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Figure 5. MeSH contribution to the sulfur budget and associated bacterial patterns. (a) Latitudinal variation of the MeSH fraction in relation
to the total concentration of DMS+MeSH. (b) Relative abundance of selected bacterial genera by latitudinal range, , with the corresponding
MeSH/DMS ratio displayed on topCE9 . NA: not available; uc: unclassified.TS3

2022). In pelagic waters, DMS generally dominates gaseous
sulfur, with MeSH being the second most abundant com-
pound contributing on average ≤ 15 % to the total sulfur
species in the North and Baltic seas (Leck and Rodhe, 1991),
in the Atlantic Ocean (Kettle et al., 2001) and in the south-5

west Pacific Ocean (Lawson et al., 2020).
Comparable to some North Sea locations (Leck and

Rodhe, 1991), MeSH contributed up to 40 % between 70–
75◦ N in our study, with a maximum of 50 % at 78.6◦ N
(Fig. 5a). This latitudinal variability was underlined by10

shifts in major bacterial genera. For instance, Paraglaciecola
(Gammaproteobacteria) and NS4 (Bacteroidetes) peaked
together with the highest MeSH fraction between 70–
80◦ N. Abundances of Amylibacter decreased towards the
north, whereas unclassified Nitrincolaceae prevailed north15

of 80◦ N together with an again smaller MeSH/DMS ratio
(Fig. 5b). The overall MeSH contribution of 20 % suggests
that MeSH represents a considerable fraction of sulfur, with
linkages to microbial dynamics. Accordingly, we found sev-
eral correlations with the abundance of specific ASVs. Cor-20

relations between Yoonia-Loktanella and Ascidiaceihabitans
ASVs with MeSH reflect the prominent role of Rhodobacter-
aceae in DMSP demethylation (Curson et al., 2011; Moran
et al., 2012). The positive relation of SAR11 and SUP05
ASVs corresponds to the prevalence of DMSP-metabolizing25

genes in these taxa (Nowinski et al., 2019; Landa et al., 2019;
Sun et al., 2016). The link between cyanobacteria and MeSH
potentially relates to the known uptake of DMSP by Syne-
chococcus and Prochlorococcus (Vila-Costa et al., 2006), al-
though DMSP-utilizing genes are overall rare in cyanobacte-30

ria (Liu et al., 2018). Overall, these observations indicate yet
undescribed chemical linkages among primary producers.

5 Conclusion

We present the first measurements of DMS, MeSH and
other trace gases along a transect from the North Atlantic 35

to the ice-covered Arctic Ocean. High-resolution latitudinal
data between 57 and 80◦ N were complemented with verti-
cal profiles at sea-ice stations north of 80◦ N. Whereas iso-
prene, acetone, acetaldehyde and acetonitrile concentrations
decreased northwards, CO, DMS and MeSH were uncorre- 40

lated with latitude and retained considerable concentrations
in polar waters. Hence, these likely have phytoplankton-
driven origins with regional variability, e.g. through local-
ized blooms and/or the presence of sea ice. The DMS peak
in polar waters pointed to sea ice as reservoir of DMS (Lev- 45

asseur, 2013) and the prevalence of DMS-emitting phyto-
plankton. The marked correlation between DMS and Chl a
in the diatom-dominated region north of 80◦ N represented a
typical marginal sea-ice zone effect. The missing correlation
between DMS and MeSH suggested different processes of 50

production and degradation, although both compounds orig-
inate from DMSP. Although DMS was overall more abun-
dant, MeSH contributed on average 20 % (and up to 50 %)
to the total DMS+MeSH budget, suggesting consideration
of MeSH as a secondary aerosol producer in some regions. 55

The potential importance of MeSH was underlined by more
and stronger bacterial correlations than with DMS, indicat-
ing that bacterial DMSP demethylation is important across
extensive latitudinal gradients. Notably, higher acetaldehyde
concentrations north of 80◦ N suggest that ice-covered re- 60

gions could be a reservoir of acetaldehyde. While artefacts
from off-line measurements (sampling through Niskin bot-
tles) cannot be completely excluded, this result indicates a
potential role of this reactive compound in regional atmo-
spheric chemistry. However, a comprehensive understanding 65

of marine trace gas dynamics, including the rapidly changing
Arctic, requires further measurements in seawater, sea ice
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