error is given in parenthesis. Results from statistical analysis are provided in Table 1.

Depth	Soil C %			Soil N %			C:N	
	Ambient	Elevated	Ambient	Elevated	Ambient	Elevated	Ambient	Elevated
0-10	1.46 (0.2)	1.83 (0.2)	0.09 (0.0)	0.11 (0.0)	15.86 (0.6)	16.05 (0.4)		
10-30	0.52 (0.1)	0.59 (0.1)	0.04 (0.0)	0.05 (0.0)	12 (1.1)	12.37 (0.9)		
transition	0.15 (0.0)	0.17 (0.0)	0.02 (0.0)	0.02 (0.0)	6.59 (1.1)	7.34 (1.0)		

689

690

691 **Table 3.** Extractable and microbial C, N and P stoichiometry (mg kg⁻¹/mg kg⁻¹) and soil C:N ratio for bulk soil
 692 (B) on the left of each column and rhizosphere soil (R) on the right for ~~of~~a mature Eucalyptus forest soil exposed
 693 to ambient and elevated CO₂ for three depths (0 to 10 cm, 10 to 30 cm, transition). Stoichiometry was calculated
 694 on a mg kg⁻¹ mass basis with standard error below in parenthesis.

	Extractable						Microbial						Soil	
	B		R		B		R		B		R		B	
	C:N	C:P	C:N	C:P	N:P	C:N	C:P	N:P	C:N	C:P	N:P	C:N	C:N	C:N
Ambient														
0-10	17.9 (3.5)	15.0 (3.5)	24.2 (1.6)	29.9 (3.1)	1.6 (0.2)	2.5 (0.5)	5.6 (0.6)	5.1 (0.4)	9.8 (0.6)	11.0 (0.9)	2.0 (0.2)	2.2 (0.1)	15.9 (0.6)	14.6 (0.5)
10-30	36.3 (10.4)	19.2 (5)	30.5 (3.2)	31.3 (6.4)	1.5 (0.5)	1.9 (0.3)	4.3 (0.6)	4.4 (0.8)	12.3 (2)	13.4 (3.5)	2.7 (0.2)	2.9 (0.3)	12.0 (1.1)	15.6 (0.8)
transition	56.8 (22.2)	NA	65 (18.7)	NA	1.9 (0.7)	NA	NA	NA	NA	NA	9.5 (3)	NA	6.6 (1.1)	NA
Elevated														
0-10	14 (2.6)	12.6 (2.4)	26.1 (2.4)	25.3 (0.2)	2 (0.1)	2.3 (0.4)	5.8 (0.3)	6.2 (1.1)	12.5 (1.2)	20.1 (7.3)	2.2 (0.2)	3.3 (1.3)	16.0 (0.4)	16.0 (0.5)
10-30	20.5 (6.3)	12.9 (2.5)	23.4 (1.4)	22.1 (1.8)	1.5 (0.3)	2.0 (0.3)	7.5 (1)	5.5 (0.9)	14.9 (2.8)	16.8 (3.1)	2.3 (0.2)	2.7 (0.3)	12.4 (0.9)	16.9 (0.9)
transition	24.3 (8.5)	NA	24.8 (7)	NA	1.2 (0.3)	NA	8.3 (5)	NA	NA	NA	17.8 (13.6)	NA	7.3 (1)	NA

695

696

697 **Table 4.** Model F statistic and significance of extractable and microbial C, N and P, and soil C:N. Where bulk
 698 and rhizosphere are shown separate, bulk was modelled with 3 depth levels whereas rhizosphere soil was modelled
 699 with only 2. Where bulk soil and rhizosphere soil are shown together (†) only the 0-10 and 10-30 cm depths are
 700 included in the model. Significance of P values are as indicated: *** indicate P < 0.001; ** indicate P < 0.01 and
 701 * indicates P < 0.05.

Bulk	Extractable			Microbial			Soil	
	C:N	C:P	N:P	C:N	C:P	N:P	C:N	C:N
CO ₂	0.32	0.62	0.04	0.45	0.16	0.3	0.16	

	Extractable			Microbial			Soil
	C:N	C:P	N:P	C:N	C:P	N:P	C:N
depth	4.8 *	0.51	1.7	0.67	0.78	11 ***	62.4 ***
CO ₂ :depth	0.34	2.48	0.84	0.62	0.12	1.27	0.06
Rhizosphere							
CO ₂	0.14	0.77	0.01	0.62	0.54	0.23	3.9
depth	0.46	1.6	2.01	1.97	0.02	0.8	1.91
CO ₂ :depth	0.36	0.6	0.04	0.45	0	0.42	0
Bulk and Rhizosphere[†]							
CO ₂	0.21	0.55	0.07	0.84	0.3	0.08	2.02
depth	6.93 *	0	7.91 **	1.16	0.27	2.5	9.27 **
soil	11.8 **	0.06	13.58 ***	1.73	1.28	1.53	7.4 *
CO ₂ :depth	0.52	3.23	0.06	1.57	0.02	1.54	0.01
CO ₂ :soil	0.2	1.78	1.35	0.04	1.47	0.29	0.96
depth:soil	3.04	3.01	0.84	0.94	0.13	0.04	19.12 ***
CO ₂ :depth:soil	0.01	0.58	0.27	0.2	0	0.03	0.01

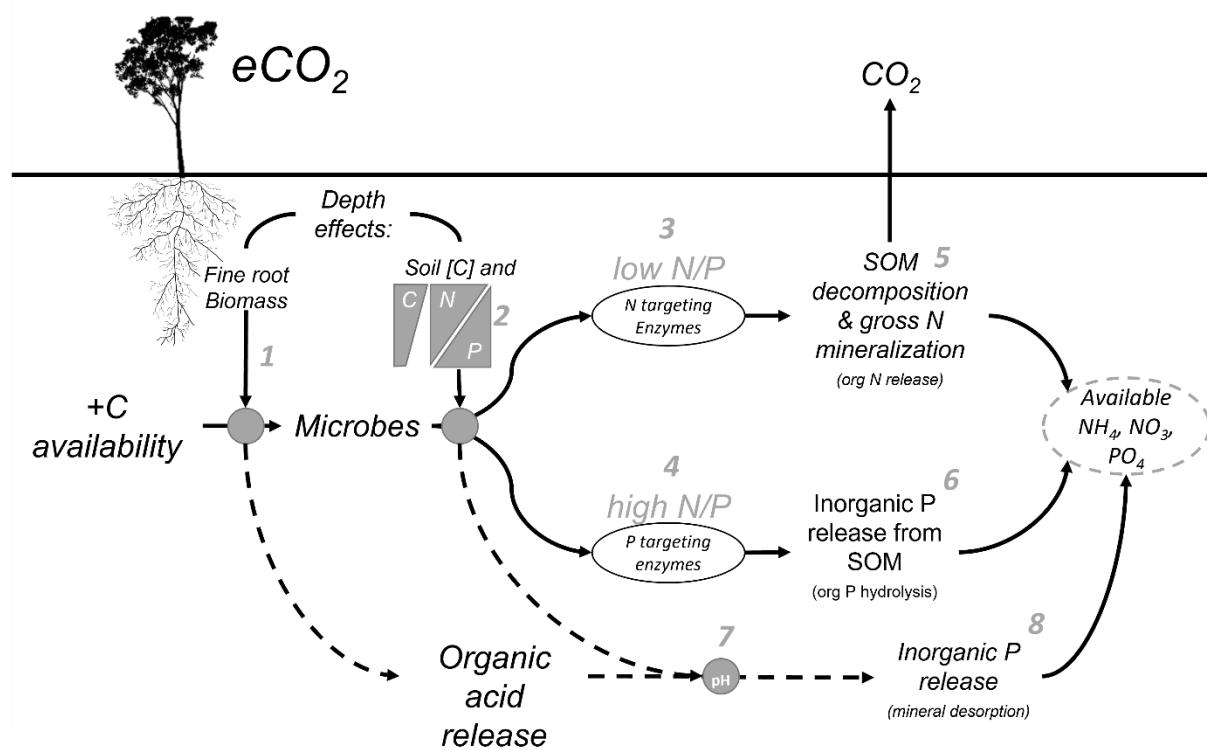
702

703 **Table 5.** Potential enzyme activity and stoichiometry of enzymes targeting C, N and P compounds ($\mu\text{mol h}^{-1} \text{g}^{-1}$)
704 for bulk and rhizosphere soil of a mature Eucalyptus forest soil exposed to ambient and elevated CO₂ for three
705 depths (0 to 10 cm, 10 to 30 cm, transition), with standard error in parenthesis. Four enzymes (α -D-
706 glucopyranoside (AG), β -D-glucopyranoside (BG), β -D-cellobioside (CB), and β -D-xylopyranoside (XYL))
707 targeted C-rich compounds (sugar, cellulose, hemicellulose), two enzymes (L-Leucine-7-aminopeptidase (LAP)
708 and N-acetyl- β -D-glucosamine (NAG)) targeted N-rich compounds (proteins and chitin), and acid phosphatase
709 (PHOS) targeted organic compounds with P.

Layer	Enzyme						Sum			Stoichiometry				
	AG	BG	CB	XYL	LAP	NAG	PHOS	C	N	P	C:N	C:P	N:P	pH
Bulk Ambient														
<i>0-10</i>	5.3 (1)	38.9 (7.9)	16.4 (3.3)	23.5 (5.1)	33.8 (11.5)	32.1 (5.3)	121.9 (27.3)	84 (14.1)	65.9 (12.5)	121.9 (27.3)	1.5 (0.3)	0.8 (0.1)	0.7 (0.2)	5.8 (0.1)
<i>10-30</i>	3.5 (1)	9.5 (1.7)	4.1 (1)	6.6 (1.2)	16.3 (4.3)	10.4 (0.8)	47.6 (10.2)	23.6 (4)	26.8 (4.6)	47.6 (10.2)	1.2 (0.4)	0.8 (0.3)	0.6 (0)	6 (0.1)
<i>transition</i>	1.6 (0.6)	2.5 (1)	1.1 (0.4)	1.4 (0.5)	9.3 (1.8)	5.2 (1.4)	25.0 (6.3)	6.6 (2.3)	14.5 (2.7)	25.0 (6.3)	0.7 (0.3)	0.3 (0.1)	0.7 (0.2)	5.8 (0.1)
Bulk Elevated														
<i>0-10</i>	5.3 (1.3)	35.8 (11.3)	12.5 (3.9)	20.9 (6.7)	23.8 (7.5)	31.7 (10.1)	139.5 (52)	74.5 (22.3)	55.5 (15.4)	139.5 (52)	1.4 (0.2)	0.7 (0.2)	0.5 (0.1)	5.7 (0.2)
<i>10-30</i>	5.8 (1.6)	15.4 (5.7)	6.9 (2)	11.1 (2.7)	13.7 (3.3)	17 (4)	65.9 (18)	39.2 (10.5)	30.7 (5.8)	65.9 (18)	1.4 (0.3)	0.8 (0.3)	0.6 (0.1)	5.9 (0.1)
<i>transition</i>	4.6 (1.3)	7.3 (1.8)	4.7 (1.2)	5.2 (1.2)	3.4 (1.1)	16.1 (9.3)	23.6 (5.2)	21.7 (4.5)	19.5 (10.1)	23.6 (5.2)	2 (0.5)	1.1 (0.3)	0.7 (0.2)	6.1 (0.2)
Rhizosphere Ambient														
<i>0-10</i>	5.2 (1.7)	52.4 (17.7)	16.3 (3.1)	21.8 (6.6)	33.6 (13.4)	35.6 (9)	119.9 (33.4)	95.7 (26.8)	69.2 (14.1)	119.9 (33.4)	1.6 (0.4)	0.8 (0.1)	0.7 (0.2)	5.9 (0.1)
<i>10-30</i>	5.3 (1.3)	12.5 (1.4)	7.7 (1.6)	9.9 (1.3)	16.5 (4.4)	13.5 (1.8)	61.4 (13)	35.5 (4.4)	30 (4.9)	61.4 (13)	1.4 (0.3)	0.9 (0.3)	0.5 (0.1)	5.9 (0.1)
<i>transition</i>	4.3 (1.6)	12.3 (6.1)	6.5 (3.4)	9.4 (4.1)	13.3 (2.4)	19.7 (10.2)	56.2 (13.9)	32.4 (14.5)	33 (11.6)	56.2 (13.9)	1 (0.3)	0.5 (0.1)	0.6 (0.1)	5.7 (0.1)

<u>Layer</u>	<u>Enzyme</u>						<u>Sum</u>			<u>Stoichiometry</u>				
	<u>AG</u>	<u>BG</u>	<u>CB</u>	<u>XYL</u>	<u>LAP</u>	<u>NAG</u>	<u>PHOS</u>	<u>C</u>	<u>N</u>	<u>P</u>	<u>C:N</u>	<u>C:P</u>	<u>N:P</u>	<u>pH</u>
<u>Rhizosphere Elevated</u>														
<u>0-10</u>	<u>3.9</u> (1.2)	<u>34.4</u> (8.1)	<u>12.4</u> (3.5)	<u>20.1</u> (4.3)	<u>25.1</u> (7.4)	<u>29.7</u> (6.9)	<u>126.1</u> (40.6)	<u>70.8</u> (16.3)	<u>54.8</u> (12.9)	<u>126.1</u> (40.6)	<u>1.3</u> (0.1)	<u>0.7</u> (0.1)	<u>0.5</u> (0.1)	<u>5.7</u> (0.2)
<u>10-30</u>	<u>6.6</u> (2.1)	<u>17.8</u> (3.2)	<u>6.8</u> (1)	<u>11.4</u> (1.4)	<u>16</u> (2.6)	<u>23.9</u> (4)	<u>97.1</u> (24.6)	<u>42.6</u> (4.3)	<u>40</u> (5.7)	<u>97.1</u> (24.6)	<u>1.2</u> (0.2)	<u>0.7</u> (0.2)	<u>0.5</u> (0.1)	<u>5.8</u> (0.1)
<u>transition</u>	<u>4.5</u> (1.3)	<u>17.2</u> (3.8)	<u>10.4</u> (3.5)	<u>6.3</u> (1.5)	<u>5.4</u> (1.1)	<u>32.1</u> (15.5)	<u>53.1</u> (16.8)	<u>38.3</u> (5.2)	<u>37.5</u> (15.8)	<u>53.1</u> (16.8)	<u>1.4</u> (0.3)	<u>0.9</u> (0.2)	<u>0.8</u> (0.3)	<u>6</u> (0.3)

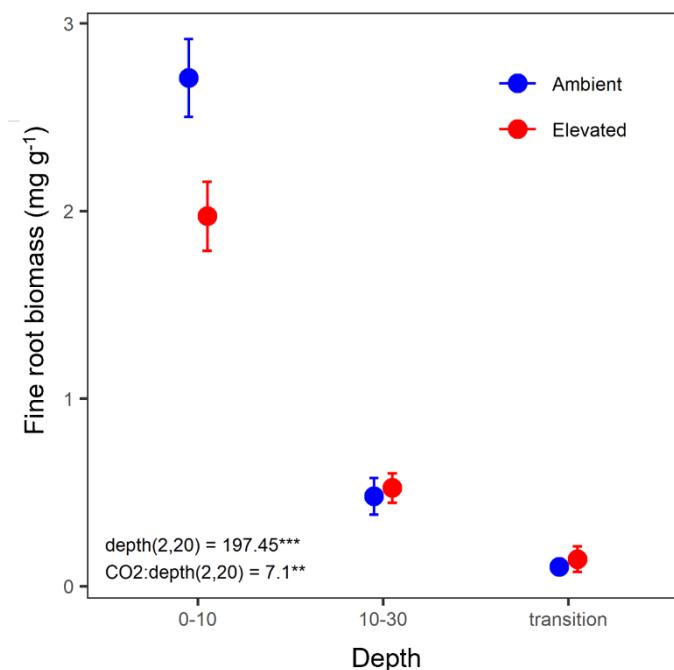
710


711 **Table 6:** Model F statistic and significance levels for potential enzyme activity. Significance of P values are in
712 bold and as indicated: *** indicate P < 0.001; ** indicate P < 0.01 and * indicates P < 0.05.

	<u>AG</u>	<u>BG</u>	<u>CB</u>	<u>XYL</u>	<u>LAP</u>	<u>NAG</u>	<u>PHOS</u>	<u>sum</u>			<u>stoichiometry</u>			
								<u>C</u>	<u>N</u>	<u>P</u>	<u>C:N</u>	<u>C:P</u>	<u>N:P</u>	<u>pH</u>
<u>CO₂</u>	<u>0.98</u>	<u>0</u>	<u>0.01</u>	<u>0.03</u>	<u>0.8</u>	<u>1.55</u>	<u>0.19</u>	<u>0.02</u>	<u>0</u>	<u>0.19</u>	<u>1.53</u>	<u>0.72</u>	<u>0.14</u>	<u>0.03</u>
<u>depth</u>	<u>1.45</u> ***	<u>23.28</u> ***	<u>18.44</u> ***	<u>22.84</u> ***	<u>11.96</u> ***	<u>6.37</u> **	<u>17.62</u> ***	<u>24.2</u> ***	<u>14.41</u> ***	<u>17.62</u> ***	<u>0.51</u>	<u>0.48</u>	<u>0.73</u>	<u>0.67</u>
<u>soil</u>	<u>0.9</u>	<u>2.42</u>	<u>3.05</u> (<u>1</u>)	<u>0.83</u>	<u>0.22</u>	<u>2.59</u>	<u>1.48</u>	<u>2.43</u>	<u>2.03</u>	<u>1.48</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0.17</u>
<u>CO₂:depth</u>	<u>1.25</u>	<u>1.77</u>	<u>2.81</u> (<u>1</u>)	<u>0.57</u>	<u>0.42</u>	<u>1.16</u>	<u>0.42</u>	<u>1.83</u>	<u>1.13</u>	<u>0.42</u>	<u>3.3</u> *	<u>4.42</u> *	<u>1.03</u>	<u>2.94</u> (<u>1</u>)
<u>CO₂:soil</u>	<u>1.01</u>	<u>0.38</u>	<u>0.15</u>	<u>0.43</u>	<u>0.01</u>	<u>0</u>	<u>0.01</u>	<u>0.51</u>	<u>0</u>	<u>0.01</u>	<u>1.84</u>	<u>1.13</u>	<u>0.04</u>	<u>0.04</u>
<u>depth:soil</u>	<u>1.02</u>	<u>0.27</u>	<u>1.56</u>	<u>0.81</u>	<u>0.06</u>	<u>1.01</u>	<u>0.96</u>	<u>0.59</u>	<u>0.74</u>	<u>0.96</u>	<u>0.03</u>	<u>0</u>	<u>0.05</u>	<u>0.38</u>
<u>CO₂:depth:soil</u>	<u>0.07</u>	<u>0.41</u>	<u>0.29</u>	<u>0.25</u>	<u>0.02</u>	<u>0.12</u>	<u>0.12</u>	<u>0.04</u>	<u>0.06</u>	<u>0.12</u>	<u>0.34</u>	<u>0.22</u>	<u>0.07</u>	<u>0</u>

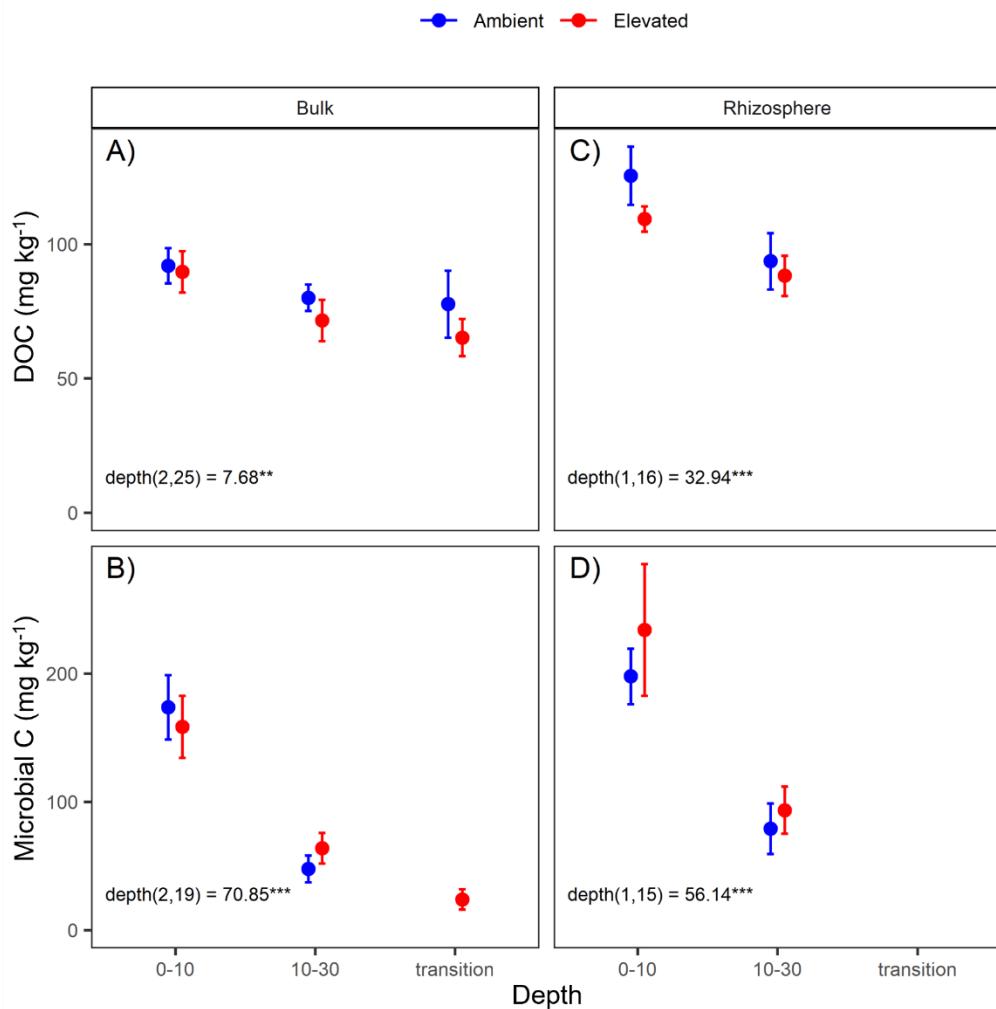
713

714 **Figures**


715

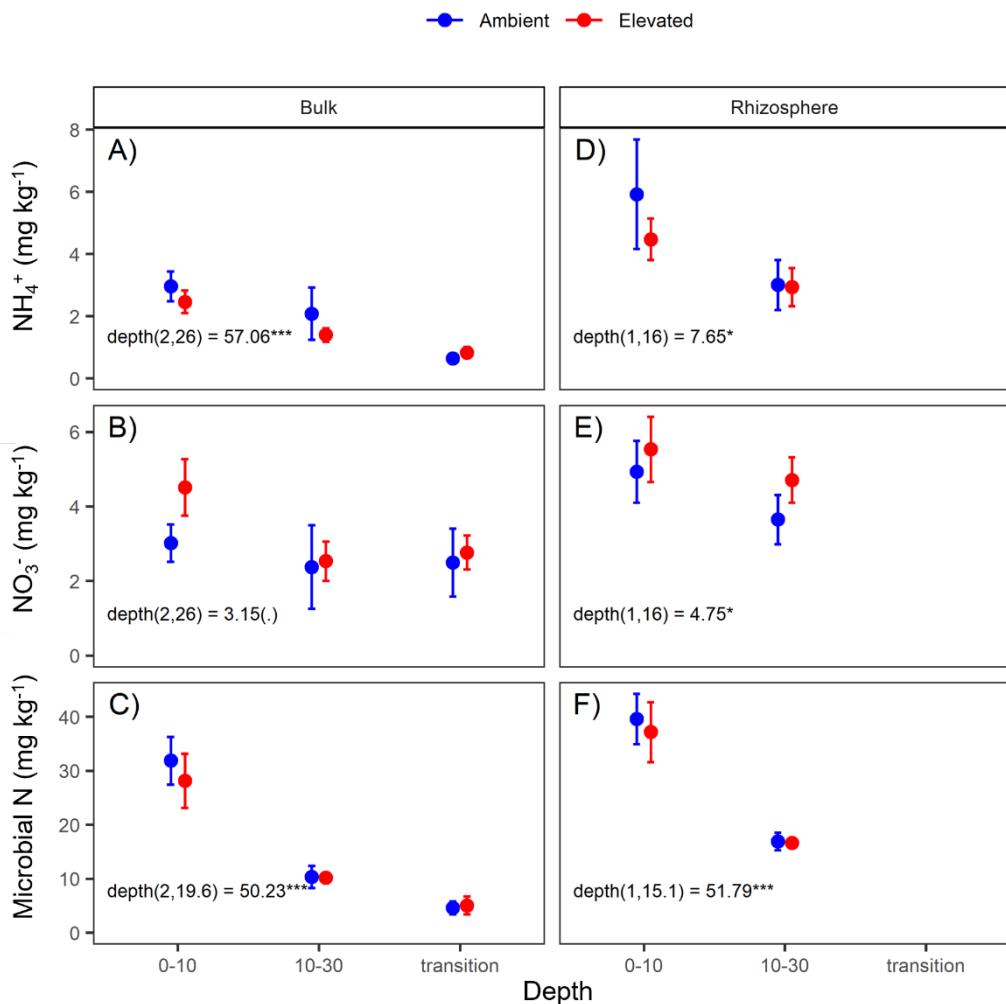
716

717 **Figure 1.** Conceptual diagram of the mechanisms affecting nutrient availability as influenced by soil depth.
 718 Elevated CO₂ increases C availability belowground, but the effect of that extra C is moderated by depth dependent
 719 mechanisms. (1) Root exudation in the rhizosphere soil is proportional to fine root biomass which decreases with
 720 depth. (2) The microbial strategy to release nutrients is a function of soil C content and N to P ratio, which also
 721 can change with depth. (3) The microbial strategy is a response to the N to P ratio either producing N targeting
 722 enzymes in low N to P conditions or (4) P targeting enzymes in high N to P conditions. (5) Nitrogen targeting
 723 enzymes act to decompose SOM and increase gross N mineralization, transforming N into NH₄⁺ and ultimately
 724 NO₃⁻ which are available for plant uptake. (6) P targeting enzymes cut phosphates from organic molecules by
 725 hydrolysis. (7) One further mechanism behind nutrients release affected by eCO₂, is that soil pH is changed,
 726 impacting the soil sorption capacity, by the organic acid exudates from roots and microbial mineralization thereof.
 727 (8) The decreased acidity tips the balance of phosphates in solid and in solution, to increase soil solution content
 728 and P availability by mineral desorption.


729

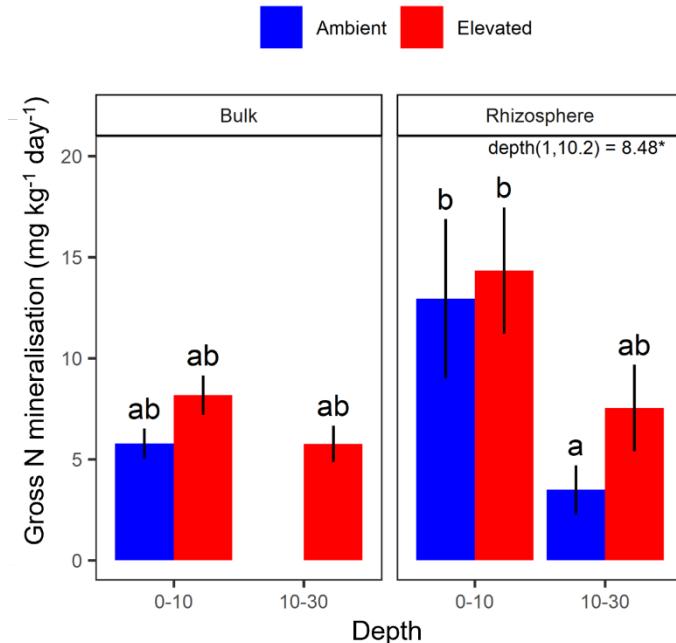
730

731 **Figure 2.** Biomass of fine roots of less than 3 mm thickness ($\text{mg}\cdot\text{g}^{-1}$) in the mature *Eucalyptus* forest soil exposed
732 to ambient (blue) and elevated (red) CO_2 for three depths (0-10 cm, 10-30 cm, transition). Error bars indicate
733 standard error. Mixed effects model output stated with (degrees of freedom, Df residuals) F statistic presented and
734 asterisks for the P values for significance are as indicated: *** indicate $P < 0.001$ and ** indicate $P < 0.01$.


735

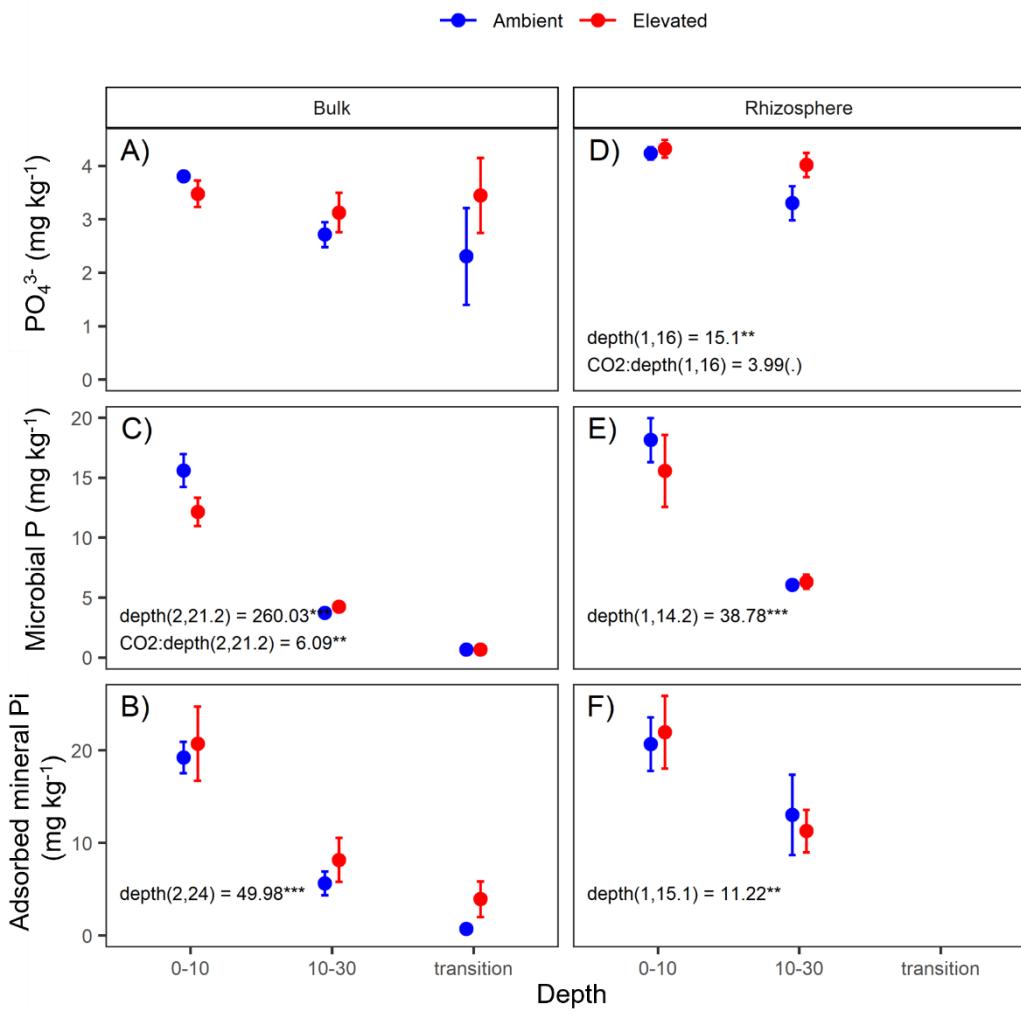
736

737 **Figure 3.** Dissolved organic carbon (DOC) and microbial biomass carbon (C) content for bulk and rhizosphere
 738 soil of the mature *Eucalyptus* forest soil exposed to ambient (blue) and elevated (red) CO₂ for three depths (0 to
 739 10 cm, 10 to 30 cm, transition). Error bars indicate standard error. Mixed effects model output stated with (degrees
 740 of freedom, Df residuals) and F statistic presented and asterisks for the P values for significance are as indicated:
 741 *** indicate P < 0.001 and ** indicate P < 0.01. Results from statistical analysis of comparison of soil types (bulk
 742 and rhizosphere) are presented in Table 1.


743

744

745 **Figure 4.** Nitrogen (N) pools in the forms of ammonium (NH_4^+), nitrate (NO_3^-) and microbial biomass N for bulk
 746 and rhizosphere soil of the mature *Eucalyptus* forest soil exposed to ambient (blue) and elevated (red) CO_2 for
 747 three depths (0 to 10 cm, 10 to 30 cm, transition). Error bars indicate standard error. Mixed effects model output
 748 stated with (degrees of freedom, Df residuals) and F statistic presented and asterisks for the P values for
 749 significance are as indicated: *** indicate $P < 0.001$, ** indicate $P < 0.01$, * indicates $P < 0.05$ and (.) indicates a
 750 tendency to a significance $P < 0.1$. Results from statistical analysis of comparison of soil types (bulk and
 751 rhizosphere) are presented in Table 1.


752

753

754 **Figure 5.** Gross N mineralization for bulk and rhizosphere soil of the mature *Eucalyptus* forest soil exposed to
 755 ambient (blue) and elevated (red) CO₂ for two depths (0 to 10 cm, 10 to 30 cm). Error bars indicate standard error.
 756 Mixed effects model output stated with (degrees of freedom, Df residuals) and F statistic presented and asterisks
 757 for the P value for significance, * indicates P < 0.05. Results from statistical analysis of comparison of soil types
 758 (bulk and rhizosphere) are presented in Table 1.

759

760

761 **Figure 6.** Measured soil P pools in the in forms of inorganic P (PO_4^{3-}), microbial biomass P, and mineral associated
762 phosphate through adsorption for bulk and rhizosphere soil of the mature *Eucalyptus* forest soil exposed to
763 ambient (blue) and elevated (red) CO_2 for three depths (0 to 10 cm, 10 to 30 cm, transition). Error bars indicate
764 standard error. Mixed effects model output stated with (degrees of freedom, Df residuals) and F statistic presented
765 and asterisks for the P values for significance are as indicated: *** indicate $P < 0.001$, ** indicate $P < 0.01$, *
766 indicates $P < 0.05$ and .) indicates a tendency to a significance $P < 0.1$. Results from statistical analysis of
767 comparison of soil types (bulk and rhizosphere) are presented in Table 1.