S1. Potential enzyme activity method

1

14

2 Potential activity of seven enzymes associated with C, N and P mineralisation were determined for bulk and 3 rhizosphere soil respectively. For this we used fluorometrically labelled substrates, following the method of Bell 4 et al., 2013. Two g frozen soil was mixed to a slurry (1:33 w:v) with MilliQ water in a laboratory blender for one 5 minute. The slurry was pipetted into 96 well plates with three technical replicates and given fluorescent substrates 6 (4-methylumbelliferone; MUB and 7-amino-4-methylcoumarin: MUC) in accordance with the Bell et al. protocol 7 (2013). The samples were then incubated at 25 °C for three hours and analysed for fluorescence with a 8 CLARIOstar plate reader (BMG LABTECH GmbH, Germany). Four enzymes (α-D-glucopyranoside (AG), β-D-9 glucopyranoside (BG), β-D-cellobioside (CB), and β-D-xylopyranoside (XYL)) targeted C-rich compounds 10 (sugar, cellulose, hemicellulose), two enzymes (L-Leucine-7-aminopeptidase (LAP) and N-acetyl-β-D-11 glucosamine (NAG)) targeted N-rich compounds (proteins and chitin), and acid phosphatase (PHOS) targeted 12 organic compounds with P. These enzymes are considered representative of the total enzyme pool active in the soil. 13

S2. Enzymatic activity results

- Enzyme activities decreased significantly with depth but did not differ significantly between soil or CO₂ treatment (Table S2.3 and S2.4). One exception to the general trend was CB (b-D-cellobioside) that did not decrease with depth and was significantly higher in rhizosphere soil compared to bulk soil. Notable is the difference in magnitude for N targeting and P targeting enzymes where P enzymes where twice as abundant than N. The two
- 19 to one pattern was maintained as the enzyme activity declined with soil depth.

Table S1. Potential enzyme activity and stoichiometry of enzymes targeting C, N and P compounds (μ mol h-1 g⁻¹) for bulk and rhizosphere soil of a mature Eucalyptus forest soil exposed to ambient and elevated CO₂ for three depths (0 to 10 cm, 10 to 30 cm, transition), with standard error in parenthesis. Four enzymes (α -D-glucopyranoside (AG), β -D-glucopyranoside (BG), β -D-cellobioside (CB), and β -D-xylopyranoside (XYL)) targeted C-rich compounds (sugar, cellulose, hemicellulose), two enzymes (L-Leucine-7-aminopeptidase (LAP) and N-acetyl- β -D-glucosamine (NAG)) targeted N-rich compounds (proteins and chitin), and acid phosphatase (PHOS) targeted organic compounds with P.

	Enzyme										Sto	Stoichiometry		
Layer	\mathbf{AG}	BG	CB	XYL	LAP	NAG	PHOS	C	N	P	C:N	C:P	N:P	pН
Bulk Ambient														
0-10	5.3 (1)	38.9 (7.9)	16.4 (3.3)	23.5 (5.1)	33.8 (11.5)	32.1 (5.3)	121.9 (27.3)	84 (14.1)	65.9 (12.5)	121.9 (27.3)	1.5 (0.3)	0.8 (0.1)	0.7 (0.2)	5.8 (0.1)
10-30	3.5 (1)	9.5 (1.7)	4.1 (1)	6.6 (1.2)	16.3 (4.3)	10.4 (0.8)	47.6 (10.2)	23.6 (4)	26.8 (4.6)	47.6 (10.2)	1.2 (0.4)	0.8 (0.3)	0.6(0)	6 (0.1)
transition	1.6 (0.6)	2.5 (1)	1.1 (0.4)	1.4 (0.5)	9.3 (1.8)	5.2 (1.4)	25 (6.3)	6.6 (2.3)	14.5 (2.7)	25 (6.3)	0.7 (0.3)	0.3 (0.1)	0.7 (0.2)	5.8 (0.1)
Bulk Elevated														
0-10	5.3 (1.3)	35.8 (11.3)	12.5 (3.9)	20.9 (6.7)	23.8 (7.5)	31.7 (10.1)	139.5 (52)	74.5 (22.3)	55.5 (15.4)	139.5 (52)	1.4 (0.2)	0.7 (0.2)	0.5 (0.1)	5.7 (0.2)
10-30	5.8 (1.6)	15.4 (5.7)	6.9 (2)	11.1 (2.7)	13.7 (3.3)	17 (4)	65.9 (18)	39.2 (10.5)	30.7 (5.8)	65.9 (18)	1.4 (0.3)	0.8 (0.3)	0.6 (0.1)	5.9 (0.1)
transition	4.6 (1.3)	7.3 (1.8)	4.7 (1.2)	5.2 (1.2)	3.4 (1.1)	16.1 (9.3)	23.6 (5.2)	21.7 (4.5)	19.5 (10.1)	23.6 (5.2)	2 (0.5)	1.1 (0.3)	0.7 (0.2)	6.1 (0.2)
Rhizosphere Am	bient													
0-10	5.2 (1.7)	52.4 (17.7)	16.3 (3.1)	21.8 (6.6)	33.6 (13.4)	35.6 (9)	119.9 (33.4)	95.7 (26.8)	69.2 (14.1)	119.9 (33.4)	1.6 (0.4)	0.8 (0.1)	0.7 (0.2)	5.9 (0.1)
10-30	5.3 (1.3)	12.5 (1.4)	7.7 (1.6)	9.9 (1.3)	16.5 (4.4)	13.5 (1.8)	61.4 (13)	35.5 (4.4)	30 (4.9)	61.4 (13)	1.4 (0.3)	0.9 (0.3)	0.5 (0.1)	5.9 (0.1)
transition	4.3 (1.6)	12.3 (6.1)	6.5 (3.4)	9.4 (4.1)	13.3 (2.4)	19.7 (10.2)	56.2 (13.9)	32.4 (14.5)	33 (11.6)	56.2 (13.9)	1 (0.3)	0.5 (0.1)	0.6 (0.1)	5.7 (0.1)
Rhizosphere Ele	vated													

			Sto	_										
Layer	\mathbf{AG}	BG	CB	XYL	LAP	NAG	PHOS	C	N	P	C:N	C:P	N:P	pН
0-10	3.9 (1.2)	34.4 (8.1)	12.4 (3.5)	20.1 (4.3)	25.1 (7.4)	29.7 (6.9)	126.1 (40.6)	70.8 (16.3)	54.8 (12.9)	126.1 (40.6)	1.3 (0.1)	0.7 (0.1)	0.5 (0.1)	5.7 (0.2)
10-30	6.6 (2.1)	17.8 (3.2)	6.8 (1)	11.4 (1.4)	16 (2.6)	23.9 (4)	97.1 (24.6)	42.6 (4.3)	40 (5.7)	97.1 (24.6)	1.2 (0.2)	0.7 (0.2)	0.5 (0.1)	5.8 (0.1)
transition	4.5 (1.3)	17.2 (3.8)	10.4 (3.5)	6.3 (1.5)	5.4 (1.1)	32.1 (15.5)	53.1 (16.8)	38.3 (5.2)	37.5 (15.8)	53.1 (16.8)	1.4 (0.3)	0.9 (0.2)	0.8 (0.3)	6 (0.3)

								sum			stoichiometry			
	AG	BG	СВ	XYL	LAP	NAG	PHOS	С	N	P	C:N	C:P	N:P	pН
CO_2	0.98	0	0.01	0.03	0.8	1.55	0.19	0.02	0	0.19	1.53	0.72	0.14	0.03
depth	1.45	23.28	18.44 ***	22.84	11.96 ***	6.37 **	17.62 ***	24.2 ***	14.41 ***	17.62 ***	0.51	0.48	0.73	0.67
soil	0.9	2.42	3.05	0.83	0.22	2.59	1.48	2.43	2.03	1.48	0	0	0	0.17
CO ₂ :depth	1.25	1.77	2.81	0.57	0.42	1.16	0.42	1.83	1.13	0.42	3.3	4.42	1.03	2.94 (.)
CO ₂ :soil	1.01	0.38	0.15	0.43	0.01	0	0.01	0.51	0	0.01	1.84	1.13	0.04	0.04
depth:soil	1.02	0.27	1.56	0.81	0.06	1.01	0.96	0.59	0.74	0.96	0.03	0	0.05	0.38
CO ₂ :depth:soil	0.07	0.41	0.29	0.25	0.02	0.12	0.12	0.04	0.06	0.12	0.34	0.22	0.07	0